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Convolutional Neural Network (CNN) is considered one of the most successful deep learning techniques used in
classification or diagnosis of medical images. However, CNN requires a high computational resource and time;
and a large dataset which most medical images (cervix) do not possess. In order to compensate for these short-
comings, we propose an optimized fine-tuned CNN model to classify cervix images into Cervical Intraepithelial
Neoplasia grades (CIN 1,2,3) normal and cancerous cervix images. This classification ensures that patients are
diagnosed correctly, and appropriate treatments are administered. Deep learning techniques such as Data
Augmentation, 1 cycle policy for optimal learning rates selection, Discriminative Fine-Tuning, Mixed Precision
Training were used to optimize the fine-tuned DenseNet CNN model. The model achieved 96.3% accuracy, the
specificity of 98.86%, and sensitivity of 94.97% on the datasets.

1. Introduction

In recent times, CNNs have been used in detecting various diseases
accurately due to its inherent ability to automatically learn useful rep-
resentations and features of images [1]. A notable success is seen in Refs.
[2,3], where CNN classified skin and breast cancer at an expert-level.
Hence, it has been explored by various researchers in detecting cervical
cancer, a developmental disease caused by the Human Papilloma Virus
(HPV). It was shown in literature that scaling up cervical cancer
screening tests can eliminate the disease within 30 years [4]. Human
Papilloma Virus test (HPV), Cytology (Pap Smear), Visual Inspection with
Acetic Acid (VIA), Colposcopy and Cervigram are cervical cancer
screening methods [5]. These methods are heavily subjected to the level
of expertise and experience of the health practitioner carrying out the
test. Furthermore, some of these methods are capital intensive and re-
quires sophisticated infrastructure and equipment. VIA is a cheaper
alternative to the other tests as it involves staining the cervix with Acetic
Acid. It involves inspecting the cervix with the naked eyes for the pres-
ence of abnormalities (Aceto-white lesion) on the cervix. The aceto-white
lesion is shown in Fig. 1. Cervicograph and colposcopy is an upgrade to
VIA as images of the cervix are captured with a camera (Cervicograph) or
viewed at higher magnification (Colposcopy). Images observed from the
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colposcopy could also be captured.

These captured images are useful in developing screening systems
used to diagnose lesions/cancer automatically. The World Health Orga-
nization (WHO) defined the abnormal growth observed during Visual
Inspection with Acetic acid (VIA) or any screening tests as the Cervical
Intraepithelial Neoplasia (CIN) [6,7]. The CIN classes or grades define
the severity of the abnormalities with CIN 1,2,3 representing mild,
moderate and severe, respectively.

In literature, Computer-Aided Detection (CAD) systems based on CNN
have been proposed in classifying the images of the cervix based on the
CIN grades. Medical (cervix) datasets are small in size, have imbalance
classes and have high dimensionality [8]. Therefore, transfer learning is
usually used to train the models to classify images. Transfer learning is a
technique that involves leveraging “knowledge” used to train a model
with millions of images on another model with fewer images (medical
images). It is also useful in speeding up the training process since model
“B” reuses parameters obtained during the training of model “A” to make
predictions or classifications.

It has been observed from literature that most classifications are bi-
nary, where the CIN grades are categorized into Negative (Normal/CIN
1) and Positive CIN (CIN 2+) [9]. However, having specific information
on the CIN grade is essential to the health practitioner in administering a
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Fig. 1. Image showing aceto-white lesion mapping on the cervix.

follow-up test and treatment. In addition, authors in Ref. [10] suggested
that in young women, CIN 2 could be potentially treated differently than
CIN 3. It was suggested that less invasive treatments like cervix excision
could be avoided if a woman is diagnosed with CIN 2. Hence, it is crucial
to develop a system that can detect CIN grades separately.

