Journal of Reliable Intelligent Environments
https://doi.org/10.1007/s40860-021-00155-0

ORIGINAL ARTICLE q

Check for
updates

Review and analysis of classical algorithms and hash-based
post-quantum algorithm

Moses Dogonyaro Noel' - Victor Onomza Waziri' - Shafii Muhammad Abdulhamid’ - Joseph Adebayo Ojeniyi'

Received: 13 February 2021 / Accepted: 3 September 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract

Over the years, digital signature algorithms such as Rivest—-Shamir—Adleman (RSA) and elliptic curve digital signature
algorithm (ECDSA) are the commonly used algorithms to secure data in the public key infrastructure and other computing
devices. The security notions of these algorithms relied on the difficulty of an attacker to solve the integer factorization problem
used in RSA and the discrete logarithm problem in ECDSA. With the advent of quantum computers and the development
of quantum algorithms, the security of data by cryptosystems are not secure. In this research, the authors carried out the
review analysis of two classical algorithms (RSA, ECDSA) and hash-based signature schemes; Winternitz one time signature
(W-OTS) and Merkle signature (MSS), their security strength, efficiency in terms of key generation time, signature generation
and verification time. Two approaches were used: the algorithms prove of concepts which involved practical implementation
of the selected hash-based signature schemes and the classical algorithms. From the results obtained and displayed in Table 8,
the signature generation time of RSA and ECDSA were 0.08 ms and 0.02 ms as compared with MSS which has high values
more than the RSA and ECDSA and it is 2.40 ms. The results showed that the two classical algorithms perform better in
terms of the efficiency in key generation time, signature generation and verification time. However, the key generation time,
signature generation and verification time increases when the key length increases. The security of the classical algorithms
improved when the key length increase. Evidently an increase in signature verification time could lead to denial of service
attack and quantum computer related attacks. The hash-based signature schemes in this research were considered to be the
best alternative algorithms suitable for public key infrastructures considering the security properties exhibited by them. Their
security depends on the hash function used and the collision resistant properties of the underlying hash function. Also the
hash-based signature schemes are forward secure and uses collision resistant cryptographic hash function and a pseudorandom
number generator as illustrated in Table 10.

Keywords Hash-based signature - Classical algorithms - Security - Encryption/decryption schemes

1 Introduction and Information Sciences by [1]. Over the years, cryptogra-
phy has been used to secure data on the internet and other
This research work is an extension of the original work pre- information technology infrastructures. Digital encryption

sented in the 2020 2nd International Conference on Computer ~ and public key cryptosystems uses the elliptic curve digi-
tal signature algorithms (ECDSA), Rivest—-Shamir—Adleman
(RSA) algorithm, and digital signature algorithms (DSA).

B Moses Dogonyaro Noel

moses.noel @futminna.edu.ng These algorithms are referred to as classical algorithms. The
Victor Onomza Waziri security of classical algorithms is based on the difficulty in
victor.waziri @futminna.edu.ng solving complex mathematical computations such as, integer
Shafii Muhammad Abdulhamid factorization problem (IFP), and discrete logarithm problem
shafii.abdulhamid @futminna.edu.ng (DLP). Research on post-quantum computing security has
Joseph Adebayo Ojeniyi gained the attention of the research community since the
ojeniyia@futminna.edu.ng development of quantum algorithm by Ref. [2] that is capable
: _ 4 o of breaking the security properties of RSA and ECDSA algo-
Cyber Security Science Department, Federal University of rithms. It is assumed that quantum computers are designed

Technology, Minna, Nigeria

Published online: 15 October 2021 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s40860-021-00155-0&domain=pdf

Journal of Reliable Intelligent Environments

with an increase in speed, memory and strong inbuilt crypt-
analytic capabilities. This implies that the DLP and the IFP
earlier considered to be hard can be reconstructed by an
attacker with a sufficient large quantum computer in poly-
nomial time. Also, the quantum search algorithm developed
by Grover is capable of speeding up the IFP using a quantum
computer [3].

It is anticipated that the next computing paradigm is post-
quantum cryptography. This also implies that there is a need
for the development of post-quantum algorithms that could
replace the existing classical algorithms currently in used
today. This development aroused the interest of researchers in
the field of post-quantum cryptography with emphasis mostly
focusing on Hash-based signature schemes. The reason
might be that the security property of hash-based signatures
schemes are well known and can withstand any attack orig-
inating from a quantum computer. Furthermore, hash-based
signature schemes need no computationally expensive math-
ematical operations like large integer factorization or DLP
computations. One of the most necessary requirement for
hash-based signature schemes are the secure hash-function
[4]. The aim of this research work is to carry out comparative
analysis and review on some selected classical algorithms
(Rivest—-Shamir—Adleman and elliptic curve digital signature
algorithm) with hash-based signature schemes (Winternitz
one-time signature scheme and Merkle signature scheme)
to ascertain their security properties, attack vectors, and
efficiency to justify the need for the paradigm shift from
classical algorithms to post-quantum hash-based signature
schemes. This research work made the following contribu-
tions to knowledge:

1. A clear view and understanding on whether or not to
accept the shift from classical algorithms to hash-based
signature schemes

2. Broad understanding of the security parameters of the
chosen classical algorithms and the selected hash-based
signature schemes

3. The limitations of Classical algorithms in the post-
quantum era and thereby established the need for the
paradigm shift from classical algorithm to the hash-based
signature scheme.

The rest of the research work is structured in this order:
Sect. 2 is the review of related literatures which include
the selected classical algorithms and the hash-based sig-
nature schemes. Section 3 is the methodology deployed
during the research. The authors used two approaches in
the methodology; algorithms prove of concepts and practical
implementation of the algorithms. Discussion of results is in
Sect. 4, while the conclusion and future research direction is
stated in Sect. 5.

@ Springer

Table 1 Notations used

Notations Description

RSA Revest—Shamir—Adleman

ECDSA Elliptic curve digital signature algorithm
OTS One time signature

W-OTS Whiternitz one time signature

LOTS Lamport Diffie one time signature

MSS Merkle signature scheme

IFP Integer factorization problem

DLP Discrete logarithm problem

FTS Few time signature

PRNG Pseudorandom number generator

Auth Authentication path

LF Integer factorization

ECDL Elliptic curve discrete logarithm

OWHF One way hash function

H.F Hash function

EU-CMA Existentially unforgettable under message chosen

attacks

Table 1 is the listed abbreviations that was used throughout
in the work.

2 Review of related literatures

Several researches are ongoing in the field of classical
algorithms and post-quantum cryptography. Reference [5]
presents related work that focused on comparative perfor-
mance analysis of RSA and ECC. The authors find time
laps between encryption and decryption of the algorithms.
The research was limited to classical algorithms. In the same
vein [6] compared the performance of ECDSA and RSA on
Name Data-link State Routing Protocol. Results from the
experiment proved that RSA perform better than ECDSA in
terms of speed. In 2018 [7], research work was on identi-
fying the prominence algorithm between RSA and ECDSA.
The authors reviewed the performance of RSA and ECDSA
with emphasis on power consumption. On the security and
efficiency of the MSS [8, 9], developed mathematical proofs
of the MSS scheme. The weakness of MSS is that, there are
limited number of signatures that the scheme can sign. In
2018, software implementation of MSS was carried out by
Ref. [10] to investigate whether the scheme could be used to
generate address signatures in mobile Internet Protocol ver-
sion 6 (IPv6). The authors proved that MSS could be used to
replace ECDSA because of its security strength. In the same
vein, a secure compact signature scheme for the distributed
ledger was proposed by [11]. The authors modeled a clas-
sical cryptocurrency using high level petri-nets to evaluate

Journal of Reliable Intelligent Environments

their findings. However, the proposed variance of W-OTS-S
presented by the authors has large key sizes. The work of
[12] focused on the comparative analysis of post-quantum
hash-based signature schemes. The analysis was based on
cost and performance analysis between Lamport Winternitz
Merkle Scheme and SPHINCS + (a stateless hash-based sig-
nature scheme). The results showed that SPHNICS + could
be a possible replacement of ECDSA in a public key infras-
tructure. The authors in [13] did similar work by comparing
the performance of some hash functions in PHINCS signa-
ture scheme.

