
 2022 IEEE NIGERCON 

978-1-6654-7978-3/22/$31.00 ©2022 IEEE 

A Modified Visual Simultaneous Localisation and 
Mapping (V-SLAM) Technique for Road Scene 

Modelling  

 

Jibril Abdullahi Bala  
Depertment of Mechatronics 

Engineering 
Federal University of Technology, 

Minna 

Minna, Nigeria 
jibril.bala@futminna.edu.ng 

  

Steve Adeshina 
Department of Computer Engineering 

Nile University of Nigeria 

Abuja, Nigeria 
steve.adeshina@nileuniversity.edu.ng 

 

Abiodun Musa Aibinu 
Department of Mechatronics 

Engineering 
Federal University of Technology, 

Minna 

Minna, Nigeria 
abiodun.aibinu@futminna.edu.ng 

Abstract— Visual Simultaneous Localization and Mapping 

(V-SLAM) which involves the use of cameras to map an 

environment and estimate agents’ pose within that environment 

has become widely popular in the field of autonomous vehicles. 

Numerous V-SLAM schemes have been implemented which 

utilize various feature extraction methods, one of which is the 

use of Convolutional Neural Networks (CNN). One main 

shortcoming of existing approaches is that they do not focus on 

object detection of road sceneries which are characterized by 

their varying complexity, thus making them unsuitable for real 

time implementation. Therefore, this study presents a modified 

V-SLAM scheme for road scene modelling. The technique 

utilizes YOLOv4 for object detection, and uses the ORB features 

obtained from the objects to update the features in the main V-

SLAM algorithm. The results showed that the modified V-

SLAM technique was capable of estimating the agent’s position 

and orientation, map the environment. The technique gave a 

Root Mean Square Error of 0.11621 and a point-to-point 

distance of 1.1726m. 
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I. INTRODUCTION 

Autonomous Vehicles (AVs) are capable of navigating 
environments with minimal human input, perceive the 
surroundings using sensors, and utilise control schemes to 
generate paths and navigate the route [1]. Perception and 
localisation are major operations that determine the success of 
an autonomous agent. The AV uses sensors to perceive its 
environment, identify and avoid obstacles, and plan its 
trajectory from the start location to the final destination [2]. 
The ability of an AV to perceive its surroundings and identify 
its position within its environment gives it the prerequisite 
ability to navigate that particular surrounding [3]. Due to 
advancements in computer and sensor technologies, AV 
research and development have seen significant 
improvements in recent years [4]. One area that has been 
closely associated with AV perception is Computer Vision. 

As a result of the giant strides made in Computer Vision 
technologies, Visual Odometry has proven to be a popular 
method in implementing AV perception modules. This is 
mainly due to the low-cost, portability, ease of hardware set-
up, and versatility of cameras [5]. Visual Simultaneous 
Localisation and Mapping (V-SLAM) enables an autonomous 

system to determine its position and orientation by processing 
images in real time [6]. This technique, which is a method of 
Visual Odometry, also allows an AV to map its environment 
in real time. Although numerous feature extraction techniques 
have been implemented in V-SLAM such as FAST [7], ORB 
[8], SIFT [9], and BRIEF [10], deep learning has proven to be 
a reliable feature extraction method especially in the area of 
semantic segmentation and object detection [11], [12]. 

Despite the significant advancements in deep learning 
techniques utilised in V-SLAM schemes, these CNN-based 
methods do not focus on object detection of road sceneries of 
varying complexity and are not suitable for real time 
implementation. Therefore, this study presents a modified V-
SLAM scheme based on CNN for road scene modelling. This 
method is expected to model the road scene based on objects, 
landmarks, and other features present. Additionally, the 
technique will estimate the autonomous agent’s position and 
orientation within the environment. 