It was also observed that proposed methods in literature usually
require many epochs (e.g., 3000 in Ref. [11]) before the model con-
verges. Too many epochs used in training usually results in more
computation requirements (resources and time). It stems from the fact
that these proposed methods do not have a defined method of selecting
the hyperparameters used in training the model. In Ref. [12], the authors
stated that they arrived at the appropriate hyperparameters “After many
training and parameter adjustments ...”. The hyperparameter is a vari-
able of the training model that must be pre-defined before the deploy-
ment of the training model [13]. These hyperparameters such as Learning
Rate (LR), momentum, weight decay, batch size contributes to the overall
performance and computation time of the CNN model.

In this work, we propose a fine-tuned CNN model (DenseNet) that to
the best of our knowledge, has one of the best performances reported in
literature. The model:

1. Classifies the CIN grades into Normal, CIN 1,2,3, and Cancer and
obtained an Accuracy of 96.3%, 94.97% Sensitivity and 98.86%
Specificity.

2. Optimizes and schedules the hyperparameters (learning rate) using 1
cycle policy and discriminative learning.

3. Reduce memory requirements while maintaining the state-of-art ac-
curacy in the classification of cervix lesions by implementing a Mixed
Precision Training that trains the CNN model using a single-precision
format to speed up the computations and reduce the memory
requirements

4. Visualizes the areas of the cervix the algorithm analyses to make
predictions.

2. Literature review

We reviewed research work reported by authors to classify cervical
cancer lesions using the Convolution Neural Network. This review
focused on images obtained via the cervigram or colposcopy. Emphasis is
made on CNN architecture adopted, hyperparameter selection, run-time,
and evaluation metrics used. Also, we reviewed past methods in selecting
an optimum learning rate.

2.1. Convolution Neural Network and detection of cervical cancer lesions

Cervical Cancer is a developmental disease that starts as an abnormal
lesion in the transformation zone of the cervix. It could take between 10
and 20 years for lesions to progress to cancer [14,15]. However, due to
weakened immunity and other factors, cancer progression could happen
even between 1 and 2 years. The abnormal lesions known as Cervical
Intraepithelial Neoplasia (CIN) is categorized into CIN 1,2 and 3 based on
the level of dysplasia with CIN 1 being mild and CIN 2 and 3 moderate
and severe respectively. These grades can either regress, progress or
persist after numerous tests. Regression is the ability of the CIN grade to
return to its less developed stage (Cervix with CIN 1 becoming Normal).
Persistence means that the grade remains unchanged while progression
occurs if the CIN advances to a more advanced stage. It is therefore
essential for health practitioners to know the CIN grades of the patients to
make informed decisions on the appropriate treatments and follow-up
treatment plans. One of the significant challenges for health practi-
tioners is determining the location of the transformation zone. The
transformation zone is a vital part of the cervix as it is the location where
cervical cancer originates. The location of the transformation zone differs
in women based on age and other factors. Health practitioners need to
differentiate these classes to provide the best treatment based on trans-
formation zone types. Researchers in Refs. [5,16,17] have proven that
CNN can be used in classifying the cervix into three types based on the
location of the transformation zone.

Authors in Ref. [12] used a fine-tuned DenseNet 121/169 model to
diagnose the presence of a moderate or high lesion in a colposcopy image
(binary classification). 1709 colposcopy images were obtained from a
local hospital and experts annotated the Region of Interest of the Images
(ROI). The number of images was small; hence, data augmentation
techniques such as random blur, cropping was used. The authors stated
that many adjustments were made to obtain an optimized selection of the
hyperparameters. The learning rate was set to le~>. The DenseNet121
model has the best accuracy of 73.08%, specificity of 78.55% and
sensitivity of 57.6%.