2.1 Significance of the research

The significance of the study is to come up with a clear
distinction on the security of hash-based signature scheme
over asymmetric cryptographic algorithms such as RSA and
ECDSA. With the advent of quantum computers which it
is estimated that by 2035, quantum computers would be
in the market. The quantum supremacy over conventional
algorithms would render (conventional computers) insecure
[23]. The security of asymmetric algorithms can be broken
by Peter Shor quantum algorithms (Shor, 1994). Also, the
Grover’s quantum search algorithm has a time complexity
of O (+/2") when applied on classical computers can com-
pute the pre-image and second pre-image of an n-bit hash
of a message faster. There are many cryptographic schemes
that are developed to mitigate the attacks on conventional
algorithms. These schemes include: hash-based signature
scheme, lattice—based scheme, code-based schemes, mul-
tivariate quadratic equation cryptographic schemes, secret
key isogeny schemes among others. The outcome of this
study could be of benefit to the research community as the
basis of developing quantum robust cryptosystems. The hash-
based signature schemes where considered in this research
as a good candidate in the post-quantum era because; their
security properties are well understood, they do not rely on
number-theoretic security or structured hardness assump-
tions, and are forward secure.

The outcome of this study could be of benefit to the
research community as the basis of developing quantum
robust systems.

2.2 Justification of the research

The research methods was in twofold: informal analysis of
the algorithms and experimental analysis of the selected algo-
rithms. The results obtained are illustrated in Table 10. The
security strength of RSA and ECDSA is based on the assump-
tion of some mathematical complexity in solving integer
factorization problem and discrete logarithm problem. The
security of Merkle signature scheme (a hash-based signa-
ture scheme) is proven to be existentially difficult to forge

under selected message attacks. Given an output ¢, itis nearly
impossible to discover two separate inputs x and x ! such that:

H(x)=¢and H(x") = ¢.

This means that to forge an MSS signature the attacker has
to calculate pre-image and second pre-image of the required
hash data.

2.3 Classical algorithms

In this subsection, a brief explanation of the working prin-
ciples of two classical algorithms (RSA and ECDSA) was
done. The explanations would include algorithms formula-
tion, encryption methodology, and security.

2.3.1 RSA algorithm description

The Rivest, Shamir, and Adleman popularly called RSA algo-
rithm was published in 1978. It is believed to be among the
first public key cryptosystem that is based on two large prime
numbers factorization [14]. The algorithm encompasses the
exchange of public and private keys among communicating
entities to encode and decode a message send. This algorithm
has three major components: key generation, encryption and
decryption process. RSA working principles include:

i. Key generation
In the work of [15], key generation algorithms use the
following steps:
Step 1 Chose two prime numbers « and .
Step 2 Alice calculate the modulus A = o X w
(Note: A is the modulus comprised of the public key and
the private key)
Step 3 Compute the totient:

B) = (@ = D(w — D).

Step 4 Select an integer value i which is between 1
and B (A) where : (i, B(A) are co-prime. i is publicly
known.
(The exponent of the private key Py is calculated by
Alice in a way that it fulfils the equivalence relation).
Step 5 Bob receives Alice public key (X, i).

ii. Encryption part
To encrypt the message, Bob computes a cipher text C;
for the message § thus:
C; = §' mod A and send C; to Alice.

iii. Decryption part
Alice calculates é from C; using her private key Py as:

8§ = CP* mod A = (8P mod 1 = 8 F* mod A.

@ Springer

Journal of Reliable Intelligent Environments

Here, it can be deduced that the security of the RSA
depends on the hardness of factoring large integers. This is
assumed difficult or hard using classical computers. Suppose
a hacker could factor A into « and w, he could as well com-
pute the private key Pj. The algorithm developed by Peter
Shor in 1994 showed that factoring will not be regarded as an
NP-hard problem especially when using a sufficiently large
quantum computer.

2.3.2 ECDSA algorithm

The ECDSA is similar to the digital signature algorithm
(DSA). It was recommended by Scott Vanstone in 1992 as a
response to the request for comments from the National Insti-
tute of Standard and Technology (NIST). The algorithm was
recognized in 1998 by International Standards Organization
(ISO) with reference number (ISO 14888-3). In 1999, the
American National Standards Institute (ANSI X9.62) also
acknowledged the algorithm for use worldwide.

Like the RSA algorithm, ECDSA also consist of three
process: key generation, signature generation and verifica-
tion [16]. Basically the construction of a generic ECDSA as
detailed in [16] is as follows: Given an integer i € Z; |r |

represent the bit of length i. If F is a finite set, the f EF
shows that an element f is chosen uniformly from F. Sup-
pose the hash HASH : {0, 1}* — {0, 1}* is a cryptographic
hash function with a collision resistance properties. The algo-
rithm setup takes § as input in unary form and output an
elliptic curve y which is defined by the finite field F7. The
parameters A1 and A, are also output of the curve y. Hence T
is considered a prime or a power of 2, and w is a prime inte-
ger. That is; > 2'%andw > 4/T. G € y is a point
of order w. G is the global output parameter of the elliptic
curve such that: G := (Fr, A1, A2, w, G).

i. Key generation in ECDSA

In ECDSA, the key pair generation is linked with a set
of elliptic curve parameters. The public key is a random
manifold of the base point on the curve, and the private
key is the integer that is applied to get the multiple keys.
Key generation of ECDSA start by chosen a private key
Py as: Py & ZY. The public key is a point 8 := PG.
To sign (G, Pk, my); the signing algorithm would sign
inputs from a global parameter which is G, and the private
key Py and the message m;. The steps are:

Step 1 Calculate o := HASH (my).

Let i be the |w| which is the most significant bit of «.
Step 2 Chose § & zZy.

Calculate (x, y) := § x G.

Step 3 Compute y = 0 proceed to step 2.
Step 4 Compute f := 8~ '(i + y x P;) mod w.

@ Springer

If f =0, gotostep 2.

Step 5 Output i := (y, f) as signature.

To verify (G, B, mg, w), the verification algorithm would
have to input the global parameter G, then a public key g,
a given message m; and then the signature p. This can be
illustrated as follows:

Step 1 Parse pas(y, f).

Show that y, f € Z,/{0} if not, End.

Step 2 Compute o := HASH(my;).

Let i be the |w| of the most significant bit of «.

Step 3 Calculate j := f~! mod w,

bl := f; mod w
b2 :

yj mod w

Step 4 Calculate X(x1, yl) := b1 G + b28.
If X = 0; reject the signature; Else, Accept, if x1 =
y (mod w).

2.4 Limitations of classical algorithms

The development of Shor’s and Grover’s algorithms are grad-
ually marking an end to the traditional classical algorithms
(e.g. RSA, AES, ECDSA). The Shor’s algorithm solved the
underlying mathematical problems of public key algorithms.
In the same way, the Grover’s algorithm is capable of reduc-
ing the security strength of the classical algorithms [17].
These two algorithms capabilities exposes infrastructure
security architecture to quantum computer related attacks.
The situation would be worst when quantum computers are
fully in use and therefore compelled many researchers to ask
the following questions: what are the reasons the traditional
signature schemes are not capable of withstanding quantum
computers?

The fact is that the speed of a quantum computer is
high when compared to the classical computers. Quantum
computers stem from the quantum mechanics superposition
principle. Proper implementation of superposition state in a
quantum computer can provide strong computing power that
can break existing classical algorithms. The second ques-
tion is that; what happens if all the present cryptographic
secure algorithms suddenly becomes insecure? The point is
that the failure of classical cryptosystems may have nega-
tive effect on all communicating devices that depends on
the classical algorithms for their security. The third question
is, when is such a predicament going to happen? Research
conducted by the university of Waterloo showed that there
is one in every seven chance of these cryptographic prim-
itives been affected by quantum attacks in the year 2031
[18]. Lastly, with these questions enumerated, what is the
way forward? To provide adequate security to all public
key infrastructures, there is need to consider quantum-safe

Journal of Reliable Intelligent Environments

schemes that are believed to provide adequate security over
quantum computer related attacks. To achieve this, the post-
quantum signature schemes attract the interest of many
researchers. The post-quantum signature schemes are clas-
sified into five categories: hash-based signature schemes,
lattice-based, multivariate polynomial based, code-based,
and the super-singular isogeny schemes. In this research, the
authors considered the review of two generic hash-based sig-
nature schemes to be compared with two classical schemes
(RSA and ECDSA).

