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Abstract—This paper proposes a novel application method, 

Inverse Application of Artificial Intelligence (IAAI) for the control 

of power electronic converter systems. The proposed method can 

give the desired control coefficients/references in a simple way 

because, compared to conventional methods, IAAI only relies on a 

data-driven process with no need for an optimization process or 

substantial derivations. Noting that the IAAI approach uses 

artificial intelligence to provide feasible coefficients/references for 

the power converter control, rather than building a new 

controller. After illustrating the IAAI concept, a conventional 

application method of Artificial Neural Network (ANN) is 

discussed, an optimization-based design. Then, a two-source-

converter microgrid case is studied to choose the best droop 

coefficients via the optimization-based approach. After that, the 

proposed IAAI method is employed for the same microgrid case to 

quickly find good droop coefficients. Furthermore, the IAAI 

method is applied to a modular multi-level converter (MMC) case, 

extending the MMC operation region under unbalanced grid 

faults. In the MMC case, both simulation and experimental online 

tests validate the operation, feasibility and practicality of IAAI. 

 
Index Terms—Artificial intelligence (AI), Machine learning, 

Droop control, Power converters, Inverse application, Artificial 

neural network (ANN), Droop control, Current sharing. 

I. INTRODUCTION 

ITH the rapid development of data science and 

computing technology, the application of artificial 

intelligence (AI) has been growing for a few decades [1, 2]. For 

AI applications in the power electronics domain, particular 

interests include the design and optimization of components, 

fault diagnosis, preventive maintenance, reliability analysis and 

control strategies [3-5]. 

AI can be implemented using pre-defined rules; but in most 

cases AI relies on machine learning (ML) algorithms to perform 

specific AI tasks via a model training process. ML algorithms 

can learn the rules/relations from training data and improve the 

trained models automatically through experience. Therefore, 

the largest use of AI in power electronics is with ML. Other 

applicable AI methods include expert systems, fuzzy logic, and 

metaheuristic methods [3]. To distinguish ML from the 

metaheuristic search algorithms, [6] proposed a simple 

algorithm categorization that comprises the search algorithm 
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and the surrogate algorithm (2SA). This paper will only focus 

on the AI applications using ML algorithms. However, the 

general inverse thinking of the proposed AI application would 

also apply to other AI algorithms.   

In [3], an overview of AI applications for power electronic 

systems was given where more than 500 publications were 

reviewed. All the related applications were generally 

categorized into three distinctive life-cycle phases of power 

electronic systems: design and optimization, control, and 

maintenance. According to the statistical Sankey diagram of AI 

applications in the three life-cycle phases (Fig. 3 in [3]), ML 

based classification was nearly all used for the maintenance of 

power electronic systems, rarely for the control; Instead, 

regression and optimization techniques are used for the control 

phase. Different ML classification methods have already been 

applied in the control of power electronic converter systems, for 

example, support vector machine [7-9] and neural network 

(NN) pattern recognition [10, 11]. In this paper, a novel 

application of AI/ML is proposed which can generally fit with 

both regression and classification techniques; additionally, this 

idea does not need an optimization process. 

ML algorithms can be categorized into three main groups: 

supervised learning, unsupervised learning, and reinforcement 

learning [2, 3, 5]. According to the statistics in [3], usage of 

supervised learning is 91% of all ML applications for power 

electronics applications. Therefore, supervised learning is the 

main approach for ML applications in this area. In particular, 

the most popular implementation of such methods is based on 

Artificial Neural Networks (ANNs), which share some 

principles with biological neurons in brains [5, 12]. The main 

three classes of ANN are feedforward, convolutional, and 

recurrent NN [2, 5]. Among them, feedforward ANN is the 

simplest and it is a universal function approximator with strong 

generalization capability [13]. Therefore, this study will mainly 

investigate the Inverse Application (IA) method of feedforward 

ANNs. Different from the recurrent NN which stores past 

outputs as a part of inputs, the proposed IA method directly 

swops places of the inputs/outputs in the original system. After 

ANN training, the trained ANN can smoothly provide the 

desired coefficient or reference for the power converter control. 
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distributed generation systems and microgrids were reviewed in 

[14]. The control methods can be divided into model-based and 

data-based strategies. The first category, model-based control, 

considers state feedback control, sliding mode control, and 

model predictive control. Examples of the other category, data-

based control, are ANN and fuzzy control, which are explicitly 

designed by using the available input/output data to do the 

functional approximation for system control. It is important to 

highlight that the key role of this paper is not using ANN to 

approximate/imitate a power system controller, but to provide 

suitable parameters (e.g., ratios, references) for the system 

control. By running multiple simulations to collect data, this 

role can be achieved by the inversely designed ANN(s).  

The most commonly used approach of AI applications in 

power electronic systems is training ANNs offline as the 

surrogate models, for instance, weighting factor tuning [4], 

optimal design for reliability [12, 15], ANN imitation controller 

[10, 11, 16-19], and open-switch fault diagnosis [20]. The 

training data can be collected either from the real system or 

from a model of the actual plant. After training and validation, 

the surrogate models can be applied online, providing desired 

outputs when given suitable inputs in the operation of real 

system. As the ANN surrogate only involves basic algebraic 

operations, the process of output generation is extremely fast. 

Therefore, when searching for the optimal design of the studied 

system, an exhaustive algorithm can be used to do the 

optimization based on the trained ANN(s) [12, 15], the so-

called optimization-based design process [21]. 

Most of the existed studies train the surrogate models just 

following the original input-output relations in power electronic 

systems. In contrast, this paper proposes a novel application 

idea, the Inverse Application of Artificial Intelligence (IAAI) 

method, by swopping the input-output locations (see Section 

III). This method can find the optimal design (or desired 

parameters) through a trained surrogate model but without the 

conventional optimization process, which should be much 

easier to implement. This is the main motivation for the study 

performed in this paper. 

This paper is organized as follows. The conventional 

optimization-based design using ANN is illustrated in Section 

II. Then, in Section III, the proposed IAAI method is introduced 

and compared to the inverse function concept. Based on that, 

three control cases of power converter systems are elaborated 

one by one for the method validation, in Section IV, V, and VI, 

respectively. The first case is using the conventional 

optimization-based design approach while the other two are 

based on the IAAI approach.  

II. ANN PRINCIPLES AND OPTIMIZATION-BASED DESIGN 

USING ANN 

This section briefly introduces the fundamentals of 

feedforward ANN. Then, the conventional optimization-based 

design using ANN will be considered. 

A. Feedforward ANN 

Feedforward ANN is selected as the desired surrogate model 

in this work. Although feedforward ANN is the simplest type 

of ANN devised, it can demonstrate an excellent regression 

ability for the input-output mapping. Unlike the functional 

fitting (e.g., polynomial, exponential), users of feedforward 

ANN do not need to specify any function for this relationship 

mapping. It has been applied to various electrical engineering 

problems, from the optimal design for reliability of power 

electronic converters [12, 15], to the permanent-magnet motor 

performance correction [22, 23]. 

As shown in Fig. 1, a basic feedforward ANN comprises an 

input layer (x, marked in red), one or more hidden layers (h, 

marked in green), and an output layer (o, marked in red). Each 

layer has one or several artificial neurons which receive and 

process signal(s) from predecessor neurons, after that neurons 

pass the processed data to the next layer. 