The major contribution of this research is the utilisation of 
YOLO v4 to filter the keypoints in the V-SLAM technique, 
thus providing the conventional V-SLAM with the ability to 
detect major objects in the scene and incorporate the object 
features in the SLAM process. The rest of this paper is 
organised into four parts. Part II presents a review of literature 
while the research methodology is presented in part III. The 
results and relevant discussions are presented in part IV while 
the conclusion and direction for future research directions are 
presented in part V. 

II. LITERATURE REVIEW 

Several studies have been undertaken in the domain of 
Deep Learning-based V-SLAM algorithms. CNN-SLAM, a 
Real-time dense monocular SLAM with learned depth 
prediction, was presented in [13]. The research combines 
SLAM with depth prediction using a deep neural network. The 
approach also handles pure rotational movements while 
keeping the robustness and accuracy of direct monocular 
SLAM. The approach, on the other hand, was incapable of 
detecting objects. 

In [14], a Deep Learning Approach for Moving Object 
Tracking using ML-RANSAC Algorithm for SLAM 
implementation in dynamic situations was introduced. For 
multi-target tracking, a unique version of the 
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RANdomSAmple Consensus (RANSAC) approach known as 
multilevel-RANSAC (ML-RANSAC) inside the Extended 
Kalman Filter (EKF) framework is used. Experiments 
confirmed that the suggested approach effectively tracked an 
unknown number of randomly placed moving objects. This 
study makes use of both LIDAR and vision sensors, making it 
costly to deploy. 

Additionally, [15] created an Unsupervised Deep Visual-
Inertial Odometry method for RGB-D Imagery with Online 
Error Correction. A deep learning-based Visual Inertial 
Odometry system was built in this work. For RGB-D pictures, 
the system was capable of online error correction. The system 
was simulated using the KITTI dataset, although the rotational 
error was rather considerable. 

Also, [16] developed VPS-SLAM which is a Visual Planar 
Semantic SLAM for Aerial Robotic Systems. The authors 
introduced a visual semantic SLAM approach for aerial robots 
that is both robust and lightweight. This method extracts 
semantic information from an indoor environment and maps 
it using YOLO v2. The system was evaluated in a static indoor 
setting, and the study's aerial structure suggests that the results 
are not generalizable to road scene modelling. 

Consequently, in underground tunnel dynamic 
environments, [17] devised a Visual-Inertial localization 
approach for Unmanned Aerial Vehicles. The research 
provides a dynamic point detection and rejection approach 
based on neural network semantic segmentation. Dynamic 
object interference is eliminated during pose estimation as a 
result of this. The approach was tested using the EuRoC 
dataset and subsurface photos from a tunnel. As a result of the 
mismatch in complexity, the approach cannot be used for road 
scenes. 

Furthermore, [18] created a CNN-based Feature-point 
Extraction for Real-time Visual SLAM using Embedded 
FPGA. In this work, a hardware-software co-design feature-
point extractor based on the cutting-edge CNN-based 
approach, SuperPoint, is investigated. In terms of computation 
speed, SuperPoint was faster than SIFT and comparable to 
ORB. However, the approach lacked the ability to identify 
objects. 

In addition, a CNN-based location identification solution 
for LIDAR SLAM was demonstrated [19]. The authors 
studied the performance of a CNN-based classifier with Lidar 
data for location identification tasks in this paper. The results 
of the testing reveal that the suggested model beats both the 
Nearest Neighbor and Random Forests techniques, with a true 
positive rate of 70.05 percent. Many false matches, however, 
arise when scenarios have extremely similar qualities and the 
use of LIDAR is expensive. 

In [20], a dense monocular visual SLAM based on CNN 
for indoor mapping and autonomous exploration was created. 
This research combines SLAM techniques with CNN-based 
single picture depth estimation algorithms to densify and scale 
the data and create a map of the environment appropriate for 
exploration in real time. A UAV might utilize the technology 
to create a navigable 3D map of an inside space using only a 
monocular camera. The developed system was tested on a 
commercial, off-the-shelf UAV and was capable of creating a 
map of an unfamiliar location. However, the approach lacked 
object recognition skills and was unsuitable for outside 
settings. 