2.4.1 Why hash-based signature schemes

As stated in Sect. 2.2, several methods have been proposed
in the development of post-quantum signature schemes. The
authors’ choice of hash-based signature schemes was that the
hash-based signature schemes relied on the security assump-
tions of the hash functions used, such as collision resistance,
pre-image resistance, and second pre-image resistance prop-
erties, instead of a specific algebraic structure. In particular,
hash-based signature schemes are forward secure. By for-
ward security it means that even after a key earlier generated
is compromised, all the signatures created before remain
valid. In the same vein, if an attack is discovered in the hash
function used, it is possible to replace it by another hash func-
tion without modifying the overall structure of the scheme.
Also there is less computational expensive mathematical
operations when compared with IFP and DLP computation
used by classical algorithms.

2.5 Hash-based signature schemes

Hash-based Signature Schemes in recent time gained the
attention of many researchers because they are considered
the most suitable replacement for classical algorithms as dis-
cussed in [19]. The reason for this consideration is that, their
securities are well understood, and that there is less computa-
tional expensive mathematical operations as compared with
integer factorization and DLP used by classical algorithms.
Hash-based signature schemes are classified basically into
two categories: stateful and stateless. A hash-based signature
scheme is said to be stateful if at any point of signing a mes-
sage the signature is created using the updated secret key, the
signer must maintain a state that is modified at each time the
signature is issued. In the case of stateless signature scheme,
the scheme uses large tree-of-trees to thereby allowing it to
sign many messages at a time without maintaining the state
of the secret key used as it is explained in the work of [20].
At the lowermost part of the tree are a number of Few-Time-
Signatures (FTS). The first step the signer needs to do is
to pick a random FTS and validate it using the Merkle tree
towards the root of the tree as shown in Fig. 1. This means

that by using the FTS, no state is updated when generating
the signature.

In this sub-section, the chosen stateful hash-based Signa-
ture Scheme would be discuss. This include: their security,
key generation, signature generation and verification pro-
cesses. The background formulation of stateful hash-based
signature scheme is from the Lamport one-time signature
scheme [20]. The signature scheme uses a one-way hash
function given as: « : {0, 1} — {0, 1}"". Where; n is a posi-
tive integer and a hash function with cryptographic properties
represented as: w : {0, 1}* — {0, 1}".

To generate a pair of key in L-OTS, requires the following
process:

Let P be the signature key that comprises of 2n bit strings
of length n that is selected consistently at random, such that:

P = (pn-1[0], pu—1[1], ..., p1[0], p1[1], polO], pol1D)
€ R{0, 1})

0 = (qn-1101, gn—1[11, ..., q110], q1[11, gol0], go[1])
€ {0, 1}*2))

where:

giljl1=a(piljD), 0<i<n-1, j= 0,1 3

This means that key generation in L-OTS requires 2n eval-
uation of «. Also, the verification and signature keys are 2n
bit strings of length . Signature generation in L-OTS is illus-
trated thus:

Assuming a document to be signis K € {0, 1}* using the
signature key P illustrated in Eq. (1).

Let o(K) = 8 = (Bu—1, ..., PBn) represent the digest of
the message K. L-OTS signature would be computed as:

¢ = (Pu-1lBu—11, .., p1lB1], polPol € {0, 1}™. (4

¢ is L-OTS signature with sequence n bit strings, each
with length n. This is obtained as a function of the digest of
B. To compute the ith bit string in the signature requires the
signer to obtaining the p;[0]. That is if the ith bit string in
the digest is zero (0) and p;[1].[1]. In this case, signing the
message implies no evaluation of «. The signature length is
therefore n2. To verify this signature, ¢ = (¢p—1, ..., ¥0)
of K as shown in Eq. (4), the verifier needs only to calculate
the digest of the message 8 = (B,—1, ..., Bo). After which
he check whether:

(@(Pn-1), ..., a(@0)) = (Gn-1[Bn-1l, ..., qolBol) (5)

@ Springer

Journal of Reliable Intelligent Environments

e e
- R
i i
(=@) ((nl])
~ N /N ™~
,// AN / / *\
,,‘————f::' >_\ /"’"i ", \}”— =,
(am1) (n) (am1) (np1)
N\ I r—\ N\
) ,-—v—ﬂ/a.\ _,H‘:'—\“"x .x"’_f“‘\,\] /‘E\R\ /“—JJH B“_\\ ,ﬁ 4 A
(ro[0]] (to[1]) (rn[E]) (1[3]) (rg[4]) (1[5]) | rol8] J (rul?])
\”“—-:-—/' .&__AE__/,.- x‘f‘/ ~— -&x__r_/-’ . "'——,,——/ M ‘m_‘:_,f

(=)=)=) (=)

D)
EBIEDIEDIED

Fig. 1 Merkle tree (Height H = 3) [22, 23]

2.5.1 Winternitz one-time signature scheme

Raphael Merkle in 1979 improved the L-OST and named
it after Robert Winternitz and this gave birth to the W-OTS
[21]. As observed in L-OTS, the signature size is large but the
signature scheme is secure when the message is sign once.

W-OTS would have shorter signatures if a single string of
the OTS key is used to sign numerous bits in the message
digest. W-OTS usage include a One-way function computed
as:« : {0, 1} — {0, 1}" and a hash function that is crypto-
graphically secure computed as:

w: {0, 1}* = {0, 1}"

i. W-OTS key pair generation
The W-OTS was first discussed in detail by [20]. To gen-
erate a Winternitz key pair, a parameter A > 2 is selected.
This parameter represents the number of bits to be signed
simultaneously. The first bit is obtained as:

vy = [n/A], vy = (Llogzvlj +1 +)»-|, v =11+ .
(6)

To obtain the signature key P, then compute,

p=(Po_t, ..., v1, V0) € R(O, 1}V (7

@ Springer

v; are the bit strings that are selected at random. Thus, the
confirmation key Q is obtained by applying a function « to
each of the bit string in the signature key in 2* — 1 number
of times. This means;

0 = (qu-1, ---» q1, q0) € {0, 1}, ®)
where:
g =a® Y p), 0<i<v—1.)

Form Eq. (9), it means that key generation requires v (2 —
1) evaluation s of «.

Note that the length of the signature and the verification
key are v x n bits.

ii. Signature computation
Suppose the message K with its digest o(K) = 8 =
(Bn—1, ..., Po) is signed, the authors in [20] suggested
that, the first step is to make sure the least number of
zeros (0) are added to B such that g bits length can be
divided with A.

If there is any extension of the string 3, it is separated into
v bit strings as £y,_1, ..., £y—y1 for a given length A.

B="Lorll. [Loy, (10)

Journal of Reliable Intelligent Environments

Thereafter, the bit strings ¢; are attached to integers in the

form (0, 1, ..., 2* — 1); then a checksum 6 is obtained as:
v—1
6 = Z Q* —). (11)
i=v—vl

Since # < v;2*. This means, in binary notation, 6 should
be less than,
[logy v12* | +1 = |logyvi |+ 4 +1. (12)

Note that it is advisable to add some zeros (0 s) bits to the
binary representation such that the bit strings are divisible
by A. Thereafter the strings can be split into blocks of equal
length as: £,2_1, .. £o of length L. The checksum 6 = £,, —
1|]...]| €o. The final signature K is obtained as:
¢ =@ (po-1).., @ (p1), @®(po)). (13)

In worst case scenario, W-OTS signature generation
requires v(2* — 1) evaluations of «, hence the size of the
W-OTS is (v x n). After generating the signature, the verifi-
cation is done. Given the signature ¢ = (¢y—1, ..., @, the
bit strings £,_1, ..., o are calculated. Practical examples
with proofs would be given in Sect. 3.