In a layer 𝑙  (hidden layer or output layer), to calculate the 

output of a certain neuron 𝑛𝑖
𝑙, the outputs of all the neurons 𝑝𝑗

𝑙−1 

in Layer 𝑙 − 1 (𝑗 = [1. . 𝑁𝑙−1], 𝑁𝑙−1 denotes the neuron number 

of Layer 𝑙 − 1) are multiplied with given weights 𝜔𝑖𝑗
𝑙  and then 

 
(a)  

 
(b) 

Fig. 2. Optimization-based design using ANN. (a) Three parts: detailed 
analysis, objective function, and optimization engine. (b) Exhaustive 

algorithm for the optimization using ANN 

  

 
Fig. 1. Diagram of a feedforward ANN, which comprises an input layer (x), 

one or more hidden layers (h), and an output layer (o). The internal weights 

(𝜔𝑖𝑗
𝑙 ) and bias (𝑏𝑖

𝑙) terms are omitted for simplicity. 
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the bias 𝑏𝑖
𝑙 is added. The result is further processed through an 

activation (propagation) function 𝑓𝜎 that usually takes the form 

of a sigmoid function, i.e. 𝑓𝜎(𝐴) = 1 (1 + 𝑒−𝐴⁄ ), to generate 

the output 𝑝𝑖
𝑙. This output then becomes one of the inputs for 

the next layer, 𝑙 + 1, and the same procedure is repeated to 

calculate the output of other neurons in layer 𝑙. 

In Layer 1 (input layer), 𝑝𝑖
1 takes the form of inputs through 

the neuron 𝑛𝑖
1 . On the other side, Layer 𝐿  (output layer) 

typically uses the linear activation function to integrate 

signal(s) of Layer 𝐿 − 1  for the desired output data 𝑝𝑖
𝐿 . In 

summary, the complete signal flow of ANN can be described as 

follows: 

• Layer 1: 

𝑝𝑖
1 = 𝑥𝑖 , 𝑖 = 1, . . , 𝑁1                                  (1) 

where 𝑥𝑖 are the inputs. 

• Layers 𝑙 = 2, . . 𝐿 − 1 (hidden): 

 𝑝𝑖
𝑙 = 𝑓𝜎(∑ 𝜔𝑖𝑗

𝑙 𝑝𝑗
𝑙−1𝑁𝑙−1

𝑗=1 + 𝑏𝑖
𝑙), 𝑖 = 1, . . , 𝑁𝑙            (2) 

• Layer 𝐿 (output): 

𝑜𝑖 = 𝜔𝑖
𝐿𝑝𝑖

𝐿 , 𝑖 = 1, . . , 𝑁𝐿                                (3) 

where 𝑜𝑖  are the outputs. 

Therefore, from inputs to outputs, feedforward ANN only 

involves mathematical calculations. Neuron numbers in 

input/output layers are determined by the training data set, but 

the hidden-layer neuron numbers can be set as a developer for 

a better regression performance. Moreover, such a general 

nonlinear model can approximate any given input-output 

function with arbitrary precision [13]. Its excellent 

generalization ability ensures that the trained ANN surrogate 

can replace the original detailed system to smoothly perform 

the desired tasks. 

B. Optimization-Based Design Using ANN 

As shown in Fig. 2(a), the optimization-based design process 

is conventionally illustrated by three parts: optimization engine, 

objective function, and detailed analysis [21]. The optimization 

engine is depicted at the outer level because its computational 

algorithm is operated on the design variables and the objective 

function (during all the optimization generations). The detailed 

analysis is the modelling basis to calculate the desired objective 

values and check the optimization constraints. 

By using ANN, a data-driven approach, the mapping from 

variables to objectives can be explicitly represented by a trained 

ANN; thus, there is no need for substantial derivations in the 

original analysis module. However, in some cases, the raw data 

may need to be pre-processed before the ANN training. 

Furthermore, as mentioned, evaluation of ANN is generally 

very computationally light; Due to that, an exhaustive algorithm 

can be used as the optimization engine, which can also 

efficiently output the optimal design.  

As shown in Fig. 2(b), after training the ANN surrogate 

model(s), a large number of design points can be sampled with 

very small steps in the design space. Then their corresponding 

outputs can be quickly generated via the trained ANNs. Among 

these input/output pairs, the optimal min/max design will be 

easily obtained by sorting the obtained objective values. 

Therefore, in a conventional way, the role of ANN model is to 

replace the original system and efficiently generate the 

objective values for an optimization problem. 

III. INVERSE APPLICATION OF ARTIFICIAL INTELLIGENCE 

(IAAI) 

Based on the conventional application method of ANN, this 

section will introduce the proposed IA method of ANN. 

Furthermore, the differences and connections between IAAI 

and the inverse function will be discussed.  

A. IAAI Method 

ANN is based on a nonparametric function approximation 

model in supervised learning, purely mathematic. There is no 

requirement for ANN inputs and outputs. Moreover, the user 

does not need to specify the relationship between the predictors 

(input data) and responses (output data) with a predetermined 

regression function. This flexibility is the theoretical basis of 

the proposed IAAI method. 

In Section II, the ANN built for conventional optimization-

based design follows the original input/output relations in the 

studied system. However, the fact is that the desired optimal 

design (obtained via optimization) locates at the input layer of 

ANN, i.e., the logic direction of optimization-based design is 

from outputs to inputs [see Fig. 2(b)].  

Inspired by this fact, this paper proposes to swop the 

locations of original inputs/outputs and build ANN(s) mapping 

from outputs to inputs, as shown in Fig. 3. There may be no 

physical or electrical meaning in this mapping but, after data 

collection and ANN training, the desired parameters in the 

studied system (e.g., ratios, references) can be directly obtained 

by giving just one feasible combination of original outputs (i.e., 

ANN inputs) without an optimization process. Therefore, the 

proposed IAAI method should be easier than the conventional 

optimization-based design approach because it deletes the 

optimization engine. Moreover, it has the potential to discover 

unknown ways to address real problems. Noting that, the 

 
Fig. 3.  Diagram of Inverse Application of Artificial Intelligence (IAAI). 
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proposed IAAI model is data-based, independent with the 

original system and the conventional approach. Therefore, the 

used ANN structure in IAAI method is flexible, can be totally 

different from that of conventional approach. 

In Section V, the proposed IAAI method will be used to give 

a desired droop-coefficient design for the current sharing; 

further, in Section VI, an inversely designed ANN is trained to 

provide feasible injecting current references for the online 

converter control operation. 

B. Comparison with Inverse Function 

In mathematics, an inverse function is a function that 

“reverses” another function. Not all functions have inverse 

functions. Those that do are called invertible. For a 

function f: X → Y to have an inverse, it must have the property 

that for every y in Y, there is exactly one x in X such that f(x) 

= y. This property ensures that a function g: Y → X exists with 

the necessary relationship with f. 

Regarding the original input/output relation as a function 

f: X → Y, then, both the IAAI model and inverse function can 

provide X with a given Y. However, there is no limit for training 

an IAAI model while inverse function does not always exist for 

f. In addition, if an inverse function exists, it should be 

theoretically and deterministically unique. Namely, given Y, 

only one X can be obtained. In contrast, as the AI model training 

starts from random values, the outputs of the trained IAAI 

model may vary after different training attempts.  

