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Abstract

The numeri-cal study of the heat transfer from an
isothermal vertical plate in an air enclosure is undertaken in
this work to simulate heat transfer from electronic elements
and similar devices as functions of plate locations and Grashof
number. The walls of the enclosure are assumed to be adiabatic
and the full two-dimensional time-dependent  partial
differential forms of the conservation equations of continuity,
momentum, and energy governing the flow field are cast and
solved by a numerical method employing the finite-difference
scheme. During the initial short period, heat flow is found to be
by conduction irrespective of plate location and Grashof
number. Shortly after conduction sets in convection indicated
by increase in the heat transfer coefficient following a temporal
minimum in the coefficient at the end of the conduction regime.
Heat transfer by convection is found to be maximum when the
plate is symmetrically located within the enclosure, the rate
decreasing as the plate is moved away from this location along
a horizontal direction. It is also found that there is very little
change in the heat transfer rate when the plate is moved
downwards from the centre of the enclosure along the vertical
direction, indicated by the collinearity of the curves along the
direction, but a sharp decrease occurs when the plate is
moved upwards along the axis. During convection the rate of
heat transfer is found to increase with Grashof number. For
low Grashof numbers; e.g. for H/L=1/4 and Gr = 4650, and for
H/L=1/4 and Gr = 46500, the regime of heat transfer is found
to be entirely the one-dimensional conduction regime. At large
times the temperature field stratifies and heat transfer from
the heated surface into the fluid medium approaches zero, the
velocity field decaying gradually and the flow approaching its

eventual quiescence.
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I INTRODUCTION

The study of natural convection has become very
important because of its wide range of occurrence and the
role it plays in enhancing the performance of most thermal
equipment. And specifically, the study of natural
convection in enclosures has been of nccessit)} because of
the growing number of areas of application. It is very
v:'idely utilized in the electronics industry as the mode of
cooling for the high energy dissipating elements such as
circuit boards or cards of electronic devices. In nuclear
industry, it is utilized for cooling reactor cores during
power or pump failures. Although a lot of methods for
cooling these devices have been adopted the method of
natural convection still remains the simplest, cheap, most
reliable, maintenance-free, quiet, and safe technique. Other
areas of application include residential heating, and more
recently, solar energy field, and thermal storage systems. In
these areas, convection has served as one of the principal
modes of transfering energy for some useful heating
purposes.

Khalilolahi & Sammakia (1986) used the simplc
(SALE)

analyze the full two-dimensional equations representing

arbitrary - Langrangian-Eulerian technique (o
mass, momentum, and energy balance for unsteady
buoyancy-induced flow generated by an isothermal vertical

surface enclosed in a long rectangular cavity. He considered



the plate to be centrally located and used symmetry to
analyze the flow for one-half of the enclosure. He observed
the quasi-one-dimensional conduction regime adjacent to
the surface at very short times, the steady boundary-layer
flow near a semi-infinite surface in an infinite media at
intermediate times, and at later times, stratification of
temperature field as flow approaches its eventual
quiescence. Eseki et al (1993) studied the cases of flow
generated by an isothermal vertical surface and one with
constant heat flux in a square cavity with the base adiabatic
and other walls at a constant cold temperature. He
discovered that for the case of the isothermal surface, the
heat flux on the opposite side of the hot surface increases
when the surface is moved from a position very close to the
left side vertical bounding walls towards the vertical line of
Symmetry of the plate and the rate decreases as the line of
Symmetry is approached. The same result was observed at
the right side bounding walls. He further reported that for a
vertical shift of the plate, for high Ra, (Ra > 3 x 10% the
maximum heat transfer rate occurs when the plate is located

for Ra aboutr 10°

only small changes in the heat transfer rate occurs, and for

at one-third of the height of the cavity,

lower Ra. (Ra. < 10° ) significant changes in the rate of heat
transfer are introduced, with the maximum occurring closer
to the top of the cavity.