To confirm the signature, it is required to check if

@0 @), 6 T 0)) = (Gumt - q0).

(14)

If the signature is correct, then; ¢; = all (pi)- This implies
that:
—1—lio oy 21N
(24 (9) =« (pi) =4q;. (15)
Equation (15) is valid fori = (v — 1, ..., 0).
At worst case, W-OTS signature verification requires
v(2* — 1) valuations of «.

2.5.2 Merkle signature scheme

The MSS signature scheme as discussed in Ref. [22] is a
digital signature scheme that comprised of three processes:
key generation, signature generation and verification. In this
scheme, a binary tree is constructed such that the OTS and
the confirmation keys are referred to as the leaves of the tree,
while the public key is the root. If a tree is constructed with
height / and 2" leaves, its corresponding one-time key pairs
would be 2. Figure 1 is an example of a Merkle tree with
a tree height H = 3. In Merkle tree in Fig. 1, ¢; are the
signature keys, while B; are verification keys respectively. r;
are the nodes at different levels. The root hash is r3[0].

I

ii.

iii.

MSS key pair generation

To generate a key pair, the signer is required to choose
the tree height 4 € N, such that 7 > 2. MSS uses a hash
function that is secure cryptographically and is given as:
w : {0, 1}* — {0, 1}’ to generate the one-time key pairs.
Note that ¢ is a positive integer. The 27 leaves of the
merkle tree is the results of the digests w(g;) of the one-
time verification keys «;. Beginning from the leaves, the
verification key also referred to as the root node of the
tree r H[0] is generated following this process:

rpetli] = o(rp[2i] || rpl2i +11);
O<h<H, 0<i<20-""1 (16)
From Eq. (16) it means that the parent node generated sim-
ply by hashing the concatenation of its two child nodes.
In principle, to create key pair it entails the calculation
of 2# one-time key pairs of 2//+! — 1 evaluations of the
hash function used.

Signature generation

MSS uses the one-time signature keys to generate sig-
natures [21]. Consider a Merkle signature ¢,(d) with
a digest d = w(K) of a message Kz is the signa-
ture index, ¢ors is the one-time signature, f; is the
one-time confirmation key and an authentication path
(authg, ..., authy_1). These parameters are contained
in the Merkle signature ¢,(d) and its message digest K .
These parameters allows the verification of the OTS with
respect to the public verification key, such that;

¢:(d) = (z, ¢ors, Bz, (autho, ..., authy_y)). (17)
Note that the index z is used to decide the order of the
authentication path nodes and the nodes on the path
from leaf w(B;). The signature index z is such that
Z € (0, ..., 2" — 1). This value is increased at any
time a signature is issued. Also, the OTS is applied using
the o, to generate the signature ¢ors = Signgrg(d, o)
of the message digest. The authentication path for the
zth leaf also known as the sibling nodes is computed as
authy,, h € (0, ..., H—1) on the path from the leaf ry[z]
to the top root node r H[0] as seen in Fig. 1. This will help
the verifier to recalculate the root node of the Merkle tree
so as to authenticate the current one-time signature. The
authentication path at this time depends on the one-time
signature verification key 8, and it is made public before
the message is issued and therefore can be re-calculated
by the receiver.

Signature verification

@ Springer

Journal of Reliable Intelligent Environments

Verification takes the following steps; Let d = w(K) be
the message digest, and ¢,(d) be the signature. The ver-
ifier compare the one-time signature ¢ors with the OTS
verification algorithm V Aors(d, ¢,(d)). If the signa-
ture is true, then the receiver compute the authentication
path to obtain the root node, else the signature is rejected.

3 Methodology

This section explains the steps carried out in the research
work. The authors considered two approaches, the first is
proof of concepts of the selected algorithms and the second
approach is the practical implementation of selected algo-
rithms. The first approach is the comparison that is based on
the mathematical illustrations of the algorithms, attacks on
these algorithms and their security properties. In the second
approach, the efficiency (in terms of time taken to generate
and verify signatures) of both the classical and hash-based
signature algorithms would be implemented on a laptop com-
puter.

3.1 Algorithms prove of concepts
3.1.1 RSA algorithm prove of concepts

The RSA cryptosystem relies on the belief that its secu-
rity is the difficulty involved in factoring large integers. The
algorithm involves the circulation of public and private keys
between two communicating entities. The three steps in RSA
algorithms include:

From Sect. 2.1 (A), to generate a key pair, Let

a=5andgB =7

A=axp

A =35

Lo =@-Dx@B -1
=6-Dx(@-1)
=4x6=24

GCD(3, 24) = land 1 < § < 35

This implies that § = 5.
And § x v mod (¢p(A)) =1

=5xvmod (24) =1
L v=>5
The two key pairs are:

Let (5, 35) be the public key selected, and (5, 35) is the
private keys selected. To encrypt a document, Let 3 be the

@ Springer

document to be encrypted, Therefore, the cipher text C7 =
3° mod (35) = 33.
In the same way, to decrypt the message M,

M = 33° mod (35)
= 39135393 mod (35)
=33

3.1.2 Security and attacks on RSA

The security of RSA is based on the hard computations
involved in factoring very large primes, and increment in the
key sizes (large key size) gives a strong security of data by
the algorithm. Large key size could result in high latency and
high memory consumption. This could lead to several attacks
on RSA cryptosystems. These include: faulty key generation
attacks, timing attacks, adaptive chosen cipher text attacks,
and side-channel attacks. In the faulty key generation attacks,
finding the two prime numbers p and g is achieved by test-
ing random numbers in correct proportion and sizes. It is
required that the numbers should not be too close else for
better algorithm security. For example, if (p — ¢) < 2n!/*
and (n = p x gq) for small values of 1024 bits of n is
3 x 1077, solving for p andgq is insignificant. In the same
way, if (p — 1) or (¢ — 1) has small prime factors, n can be
factored out quickly by Pollard’s algorithm.

3.1.3 ECDSA algorithm prove of concepts

ECDSA procedures have been explained in Sect. 2.1. In this
Sect. 3.1, some mathematical prove of concepts is given
which would be followed by the security of ECDSA and
the common attacks associated with algorithm.

Given the following parameters:

Let the prime number Z = 8209

E.(e, f) is an elliptic curve with parameters
(e, f,and Z) where Z 1is an integer of the form
2Me=2,f=7 ¢=4,1313, h =1%

¢ is apoint on the elliptic curve whose order is a large value
n. Based on these parameters, the elliptic curve equation can
be obtained as: y> mod 8209 = (x> + 2x +7) mod 8209.
Suppose Alice and Bob, want to exchange keys, the following
steps are involved:

Let P, A = Private key of Alice.

Let P,, A = Public key of Alice.

This implies that,

Py A = 4706 (random value)

PubA(-xv)’) = PkA X ¢()C, y)

=4706 x 41,313

Journal of Reliable Intelligent Environments

= 79,265,458

Let Py B = private key of Bob.

This implies that, Py B = 4802(a random number chosen
by Bob).

Thai is, PypB(x, y) = Py B x ¢(x, y).

=4802 x 41,313

= 686,615

To compute the secret key of Alice,

SkA(x,y) = PrA x Py B

= 47,706 x 686,615

= 18,463,967

In the same way, the secret key of Bob can be calculated
as:

SkB(x,y) = PtB X PypA

= 4802 x 79,265,458

= 18,463,967

This means that both Bob and Alice have the same secret
key.

. Sk(x,y) = 18463967

RRNT 2 of Sp(x) =18

Alice can encrypt her message using Bob’s public key in
this form:

Alice chose a message M and a random positive integer i.
The cipher text of the message M =i¢p, M +i P, B.

Bob would decrypt this message using his own private key
as:

Plain text Pe =P +iPyB —nBl9) .

=P +i(nBop) —nB(@ip)

n B is the private key of Bob, and n A is the private key of
Alice. Note that P; is an (x, y) point encoded with the help
of the message M. P is also the point used for the encryption
and decryption.