Therefore, the proposed IAAI model is much more flexible 

and easier to be generalized than the inverse function concept. 

The following contents will discuss three different cases of 

power converters. The conventional optimization-based design 

approach will be used in Case Study I (Section IV) while the 

proposed IAAI method will be applied to the other two cases.  

IV. CASE STUDY I – OPTIMIZATION-BASED DESIGN FOR 

CURRENT SHARING 

In Sections IV & V, two different application methods of 

ANN will be discussed and compared. They are both used for 

the optimal droop coefficient design in a multi-source dc 

microgrid system. This section will start with a two-source 

islanded microgrid system using the optimization-based design 

method. The system diagram is shown in Fig. 4. G1 and G2 

represent the two-generation sources for this microgrid. Each of 

them is feeding to an active rectifier (AR), which is parallel 

connected to the shared dc bus via a cable. This bus then 

supplies power to a simple linear load. Two ARs are controlled 

using the voltage-mode droop control scheme for current 

sharing between them. The following two subsections will first 

introduce the used droop control method and then discuss how 

to use the ANN-based optimization to choose the best control 

coefficients for this microgrid system. 

A. Analysis of the Conventional Droop Control Method 

The voltage-mode droop control scheme is shown in Fig. 5. 

The control structure is basically cascaded. It is made up of an 

inner loop for current control and outer loops for flux 

weakening and DC-link current control. The flux weakening 

control is employed to prevent the machine from operating 

above the base speed. The droop controller is responsible for 

the regulation of the DC-link current. The d and q axis reference 

current supplied to the current controller are generated from the 

flux-weakening and DC-link controller respectively, as shown 

in Fig. 5. Furthermore, vector control is employed to decouple 

the machine, thus, making it easy to independently control the 

torque and flux. A detailed analysis about the control structure 
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Fig. 4.  Diagram of a two-source dc microgrid system. 
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Fig. 5.  Voltage-mode droop control scheme of a generator source fed 

by an active rectifier (AR) in the study islanded microgrid. 

  
Table I.  Electrical power system parameters  

Parameter Symbol Value 

Main dc Bus rated voltage 𝑉𝑑𝑐
∗  270 V 

Local shunt capacitor Ci 2.4 mF 

Main dc bus capacitor  Cb 1.2 mF 

Nominal droop gains kd,1 0.2353 

kd,2 0.2353 

Line resistance R1 0.003 Ω 

R2 0.03 Ω 

Line inductance L1 1 µH 

L2 10 µH 

Constant Power Load (CPL) 𝑃𝐶𝑃𝐿  25 kW 

 

 
Table II.  Design space in Case Study I 

Variable Range 
Step in 

sampling 

Step in 

Optimization 

𝑘𝑑1 [0.2614, 0.2139] 0.0016 0.000056 

𝑘𝑑2 [0.2614, 0.2139] 0.0016 0.000056 
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and design can be found in [24]. In this scheme, the measured 

branch output dc current 𝐼𝑑𝑐,𝑖 is used to generate the reference 

voltage 𝑉𝑑𝑐,𝑖
∗ , and this is expressed in (4): 

 𝑉𝑑𝑐,𝑖
∗ = 𝑉𝑑𝑐

∗ − 𝑘𝑑,𝑖𝐼𝑑𝑐,𝑖 () 

where i =1,2 is the number of subsystems, 𝑉𝑑𝑐
∗  is the rated dc 

bus voltage (270 V in this paper), 𝑉𝑑𝑐,𝑖
∗  is the calculated 

reference voltage for each subsystem converter and 𝐼𝑑𝑐,𝑖 is the 

output current of each converter in the system, 𝑘𝑑,𝑖 is the droop 

coefficient. The current sharing ratio among the two sources in 

steady-state is as expressed in (5), provided the effect of cable 

impedance on load sharing is ignored. 

 

 𝐼𝑑𝑐,1: 𝐼𝑑𝑐,2 =
1

𝑘𝑑,1
:

1

𝑘𝑑,2
 () 

The droop coefficients 𝑘𝑑,𝑖  of the converters are typically 

chosen to be proportional to the generators ratings to ensure an 

accurate current sharing, based on the assumption that the same 

nominal voltage 𝑉𝑑𝑐
∗  is applied to each of the droop 

characteristics. 

When the voltage drop on the cable (in Fig. 4) is put into 

consideration and the voltage control dynamics are ignored, the 

steady-state dc bus voltage can be expressed as in (6). 

 𝑉𝑏 = 𝑉𝑑𝑐,𝑖
∗ − 𝐼𝑑𝑐,𝑖𝑅𝑖 = 𝑉𝑑𝑐

∗ − 𝐼𝑑𝑐,𝑖(𝑘𝑑,𝑖 + 𝑅𝑖) () 

where Vb is the main dc voltage, Ri is the resistance of the 

individual cable connecting the ith source to the bus. Hence, the 

current sharing among the sources, assuming they are supplying 

together can be expressed as in (7). 

 𝐼𝑑𝑐,1: 𝐼𝑑𝑐,2 =
1

𝑘𝑑,1+𝑅1
:

1

𝑘𝑑,2+𝑅2
 () 

Obviously, the cable resistance and droop gain will affect the 

power sharing ratio of the sources in steady states. By 

increasing the droop gain or cable resistance, the power output 

of the sources will be decreased. Furthermore, when the droop 

gain and cable resistance are similar, the accuracy of the power 

sharing among the sources will be degraded due to the existence 

of the cable resistance. 

Generally, two approaches are commonly used in order to 

realize accurate load sharing.  In the first approach, the droop 

coefficient is increased much higher than the cable resistance 

(𝑘𝑑,𝑖 ≫ 𝑅𝑖) such that the influence of the cable resistance on 

accurate load sharing becomes negligible. However, this will 

lead to poor voltage regulation and may affect the system’s 

stability [25] and power quality [26]. Also, in low-voltage dc 

microgrids (for example power system on-board aircraft), the 

cable resistance cannot be simply ignored [25, 27]. This is 

because the line impedance in the low voltage dc microgrid is 

predominantly resistive. 

In the second approach, the droop coefficient of the 

converters is compensated based on the estimated line 

resistance connecting the parallel-connected converters to the 

dc bus as can be found in [27]. This control method works in 

the same way as a virtual negative resistance to cancel the effect 

of the unequal cable resistance on accurate current sharing 

through compensation. However, the cable resistance is 

required for the compensation method, which is usually hard to 

obtain for real applications. The ANN-based optimization can 

provide an easy and effective way to get the optimal design of 

droop coefficients, as follows. 

B. ANN-based optimization 

Based on the optimization-based design approach (discussed 

in Section II.B), a neural network can be trained mapping from 

coefficients to the output dc currents, for this two-source 

current sharing problem. Therefore, the ANN represents the 

following relation: 

 𝑦 = 𝐹(𝑥) ↔ (𝐼𝑑𝑐,1, 𝐼𝑑𝑐,2) = 𝐹1(𝑘𝑑,1, 𝑘𝑑,2) () 

Based on the nominal value of 𝑘𝑑,𝑖, a range can be pre-assumed 

for every droop coefficient for this optimization, for example, 

±10%. Then, to collect the ANN training data, the data points 

can be evenly sampled in this design space followed by getting 

the corresponding outputs (𝐼𝑑𝑐,𝑖 ) via the detailed simulation. 