Sammakia et al (1980) conducted both experimental
and analytical (numerical) investigation on transient natural
convection generated by a semi-infinite surface in air and in
water, and the results from the two showed close agreement
especially for the laminar flow regime. Hellums and
Churchill (1962) used an explicit finite-difference scheme
to solve the full boundary layer equations in their time-
dependent partial differentia] forms representing the flow
field adjacent to a semi-infinite flat vertjcal isothermal
surface in an infinite medium. The results were in excellent
agreement with the early analysis due to Ostrach (1972).

Also, the results for measurements by Gebhan and

Adams (1962) ) agree well with those of the integral method
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of Gebhart (1961) in the analysis of transients adjacent to a
semi-infinite vertical plate.

The present work focuses on heat transfer from an
isothermal vertical plate in an air enclosure. Motivation for
this study has been aroused by the observed early heat
accumulation tendencies of electronic components in sealed
enclosures, which could have adverse effect on the
performance of the devices. The research seeks to
investigate the various regimes of heat transfer and their
characteristics, and the rates of heat transfer, defined in
qQuantitative terms, from the surfaces as functions of plate
location and the Grashof number which is a measure of the
temperature difference between the heated plate and the
fluid medium. In the study, the full two-dimensional
conservation equations governing the flow field are
numerically analyzed assuming adiabatic conditions.

II MATHEMATICAL FORMULATION

The physical problem is modelled as a two-
dimensional rectangular enclosure with adiabatic walls on
all sides, filled with air (see figure 1) below. The source of
heat, the vertical plate, is an isothermal element of
negligible thickness which is moved around within the
enclosure in a vertical orientation. At the initial time, the
fluid, the pl

initial

ate, and the bounding walls are al] at the same
I

temperature of the plate is raised and maintained at a

ambient temperature, until - suddenly the

higher, uniform and constant value, T,,.
The following assumptions are made in order to
o
simplify the analysis of the problem:

(),

The flow is laminar and two-dimensional

(i1) .The fluid s Newtonian, viscous, and
incompressible
(i) Fluid pr operties are constant except in the

huoydmy term consideration

(iv)

Viscous dissipation term is negligible
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Figure 1. The physical model

(v)  Heat flow by radiation is negligible
(vi) No internal heat source or heat sink is
(vii) involved
(viii) The -walls are impermeable and the no-slip
condition applies.
The appropriate equations governing the flow field

are the conservation equations of mass, momentum, and

energy;
o v (1)
ox dy
a_”+ua_”+va_” = _ia_p+vvzu )
ot ox  dy p ox
@.I_uiﬁ_v_a_‘i:—ia—p-{-vvz\/'f'l:‘v (3)
ot ox  dy 0O dy '
_a_T_*.ua—T-i- Va—T ZQVZT 4)
ot ox dy

where, u is horizontal component of velocity
v is vertical component of velocity
T is temperature
tis time
yis vergica] coordinate
X is horizontal component
p is density of fluid inside the heated
layer

p is pressure

v is the kinematic viscosity of the fluid

o is the thermal diffusivity
The body force due to buoyancy in the y-direction

can be obtained by the Boussisesqu approximation,

p=p,(1+pAT) (5)

where, B is the volume coefficient of thermal
expansion
Po 1s the bulk fluid density,
AT is the temperature difference between
the heated layer and the bulk value,
The body force per unit mass, F,, due to buoyancy in the y-

direction is obtained thus,
F, =-Pg(AT)

where, g is the acceleration due to gravity.