3.1.4 ECDSA security

The main security assumption of the ECDSA is the difficulty
in solving the DLP on the Elliptic curve over a finite field.
This difficulty seems not to be reliable with the advent of
quantum algorithms developed which could solve the DLP
in polynomial time. For the ECDSA to have high level of
security that is reliable in securing data, the following rec-
ommendations are necessary:

e Use of one-way hash function such that; given an output
A(128 — 512 bits), it must be computationally infeasible to
find an input & such that A = H («) and a collision resistant
hash function must not have the probability of mapping
two messages to be the same. That is H(m1) # H(m?2)

Table 2 Security levels in RSA and ECDSA

Security level RSA key size ECDSA key size

80 1024 bits Prime192v (192 bits)
112 2048 bits Secp224rl (224 bits)
128 3072 bits Secp256r1 (256 bits)
192 7680 bits Secp384rl (384 bits)

Table 3 Different attacks on ECDSA

Attack type Countermeasure

Select Py to be prime

Select Py such that </ P; has some
computational difficulties Py >2%0

Chose Py such that \/ Py has some
computational difficulties. Minimum value
of Py should be>2160

Use of a random oracle in generating security
parameters in the global space

Pohlig-Hellman
Pollard-Rho

Multiple logarithms

Low randomness

e The key generator is unpredictable. This means that the
secret key cannot be obtain by an attacker.

Table 2 is a comparison of RSA and ECDSA security
levels as explained in Ref. [24]

3.1.5 Attacks on ECDSA

Common attacks on ECDSA are: quantum algorithms,
Pohlig—Hellmen, exhaustive search, Pollard Rho algorithm,
and baby-step giant step algorithms. Pollard Rho used to
be one of the frequent attacks on the elliptic curve discrete
logarithm problem (ECDLP). Pollard Rho algorithm has a
running time of 4/ /2; where n is the order of point G on the
elliptic curve. Although it is possible to parallelize the run-
ning time and apply it on a different processor. This process
may give rise to a new running time to be (/nm)/2r. Where
r is the number of processors used. In recent times, Peter
Shor quantum algorithm is proficient to solve the ECDLP in
polynomial time using a sufficient powerful quantum com-
puter. Also, the Grover’s search algorithm is a serious threat
on ECDSA.

Table 3 list different attack types and their countermea-
sures associated with ECDSA.

3.1.6 L-OTS/W-OTS prove of concepts

In this sub-section, the L-OTS algorithm which is the basic
foundation of hash-based signature scheme is discussed.

A generic L-OTS key generation, signature generation and
verification process would be illustrate here with references
to Egs. (4) and (5).

@ Springer

Journal of Reliable Intelligent Environments

Letn =3, a:{0, 1} = {0, 1}*; p — p+1 mod 8.
Let 8 = (1, 0, 1) be the hash obtained from the message
K. From Eq. (4), the signature keys are selected as:

P = (p2[0], p2[1], p1[O], pi[1l], poll])
100110
=1100101
100010

e {0, 1}>°

To compute the verification key Q of the signature key of
P, the steps are:

0 = (q2[01, q2[11, q1[01, g1[1], go[O], gol1]

001110
=]1000111
010101

e {0, 1}>°.

Therefore the signature from the hash of K whichis g =
(1, 0, 1) can be obtain as:

¢ = (¢2, ¢1, ¢0) = (p2(1), p1(0), po(1)
000
=1011
010

e {0, 1)>3.

The security of L-OTS is based on the fact that the sig-
nature keys must be used only once. This can be proven by
considering this scenario. Using the same key twice releases
some secret data for an attacker to manipulate.

Let n = 4(n is a security factor).

Assuming the signer wants to sign two mes-
sages applying the same signature key on these two

digest g1 = (1,0,1, DandBy = (1,1,1,0).
Then the signature of BjandB, are obtained as:
o1 = (p3(D), p2(0), p1(D), po(1) and ¢ =

(p3(1), p2(1), p1(1), po(0). With these signatures, an
hacker discerns p3(1), p2(0), p2(1), pi(1), po(0), po(l)
from the signature key generated. This information could be
used by the attacker to create true signatures for the messages
that has these digests 83 = (1,0, 1,0)and 84 = (1,1, 1, 1)
respectively.

If the hash function used is a cryptographic hash function,
it would be difficult for the attacker to obtain the exact digest
of the message. W-OTS improves on the L-OTS. To demon-
strate the security and the improvement of W—OTS, refer to
Egs. (7) and (13) in Sect. 2.2.

Letn = 3, A = 2, (X is the Winternitz parameter). The
one-way function given as:

@ Springer

a:{0, 1> > {0, 1}°, p—> p+1 mod 8

and B = (1, 0, 0) is the message digest. The parameters
v1, vp are the total number of bits to be signed. That is:

v =2, v, =2, andv =4
The signature key can be obtain as:

P = (p3, p2, pP1, po)
1001
=|1011
1010

e {0, 1189,

To obtain the verification key, function « needs to be
applied on the bit strings of P three times. This gives the
verification key Q as:

0 = (g3, 92, 91, q0)
0010
=l1110
0101

e {0, 1G9,

Adding one zero (0) to the let most bit of 8 = (1, 0, 0),
then concatenate by separating the bit string into two block
length gives, § = 01| 00. This helps in calculating the
checksum as seen in Eq. (11).

From Eq. (11), the checksum 6 is computed as: 6 = (4 —
1) + (4 — 0) = 7. The binary representation of § = 111.

Adding one zero (0) to the left and splitting into two
block length gives 8 = 01 || 11. Therefore the signature
as stated in Eq. (15) would be: ¢ = (¢3, ¢2, ¢1, ¢o) =
(x(p3), p2, a(p1), a3(po)). This would give a 3 by 4 matrix
of the form:

0011
0001
0001

e {0, 1G9,

Applying Eq. (14) to verify the signature by computing
(a%(¢3), & (42), &*($1). $0)
0010
=|1110
0101
The verified signature is compared with Q which is the
verification key as it is shown in Eq. (8).

e {0, G4

3.1.7 W-OTS security

Key generation and verification procedures of the W-OTS are
hard to forge with the addition of the checksum parameter.
W-OTS is proven to be existentially difficult to forge under
adaptive selected message attacks. This is more pronounced

Journal of Reliable Intelligent Environments

Table 4 Summary of the

algorithms Criteria/scheme RSA ECDSA WOTS MSS
Math complexity LF ECDL OWHF HF
Algorithm complexity (O (N?) ZIZ M = {0,1} N=2"
Low
Security High EU-CMA EU-CMA
Decryption High Low High Low
s COMPARATIVE ANALYSIS OF DIGITAL SIGNATURES - X

RSAALGORITHM ECDSA MSS ALGORITHM WINTERNITZ OTS ALORITHM

Key Size
Enter a Text to Decrypt :
® 1024 Hi Joy, I sent 1 BTC please kindly
acknowledge
O 2048
O 3072 Signature Generation
O 4096 Encrypted Text

037A059354B037DES2E3C57ED?AFS6EEDS |
E7FF1CECF94921C39EF24ACS15ET213E797
O 6144 335A347ESB65DAGBC064DBD735C26251A3A

X 95BCI313EDF6B63766F0OASO36BTIACTT20B
Key Generation J

_Public Key : ~ Private Key:

?xml version-"1.0" encoding-"utf- «?xml version-"10" encoding-"utf-
16" 16",

<RSAParameters «RSAParameters

xmlns:xsi-"http: www.w3.org 2001 X xmlns:xsi-"http: www.w8.org 2001 XM

I Signature Verification

Decrypted Text
Hi Joy, I sent 1 BTC please kindly
acknowledge
Clear
Result :
Key Generation Time 0.20214 sec

Signature Generation Time : 0.0778261 sec
Signature Verification Time: ~ 0.004096 sec

Fig.2 Screen shot of the G.U. I implementation

when it is used with a family of pseudorandom functions.
W-OTS security also include key one-wayness and collision
resistant. W-OTS one-wayness is explain as: given and output
o (normally o ranges from 128 to 516) bits, it is compu-
tationally infeasible to discover another input § such that
o = H(B). W-OTS collision resistant properties should be
that: given an output A, it should be hard to find two distinct
inputs w and o' such that,

H(w) = rand H@)) = A.