Authors in Ref. [9], showed that CNN could be used to learn features
from highly non-linear correlation across different modalities. The mo-
dalities include a low input cervigram image and non-image inputs (pap
smear results, HPV test, cervigram result, PH value, and patient age).
Also, a joint fully connected layer to model all modalities to classify the
cervix lesions into positive CIN (CIN 2+) and negative CIN (Normal/CIN
1). Sensitivity of 87.83%, specificity of 90% and accuracy of 88.9%, were
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achieved which outperformed most algorithms that use multi-modal in-
puts to classify cervical dysplasia. Another similar multi-feature model is
illustrated in Ref. [18] which obtained an accuracy of 77.39%, 80.87% of
sensitivity and 73.91% of specificity. Multi-modal inputs provide com-
plementary information; however, other input information may not be
accessible in low-resource region. For example, carrying out an HPV or
Pap smear is expensive for a woman in such regions. Also, using
multi-modal inputs assumes equal priority for all the features (image and
non-image), which is not realistic in real-life scenarios.

The authors in Ref. [19] took an approach to diagnose cervical cancer
by considering the preacetic and post acetic cervix images. It was pro-
posed that this approach could utilize multimodal features and reduce
requirements for data acquisition. These images were registered using
the cross-correlation and projection transformation. The cervix region
was extracted using the K-means clustering algorithm and trained using
CNN (VGG 16, ResNet50 and DenseNet121). In addition, the learning
rate used in training the model was 0.001, and there were no details on
how this was optimized and scheduled to improve the model's perfor-
mance. Classification accuracy of 86.3%, a sensitivity of 84.1%, and
specificity of 89.8% were obtained.

To prevent overfitting and compensate for the small dataset sets used
in the automatic screening of cervical cancer, the authors in Ref. [11]
used data augmentation techniques to increase the number of datasets.
The authors obtained datasets from the National Cancer Institute to
determine if a cervix image is normal/CIN 1 or CIN2+. A ColpoNet CNN
algorithm was designed based on the concept of concatenation of layers.
An accuracy of 81.35% was obtained when compared with other CNN
architectures. The authors stated that the number of epochs was
increased to 3000 to obtain an accuracy of 83.95%. The authors did not
disclose any information on selecting the learning rate specificity and
sensitivity of the model, which are key metrics in medical diagnosis.
Authors in Ref. [20] achieved an accuracy of 83.33% and 91.66% for the
binary and multiclass CIN classification using an ensemble of Mobile-
NetV2 networks. However, ensemble networks are challenging to
implement in real-life cases as such networks are usually very complex.

It can be deduced from the reviewed papers that little information
was given on selecting the hyperparameters. According to Ref. [13], the
hyperparameter is a variable that must be pre-defined before the
deployment of the training model. These hyperparameters such as
Learning Rate (LR), momentum, weight decay, batch size contributes to
the overall performance and computation time of the CNN model.
However, the learning rate is an essential hyperparameter. It has the
highest impact on the training process as well and the overall perfor-
mance of the model [21].

2.2. Selecting the optimum learning rate

Conventional selection of learning rate involves taking a guess (grid
search) by manually selecting a LR. It also involves setting a schedule that
decreases the value (decay) as the model approaches convergence
(Learning Rate Annealing) [22]. The conventional method was
time-consuming and inaccurate because the LR did not adjust to the
model's parameters. As a result of this, the introduction of learning rate
optimization algorithms that can adjust the learning rate to the param-
eters of the model automatically was considered. Examples of these al-
gorithms are Adam, RMSprop, Adagrad, and AdaDelta [23,24].
Unfortunately, adaptive learning rates are computationally expensive
and do not always result in global minima due to saddle points. Saddle
points give a false representation of the local minima, which slows down
the learning process [25].

The Cyclical Learning Rate (CLR) presented in Ref. [21] solved the
saddle point problem by rapidly increasing the LR for some iterations
during a training epoch and gradually reducing it for the rest of the
iteration in the epoch. The rapid increment overcomes plateaus, while
gradual decrements ensure that the algorithm converges to the global
optimum. CLR used in selecting the optimum learning rate reduced the

Intelligence-Based Medicine 5 (2021) 100031

number of iterations by 65% in classifying the CIFAR-10 dataset and
achieved the same accuracy with conventional methods of selecting LR.