In [21], a real-time depth estimation approach for SLAM 
systems was created utilizing Recurrent CNN with Sparse 
Depth Cues. The work offers a model that explores spatio-
temporal information using convolutional GRU and sparse 
depth cues. In the trials, the proposed approaches 
outperformed existing methods using a real-time system. This 
approach, on the other hand, focuses on depth estimates rather 
than object identification. As a result, the model is 
inappropriate for object detection applications. 

DLOAM: Real-time and Robust LiDAR SLAM System 
Based on CNN in Dynamic Urban Environments was also 
presented in [22]. The authors suggested a fast LiDAR-only 
model-free dynamic object recognition approach that employs 
point cloud spatial and temporal information via a 
convolutional neural network (CNN). This technique's 
accuracy and robustness were assessed, and the detection 
accuracy increased by 35% to 86 percent when compared to 
approaches that solely employ spatial information. The use of 
LIDAR, on the other hand, has shown to be noisy and 
problematic in places with severe temperatures. 

According to the examined studies, one main shortcoming 
of existing approaches is that they do not focus on object 
detection of road sceneries of varying complexity and are not 
suitable for real time implementation. Thus, one of the most 
important contributions of this work is the development of a 
feature extraction approach for modelling the scene of a road 
by extracting information on the objects, landmarks, and other 
elements present using deep learning approaches. 

III. RESEARCH METHODOLOGY 

A. System Overview 

The modified V-SLAM technique was built based on 
ORB-SLAM which is an open source visual SLAM technique 
that is suitable for monocular, stereo, and RGB-D cameras 
[23]. The choice of this process is based on its high accuracy 
and precision [24]. ORB-SLAM has three major components, 
namely: Tracking, Local Mapping and Loop Closure. The 
tracking component involves camera localisation, keypoint 
extraction and determination of when to insert a new 
keyframe. This is achieved through the process of extracting 
ORB features from the image frames. In the Local Mapping 
component, the system uses the keyframes to reconstruct the 
surroundings of the camera pose. Finally, the system searches 
for loops in the keyframe in the Loop Closure component. 
This is done to optimise the final map generated in the process. 

The components of the ORB-SLAM process only handle 
tracking, mapping, and loop closure. Therefore, in order to 
achieve object detection, deep learning was utilised in this 
study. The deep learning technique selected for operation is 
YOLO v4 [25]. YOLO (you only look once) has proven to be 
faster and more accurate than other object detection models 
such as R-CNN [22], [26]. The model provides the classes of 
detected objects, a bounding box around the object, and 
confidence levels of each detected object. Additionally, the 
method has low computational requirements compared to 
other deep learning models and even has a ‘tiny’ version for 
deployment on embedded hardware. This integration with the 
V-SLAM technique is presented in Fig. 1.  
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Fig. 1. Modified V-SLAM Technique 

From Fig. 1, it can be observed that the YOLO v4 
technique is instrumental in the keypoint selection (Tracking 
component). The technique detects objects in the scene, and 
relays the information to the keypoint filtering module of the 
tracking component. This in turn provides information on the 
detected objects in the scene. 

B. Visual SLAM Process 

The tracking component of the visual SLAM process 
involves identifying keyframes and deciding when to insert 
them, as well as localising the camera with every frame. This 
component also performs map initialisation and local map 
tracking. First, 1000 ORB features were extracted at 8 scale 
levels with a scale factor of 1.2. The matched ORB features 
are filtered using YOLO v4 deep learning approach. This is 
done to ensure that the detected objects are captured under the 
features extracted from the frame. 