Using the training data, the desired ANN can be trained offline, 

i.e., updating the internal weights (𝜔) and bias (𝑏) of ANN. 

Therefore, following the original input-output relation in the 

system, the trained ANN can predict two output currents when 

given the combination of two droop coefficients. Since the 

ANN is very computationally light, after training, the 

exhaustive algorithm can be used for optimization. Namely, 

sample a large number of design points in the design space then 

generate all the output currents via ANN. Based on that, the 

optimal design, which has the minimum difference of the two 

output currents, can be quickly found. 

C. Optimization results 

Firstly, the detailed simulation model of the dc microgrid 

shown in Fig. 4 was developed in MATLAB Simulink. The 

electrical power system and line parameter used for the 

simulation are as shown in Table I. 

The design space and the sampling step of the droop 

coefficient used for data generation and optimization is 

presented in Table II. Based on the sampling step for the data 

 

 
Fig. 6.  Simulation results for the two-source microgrid case. 
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generation, a total of 961 combinations of the droop coefficient 

was used as input to the detailed simulation model. Hence, for 

every combination of the droop coefficient, the detailed 

simulation model is run in a loop and the output current of the 

converters are recorded.  

The data generated is then used to train the ANN model. The 

ANN was trained using the train command in Matlab, which is 

a part of Deep Learning Toolbox [28]. The training 

performance was evaluated using the root mean square error 

(RMSE). The calculated RMSE was 0.025944 A and 0.021272 

A for Idc,1 and Idc,2, respectively.  

In the optimization stage, the trained ANN model was used 

to evaluate 724,201 (based on the sampling step shown in Table 

II) combinations of droop coefficients by predicting their 

corresponding output dc currents. Thereafter, the optimal droop 

coefficient combination that will yield the desired accurate 

current sharing between the converters was obtained as 

𝑘𝑑𝑐,1
𝑜𝑝𝑡

=0.2459 and 𝑘𝑑𝑐,1
𝑜𝑝𝑡

=0.2189. The obtained optimal droop 

coefficients are then used in the detailed simulation model to 

evaluate the performance of the conventional droop control 

method. As shown in Fig. 6, the optimal droop coefficient can 

enhance the current sharing performance of the conventional 

droop control method, with Idc,1 = 48.72 A and Idc,2 = 48.74 A.  

D. Discussion 

Even though in this two-source microgrid case, the ANN-

based optimization approach can provide a good droop 

coefficient design to achieve accurate current sharing without 

knowing the corresponding subsystem cable resistance, this 

optimization approach would become quite complicated for the 

cases with three or more sources. The reason is that the number 

of output currents will be 3+, which makes it difficult to set the 

two or more optimization objectives for the ideal current 

sharing. Regarding multi-objective optimization, it is a 

common sense that all the objectives should be integrated into 

one to determine the optimal design; However, the integrated 

function, as well as the weights of different objectives bring a 

new complexity to the optimization problem. 

To address the above problems, the proposed IAAI can 

provide an excellent way to find the optimal droop coefficient 

design, because this IAAI method does not need an 

optimization process and is feasible for the microgrid case with 

an arbitrary number of sources, as below.  

V. CASE STUDY II – IAAI METHOD FOR CURRENT SHARING  

In this section, the proposed IAAI method will be employed 

to easily find the best design which can achieve accurate current 

sharing for a multi-source microgrid. Based on the two-source 

case in the last section, this section will elaborate on a three-

source case using IAAI but note that the proposed method can 

be easily generalized for the system with four or more sources. 

A. IAAI-based neural network design 

As discussed in Section III, the IAAI method swops the 

original locations of inputs and outputs from the studied system 

to train the neural net. Therefore, in this three-source current-

sharing case, the ANN will be designed to map from the output 

dc currents to the droop coefficients, as shown in Fig. 7. The 
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Fig. 7.  Diagram of IAAI-based research thinking on three-source dc 

microgrid current sharing. 

Table III.  Additional parameters in Case Study II  

Item Value/Range 

R3 0.015 Ω 

𝐿3 5 µH 

Design range of 𝑘𝑑,𝑖 [0.2614, 0.2139] 

Sample step of 𝑘𝑑,𝑖  0.0079 

 

 
Fig. 8.  Sample results in Case Study II and the feasible range for 

current sharing. 
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designed ANN represents the following relation: 

 𝑦 = 𝐹(𝑥) ↔ (𝑘𝑑,1, 𝑘𝑑,2, 𝑘𝑑,3) = 𝐹2(𝐼𝑑𝑐,1, 𝐼𝑑𝑐,2, 𝐼𝑑𝑐,3) () 

Similar to the Case Study I, the collection process of training 

data can just be running the multiple simulations for the evenly 

distributed samples. After getting the coefficient sample data 

and the corresponding dc current data via simulations, they 

should be processed following (9) to train the desired ANN. 

After the ANN training, instead of using the exhaustive 

algorithm to do an optimization, an intersection-based approach 

will be employed to directly give the optimal coefficient design 

via the trained ANN, see below.  

B. Intersection-based approach 

In this three-source case, most of the parameters are the same 

as the above two-source case, including the nominal droop 

gains, 𝑘𝑑,𝑖 design range, Ci, Cb, line impedance of two sources 

etc. The impedance values of the additional (3rd) line are given 

in Table III. Besides, the droop control scheme is also the same 

as in the above case. 

In this section, the data distribution of the dc current samples 

will be analyzed to give a desired current-sharing value, which 

will then be feedforward to the trained ANN. The theoretical 

basis is that, in general, the shared current value should be just 

one desired value for all the output currents. Therefore, 

according to the collected 3-dimensional current data, an 

intersection can be generated as the feasible design range for 

the current sharing value. Any value out of this range would be 

unfeasible for current sharing in this specific system. After 

getting this intersection, the middle point will be chosen as the 

final desired current sharing value. 

All the output current values of data samples are depicted in 

Fig. 8. Every black point clearly represents the 𝐼𝑑𝑐  distribution 

of one coefficient design point.  In this three-source case, the 

ranges of 𝐼𝑑𝑐,1, 𝐼𝑑𝑐,2, and 𝐼𝑑𝑐,3 are [29.593, 37.9642], [26.4919, 

34.2424], and [28.1231, 36.2252], respectively. The boundary 

points are marked by triangles in Fig. 8. To generate a feasible 

range for every output current, first get the maximum value of 

three lower boundaries, which is 29.593 A (from 𝐼𝑑𝑐,1, as shown 

by orange dotted lines in Fig. 8); Then, get the minimum value 

of three upper boundaries, which is 34.2424 A (from 𝐼𝑑𝑐,2, as 

shown by blue dotted lines in Fig. 8). Based on these two 

values, the feasible design range (intersection) can be given as 

[29.593, 34.2424]. Since it is for the current sharing application, 

this feasible range is for all the output currents (𝐼𝑑𝑐,1, 𝐼𝑑𝑐,2, and 

𝐼𝑑𝑐,3), not just for a specific one. Therefore, the corresponding 

3-dimensional feasible range for the current sharing can be 

confirmed using this feasible range, which is demonstrated by 

a red solid line in Fig. 8. Finally, choose the middle point of this 

intersection (marked by a red star) as the final shared current 

value of all the three sources, which is 31.9177 A. 