The y-momentum equation becomes,

dv  dv v 1 dp )
Z P 2P Bo(AT
o u ™ Vay o Wy ﬁg( 0]

A Boundary and Initial Conditions

The above governing equations are subject to the

following initial and boundary conditions:

att=0, u=v=T-T;=0,
fort>0,
Xx=a
u=v=T-T,=0at {~x=b. and c <y <d,
x=0

u=v=0T/dx=0at x=L,and0<y<H
% =0

u=v= 8T/8y:0at0<x<Land{y =H

B Normalization of the Governing Equations
Following Khalilolahi and Sammakia (1986). the
equations are made dimensionless for generalization using

the following non-dimensionalizing parameters:

X=x/L:Y=y/L;U=uL/v; V=vL/; 1= tv/L’




o= (T -T,)/(T, -T,);p= PL’/ pv*
where, Y is dimensionless vertical coordinate
X is dimensionless horizontal coordinate
U is dimensionless horizontal component
of velocity &
V is dimensionless vertical component of
velocity
T; is initial temperature
T,, is temperature of isothermal wall
0 is dimensionless temperature
1 is dimensionless time

p is dimensionless pressure

The dimensionless form of the equations and the

boundary and initial conditions are thus as follows:

U IV _, )
X oY
U U _oU oP 09U 09U
—4U —4V —=——t—t+t=— ©®
or  oX 9Y 9X oX* oy’

2 2
WV y OV _ 9P 0V OV, 6.0

ar  oX oY oY ox? ar?

20 900 00 1(09%0 090
— U —+V —=— ——,+—, (10)
or 09X oY Pr{oX’ v
* where, Gr=gB(T, — T)L*’
Pr=c,wk

B is volume coefficient of thermal
expansion

¢, is specific heat at constant pressure

u is dynamic viscosity of fluid

k is thermal conductivity
C. Dimensionless Boundary and Initial Conditions

The normalized boundary and initial conditions are:
att=0, U=V=0=0,

fort>0,

X =alL
U=V=9—1:Oa{X:b/L,andc/L<Y<d/L
{X:O
U=V=00/0Y=0atlX=1and0<Y<H/L
{Y:O
U=V=00/0dY=0at0<X< 1, and Y =HL

D. The Vorticity Transport Equation

The normalized X- and Y- momentum equations are
combined together to eliminate the pressure terms, to yield

the normalized vorticity transport equation given as,

a_w+U§g)_+Va_w:a~_az+a~c?+Gra_e (1)
ot )¢ dY o9X° odY° X

where, o is dimensionless vorticity

E. The Poisson Equation for Stream Function

The vorticity transport equation above does not have
any explicit boundary conditions for evaluating the
vorticities. To solve the problem therefore, the Poisson
quation for the stream function, and the velocity-stream
function. equations are introduced as a means of
determining the vorticities at the boundaries. The approach
also enables the values of the streamlines within the domain
to be generated. The normalized form of the equations
conforming with the normalized parameters above are as

given below:

dy 0 :
U: + ‘/{ =—-0 (12)
oX~ dY~°
)
__.W =U (13a);
aY
d
o ==V (13b)
0X
subject to the following dimensionless initial and boundary
conditions:
att=0, w=y=0,
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fort>0,
X=aL

y=0at =b/L,andc/L<Y < d/L,

{x:o
at I X=1and0O<Y<H/L

[Y=0
at0< X< 1,and Y =H/L

where, y is dimensionless stream function
F. Vorticity Boundary Conditions

Following (Shoichiro 1977) the vorticities at the
walls are obtained by expanding the stream functicn values
at points adjacent to the walls in the Taylor’s series about
the walls. After necessary simplifications, the boundary

vorticities are approximated by,

2
A_nf (w wall+An )

An is a subdivision (AX or AY) on the axis normal to the

wli'{l” ==

surface, taken from the surface into the fluid medium.
At the sharp concave corners, ‘b’, ‘d’, ‘f°, and ‘h’,
e U
& o

so that at the corners the vorticities vanish, i.e.,

0

Wy = Wg= w;=w, =0

11 NUMERICAL METHOD OF SOLUTION

The numerical method adopted for solving the
system of partial differential equations is the finite
difference. The entire domain is subdivided into a mesh
system, size m X n, with uniform divisions, AX and AY, in
the X- and Y-directions respectively, ensuring that the
boundaries lie on grid points. Because of the derivative
boundary conditions. four fictitious lines. two horizontal,

distance AY top and bottom of the cavity, and two vertical,

distance AX left and right of the cavity are introduced.

