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ABSTRACT

In order to accelerate the convergence of the classical iterative schemes, such as Jacobi, Gauss-Seidel and SOR, for the solution of
the linear system Ax = b, several classes of preconditioners have been introduced. The present work proposes a preconditioner of
the class I + S applied to the classical SOR iterative matrix for linear systems with an irreducible L-matrix as the coefficient matrix.
Convergence conditions for the preconditioned system are derived and analysed using standard procedures available in literature.
Comparison of results for various spectral radii obtained from numerical experiments proved to be in agreement with the theorems

advanced.
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INTRODUCTION
Many physical phenomena that involve two or more
variables are modeled as partial differential equations. The
approximation of partial derivatives by finite differences, in
most cases, are eventually turned into linear system of
algebraic equations of the form
Ax =b (€8]
where A = (a;;) € R™™ is a known nonsingular matrix,
b € R™1 is a known vector and x € R™*1 is the unknown
vector. An iterative method for solving the system (1)
consists of a process where the coefficient matrix A is split
into the form A = M — N, where M is nonsingular, and the
system (1) is converted into an equivalent system of the form
X
=M~ INx+ M~1b @)
The sequence of solution vectors is obtained from (2)
through the general linear iteration formula
x®+) = MINx®) + M~1p, k
= 0’1'2’ (3)
where M~1N is referred to as iteration matrix of the method.
In this paper we assume, without loss of generality, that A =
I — L — U, where I is the identity matrix, —L and - U the
strictly lower and strictly upper triangular matrices of A4,
respectively. By the foregoing splitting, the iteration matrix
of the classical SOR method is defined by
Tsor = (I — wL) H{(1 — w)I
+ wU} 4
where M1 = (I —wL)™! and N = {(1 - w)I + 0U}. A
necessary and sufficient condition for convergence and
stability of the method requires that the spectral radius of the
iterative method be less than 1, and the method converges
faster when the spectral radius is near 0 than when it is near
1. Preconditioning, therefore, is the technique of reducing
the spectral radius of the corresponding iterative matrix in
order to speed up the convergence of a classical iterative
method. It involves the manipulation of system (1) thus,
PAx = Pb 5)
Or more compactly,

218 |

A'x=Db' 6)

where A’ = PA, b’ = Pb and P is a nonsingular matrix
known as the preconditioner.
Since the introduction of SOR method by Young (1950), a
great many researchers have written about iterative methods
for solving linear systems. These include, Varga (1957),
Varga (1959), Young and Edison (1970), Young (1972),
Varga (1981) and Young (1987). Modifications and
generalizations of the basic iterative methods such as the
SOR have also been done in many articles which include, to
mention but just a few, Hadjidimos (1978), Martins (1988),
Hadjidimos (2000) and Youssef (2012), Bamigbola and
Ibrahim (2014), Muleta and Gofe (2018), Vatti et al. (2018).
Of recent, there has been a lot of research involving
preconditioners of the class I + S used in accelerating the
convergence of basic iterative methods. In this class abound
advances by Milaszewicz (1987), Gunawardena et al.
(1991), Kohno et al. (1997), Li and Sun (2000), Hadjidimos
et al. (2003), Ndanusa and Adeboye (2012), Mayaki and
Ndanusa (2019)

MATERIALS AND METHODS

The Preconditioned SOR Iterative Methods

Assume the coefficient matrix 4 in (1) is a nonsingular L —

matrix and the linear system (1) is transformed into the

preconditioned system (5), where P = (I + S), I being the

identity matrix and S a nonnegative matrix known as the

preconditioner. Then a new preconditioner S is proposed

thus.