C. IAAI design result and validation 

To train the proposed ANN in (9), samples were evenly 

collected in the 3D design space, where eleven values were 

sampled for each 𝑘𝑑,𝑖. Therefore, the number of design points 

in the training data set is 113 = 1331. For the ANN training, 

the train command in the Matlab Deep Learning Toolbox was 

again used. And the training performance (RMSE) for three 𝑘𝑑 

are all-around 0.001. 

Then, using the combination of the desired sharing value, that 

is [31.9177; 31.9177; 31.9177], as the input of the trained IAAI-

based ANN, the droop coefficient design can be quickly 

obtained (without an optimization): 𝑘𝑑,1 = 0.2335 , 𝑘𝑑,2 =

0.2067,  𝑘𝑑,1 = 0.2218.  

Finally, to validate the obtained 𝑘𝑑 design, they were input 

to the three-source microgrid system; after simulation, the 

obtained dc currents are 𝐼𝑑𝑐,1 = 31.94  A, 𝐼𝑑𝑐,2 = 31.92  A,  

𝐼𝑑𝑐,3 = 31.90 A, as shown in Fig. 9. A good current sharing has 

been achieved. 

D. Discussion and Robustness Study 

Compared with Case Study I which uses the conventional 

optimization-based approach, in this Section, the IAAI 

approach provides an efficient way for the optimal droop 

coefficient design. After ANN training, the optimal design can 

be found based on just one 𝐼𝑑𝑐  design point, rather than doing 

an optimization using hundreds of points. In addition, the IAAI 

approach can be easily generalized to the microgrid case with 

3+ sources while, for the optimization-based approach, it will 

be hard to balance the increasing number of objectives. 

It is worth noting that, as discussed in [29], the intersection 

based approach can find almost the same optimal coefficients 

with the line droop compensator method (see [27]), which is 

based on the subsystem cable resistance. In contrast, the 

intersection-based approach just analyses the sample data 

distribution thus, it does not need to know the cable resistance 

beforehand, which is hard to estimate in a real microgrid 

system.  

To further validate the proposed IAAI approach, a robustness 

study was undertaken based on changing the MG line resistance 

and inductance. Based on the above case, three different groups 

of parameters were considered: 1). A huge difference (doubled) 

in the system line resistances R1 = 6 mΩ, R2 = 60 mΩ, R3 = 30 

mΩ, and inductance of three cables stay unchanged; 2). 

Resistance of three cables is not changing but inductance are 

doubled, i.e., L1 = 2 µH, L2 20 µH, L3 = 10µH; 3). A small 

difference in the system cable resistance, R1=5 mΩ, R2 = 34 

mΩ, R3= 10 mΩ, with inductance unchanged. 

 

 
Fig. 9.  Simulation results for the three-source microgrid case. 
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Following the same IAAI approach, after setting each 

parameter group, 1331 data were newly collected to train new 

ANNs. Finally, the optimal 𝑘𝑑  designs can be found via the 

trained ANNs when given the desired 𝐼𝑑𝑐  values (using the 

above intersection-based analysis).  

The following optimal 𝑘𝑑 are obtained for each of the case 

studies: 1). 𝑘𝑑,1 = 0.2174, 𝑘𝑑,2 = 0.1636, and 𝑘𝑑,3 = 0.1935; 2). 

𝑘𝑑,1  = 0.2335, 𝑘𝑑,2  = 0.2065, and 𝑘𝑑,3  = 0.2215; 3). 𝑘𝑑,1  = 

0.1558, 𝑘𝑑,2 = 0.1269, and 𝑘𝑑,3 = 0.1470. 

Table IV. Robustness study by using IAAI 

Parameter 

Group 

𝐼𝑑𝑐,1 (A) 𝐼𝑑𝑐,2 (A) 𝐼𝑑𝑐,3 (A) Desired 

𝐼𝑑𝑐  (A) 

1 31.88 31.85 31.87 31.87 

2 31.92 31.92 31.92 31.92 

3 31.38 31.35 32.13 31.57 

As summarized by Table IV, the proposed IAAI method 

works very well for all these three situations. It can be observed 

from the results in the Group 1 that, despite the huge difference 

in the cable resistance, the proposed approach can still find the 

optimal 𝑘𝑑 to yield desired current sharing. As shown in Group 

2, the same current sharing and optimal droop coefficient is 

obtained even though the cable inductance is doubled, making 

the proposed method robust to the inductance changes. 

E. Stability issue 

The stability of this MG system can be verified by 

performing small signal stability around the MG steady-state 

operating point. Detailed comparative stability analysis of the 

droop control method and the impact of the droop coefficient 

have been carried out in [30]. To ensure a stable operation, the 

maximum value of 𝑘𝑑,𝑖 can be given as: 
𝑉𝑑𝑐
∗ 2

4𝑃𝐶𝑃𝐿
− 𝑅𝑖, where 𝑉𝑑𝑐

∗  

is the nominal dc voltage, 𝑃𝐶𝑃𝐿  is the CPL power, and 𝑅𝑖 is the 

cable resistance. Therefore, for the MG parameters (Table I) 

used in this paper and for the training data extraction, the 

maximum droop coefficient is 0.699. As shown in Tables 

II&III, the design ranges of 𝑘𝑑,𝑖 used in this paper are all much 

smaller than this max limit. Thus, it can be concluded that the 

IAAI-based 𝑘𝑑,𝑖  design is well within the acceptable design 

range for a stable operation.  

VI. CASE STUDY III 

A. Motivation of this case study 

The modular multilevel converter (MMC) is a promising 

topology for converter-based high voltage direct current 

(HVDC) systems because of the following pros: lower 

harmonics, modularity, scalability, and few harmonic filter 

requirements [31]. However, the ripples of the capacitor voltage 

in MMC will be enlarged if under unbalanced grid fault 

conditions. Since high capacitor voltage ripples deteriorate their 

lifetimes and may even cause the tripping problem, it is 

essential to regulate the ripples. To do that, it is a common way 

of injecting the circulating currents with a double fundamental 

frequency. However, finding a proper circulating current 

reference under various unbalanced grids to achieve desired 

ripples analytically is very complicated [32-34]. The analytical 

frequency-domain methods [32, 34] for reducing the ripples 

require strong control expertise, which makes them difficult to 

reproduce or understood by practicing engineers in other fields. 

In contrast, the proposed ANN does not require any control or 

frequency-domain derivation, an easier approach.  

In this section, the proposed IAAI method will be used to 

train an ANN, which acts as a dedicated surrogate model to 

provide a proper circulating current reference for the control of 

an MMC under unbalanced grid faults. In that way, the MMC 

operating region can be effectively extended. After training, the 

designed ANN model will be applied to simulations and an 

experiment rig for the validation, providing the desired 

circulating current reference to reduce the capacitor voltage. 

In the following subsections, the MMC operation principle 

and control will be first introduced. After that, the purpose of 

using ANN and the ANN design details will be given. Then, the 

validation results from both simulation and experiment will be 

presented. Finally, the MMC stability issue is discussed. 