The summary of the four (4) chosen algorithms are illus-
trated in Table 4 based on their mathematical complexity,
algorithm complexity and security rating.

3.2 Implementation

This subsection explains the second approach to this
research, which involves practical implementation of these
algorithms on a laptop computer system. The findings of the
comparative analysis of the four algorithms were discussed.
The implementation of the four algorithms on a laptop com-
puter is based on the mathematical formulations of these
algorithms as discussed in Sects. 2.1 and 2.2. A system was
developed which accept inputs from the user then the sys-
tem processed the inputs to give the corresponding output
results. The variable inputs used are key sizes for the RSA
and ECDSA and then the output results which comprise of
the key generation time, signature generation and verifica-
tion time are recorded in seconds. The performance of the
four algorithms (RSA, ECDSA, W-OTS, MSS) were imple-

@ Springer

Journal of Reliable Intelligent Environments

Table 5 Key generation processing time

Key length Time (s)

ECDSA RSA ECDSA RSA
163 1024 0.04 6.20
233 2240 0.18 7.40
283 3072 0.21 9.80
409 7680 0.57 133.90
571 15,360 1.40 678.06

mented using Java programming language. The reason for
the choice Java programming language is due to its flexibil-
ity and platform independent.

3.2.1 Hardware/software requirements

The configuration of the computer system used is as follows:
Hp Laptop 15 with intel® core i5, the processor speed is
2.5 GHz, and 4.0 gigabyte of random access memory. The
requirements of the software include: Windows 10.0 profes-
sional, Ms Visual, .Net framework. Java + Eclipse IDE. The
screen shot of the Graphical User Interface (G.U.I) is shown
in Fig. 1.

4 Discussion of results

Figure 2 is the simulation environment that allows the user to
input several variables of each algorithm. Different key sizes
were used and the time was recorded in seconds to generate
and verify the signature. The results were recorded and tab-
ulated. The aim is to obtain key generation time, signature
generation and confirmation time measured in seconds for all
the algorithms. The authors seek to find the time required for
each chosen parameter so as to compare the efficiency of each
algorithm. Efficiency is a function of processing time among
other parameters used in determining the effectiveness of a
given algorithm. The lesser the time, the more efficient is an
algorithm.

4.1 Performance of RSA and ECDSA

From Table 5, as ECDSA and RSA key sizes increase, there
is an increase in key generation time. When RSA key size
was 15,360 KB, the key generation time was highest (approx.
678 s) as compared to when ECDSA key size was 571 KB
and the key generation time is approximately 1.4 s.

The graphical representation of the key generation of the
algorithms as illustrated in Table 5 is shown in the bar chart
in Fig. 3.

@ Springer

KEY GENERATION

m ECDSA RSA ECDSA RSA

o
%)
™
N
Ll

o

0

R

N ©

(i‘r < % 0 (53 — [X N a — g
Boow MNoas R[N n ~E N
9736 R_S~ Rpce T[S b e

1 2 3 4 5

Fig.3 Key generation processing time (s)
Table 6 Signature generation processing time
Key length Time (s)
ECDSA RSA ECDSA RSA
163 1024 0.02 0.08
233 2240 0.33 0.17
283 3072 0.59 0.47
409 7680 1.18 1.67
571 15,360 4.53 9.08
SIGNATURE GENERATION
W ECDSA RSA ECDSA RSA
o
©
o™
[Tp]
i
o
®
©
~
o~
o ~

< < (=)

S0 Rm~ n " an o [l o~ — | moo
83a9 @ o QOpnNs ol —w NP inao
= oo ANpooc dNjjcoc TYl4d4 <o

1 2 3 4 5

Fig. 4 Signature generation processing time

The signature generation time is shown in Table 6. In Table
6, it can be seen that ECDSA has the least time for signature
generation time which is approximately 0.02 s when the first
key length was selected. Although when RSA has its highest
key size, the time taken to generate the signature was higher
than ECDSA.

The graphical representation of the signature generation
of the algorithms as illustrated in Table 6 is shown in the bar
chart in Fig. 4.

Journal of Reliable Intelligent Environments

Table 7 Signature verification time

Key length Time (s)

ECDSA RSA ECDSA RSA
163 1024 0.22 0.02
233 2240 0.51 0.02
283 3072 0.76 0.02
409 7680 1.70 0.02
571 15,360 3.75 0.02

SIGNATURE VERIFICATION TIME

W ECDSA RSA ECDSA RSA
o
I}
™
Ln
i
o
I3}
o
~ ~
< g 5
o
NNy INEES Mmoo I | na
BeNo [{Nho K Re B ~c ~|Ro
- co N_oco Npoo <l Ho wEmo
1 2 3 4 5

Fig.5 Signature verification times (s)

The signature verification time is shown in Table 7. From
the results obtained, the verification time of RSA was 0.02 s
which was constant at all the key length selected. The time
varies when using ECDSA. This implies that RSA signature
verification performs better than ECDSA.

The graph representing the signature verification time is
illustrated in Fig. 5. The results on the chart is based on Table
7.

Considering the results of the two classical algorithms
explained in Sect. 4 (A), it can be deduced that ECDSA
performs better than RSA in terms of key generation and
signature generation time. However, in terms of signa-
ture verification, the results showed that RSA outperforms
ECDSA. The second part of our experiment would be to write
program codes for the two hash-based signature schemes (W-
OTS & MSS) in which the algorithms procedures are detailed
in Sect. 4 (B).

4.2 Performance evaluation of W-OTS and MSS

The algorithms for key generation, signature generation and
confirmation time would be calculated. The algorithms used
are illustrated here. First is the W-OTS:

Algorithm (a). W-OTS Key pair creation
Required variables parameters: hash
function

w:{01} = {0,1}", parameter 2 e Nand v, =
’771//1—‘,\)2 = _logZJ+ _l + /IJ,V =V, +v,
Begin

Output: Sign key P, confirmation key Q
Stepl. Select p,,...,p, € R{O,l} at random
Step2. Set P =(p,,....p,)
241
Step3. Compute 9 =07 (p)
fori=1,..,v
Step4. Q=w(q, || ...|| ¢,) where || denotes

concatenation
StepS. Return (P, Q)

End

@ Springer

Journal of Reliable Intelligent Environments

Algorithm b is the signature generation in W-OTS.

Algorithm b) Signature generation

System parameters:
v=[n/2]+[(log, [[n/A]+1+)/ 1]
Begin

Input: document £, sign key P
Output: OTS ¢ of f

Stepl. Calculate the 7 bit hash value H (/)
of the document £

Step2. Split the binary form of H (/) into

[n/Alblocks ¢,....,0r,, yof length A,

padding H(f)with zeros from the left if

necessary

Step3. Handle 7, as an integer programmed

by each block and calculate the checksum
[ni 2]

O=>2" -1,
i=1

Step4. Convert 6 into binary and spilt into
[(log,[n/A]|+1+ 2)/ 2] blocks of

Cryz1 1 £ of length 4, padding &with
zeros from the left side if needed.
Step5. Treat 7, as an integer coded by the
blocks then compute
¢, =H"(p),
i=1,..,v;where: HO(p) =p
Step6. Return ¢ = (¢,,...,4,)
End

@ Springer

Algorithm c is the signature verification in W-OTS.

Algorithm (c). Signature verification

Required parameters: hash function:
w:{01} = {0,1}", parameter 1 €N and

v=[n/A]+[(log, [n/A]+1+ 1)/ 2]
Begin

Input: document f, signature

¢ =(¢,,....0,), verification key Q
Output: VALID if signature is TRUE,
ELSE,
FALSE if signature is INVALID
Stepl. Calculate 7,,...,¢ as it is stated in
algorithm b.
g, = H* (%)
fori=1,.,v
Step3. Calculate ¢ = H(g, ||...]|9,)
Step.4 If 9 =Q
Then return VALID SIGNATURE
Else

Return INVALID
End

Step2. Compute

Furthermore the algorithms used in the Merkle Signature
Scheme for key generation, signature generation and verifi-

cation are illustrated here.