The super-convergence (1 cycle policy) was introduced in Refs. [26,
27] to reduce the model's training time by using a large LR. The differ-
ence between super-convergence and CLR is that it has one cycle as
opposed to CLR with multiple cycles. Super-convergence also improves
the performance of the training model when the data is small.

In this work, we decided to use 1 cycle policy as suggested in
Ref. [26]. We discovered that when used in other domains, it achieved an
excellent performance. Such domains include: classification of skin le-
sions [27], prediction of drug functions from chemical structure [28] and
automatic detection of plant disease [29]. In all these, an excellent per-
formance was achieved. In addition to selecting the optimum learning
rate, other hyperparameters such as batch size, momentum, weight decay
are tuned to improve the performance of the model. The DenseNet CNN
model was used in this work because of its excellent performance when
evaluated on top object recognition tasks (CIFAR-10, ImageNet,
CIFAR-100). In addition, DenseNet reduces the vanishing gradient
problem, improves feature propagation and promotes feature reuse [28].

3. Preliminary studies

The goal of this section is to provide background information on the
methodology adopted in this work. The areas considered are Supervised
Learning and Hyperparameters of CNNs.

3.1. Supervised Learning for classification of CNNs

The goal of this section is to provide background information on the
methodology adopted in this work. The areas considered are Supervised
Learning and Hyperparameters of CNNs.

3.2. Supervised Learning for classification of CNNs

In deep learning, a given training dataset is made up of input x and
corresponding values denoted by y. The algorithm aims to learn pa-
rameters (weight w and bias b) to predict the value of y for an input x. The
predicted value is labeled as y, and the algorithm's task is to ensure that
the difference between ¥ and y (loss) is small. The goal of this learning
algorithm is to minimize the total cost incurred during training. It is
represented mathematically as:

Tonb) =557 103) W

From the equation, n is the total number of training samples, L is the
loss function for each of the data-point. Also, J(w,b) is the cost function
that measures how well the algorithm predicts the output.

Equation (1) shows the cost function as the average loss function over
the training samples n. It is important to note that methods such as the
Mean Square Error (MSE), Mean Absolute Errors (MAE), Cross-Entropy
Loss etc. are loss functions. They are used to calculate the loss based on
the type of classification or regression problem. Thus, the deep learning
problem becomes an optimization problem as it learns parameters that
globally minimize the cost J(w,b).

In practice, Gradient Descent (GD), a popular optimization algorithm
used in obtaining a point (value) that minimizes J(w,b). It is obtained by
calculating the partial derivative of the function with respect to the
weights (backpropagation). The obtained function is used to update the
weights. The updated weight directs or guides the algorithm to converge
at the minimum point. Mathematically,

0
Wip1 1w — (ch—wjj(w7 b) (2)

From equation (2), (}leJ (w,b) is the partial derivative of the cost

function obtained via the backpropagation that computes the gradients
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Fig. 2. Proposed CNN architecture (Densenet) Methodology for the classification of CIN.

used to update the weights of the model, a is the learning rate. The
learning rate defines steps required for the algorithm to converge to its
minimum value. If the LR is too small, the algorithm converges after
training with many epochs. In contrast, with a large LR, the algorithm
may not converge to the minimum value.

It is important to note that the Stochastic Gradient Descent (SGD), as
shown in (1), is a simplified variation where the gradient is estimated
based on a random sampling of training examples [29]. SGD is simple to
implement on datasets with many training examples, and it has a better
generalization performance. However, its learning rate needs to be tuned
manually. The learning rate is an essential hyperparameter as it has the
highest impact on the training process and the overall performance of the
model [21].

3.3. Hyperparameters of CNNs

Hyperparameters play an essential role in the model's performance
and training time. It is usually pre-set before training. It is important to
note that hyperparameters and model's parameters are inherently
different. The model's parameters are learnt from the data to make pre-
dictions [30] while hyperparameters such as learning rate, weight decay,
batch size determines the quality of the training process and how fast a
model will converge. Furthermore, hyperparameters are independent of
the training dataset as they are pre-set. The generalization and perfor-
mance of the model is dependent on the model's parameters obtained
during training.