5= {—aij , GLH=0012),21,n-1,n),nn-1)
0, otherwise

The overrelaxation parameter w is applied to the

preconditioned system (6) thus

wA'x = wb’ @)
A regular splitting of the coefficient matrix wA’ results in
wA’
=wD' -L-U" ®

where D', —L" and — U’ are the diagonal, the strictly lower
triangular and the strictly upper triangular parts of matrix A’.
wA'=w(+D,—-L -U")
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where I + D, is a splitting of D’ into the sum of identity
matrix I and a diagonal matrix D,.
=1—wl +wSL+ wD, — I + wl — wU' — wSL
=[l-wl'-SL-D)]-{(1-w)+wU'+SL)}
Thus
wA"=[l —w(' —SL—-D,)] —{(1 —w)I
+w(U' + SL)}
is a regular splitting of wA'=M — N, where M =
[l —w(l' —SL—D,)]and N = {(1 — w)I + w(U’ + SL)}.
Hence, the preconditioned SOR scheme is defined as
x®+D =[] — (L' —SL — D)"Y — w) + w(U’
+ SL)}x
+ [ —w( —SL—D)] 'wb’
Or more compactly,
xHD =T 4 ¢
where the preconditioned SOR iteration matrix is T; =
M7IN =[] -w(' —SL-D)] {1 - w) +w +
S}and ¢ = M~ *wb' = [I — w(Ll' — SL —D,)] *wb'.
Similarly, from equation (7)
wA'=wD'-L -U")
=wD' —wl — U’
=D'—wl —(1—-w)D'— U’
Therefore,
wA'=(D'—wl) - [1-w)D" + wlU']
is another splitting of the preconditioned coefficient matrix
wA' = M — N, where
M= (D —wl) 9
N= [(1—w)D’+wU’]} ®
And on substituting equations (9) into equation (3) we obtain
our second preconditioned SOR iterative scheme as
x D = (D' — wL)"H(1 — w)D' + wU']x®
+ (D' — wl)*wb’
That is,
x ) = T, 4 ¢
where the preconditioned SOR iteration matrix
M™IN=(D"-wl)[(1-w)D'+wlU'] and
M~ lwb' = (D' — wl) Twb'.
The entries of the coefficient matrix A" = (a;;) of the
preconditioned linear system (7) is further examined as
follows.

T2=
c =

r .
a; =1—0a420z1, i=12
! .
a; =1, i=345-,n-2
1o -
a; =1—apn_1nann-1, i=n—1n

aj; =0, ,)=012),21,n-1n),nn-1)
aij = a;; (i # J), i=345,n-2
aj; = ayj — a120z), j=345,n
a;j = apj — (104, j=345,1n

j=123-,n—2
Apj = Anj = Qup10n_1 j=23,,n=-2
From (10), all the off-diagonal entries of A’ (represented by
the last 6 lines) satisfy the L —matrix requirement. The
diagonal entries (represented by the first 3 lines) must be
greater than 0. Thus we must have
1 — aqypa,1 > 0, which implies 1 > a;,a,;
1—an-1nann-1 > 0, which implies 1 > a,_1 , 0y 51
But ajpa,; = 0and a1 ,a,,-1 = 0. Hence,
0 <ayya;; <1,and
0<ap_1napn-1 < 1.

! —
an—l,j - an—l,j - an—l,nanjr
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(10)
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Convergence Analysis
The following lemmas are needed in order to prove the main
theorems.
Lemma 1 (Varga (1981))
Let A > 0 be an irreducible n x n matrix. Then,
i A has a positive real eigenvalue equal to its
spectral radius.
ii. To p(A) there corresponds an eigen vector x > 0.
iii. p(4) increases when any entry of A increases.
iv. p(4) is a simple eigenvalue of A.
Lemma 2 (Varga (1981))
i Let A be a nonnegative matrix. Then
If ax < Ax for some nonnegative vector x, x # 0,
then a < p(4).
ii. If Ax < Bx for some positive vector x, then
p(A) < B. Moreover, if A is irreducible and if 0 #
ax < Ax < fx for some nonnegative vector x,
then a < p(A) < B and x is a positive vector.
Lemma 3 (Li and Sun (2000))
Let A= M — N be an M —splitting of A. Then the splitting
is convergent, i.e., p(M~IN < 1), if and only if 4 is a
nonsingular M —matrix.
Theorem 1
Let Tsor = (I — wL) (1 — w)I + wU} be the SOR
iteration matrix while T, = [I — w(L' — SL — D,)]™*{(1 —
)+ +SL)} and T, = (D' — L) H(1 — w)D’ +
wU'} be the preconditioned SOR iteration matrices. If A €
R™ ™ is an irreducible L —matrix with 0 < a;,a,; < 1,0 <
Ap—1n0nn-1 < 1land 0 < w < 1, then Tgpp, Ty and T, are
nonnegative and irreducible matrices.
Proof:
When w = 0, Tgpg, T; and T, become the identity matrix I.
When w < 0 and w > 1, negative entries are introduced to
these three matrices. Thus, for Tgpr,T;and T, to be
nonnegative, the only allowable range of values of w is 0 <
w <1
For 0 < w < 1, and by binomial expansion, (I — wL)™! =
[+ oL + w?l? + - +0™ 1L"1 >0, since L > 0. More
50, (1—w)l+ wU =0, since U=0. Thus Tsog = (I —
wL) (1 — w)I + wU] = 0. Hence, Tsog is a nonnegative
matrix.