In order to determine the initial camera pose, feature 
matching is performed between the previous frame and the 
current frame. Prior to that however, the camera is calibrated 
according to the camera intrinsic parameters for the testing 
dataset. The ORB features for both the initial frame and 
subsequent frame are then matched using the pairwise 
distance between the features. The index of the matched 
features as well as the sum of absolute differences (equation 
1) are obtained from the process. 
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I(xi, yi) and I(xj, yj) represent the initial frame and 

subsequent frame respectively. Based on the matched features 
(correspondences), a Homography matrix, Hm (equation 2) 
and a Fundamental matrix, Fm (equation 3) are evaluated. 
These matrices are geometric transformation models used for 
map initialisation. The Homography matrix is suitable for 
planar scenes while the Fundamental matrix is suitable for 
non-planar scenes. In this study however, the choice of the 
matrix is based on the ratio output of equation 4. 
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The parameters xi and xiʹ respectively represent the 
previous frame and current frame, while scoreh and scoref 
represent the scores of Hm and Fm respectively. The relative 
camera location and orientation is evaluated from the 
geometric transformation matrix, the camera intrinsic 

parameters, and any inliers identified by the transformation 
matrix. The next step is to extract the 3D world co-ordinates 
from the two 2D frames. This is achieved using a process 
called triangulation and the map can be projected into the 
frame. The map point correspondences are searched for in the 
current frame to establish if the set of keyframes (in the current 
frame) match with the keyframes in the reference frame. The 
camera pose is subsequently optimised with the map points 
found in the current frame. 

A frame is determined to be a keyframe if it satisfies these 
conditions: 

• At least 20 frames have passed since the last keyframe 
or if the current frame tracks less than 100 keypoints. 

• The map points identified (or tracked) in the current 
frame are less than 90% of the map points tracked in 
the reference keyframe. 

In the mapping component, the map points of the new 
keyframe are used to update the existing map points identified 
in previous keyframes. In addition, a valid map point needs to 
be identified in at least three keyframes, otherwise it will be 
discarded or ‘culled’. This ‘culling’ process is done to 
minimise the inclusion of outliers and improve the accuracy. 
The new map points are created by triangulation between the 
ORB features of the current keyframe and its connected 
keyframes. The pose of the current keyframe is refined via 
Local Bundle Adjustment which is an optimization process. 

Loop detection is performed using a ‘Bag of Words’ 
(BoW) model. This technique stores a vocabulary 
representation of the keyframe features. If the current 
keyframe is visually similar to any keyframe in the BoW 
database, a loop connection is established. This signifies that 
particular scene has been visited in the past. Afterwards, a full 
bundle adjustment is performed to optimise the final scene 
model. 

C. Object Detection and Keypoint Filtering 

This study implements the YOLO v4 model which has 
been pretrained on the COCO dataset [27]. This dataset has 80 
different object categories capable of detecting cars, trains, 
people etc. The YOLO v4 [25] architecture consists of three 
major sections. These are the Backbone, the Neck, and the 
Detection Head, as shown in Fig. 2. The backbone uses CSP-
Darknet53 (Cross Stage Partial Darknet53). This model is 
characterised by its higher input resolution and larger receptor 
fields which are useful in viewing entire objects in an image 
and detection of small objects, respectively. The neck consists 
of the PANet (Path Aggregation Network) as the method of 
parameter aggregation from the various backbone levels. The 
Detection Head section predicts the bounding boxes, 
classification, and score. This is achieved using the YOLO v3 
model. 

 

Fig. 2. YOLO v4 Architecture [28] 
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The object detection and keypoint filtering process using 
YOLO v4 is presented in Fig. 3. The process starts by using 
the YOLO algorithm to identify the objects in the scene and 
return the bounding boxes. The algorithm then proceeds to 
evaluate if the bounding boxes fall within the region of interest 
and rescale the box co-ordinates if otherwise. The bounding 
box co-ordinates will be used as regions of interest to extract 
the ORB features in the vicinity of the object. The ORB points 
identified in the object area will be appended to the points 
detected in the overall image. This process ensures that the 
features of the objects identified are utilised in the localisation 
and mapping process. 