The appropriate finite-difference scheme
representations of the partial differential terms in  the
governing equations are cast and used to replace each of the
terms, the central difference approximation being used in
the space derivatives, and the forward difference in the time
derivatives. Equations (10), (11) and (13) are expressed
explicitly, and equation 12 implicitly. The system of
discretized equations are then solved numerically starting
from time t = 0, and marched in time, using a sufficiently
small time step (At = 2E-6) that allows for the stability of
the solution, until a desired time is reached. The Von
Neumann stability analysis is used in determining the
stability criteria.

The system of equations (10), (11), (12), and (13) are
solved following a cyclical sequence. During any one time
step, the energy transport equation, equation (10), is solved
first for 8 using the initial values of U, V, and 6. In the next
stage and for the same time step, the vorticity transport
equation , equation (11), is solved for o at the interior of
the domain, still using the same initial values of U and V
but the new values of @ obtained from the solution of
equation 10, leaving the vorticities at the boundaries. These
most recent values of  are used in the Poisson equation for
stream function, equation (12), to yield a system of
simultaneous equations which is now solved for by an
iterative scheme to obtain the values of v still for the same
time step. The vorticities at the boundaries are then
evaluated using the values of y at the adjacent nodal points
perpendicular to the surface. And lastly the X- and Y-
velocity equations, equations (13a) & (13b), are solved
using the values y obtained at the last stages. This
completes the first cycle of operations for the first time
step. For the second cycle, the values obtained in the first
cycle are used to repeat the entire operations again to obtain
new distributions for 6, w, y, etc. This operation is repeated
until the desired time is reached.

The iterative scheme adopted for solving the implicit

stream function equation is the Liebmann iterative method




accelerated by the Successive Over-relaxation, (S.O.R),
method for convergence. Following Chow (1979) the
convergence of the stream function equation is subject to

the criterion,

m n
t+1 e
Wi

i=2 j=2

l//it,jlsa

where, § is the residue taken as 1x10°*

A." Heat Transfer Calculation

The effect of fluid motion on the rate of heat transfer
from the hot surface into the fluid medium is expressed in
terms of Nusselt numbers. The Nusselt number is evaluated
at specific points as local Nusselt number, or averaged over
one of the plate surfaces as local mean Nusselt number, or
over the entire surface as overall mean Nusselt number.

The local mean Nusselt numbers at the sides, and
bottom and top of the plate are therefore expressed
respectively as,

90 90
ox’ Y

And the overall mean Nusselt number is expressed as

Nu

= (N—uR+NT¢Lde—cj+1)+ NMB+N_MTXbi_ai+rla)[
- Nu=

h.
—_— 1 06
Nu, = ——fa—ydxlyzd

1 toe

Nu, = .
B, oy

lY:('
Ly=d-c¢; By=b-a

The mean Nusselt numbers are evaluated using the

trapezoidal rule.

VI RESULTS AND DISCUSSION

The results of the numerical study of heat transfer
from an isothermal vertical plate in an air enclosure are
presented. Results are presented for the effects of plate
location and Grashof number on heat transfer from the plate
surface. The investigation was conducted for Pr. No. =
0.72, and heated plate of length, L, = (1/3)H but negligible
width. A maximum Grashof number, Gr. = 4.65E+06,

which allows for the stability of the numerical scheme has

been employed. This implies a Raleigh number, Ra
3.35E+06, corresponding to a laminar flow regime.
Figures 2 — 5 present the effects of plate location on the

e of heat transfer from the hot surface. Figures 2 and 5

2d, ~c, +1)b, —a, +1)
Where, a; and b;, and ¢j and d; are respectively
the X- and Y-coordinates of the corners
of the plate. Nu and Nug are respectively the
mean Nusselt numbers at the left and right sides of
the plate, while Nu and Nug are respectively the
mean Nusselt numbBers at the top and bottom of the