Foro<w<1,
Tsor = I + oL + @?L? + - 4™ 1" 1][(1 — w)I
+ wU]
=(1-w)l+w(d—-wl+owoU+w?lU+ w?*(1-w)l?
+ W3L2U + -

=1 —-w)l+w(l - w)l + »U + nonnegative terms
Since A=1—L—U is irreducible, so also is the matrix
(1—-w)+w(d—w)L+wU since the coefficients of
I,L and U are not zero and less than 1 in absolute value.
Hence, Tgor is an irreducible matrix.
The preconditioned iteration matrix T; is defined by

T, =[I —w( —SL—-D)] (1 — w) + w(’ +SL)}
SinceU’'>20,SL=>0,for0<w<1, (1-w)+wlU +
SLy=0and [ —w(@ —SL-D)]'=1+w(l' —SL—
D.) + w?(L' —SL—D,)2 4 +o" (L' = SL —
D)™t > 0, since
(L' = SL —D,) = 0.Consequently, T; = [I — w(L' — SL —
DI Y1 —w)+w(U’'+SL)}=0. Hence, T; is a
nonnegative matrix.
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Suppose the matrix A = I — L — U is an irreducible matrix;
then the preconditioned matrix A’ is
A=PA=(U+HA=U—-L;—U)U-L-U)
=1—L—-U=Lg+LsL + LU — Ug + UsL + UU
=1—L-U-=Lg+LsL — (LyU), — (LsU)y — Us
— (UsL), — (UsL)y + UsU
=1—L—Lg+ LiL — (LsU), — (UsL), — U — Ug + UsU
— (UsL)y — (LsU)y
=1—(L+Ls—LsL + (LU) + (UsL))
— (U +Us — UgU + (UsL)y
+ (L))
=I-L-U"
where L' =L+ Lg—LiL + (LU, + (UsL),, U' = U+
Us = UsU + (UsL)y + (LsU)y and —(Q), and —(Q)y
denote the strictly lower and strictly upper parts of the matrix
Q respectively. Since A is irreducible, it is obvious that A" =
I — L' — U’ isirreducible, as it inherits the nonzero structure
of the irreducible matrix A’.
Now,
Ty = —wl —SL—D)]" {1 — w)+ w@' +SL)}
= +wl' —SL-D,)+ w?(L' —SL—D,)?+ -
+ o™ (L = SL—-D)"H{(1 - w)I
+ wU' + wSL}
=1 -w)+wl +wSL+w(l—w){l'—SL-D,)
+ w?(l' = SL-D)U’
+ w?(l' — SL —D,)SL
+w?(1—w)(' —=SL—D)?>+ -
=(1-w)l+wl-w)l+wU +wSL
+w(l—w)(-SL-D,)
+ w?(l' = SL-D)U'
+ w?(l' — SL —D,)SL
+w?(1—w)(' —=SL—D)?>+ -
=1 -w)+w(l—w)l +wlU’ + nonnegative terms
Since A'=1—- L —U' is irreducible, it implies, for 0 <
w < 1, the matrix (1 —w)l + w(1 —w)L' + wU’ is also
irreducible, because the coefficients of I, L' and U'are
different from zero and less than one in absolute value.
Therefore, the matrix T, = [ — w(L' — SL — D,)]"Y{(1 —
w)l +w(U' + SL)} is irreducible. Hence T, is a
nonnegative and irreducible matrix.
Similarly,
T, =D —wl)[(1-w)D + U]
=[D'(I - wD'"'L)]7[(1 — w)D' + wU']
= [D'(I - wD' L") [(1 - @)D’ + wU']
= (- D) D71 - w)D' + wU']
=(1- wD’_lL’) 1[(1 —w)l + wD’_lU’]
=[[+wD' 'L+ w?(D' L)% + -
+ o™ (DL - w)I
+wD' U’
=1 -wl+wo(l-wD 'L'+awd U
+ nonnegative terms
Using similar arguments it is conclusive that T, =
(D' — wl)™'[(1 —w)D' + wU’'] is a nonnegative and
irreducible matrix.
Theorem 2
Let TSOR = (I - O)L)_l{(l - (,l))] + (,l)U} and T1 = [I -
w(l' —SL—D)]"H{(1 — w)I + w(U' + SL)} be the SOR
and preconditioned SOR iteration matrices respectively. If
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0 <w<1landifA € R™™isan irreducible L —matrix with
0<a,a; <1,0<ay_1,an,-1 <1, then