Journal of Reliable Intelligent Environments

Algorithm d). MSS key generation

Parameters: tree height 4, number of
messages to be signed N, signature key «, ,
verification key /., cryptographic hash
function @.

Begin
Stepl. Select &
h>2 and N=2"
Step2. Output 2" one-time key pairs
(@, 5,)

Step3. Calculate the leaves of merkle tree
such that n(0,1) = w(p;) where:
0<i<2"

Step4. Compute MSS public key (root of

the MSS tree)
parent node

n(j:l):a)(n(j_lazl)n n(.]_1:21+1))
where: 1< j<h, 0<i<2"/
End

Algorithm e is MSS signature generation.

Algorithm e). MSS signature generation

Parameters: signature index t, message
digest d,, message K, verification path p

Begin
Stepl. Compute n —bitdigest d, = o(K)
Step2. Generate OTS signature ¢, of d

4
using 7" OTS signature key .

Step3. Compute signature
P = (T Pors> Brs(Foeis T, 1)
Where: auth,,,...,auth, ,,is the
authentication path for S,
End

n—-1°

The algorithm f is the verification algorithm in MSS.

Algorithm f). MSS signature verification
Stepl. Apply the verification key £, to

verify ¢, of digest d, = o(K)
Step2. Validate fS_by building the path
(Py»-er p,) from 7" leaf of w(.)to the

origin of the merkle binary tree. Use 7 and
authenticate path (auth,,...,auth, ,)and

apply the construction

[lauth,|Ip), if [7/2 | = 1mod2
\ap,, Nauth_).if |22 |= 0mod2
fori=1,...hp,=w(p.)
Step3. Output TRUE if [, is success
¢ 0 = Publkey ELSE

"INVALID"
End

The results obtained from the implementation of the MSS
algorithm (i.e. executing the key generation algorithm, sig-
nature generation and confirmation algorithms) are stated in
Table 8.

To improve the security of MSS, the Merkle tree authen-
tication scheme was combined with W-OTS scheme and the
collision resistance hash function. This gives the provable
security of MSS.

The number of possible signatures in MSS is 2. In Table
8, it is seen that the key generation time of MSS when N =
8 is 0.22 s. From the results in Table 5, the authors observed
that as the number of signatures to be generated increases,
the key generation, signature generation and verification time
also increased. Table 9 is the comparison of performance of
RSA, ECDSA, and MSS combined with Winternitz OTS.
The reason is to summarize the performance of the selected
classical algorithms with the hash-based signature scheme.

The graphical representation of the results in Table 9 is
shown in the bar chart in Fig. 6. The graph is plotted time
versus RSA, ECDSA and MSS.

Table 9 shows that the key generation in RSA and ECDSA
are faster than the generic MSS. The same is with the sig-

T

Table 8 Performance of MSS algorithm

N Key gen time (ms) Signature gen time Signature verify

(ms) time (ms)
8 0.22 1.50 2.40
10 043 135.00 2.57
12 0.87 159.00 2.67
14 1.80 1.00 2.85

@ Springer

Journal of Reliable Intelligent Environments

Table 9 Comparison of performance between RSA, ECDSA, and MSS

RSA (1024) ms ECDSA (163) MSS +
ms W-OTS ms
Key 0.20 0.04 0.22
generation
Signature 0.08 0.02 1.50
generation
Signature 0.02 0.22 2.40
verification
2.5
g 2
£ 15 _—
2
8 1
()
E o5 B
0 L —— '
RSA ECDSA MSS
m key gen m Sig gen sig.ver

Fig. 6 Comparison performance of RSA, ECDSA, and MSS

Table 10 Comparison of the security strength of RSA, ECDSA & MSS.

Security RSA key size ECDSA key MSS security
strength size parameters

80 1024 160-223 Hash

112 2048 224-255 Function, N =
128 3072 256-383 2%, EU-CMA
192 7680 384-511

256 15,360 512 above

nature generation time of ECDSA and RSA which is faster
than MSS. From Tables 5, 6, and 7, it is seen that as the
key sizes of RSA and ECDSA increases, the key generation
time, signature generation and verification time increases.
While in Table 8, as the number of possible signatures in
MSS increases, the key generation, signature generation and
verification time also increases. The results in Table 9 show
that RSA and ECDSA perform better than generic MSS algo-
rithm in terms of signature generation and verification.

Table 10 represents the security strength of RSA ECDSA
and MSS as obtained from 2018 National Institute of Stan-
dard and Technology.

The strength of RSA and ECDSA depends on the key size
used. The security of RSA algorithm based on the assumption
of the hardness involved in factoring large prime numbers.
While the ECDSA is built on the principle of the difficulty

@ Springer

of solving DLP on the elliptic curve. The development of a
quantum algorithm by Peter Shor to solve the DLP and IFP
of both RSA and ECDSA in polynomial time makes the two
classical algorithms insecure.

The column for security of Merkle Signature Scheme
which was left blank in Table 8 is hereby explained thus:
MSS is proven to be existentially difficult to forge under
selected message attacks, such that, given an output ¢ it is
nearly impossible to discover two separate inputs x and !
such that:

H(x)=¢and H(x) = ¢.

This means that to forge an MSS signature it requires
that the attacker has to calculate pre-image and second pre-
image of the required hashing data. In MSS algorithm, using
a Pseudorandom Number generator (PRNG) for the OTS key
generation makes it forward secure as long as the PRNG is
forward secure. The forward security property of MSS means
that all signatures issued out before a withdrawal remains
valid since the actual private key can only be used to generate
the one-time signature keys for the next signatures as seen in
Fig. 1.

5 Conclusion

The rationale for conducting this research is to gain an
understanding of the basic security strength of hash-based
signature schemes over conventional algorithms. The study
also revealed the efficiency of hash-based signature algo-
rithms in terms of key generation time, signature generation
and verification time. The study further gives an in-depth
understanding of the limitations of conventional algorithms
over the hash-based signatures schemes. The conventional
algorithms such as the ECDSA and RSA from the literatures
reviewed pointed out the weaknesses associated with them.
One of the weakness is that there exists Grover’s quantum
search algorithm that can be used to find pre-images of hash
functions faster than the conventional algorithms. It is esti-
mated that the time complexity of Grover’s quantum search
algorithm to compute the pre-image of an n-bit hash of a mes-
sage is O (@) as compared to quadratic speedup of O (2")
obtained in conventional computers [2]. Also, Peter Shor in
1994 (Shor, 1994) showed that by using a quantum computer,
there is high probability to construct an algorithm that could
solve the discrete logarithm problem and integer factoriza-
tion problem in polynomial time. The implication is that all
cryptosystems using the conventional algorithms are at risk
of attacks. Buchmann et al. [9,10] discuss the security of
hash-based signature schemes with emphasis on the Merkle
signature scheme. These weaknesses in the conventional
algorithms prompted the need to conduct more research in

Journal of Reliable Intelligent Environments

the area of post-quantum cryptography. The results of this
research as stated in Tables 8 and 9 showed that the Merkle
signature scheme is the best candidate signature scheme that
could withstand quantum computer related attacks. Consid-
ering the classical algorithms, it was found that increasing the
key length would increase the security strength of the algo-
rithm and thereby increase the time to sign and verify the
signature as illustrated in Tables 3, 4, and 5. This increase
in time for the signature generation and confirmation time
could lead to denial of service attack. With the limitation of
classical algorithms, from the results as shown in Table 8 and
9, hash-based signature schemes are considered as an alter-
native signature algorithms that could replace the classical
algorithm based on their security properties.

5.1 Future research directions

Future research work is to consider other post-quantum
signature schemes (such as lattice-based, code-based, and
multivariate polynomial-based schemes), compare and eval-
uate these schemes with Hash-based signature schemes in
terms of efficiency and security in blockchain technology and
other constrain devices. The authors are currently working
in reducing high latency in hash-based signature schemes for
their implementation in light weight devices. Latency is as a
result of large key size, signature size, and high computation
time.