plate expressed as

d; .
Nu, L |
= Lp ,./ aX x=n
I o0
Nu,=—— |2,y
N g f ax Ve
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respectively compare Nusselt numbers at corresponding
times for three different horizontal shifts of the plate, while
figures 3 and 4 compare same for three vertical shifts of the
plate. It would be observed that the curves exhibit
collinearity and same slope at very small times for all plate
locations. They also exhibit close region of temporal
minimum. From Figs 3 and 4 it' would be seen that for the
vertical shifts of the plate downwards along the mid-length
of the cavity from the mid-height, p = H/2, the curves are
approximately collinear. This indicates that only little
changes occured in the values of heat transfer coefficient.
For the plate position, p > H/2 the curve show significant
deviation from those for p < H/2 indicating lower values of
heat transfer coefficients and therefore lower rates of heat

transfer. For a horizontal shift of the plate, figures 2 and 5,
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the rate of heat transfer decreases as the plate is moved
away from the mid-length position towards the left vertical

bounding walls after the
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onset of convection. But very close values of the coefficient
are observed immediately after the onset of convection for
positions L/4 < a = b < L/2. For plate positions a=b < L/8
larger deviations in the values of heat transfer coefficient
are observed immediately after the common region of
temporal minimum.

Figures 6a-f show the process of gradual development
of isotherms for H/L = 1, Gr = 465000, and plate
symmetrically located. It would be observed from the
figures that at small times (t <4.91 x 10™) the isotherms are
parallel to the plate surface indicating equal rate of heat
transfer in all directions, which is characteristics of

conduction heat transfer from an isothermal surface. For 1=



8.2 x 10™ the process of thermal diffusion predominantly in
the vertical direction

(indicating onset of convection) commences, and thereafter
progresses spreading sideways until thermal stratification
begins (see figure 6f).

Figs 7 - 9 respectively compare Nusselt numbers at
corresponding times. for varying Grashof numbers for H/L
= % and plate symmetrically located, and H/L = %2 and
plate symmetrically located. It is observed that the curves
are steep and collinear at very small times, T < 0.0004, and
thereafter begins to undergo the process of temporal
minimum in heat transfer coefficients. The curves undergo
temporal minimum in order of magnitude of Grashof
numbers. Even after temporal minimum,
heat transfer coefficients continue to increase with Grashof

number. This is expected since a
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high Grashof number, which is an indication of the
relatively large temperature difference between the hot
plate and the body of the fluid, tends to impart a sudden
energy transfer on the fluid. This increases the activity of
the fluid to reduce the duration of the conduction regime
and trigger early convection. The region of temporal
minimum is more conspicuous for higher Grashof numbers,
in fact, with Gr = 46500 and 4650, see figures 7 and 9, the
curves tend to be collinear and follow the one-dimensional
conduction trend. Low Grashof numbers indicate

relatively small temperature difference between the hot
plate and the fluid medium; for such cases therefore, the

rate of heat transfer is quite
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low such that it cannot initiate Or sustain any vigorous
convection process; so that the heat transfer by the process

resembles that of a one-dimensional conduction regime.

V. CONCLUSION

F In this study it has been demonstrated that in the heat
transfer from an isothermal vertical plate in an air enclosure
essentially three  different regimes of flow are

distinguishable: the one-dimensional conduction regime at
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short times, convection regime at later times, and thereafter
thermal stratification when the flow approaches its eventuai
quiescence. For a vertical shift of the plate below the mid-
height of the enclosure only little or no changes occur in the
values of heat transfer coefficient Above this height, much
lower values of the heat transfer coefficient which indicates
lower rates of heat transfer occur, the values decreasing as
the plate is moved towards the top of the enclosure. For
positions in which the Plate is closer to the left vertical
walls lower rates of heat transfer occurs and the rate
decreases as the left wall js approached.

The rate of heat transfer by convection also increases
with Grashof number. Below certain values of the Grashof
number heat transfer occurs only by the one-dimensional

conduction regime.
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