(i) p(T1) < p(Tsor), if p(Tsor) <1

(i) p(T1) = p(Tsor), if p(Tsor) =1

(iii) p(T1) > p(Tsor), if p(Tsor) > 1
Proof:
Tsor and T; are nonnegative and irreducible matrices
(Theorem 1). Let p(Tsor) = p; then there exists a positive
vector x = (x4, %2, -+, x,)7 , such that

Tsorx = pux
That is,
(I - owl) {1 — w) + wU}x = ux
1-—w)l+ U
= u(l — wlL) (11)

Therefore, for thisx > 0
Tyx—ux =[I —w( —SL—D)] Y1 — w)I
+ w(U'+ SL)}x — ux
=[I—w(l —SL-—DJ)]I Y1 —w)l + wU' + SL)}x
—ull —w(L' = SL— D)1
—w(l'=SL-D)]x
=[I-wl —=SL-D)] {1 - w)I + w(U’ + SL)
—ull —w(' - SL—-D)]}x
=[I-wl -SL-D)]I" {1 - w—wI+ U’ + uwl’
— pwSL + wSL — pwD,}x
=[I-wl@—-SL-DI)]™ {1 —w—-wI
+wU+Us+U,)+pw(L+Ls+L,)
+ o —1)(=SL) — pwD.}x
[l —wl@ —=SL-D)]"H(1 - w—wI + wU + pwl
+ —uwD, + wD, + w(u — 1)(—SL)
—wD, + wlL, + wU, + pwlL, — wlL,
+ wUs + pwlg}x
From (11),

wU + pwl = —(1 —w — i
Tix—ux =[I —w(l@ —SL—D)] {1 —w—wI
-1-w-wWIl+wl—-1)(-D.)
+ou—1(=SL) +w@—1)L.
—wD,—L,—=U,) + wUs + pwlLg}x
=[l -l - SL—-D)] Hw(u—1)(-D, = SL+L.)
—wD,—=L,—-U,) + wUs + uwLg}x
=l -wl -SL-D)] H{w(u—1)(~D., - SL+L,)
— w(=SL - SU) + pwLs — wLg
+ wls + wUs}x
=[I - w' - SL—-DJ)] Hw(u - 1)(-D, — SL+L.)
+ w( — 1)Ls + wSL + wSU + w(Lg
+ Ug)}x
=[I-w( = SL-D)] Y{w(u—1)(~D, — SL +L,
+ Lg) + wSL + wSU + w(—=S)}x
=[-wl-5L-D)] Yol —1)(-D, —SL+L,
+Ls)+S—wS+wSU—-S+ wSL}x
=[I-w( = SL-D)] Y{w(u—1)(~D, — SL + L,
+Lg) + S[(1 — )] + wU] — S
—wl)}x
From (11),
(1—- ) +wU =pu(l —wl)
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Tix —ux =[I —w(@' —SL—D,)] "{w(u —1)(-D, — SL
+L,+ L) +uSU — wL) — S(I
—wl)}x
=[I—w( —SL-D)] Yw(u—1)(—D, —SL+1L,
+Ls)+ (u—1)SU — wl)}x
=@-1DlI-wl-SL-D)] {w(-D,—SL+1L,
+Ls)+SU — wl)}x