B. MMC topology and control 

Fig. 10 shows the topology of a half-bridge submodule MMC. 

It is a three-phase grid-connected MMC, where each phase has 

two arms: upper and lower arm. Each arm is comprised of N 

series-connected half bridge submodules, and an arm inductor 

(𝐿𝑀) [35]. The submodule (SM) capacitor voltage is kept close 
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to the rated dc voltage by the MMC controller. In this way, the 

single submodule can be controlled as a voltage source by 

inserting or bypassing the submodules. The MMC output ac 

voltage can be controlled by changing the number of inserted 

submodules [36, 37]. 

The directions of the upper arm current (𝑖𝑢𝑘) and lower arm 

current (𝑖𝑙𝑘) are shown in Fig. 10, k denotes the ac phase. By 

applying Kirchhoff’s voltage law to the MMC circuit, the MMC 

dynamic equations can be derived as follows: 
𝑉𝑑(𝑡)

2
− 𝑣𝑐𝑢𝑘(𝑡) − 𝑅𝑚𝑖𝑢𝑘(𝑡) − 𝐿𝑀

𝑑𝑖𝑢𝑘(𝑡)

𝑑𝑡
= 𝑣𝑔𝑘(𝑡) + 𝐿𝑔

𝑑𝑖𝑠𝑘(𝑡)

𝑑𝑡
           

(10) 
𝑉𝑑(𝑡)

2
− 𝑣𝑐𝑙𝑘(𝑡) − 𝑅𝑚𝑖𝑙𝑘(𝑡) − 𝐿𝑀

𝑑𝑖𝑙𝑘(𝑡)

𝑑𝑡
= −𝑣𝑔𝑘(𝑡) − 𝐿𝑔

𝑑𝑖𝑠𝑘(𝑡)

𝑑𝑡
        

(11) 

where 𝑉𝑑 is dc link voltage, 𝑖𝑑 is the dc current. 𝑣𝑐𝑢𝑘 and 𝑣𝑐𝑙𝑘  

are the upper and lower arm voltage in phase k respectively, 𝑖𝑢𝑘 

and 𝑖𝑙𝑘  are the upper and lower arm current in phase k 

respectively. k=0, 1, 2 (0 for phase A, 1 and 2 for B and C 

respectively). 𝑣𝑔𝑘 is the ac voltage from the grid side. 𝐿𝑔 is the 

output inductance and 𝑖𝑠𝑘 is output current. 

The output current 𝑖𝑠𝑘  and circulating current 𝑖𝑐𝑘  can be 

defined as below: 

𝑖𝑠𝑘(𝑡) = 𝑖𝑢𝑘(𝑡) − 𝑖𝑙𝑘(𝑡)                             (12) 

𝑖𝑐𝑘(𝑡) =
1

2
[𝑖𝑢𝑘(𝑡) + 𝑖𝑢𝑘(𝑡)] 

= 𝐼𝑐𝑘𝐷𝐶 + 𝐼𝑐𝐴𝐶𝑘
∗ cos⁡(2𝜔𝑡 + 𝜃𝑣𝑘−)                  (13) 

𝐼𝑐𝑘𝐷𝐶  is the dc component of circulating current, 

𝐼𝑐𝐴𝐶𝑘
∗ cos⁡(2𝜔𝑡 + 𝜃𝑣𝑘−)  is ac component of three-phase 

circulating current,   is the fundamental angular frequency, 

and 𝜃𝑣𝑘−is the phase angle of negative-sequence voltage. The 

injected ac circulating currents are double fundamental 

frequency, negative-sequence phases [0, -4/3π, -2/3π] with 

different amplitudes (𝐼𝑐𝐴𝐶𝑎,𝐼𝑐𝐴𝐶𝑏,𝐼𝑐𝐴𝐶𝑐). 

The dynamic equations of the output ac current and 

circulating current (𝑖𝑐) can be derived from (10)-(13): 

  
𝑑𝑖𝑠𝑘(𝑡)

𝑑𝑡
=

1

𝐿𝑀+2𝐿𝑔
[𝑣𝑐𝑙𝑘(𝑡) − 𝑣𝑐𝑢𝑘(𝑡) − 2𝑣𝑔𝑘(𝑡)]         (14) 

𝑑𝑖𝑐𝑘(𝑡)

𝑑𝑡
=

1

2𝐿𝑀
[𝑣𝑑(𝑡) − 𝑣𝑐𝑙𝑘(𝑡) − 𝑣𝑐𝑢𝑘(𝑡)]           (15) 

Based on equations (14) and (15), the output current and 

circulating current can be controlled.  

The control block diagram of the proposed method is shown 

in Fig. 11. The MMC controller comprises of two main parts. 

(1). Output Current Controller: proportional resonant (PR) 

controller is used in the output controller to control the output 

current of the MMC in grid-connected operation. This 

controller is conventional, and more details can be found in 

[36]; (2). Proposed ANN and circulating current controller: 

When an unbalanced grid fault happens, the proposed ANN 

model will generate three-phase circulating current references 

based on desired capacitor voltages 𝑉̂𝑐𝑢, detected grid voltage 

dip factor D, and the grid fault type. Then, the circulating 

current controller enables the MMC to track its circulating 

current references. In this paper, the PR controller is used to 

track the ac circulating current [36]. The proposed ripple 

reduction method reduces the SM voltage ripple by injecting ac 

circulating current under unbalanced grid conditions. The 

energy controller ensures that the total amount of energy stored 

inside the converter is always controllable to stabilize the MMC 

Table V. Vector definition of different unbalanced grid 

conditions 

Fault Types Vector Definitions 

Two-phase-to-ground fault 

_

_

_

ˆ 1

3ˆ 1
2 2

3ˆ 1
2 2

ga pu

gb pu

gc pu

V

V D j D

V D j D

 =



= − −

 = − +


 

Three-phase-to-ground fault 

_

_

_

ˆ

3ˆ 1
2 2

3ˆ 1
2 2

ga pu

gb pu

gc pu

V D

V D j D

V D j D

 =



= − −

 = − +


 

Phase-to-phase short-circuit 

fault 

_

_

_

ˆ 1

3ˆ 1
2 2

3ˆ 1
2 2

ga pu

gb pu

gc pu

V

V j D

V j D

 =



= − −

 = − +


 

Single-phase-to-ground fault 

_

_

_

ˆ

3ˆ 1
2 2

3ˆ 1
2 2

ga pu

gb pu

gc pu

V D

V j

V j

 =



= − −

 = − +


 

 
 

Table VI.  MMC parameters in simulation and experiment 

 Simulation Experiment 

Number of SMs per arm (N) 100 4 

Rated dc voltage (𝑉𝑑) 200 kV 200 V 

Rated active power 150 MW 1 kW 

Nominal SM capacitance (C) 3.75 mF 2000 µF 

Nominal SM capacitor voltage (𝑉𝑐) 2 kV 50 V 

Rated frequency (f) 50 Hz 50 Hz 

Arm inductance (Lm) 50.9 mH 10 mH 

Sample frequency 10 kHz 10 kHz 

Grid voltage magnitude 100 kV 83 V 

Dip severity grid factor (D) 0.7 0.5 
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Fig. 12. Diagram of the ANN aided MMC operating region extension. 
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system under unbalanced grid conditions. The detailed 

information about these two energy controllers can be found in 

[36] and [38].  