Funding Not applicable.

Declarations

Conflict of interest There is no conflict of interest.

References

1. Noel MD, Waziri OV, Abdulhamid MS, Ojeniyi AJ, Okoro MU
(2020) Comparative analysis of classical and post-quantum dig-
ital signature algorithms used in Bitcoin transactions. In: 2020
2nd international conference on computer and information sciences
(ICCIS), Al Jouf University, Saudi Arabia. IEEE, pp 1-6. https://
doi.org/10.1109/iccis49240.2020.9257656

2. Pan M, Qiu D, Mateus P, Gruska J (2019) Entangling and
disentangling in Grover’s search algorithm. Theor Comput Sci
773:138-152. https://doi.org/10.1016/j.tcs.2018.10.001

3. Ugwuishiwu CH, Orji UE, Ugwu CI, Asogwa CN (2020) An
overview of quantum cryptography and Shor’s algorithm. Int J.
https://doi.org/10.30534/ijatcse/2020/214952020

4. Buchmann J, Dahmen E, Szydlo M (2009) Hash-based digital sig-
nature schemes. Post-quantum cryptography. Springer, Berlin, pp
35-93

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Mahto D, Yadav DK (2017) RSA and ECC: a comparative analysis.

Int J Appl Eng Res 12(19):9053-9061

. Perbawa MR, Afryansyah DI, Sari RF (2017) Comparison of

ECDSA and RSA signature scheme on NLSR performance.
In: 2017 IEEE Asia Pacific conference on wireless and mobile
(APWiMob), Bandung, Indonesia, IEEE, pp 7-11. https://doi.org/
10.1109/APWiMob.2017.8284007

. Toradmalle D, Singh R, Shastri H, Naik N, Panchidi V (2018)

Prominence of ECDSA over RSA digital signature algorithm. In:
2018 2nd international conference on I-SMAC (IoT in Social,
Mobile, Analytics and Cloud) (I-SMAC) I-SMAC (IoT in Social,
Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, IEEE,
pp 253-257.https://doi.org/10.1109/I-SMAC.2018.8653689

. Tavich M, Gagnidze A, Iashvili G, Okhrimenko T, Arakelian A,

Fesenko A (2020) Improvement of Merkle signature scheme by
means of optical quantum random number generators. International
conference on computer science, engineering and education appli-
cations, vol 1247. Springer, Cham, pp 440453

. Buchmann J, Dahmen E, Ereth S, Hiilsing A, Riickert M (2013)

On the security of the Winternitz one-time signature scheme. Int J
Appl Cryptogr 3(1):84-96

Buchmann J, Dahmen E, Hiilsing A (2011) XMSS-a practi-
cal forward secure signature scheme based on minimal security
assumptions. In: International workshop on post-quantum cryp-
tography, Taipei, Taiwan, Springer, Berlin, pp 117-129

Shahid F, Khan A, Malik SUR, Choo KKR (2020) WOTS-S: a
quantum secure compact signature scheme for distributed ledger.
Inf Sci 539:229-249. https://doi.org/10.1016/j.ins.2020.05.024
Katz J (2016) Analysis of a proposed hash-based signature stan-
dard. International conference on research in security standardisa-
tion, vol 10074. Springer, Cham, pp 261-273

Karatay M, Alkim E, Giirsoy NK, Kurt M (2020) A performance
comparison of some hash functions in hash-based signature.] Mod
Technol Eng 5(3):234-241

Panda PK, Chattopadhyay S (2017) A hybrid security algo-
rithm for RSA cryptosystem. In: 2017 4th international con-
ference on advanced computing and communication systems
(ICACCS), Coimbatore, India, IEEE, pp 1-6. https://doi.org/10.
1109/ICACCS.2017.8014644

Abdeldaym RS, Abd Elkader HM, Hussein R (2019) Modified RSA
algorithm using two public key and Chinese remainder theorem.
Int J Electron Inf Eng 10(1):51-64

Mehibel N, Hamadouche MH (2020) A new enhancement of ellip-
tic curve digital signature algorithm. J Discrete Math Sci Cryptogr
23(3):743-757. https://doi.org/10.1080/09720529.2019.1615673
Mushtaq MF, Jamel S, Disina AH, Pindar ZA, Shakir NSA, Deris
MM (2017) A survey on the cryptographic encryption algorithms.
Int J Adv Comput Sci Appl 8(11):333-344

Gyongyosi L, Imre S (2019) A survey on quantum computing
technology. Comput Sci Rev 31:51-71. https://doi.org/10.1016/j.
cosrev.2018.11.002

Suhail S, Hussain R, Khan A, Hong CS (2020) On the role of
hash-based signatures in quantum-safe internet of things: current
solutions and future directions. IEEE Internet Things J 8(1):1-7.
https://doi.org/10.1109/J10T.2020.3013019

Holmgren J, Lombardi A (2018) Cryptographic hashing from
strong one-way functions (or: One-way product functions and their
applications). In: 2018 IEEE 59th annual symposium on Foun-
dations of Computer Science (FOCS), Paris, France, IEEE, pp
850-858. https://doi.org/10.1109/FOCS.2018.00085

@ Springer

https://doi.org/10.1109/iccis49240.2020.9257656
https://doi.org/10.1016/j.tcs.2018.10.001
https://doi.org/10.30534/ijatcse/2020/214952020
https://doi.org/10.1109/APWiMob.2017.8284007
https://doi.org/10.1109/I-SMAC.2018.8653689
https://doi.org/10.1016/j.ins.2020.05.024
https://doi.org/10.1109/ICACCS.2017.8014644
https://doi.org/10.1080/09720529.2019.1615673
https://doi.org/10.1016/j.cosrev.2018.11.002
https://doi.org/10.1109/JIOT.2020.3013019
https://doi.org/10.1109/FOCS.2018.00085

Journal of Reliable Intelligent Environments

21. Hiilsing A, Rausch L, Buchmann J (2013) Optimal parameters for
XMSS-MT. International conference on availability, reliability, and
security. Springer, Berlin, pp 194-208

22. de Oliveira AKD, Lopez J, Cabral R (2017) High performance
of hash-based signature schemes. Int J Adv Comput Sci Appl
8(3):421-432. https://doi.org/10.14569/1IJACSA.2017.080358

23. Bernstein DJ, Lange T (2017) Post-quantum cryptography. Nature
549(7671):188-194

@ Springer

24. Fernandez-Caramés TM, Fraga-Lamas P (2020) Towards post-
quantum blockchain: a review on blockchain cryptography resis-
tant to quantum computing attacks. IEEE Access 8:21091-21116.
https://doi.org/10.1109/ACCESS.2020.2968985

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://doi.org/10.14569/IJACSA.2017.080358
https://doi.org/10.1109/ACCESS.2020.2968985

	Review and analysis of classical algorithms and hash-based post-quantum algorithm
	Abstract
	1 Introduction
	2 Review of related literatures
	2.1 Significance of the research
	2.2 Justification of the research
	2.3 Classical algorithms
	2.3.1 RSA algorithm description
	2.3.2 ECDSA algorithm

	2.4 Limitations of classical algorithms
	2.4.1 Why hash-based signature schemes

	2.5 Hash-based signature schemes
	2.5.1 Winternitz one-time signature scheme
	2.5.2 Merkle signature scheme

	3 Methodology
	3.1 Algorithms prove of concepts
	3.1.1 RSA algorithm prove of concepts
	3.1.2 Security and attacks on RSA
	3.1.3 ECDSA algorithm prove of concepts
	3.1.4 ECDSA security
	3.1.5 Attacks on ECDSA
	3.1.6 L-OTS/W-OTS prove of concepts
	3.1.7 W-OTS security

	3.2 Implementation
	3.2.1 Hardware/software requirements

	4 Discussion of results
	4.1 Performance of RSA and ECDSA
	4.2 Performance evaluation of W-OTS and MSS

	5 Conclusion
	5.1 Future research directions

	References