From (11),
(- ol) = (1—w)l+ U
Tyx—ux =@w— 1[I —-w(l'—SL—-D,)] Hw(-D, — SL
(1 -w)+ U
+L,+Lg)+ S[T]}x

=(u—l)

[l — w( = SL— D) Huw(~D, — SL+L,

+Ls)+ (1 —w)S + wSU}x
Let F = Gqx, where G, =[l—-w(l'—SL-
D) Huw(-D, —SL+ L, + Lg) + (1 — w)S + wSU}.
Then G, = [I — w(L' — SL — D,)]"*{uw(—D, —SL + L, +
Ls) + (1 —w)S + wSU} =0, because pw(—D,—SL+
L) =0, pwLks + (1 — w)S = 0 and wSU = 0. Also, [I —
ol =SL-=D)]"'=1+w(l —SL-D,) + w2l -
SL—D)?+ - 4™ (L' —=SL—-D,)"* >0, since (L' —
SL—-D,) =>0. Therefore, G, = -wl'—SL-
D) Huw(-D, —SL+ L, + Lg) + (1 — w)S + wSU} =
0. Consequently, F = [I — w(L' — SL — D,)]"*{uw(—D, —
SL+L,+ L)+ (1 —w)S+wSU}x = 0, since x > 0.
(i) If u < 1, then T;x — ux < 0 but not equal to
0. Therefore, Tyx < ux. From Lemma 2, we
have p(T,) < pu = p(Tsor)-

(i) If u=1, then Tyx —ux = 0. Therefore,
T,x = ux. From Lemma 2, we have p(T,) =
u = p(Tsor).

(iii) If u > 1, then T;x — ux > 0 but not equal to

0. Therefore, Tyx = ux. From Lemma 2, we
have p(T,) > pu = p(Tsor)-
Theorem 3
Let Tsor = (I —wLl) H{(1 — w)I + wU} and T, = (D' —
wl) (1 - w)D' + wU’'] and be the SOR and
preconditioned SOR iteration matrices respectively. If 0 <
w < lisand A € R™™"isan irreducible L —matrix with 0 <
12021 < 1,0 < ap_1xann-1 <1, then
i. p(T2) < p(Tsor), if p(Tsor) <1;
ii. p(T2) = p(Tsor), if p(Tsor) = 1;
iii. p(T2) > p(Tsor), if p(Tsor) > 1.
Proof:
From Theorem 1, Tsor and T, are nonnegative and
irreducible matrices. Suppose p(Tsor) = U, then there exists
a positive vector x = (xq, x5, -, x,)7, such that

Tsorx = px
That is,
(I - L) {1 — o) + wU}x = ux
1-w)I+wU
=u(l — wl) (12)

Therefore, for this x > 0,
Tox —ux = (D' — wl) (1 — w)D’ + wU'}x — ux
=D -wl)Y (1 - w)D' +wlU'}x
— (D' —wl) (D' — wl)ux
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= (D' — wl)" Y1 - w)D' + wU’
—u(D' — wl)}x
= —-wl)Y {1 -—w-—-wD' +uwl + wlU'}x
=D -l YY1 -w—-wUd+D,)+puw( +Lg+L,)
+wU+Us+ U)}x
=D -owl) {1 - w—pwD, + pwl, + uwlLs + uwlL
+wlUs+ U, + (1 —w—wl
+ wl)}x
From equation (12)
1-w—-—wI+ wU=—uwl
Tox —pux = (D' — wl') {1 — w — u)D, + pwl,
+ pwls + wUs + wU,)}x
= (D" — L) H{(u—-1)(-D,) + pwl, — wL, + pwLs
— wD, +wlL, + wU, + wUs)}x
=" - wl)™H{ - 1(=D.) + (- DwL.
—w(D, — L, —U,) +uwlLs + wUs}x
=D - wl) (- 1(=D. + wL,) — w(—(SL + SU))
+ pwls — wls + wLs + wUg}x
=D - wl) Y(u—-1)(-D, + wL,) + wSL + wSU
+ (- Dowls + w(Ls + Ug)}x
=D - wl) Y{(u—-1)(-D, + wL, + wLs) + wSL
+ wSU — wS}x
=D -l )Y {(u-1)(-D, + wL, + wLg) — S + wSL
+S—wS+ wSUlx
=0 —owl)Y{(u-1)(-D, + wL, + wLs) + (1 — w)S
+ wSU —S(I — wL)}x
=" - wl) Y (u—-1)(-D, + wL, + wlLs) + S[(1
— )+ wU]-SU - wL)}x
From equation (12)
(1 - +wU =pu(l —wl)
Tyx —px = (D' — wLl)"Y(u — 1)(-D, + wL, + wLg)
+uS(I —wL) —SU — wl)}x
=D —owl)Y{(u-1)(-D, + wL, + wLs) + (u
— 1S — wl)}x
From equation (12)