C. Unbalanced grid condition and the ANN deployment  

The proposed reference surrogate model is constructed by 

using a 3-layer ANN. The number of hidden-layer neuron can 

be set as an algorithm developer but in this case, it is simply 

fixed as 9 because the designed ANN can be easily trained and 

the resulting model can give a good test performance. As shown 

in Fig. 12, there are four design variables in this case, where 

𝐼𝑐𝐴𝐶𝑎
∗ , 𝐼𝑐𝐴𝐶𝑏

∗ , 𝐼𝑐𝐴𝐶𝑐
∗  are circulating current peak value references 

and D is grid dip severity factor. The severity of two-phase-to-

ground grid fault depends on D. The range of D is [0,1], where 

1 means normal grid, and 0 means short circuit, more practices 

about D can be found in [39, 40].  

The proposed method can also easily be extended to any 

unbalanced grid condition. There are 4 types of unbalanced grid 

conditions [39, 40]: Two-phase-to-ground fault, three-phase-to-

ground fault, single-phase-to-ground fault, and phase-to-phase 

short circuit fault. The vector definitions of other unbalanced 

grid conditions are shown in Table V. By the type of unbalanced 

grid condition and changing D from [0, 1], we can cover all 

possible fault scenarios by doing numerous parallel simulations 

and extracting corresponding data. This process can be 

significantly accelerated by paralleling the tasks using a 

computer cluster that contains many CPU cores. Therefore, the 

only limitation to extend our method to any other fault 

condition is computational capacity. If we have enough 

computational power, the data for other unbalanced fault 

conditions can be quickly collected. Then, new ANNs can be 

trained by the collected data and the circulating current 

reference for different unbalanced grid conditions can be 

calculated easily. The specifications of studied simulation and 

experiment systems are given in Table VI. 

After the data collection, following the IAAI design, the 

proposed ANN surrogate represents the relationship mapping 

from the capacitor voltage and D to the desired circulating 

current amplitude/reference: 

𝑦 = 𝐹(𝑥) ⇔ (𝐼𝑐𝐴𝐶𝑎
∗ , 𝐼𝑐𝐴𝐶𝑏

∗ , 𝐼𝑐𝐴𝐶𝑐
∗ ) = 𝐹3(𝐷, 𝑉̂𝑐𝑢𝑎 , 𝑉̂𝑐𝑢𝑏 , 𝑉̂𝑐𝑢𝑐) (16) 

which is shown in Fig. 12. 𝑉̂𝑐𝑢𝑎 , 𝑉̂𝑐𝑢𝑏 , 𝑉̂𝑐𝑢𝑐  mean the peak value 

of capacitor voltage ripple in Phase A, B and C respectively. 

It is noted that the grid dip severity factor D is not located in 

the ANN outputs, which is mainly because the aim of ANN 

design here is to provide the circulating current reference, rather 

than predicting the grid dip severity condition. Another 

important reason of regarding D as an ANN input is that D is a 

crucial parameter for the unbalanced grid fault condition, which 

should be an essential information for the ANN. Therefore, this 

ANN design represents a feasible variant of IAAI method: the 

ANN inputs and outputs are not necessarily swopped for all the 

elements, some important elements may stay in the ANN 

inputs, which can feedforward important (even essential) 

information to the desired ANN. 

D. Data collection and ANN training 

The feedback of the designed ANN is triggered when the 

unbalanced grid detector detects an unbalanced grid fault. After 

training, the ANN can give feasible circulating current 

references (𝑖𝑐𝐴𝐶𝑘
∗ ) to control the SM capacitor voltages in a 

desired way. This case takes two-phase-to-ground grid fault as 

an example. The vector definition of the two-phase-to-ground 

grid fault can be described based on [40] as: 

𝑉̂𝑔𝑎 _ 𝑝𝑢 = 1, 𝑉̂𝑔𝑏 _ 𝑝𝑢 = −
1

2
𝐷 − 𝑗

√3

2
𝐷, 𝑉̂𝑔𝑐 _ 𝑝𝑢 = −

1

2
𝐷 + 𝑗

√3

2
𝐷 

(17) 
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Fig. 13. Simulation results: (a) normal grid condition; (b) single-phase-to-ground grid without proposed method; (c) single-phase-to-ground 

grid with proposed method. 
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where 𝑉̂𝑔𝑎 _𝑝𝑢, 𝑉̂𝑔𝑏 _𝑝𝑢, 𝑉̂𝑔𝑐 _𝑝𝑢  are per unit values of the grid 

voltages in Phases A, B, and C. 

Circulating current circulates inside the MMC without 

affecting the ac output currents. It only influences the internal 

performance of the MMC system. The circulating currents are 

defined as a parameter containing both dc and ac components 

as (13). 

Regarding the training data generation, they can be extracted 

either from a detailed simulation or from an experimental setup. 

In this work, the data were collected from simulations, then the 

method was validated in both a high voltage simulation model 

and a low voltage experimental setup. In the high voltage 

simulation cases, the sweep values of input data are: grid dip 

severity D = [0.5, 0.6, 0.7, 0.8, 0.9]; three circulating currents 

𝐼𝑐𝐴𝐶𝑎,𝑏,𝑐
∗  = [0, 50, 100, 150, 250, 300, 350, 400] for three phases 

a, b, c; the output data are three capacitor voltages 𝑉̂𝑐𝑢𝑎,𝑏,𝑐. The 

total number of data points is hence 5 × 8 × 8 × 8 = 2560.  In 

the simulation model that resembles the experimental setup, the 

sweep values of input data are: D = [0.5, 0.6, 0.7, 0.8, 0.9], 

𝐼𝑐𝐴𝐶𝑎,𝑏,𝑐
∗  = [0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5]. Therefore, the total 

number of data points is 5 × 7 × 7 × 7=1715. The output data 

𝑉̂𝑐𝑢𝑎,𝑏,𝑐  can be then collected after each time of running the 

model. The paralleled simulations helped us to accelerate the 

simulation process. In particular, a workstation with a 24-core 

CPU was utilized for the data collection. The overall data 

collection time was approximately 14 mins for 2560 samples 

and was approximately 10 mins for 1715 data. 

Based on the collected data, the ANNs were also trained using 

the train command in Matlab. For the training parameters, the 

learning rate is set as 0.1, the training goal (RMSE) is set as 

0.001, and the maximum epoch number is 500. The designed 

ANN can be trained in a few seconds on a standard computer. 

Since the training starts from random values, the training was 

tried 10 times and the best one is picked for the following online 

validation. 

E. Simulation results 

After training, the ANN model was finally used to calculate the 

injected circulating current references for the MMC system 

under grid faults. The inputs of the ANN model are the grid dip 

severity factor D and safe SM capacitor voltage limit, then the 

outputs of the ANN are the three-phase circulating current 

references. In this section, the trained ANN model was 

compiled in the SIMULINK model. The simulation results of 

single-phase-to-ground and three-phase-to-ground are shown in 

Figs. 13 and 14, respectively.  