 

Fig. 3. Keypoint Filtering Algorithm 

IV. RESULTS 

A. Experimental Enviroment and Setup 

The modified V-SLAM algorithm was run on an Intel core 
i7 processor with a speed of 2.2 GHz, a RAM of 8GB, and an 
NVIDIA GeForce GTX GPU with a size of 8GB. The YOLO 
v4 model was pretrained with on the COCO dataset which has 
80 different object categories capable of detecting cars, trains, 
people, etc. The modified V-SLAM technique was tested on 
the TUM-RGB dataset. The data comprised of 2585 RGB 
images of the environmental setup. These images were 
obtained with a Microsoft Kinect camera and had a resolution 
of 640 x 480. The details of the dataset sequence are presented 
in Table I while an image sample of the dataset is presented in 
Fig. 4. 

TABLE I.  DATASET SEQUENCE DETAILS 

Parameter Value 

Sequence Name 'freiburg3_long_office_household' 

Duration 87.10 secs 

Ground Truth Trajectory 
Length 

21.455m 

Average Translational 
Velocity 

0.249 m/s 

Average Angular Velocity 10.188 deg/s 

Nuumber of Frames 2585 

B. Deep Learning Based Object Detection 

The model was successfully able to identify objects from 
the test dataset as well as extract ORB features from those 
object areas. Fig. 4 shows the bounding boxes around the 
detected objects with their appropriate labels and confidence 
scores, as well as the identified and extracted ORB features in 
the object vicinity. These extracted features are subsequently 

appended to the feature list used in the tracking process. It can 
also be observed in Fig. 4 that the ORB features on the smaller 
images are not identified. This is because smaller objects with 
a width and height lower than 64 pixels will not be subjected 
to feature extraction, since they play a minimal role in road 
scene modelling. Additionally, if the bounding box extends to 
outside the image height and width, it is resized to be 
contained within the image dimensions. 

 

Fig. 4. ORB Features Identified on Extracted Objects 

C. Modified Visual SLAM 

Fig. 5 shows the reference keyframe matching process 
used to initialise the map. This keyframe decision is based on 
the matched features between the first keyframe and next 
keyframe that satisfies the keyframe selection conditions. 

 

Fig. 5. ORB Feature Matching between Frames 

After the map is initialised the algorithm tracks the 
detected ORB points on every frame to localise the agent’s 
position and map the surroundings. After the algorithm goes 
through all the frames, it optimises the trajectory using Bundle 
Adjustment and compares the trajectory with the ground truth 
to evaluate the error. Fig. 6 shows the ORB features detected 
in Frame 17, while Fig. 7 the map points corresponding to the 
identified features, and the trajectory being built. 

 

Fig. 6. ORB Features Extracted in Frame 17 

 

Fig. 7. Localisation and Mapping Process in Frame 17 
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At the conclusion of the localisation and mapping process, 
a full optimised map is obtained as shown in Fig. 8. The 
obtained trajectory is compared with the ground truth obtained 
from the dataset. The 3D map points represent the identified 
features in each of the frames. The modified V-SLAM 
technique was evaluated in comparison with the ground truth 
and the result in Fig. 8 showed that the technique was capable 
of localising and mapping the test environment with a Root 
Mean Square Error of 0.11621 and a point-to-point distance 
of 1.1726m. 

 

Fig. 8. Optimised Trajectory Compared with Ground Truth 

V. CONCLUSION 

In this study, a modified Visual SLAM technique was 
presented. The algorithm used the deep learning approach, 
YOLO v4 to identify objects in a scene. The ORB features 
from the identified objects were extracted, and using a 
keypoint filtering algorithm, the input image features were 
updated with the features from the identified objects. The 
results showed that the technique was able to successfully 
identify the objects, update the SLAM ORB feature set, and 
accurately track and map the environment. The trajectory 
obtained was compared with a ground truth and the method 
gave an RMSE of 0.11621 and a point-to-point distance of 
1.1726m. Future works will focus on improving the 
robustness and accuracy of the algorithm by testing it on 
different datasets. 
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