(I_wL)z(l—a))1+wU

u
=w-1)0D -wl)? {—D* + wlL, + wlLg

1—w)S+ wSU
+%}x

u
= % (D' — wL') " Y{—uD, + uwl, + pwLg
+(1—w)S+wSUx

Let F=G,x, with ¢ =D —ol) Y{-uD, + pwlL, +
uwlg + (1 — w)S + wSU}. Itis clear that —uD, + uwlL, +
pwls + (1 — w)S + wSU = 0, since wSU = 0, —uD, = 0,
uwL, = 0and uywLs + (1 —w)S = 0. Since D' is a
nonsingular matrix, we let D’ — wL' be a splitting of some
matrix J, i.e., ] = D' — wL'. Also, D' is an M —matrix and
wLl' = 0. Thus, ] =D'—wl' is an M —splitting. Now,
wD'"'L’' is a strictly lower triangular matrix, and by
implication its eigenvalues lie on its main diagonal; in this
case they are all zeros. Therefore, p(wD'~'L") = 0. since
p(oD'"'L') < 1,] = D' — wl' isaconvergent splitting. By
the foregoing, J=D'—wl' is an M —splitting and
p(wD''L") < 1, we employ Lemma 3.3 to establish that J
is an M —matrix. Since J is an M —matrix, by definition,
J =M -wl)t=0 Thus, G, =0and F = 0.
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(i) If u < 1, then T,x — pux < 0 but not equal to
0. Therefore, T,x < ux. From Lemma 2, we
have p(T,) < pt = p(Tsor).

(i) If u=1, then Tyx —ux = 0. Therefore,
T,x = px. From Lemma 2, we have p(T,) =
u = p(Tsor)-

(iii) If 4 > 1, then T,x — pux > 0 but not equal to

0. Therefore, T,x > ux. From Lemma 2, we
have p(T,) > 1 = p(Tsor)-
If in Tsog, Ty and T, the relaxation parameter w =1, the
iteration matrices of the Gauss-Seidel method results in each
case. Therefore, the following corollaries are direct
implications of Theorems 1 and 2.
Corollary 1 Let Tgs = (I — L)™1U be the Gauss-Seidel
iteration matrix and Tgg, = [I — (L' —SL —D)]"Y(U' +
SL) be the preconditioned Gauss-Seidel iteration matrix. If
A € R™" s an irreducible L —matrix with 0 < a;,a,; < 1,
0 < ap_1napn-1 <1,then

i. p(Tes1) < p(Tgs), if p(Tgs) < 1;

ii. p(Tes1) = p(Tgs), if p(Tgs) = 1;

iii. p(Tes1) > p(Tgs), if p(Tgs) > 1.
Corollary 2 Let Tzs = (I — L)™1U be the Gauss-Seidel
iteration matrix and Tz, = (D' —L)"U’ be the
preconditioned Gauss-Seidel iteration matrix. If A € R™*"
is an irreducible L —matrix with 0 < a;;a,; <1, 0 <
Ap—1n0nn-1 < 1, then

i. p(Tes2) < p(Tgs), if p(Tes) < 1;

ii. p(Tes2) = p(Tgs), if p(Tes) = 1;

iii. p(Tes2) > p(Tgs), if p(Tgs) > 1.