Obviously, three-phase capacitor voltages are balanced under 

a balanced grid. In addition, the voltage is within the safe limit, 

as shown in Figs. 13 and 14 (a1). The average ripple (peak to 

peak value of capacitor voltage) is 38.72 kV, and the 

unbalanced degree (UD) is 0.046%. Unbalanced degree (UD) 

is defined in (18) as: 

𝑈𝐷 = [𝑚𝑎𝑥( 𝑉̂𝑐𝑢𝑎 , 𝑉̂𝑐𝑢𝑏 , 𝑉̂𝑐𝑢𝑐) − 𝑚𝑖𝑛( 𝑉̂𝑐𝑢𝑎 , 𝑉̂𝑐𝑢𝑏 , 𝑉̂𝑐𝑢𝑐)]/𝑉𝑎𝑣𝑔 ×

100% (18) 

where 𝑉̂𝑐𝑢𝑎,𝑏,𝑐 is SM capacitor voltage peak value in phase A, 

B, and C, respectively. 𝑉𝑎𝑣𝑔  is the average voltage of three 

phase capacitor voltages. 

The capacitor voltages become unbalanced under single-

phase-to-ground and three-phase-to-ground fault conditions, as 

shown in Figs. 13 and 14 (b1). In those figures, only the upper 

arm SM capacitor voltages are shown because the upper and 
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Fig. 14. Simulation results: (a) normal grid condition; (b) three-phase-to-ground grid without proposed method; (c) three-phase-to-ground grid 

with proposed method. 
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lower arm are symmetrical. And also, the capacitor voltage 

balancing algorithm is applied in modulation as shown in Fig. 

11, then the SM capacitors in one arm are identical; Thus 4 

capacitor voltages in one arm look like only one voltage.  

Moreover, the capacitor voltage amplitudes exceed the limit, 

which are shown in Figs. 13 and 14 (b1). The average ripple 

increases to 46.03 kV in both fault conditions. The UD 

increases to 1.51%. 

The capacitor voltages can be effectively reduced to a safe 

voltage limit by the proposed IAAI method, as tested in the 

simulations. As shown in Fig. 13(c2), under the single-phase-

to-ground condition, the amplitudes of injected ac circulating 

current components are 𝐼𝑐𝐴𝐶𝑎 = 391.8 𝐴 , 𝐼𝑐𝐴𝐶𝑏 = 60.56 𝐴 , 

and 𝐼𝑐𝐴𝐶𝑐 = 60.67 𝐴 , respectively. For the three-phase-to-

ground condition in Fig. 14(c2), 𝐼𝑐𝐴𝐶𝑎 = 276.2 𝐴 , 𝐼𝑐𝐴𝐶𝑏 =
324.3 𝐴, and 𝐼𝑐𝐴𝐶𝑐 = 387.5 𝐴. As a result, the average ripple 

turns to be 39.87 kV in both fault conditions, and the UD is both 

reduced to 0.59%. With the proposed method, MMC capacitor 

overvoltage trip can be prevented when D=0.7. 

F. Experimental results 

In the experimental rig, the trained ANN model was finally 

used to calculate the injected circulating current references for 

the MMC system under two-phase-to-ground grid faults. The 

same with above simulation cases, the inputs of the ANN model 

are the grid dip severity factor D and safe SM capacitor voltage 

limit, then the outputs of the ANN are the three-phase 

circulating current references. The trained ANN model was 

compiled in the SIMULINK model. This model can both be 

applied in the PLECS Blockset software (for offline simulation) 

and the dSPACE DS1006 platform (for real-time control). 

In this study, the experiment is carried out in a scaled-down 

three-phase grid-connected MMC setup with 4 half-bridge SMs 

per arm. The MMC controller is implemented in DS1006 from 

dSPACE. The specifications of the experimental setup are listed 

in Table VI. Note that, the value of arm resistance and grid 

inductance are usually very small thus ignored here. As 

mentioned, the data points for experiments were collected from 

a detailed simulation model using the same parameters with the 

lab setup. In this way, the data extraction time was greatly 

saved. Test results are given in Fig. 15 and the photo of MMC 

experimental setup is shown in Fig. 16. 

Obviously, three-phase capacitor voltages are balanced under 

a balanced grid. In addition, the voltage is within the safe limit, 

as shown in Fig. 15(a1). The average ripple is 6.5 V, and the 

UD is 0.18%. Similar with the above simulation results, the 

capacitor voltages become unbalanced under two-phase-to-

ground faults, as shown in Fig. 15(a1), (b1), (c1). The capacitor 

voltage amplitudes exceed the limit under the fault condition, 

which is shown in Fig. 15(b1). The average ripple increases to 

7.3 V. The UD increases to 1.112%. 

The proposed method can effectively reduce the capacitor 

voltages to a safe voltage limit in the experiment as shown in 

Fig. 15(c1). The amplitudes of injected ac circulating current 

components are 𝐼𝑐𝐴𝐶𝑎 = 0.51 𝐴, 𝐼𝑐𝐴𝐶𝑏 = 1.13 𝐴, and 𝐼𝑐𝐴𝐶𝑐 =
1.29 𝐴, respectively. The average ripple here is 6.5 V, and the 

UD is reduced to 0.5%. With the proposed method, MMC 

capacitor overvoltage trip can be prevented when D=0.5. 

G. Stability issue 

The MMC controller structure of this paper is widely used in 

many applications such as HVDC and medium voltage DC 

network. The stability issue has been well researched by many 

papers [41, 42]. The only difference is that, in our case, the 

circulating current reference 𝐼𝑐𝐴𝐶
∗  is given by the proposed 

ANN. To ensure the stability of the system, the 𝐼𝑐𝐴𝐶
∗  max limit 

should be applied. This limit is determined by the IGBT current 

rating of MMC [41]. As shown in above ANN part, the 𝐼𝑐𝐴𝐶
∗  
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Fig. 15. Experimental results: (a) Normal grid condition. (b) Unbalanced grid condition 
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range for data collection is [0, 400] A for simulation and [0.3, 

1.5] A for the experiment, which are well selected for specific 

systems. What is more, the same 𝐼𝑐𝐴𝐶
∗  max limit is also applied 

during the real-time operations, which can prevent any possible 

large references given by ANN. Based on that, the system 

stability is ensured. 

VII. CONCLUSION 

This paper proposes a novel concept for the AI application, 

which swops the locations of original inputs and outputs for the 

AI model training (named as Inverse Application of Artificial 

Intelligence, IAAI). Compared to the conventional 

optimization-based method, the proposed IAAI method can 

achieve a fast coefficient/reference selection for the control of 

power converters, without an optimization process. 

In the case study, two different control cases are given to 

show the validation of this method. One is for the droop 

coefficient design which aims at the current sharing in a 

microgrid, the other is for the operating region extension of 

MMC under unbalanced grid faults. Both AI models can 

achieve the desired performance based on the proposed inverse 

application concept. It is found that, compared with the 

conventional methods, the IAAI method turns out to be simple 

and efficient because there is no need for an extra optimization 

process or substantial derivations in this data-driven model-free 

approach. 

The proposed ANN IA method is model-free and data-based, 

which does not require the model analysis or derivations. 

However, it is worth noting that, before collecting data, the 

design space as well as the operation region of the studied 

problem should be well confirmed. The inputs/outputs of ANN 

usually need a selection process. Moreover, if the topic to be 

addressed is super large, a possible way is dividing it into 

several sub-topics, by using ML classification techniques. 
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