Table 1: Comparison of results for Problem 1
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RESULTS AND DISCUSSION

In order to illustrate the results in the previous section, we
present sample matrices and determine the corresponding
spectral radii of the iteration matrices of the preconditioned
methods T; and T,, as well as those of the methods of the
classical SOR, Gunawardena et al. (1991) and Ndanusa and
Adeboye (2012). The results are given in Tables I and Il. In
the Tables, T; =[I —w(L+SL)] M1 — )+ w(U —
S+ SU)} denote the iteration matrix of the method of
Gunawardena et al. (1991) and Ty, = (I — wL){(1 —
w)I + w(U — D;)} denote iteration matrix of the method of
Ndanusa and Adeboye (2012).

Problem 1
Let
1  —-0.297-0.244 0
A= —-0.305 1 0 —0.203
—-0.256 0 1 —-0.254
0 -0.263-0.237 1
Problem 2
Let
A
/ 1 —0.23661 0 —0.25833 —0.05480
—0.15730 1 —0.01535 —0.31542 —0.12652
0 —0.18436 1 —0.01523 0

=|
\—0.12589 —0.00357 —0.12354 1
—0.21365 —0.01489 -0.13940 —0.04890 1

—0.13654

) Tsor Ty T, T Tya

0.1 0.9502804790 0.9372884197 0.9320577508 0.9402372379 0.9351153898

0.2 0.8977415361 0.8725081471 0.8616461629 0.8770106635 0.8679416975

0.3 0.8419865987 0.8054951896 0.7884547669 0.8098650194 0.7982368471

0.4 0.7825060928 0.7360514251 0.7120821997 0.7382207198 0.7256999962

0.5 0.7186219444 0.6639313773 0.6319885298 0.6613117719 0.6499460086

0.6 0.6493889513 0.5888214416 0.5474069636 0.5780721630 0.5704624297

0.7 0.5734015584 0.5103053888 0.4571607539 0.4869025333 0.4865309881

0.8 0.4883586106 0.4278029316 0.3592125666 0.3850991994 0.3970677198

0.9 0.3898409564 0.3404492464 0.2491800449 0.2669680004 0.3002417195

Table 2: Comparison of results for Problem 2

() Tsor T, T, T, Tyna

0.1 0.9433814720 0.9348244213 0.9334375820 0.9354069300 0.9306207143
0.2 0.8842186340 0.8671088946 0.8639973840 0.8676225507 0.8585524626
0.3 0.8222178790 0.7966021659 0.7913264100 0.7962564586 0.7835036459
0.4 0.7570107410 0.7229997252 0.7149727624 0.7208128415 0.7051088312
0.5 0.6881194420 0.6459240253 0.6343347202 0.6406373744 0.6228938605
0.6 0.6148968014 0.5648933772 0.5485668314 0.5548198004 0.5362138206
0.7 0.5364118257 0.4792699254 0.4563852284 0.4619924830 0.4441306819
0.8 0.4512020588 0.3881659704 0.3555863470 0.3598337933 0.3451317516
0.9 0.3566223781 0.2902570756 0.2414370780 0.2434052324 0.2362969098

From Tables 1 and 2, it was observed that the preconditioned
iterative methods T; and T, gave better results than the
classical SOR method, thereby confirming the effectiveness
of the preconditioned iterative methods. In comparison to
existing preconditioned methods T; and Ty4, the
preconditioned method T, performed better than both T, and
Tna for Problem 1. For the same Problem, T; gave better
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results than T, for the first two values of the relaxation
parameter w, even as T; lags behind Ty 4 for all values of w.
In Table 2, T, exhibited more accurate results than
T, although it did not match the performance of Ty,. And
lastly, Ty, displayed better results than T; for all values of
w, even as Ty performed better than T for the first three
values of w.

)



Improvements of Successive Overrelaxation...

CONCLUSION

We introduced a new preconditioner of the type I + S and
went further to develop the preconditioned iterative
techniques T; and T, for the SOR iterative method for
solving linear systems with L —matrix. Theoretical
convergence analysis carried out established that the two
techniques are convergent. Further numerical experiments
confirmed the results of theoretical analysis. The new
preconditioned methods are shown to compare favourably
with similar methods in literature.
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