Table 1
Distribution of the dataset from the different studies.

Normal CIN CIN CIN Cancer  Total number
1 2 3 of images
ALTS 304 116 70 93 4 587
Biopsy 5 14 15 15 2 51
CVT 20 10 19 35 5 148
NHS 2 44 40 88 8 182
TOTAL 331 184 144 231 19 909

NUMBER/
CLASS

There is a relationship between the batch size and the “n” in equation
(1); the term is the number of training samples. The number of training
samples is usually divided into section or batches, a best practice in
training. Weight updates of the model are done after each batch. It is
therefore paramount to select the optimum batch size that speeds up
training without trading off the generability of the model.

In order to accelerate the training, momentum can be tuned in the
model. Also, momentum can reduce steepness that is common with SGD,
making the model converge at its global minima faster [24]. Weight
decay is a hyperparameter and common regularization technique. Reg-
ularization is an important technique that adds a penalty term (weight
decay) to reduce the complexity of a model during training [31]. A model
is said to be complex if it tries to learn all the different patterns (varia-
tions) in the dataset, thereby overfitting. Such a model makes poor pre-
dictions on unseen data (test data) reducing the generability of the
model. Therefore in this work, an optimum hyperparameter selection
technique is proposed that guarantees quick convergence of the objective
function and better generalization of learned parameters to unseen
dataset.

4. Methodology
4.1. Adopted methodology

In this paper, we adopted different techniques in classifying the cervix
image based on the CIN. The overview of the methodology is summarized
in Fig. 2. We augmented the cervix to increase the number and variations
in the dataset, which serves as an input to the pre-trained CNN archi-
tecture. The pre-trained CNN architecture was fine-tuned to suit the
cervix classification task. The LR was selected by using the LR range test
as described in the previous section. For faster convergence, we introduce
Discriminative finetuning, which takes advantage of 1 cycle policy to
select the optimum learning rate for each layer of the model. Mixed
Precision Training is implemented to reduce memory requirements and
speed up training. The intuitions behind these techniques are discussed
in this section.
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Fig. 3. Dataset distribution based on the CIN grade.
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Fig. 4. Data Augmentation of sample cervix images.

4.2. Dataset description

The datasets used were obtained from the National Cancer Institute,
Bethesda, USA. The dataset contains four different studies: Costa Rica
Natural History (NHS), ASCUS-LSIL Triage Study (ALTS), Biopsy, and
Costa Rica Vaccine Trial (CVT). We were granted access to the pilot
dataset, which has 2120 images. These images were classified based on
the presence of precancerous lesions after histology diagnosis. It is
important to note that images without the histology results were
removed from the training dataset. Thus, the total number of images
obtained from NCI used in this work 909.

The distribution of the dataset from the different studies are sum-
marized in Table 1.

As a result of this, it is observed that the classes were unbalanced.
Class imbalance can result in misclassification of the training algorithm.
The model will be biased towards the class with the majority data sam-
ples (“Normal” as seen in Fig. 3) and has an impact on the effectiveness of
CNN.

As a result of this, the CNN overfits and does not generalize well on
unseen data.

4.2.1. Dataset splitting and augmentation

In order to evaluate the model, we split the dataset using the Leave-P-
out cross-validation technique. The “P” refers to the number of points
(images) removed from the dataset; this validation set was separated
before training the model. It is observed in Table 1 that the number of
images in each class was imbalanced. Therefore, we implemented the
data augmentation techniques to achieve a balanced dataset before
splitting the data into training and validation set.

Data augmentation technique alters the original image's pixel to
form new images and increase variations of the dataset. It synthesizes
new images from the original image by flipping, rotation, Gaussian
blurring, warping, lighting translation etc., to prevent bias and over-
fitting the CNN model (see Fig. 4). The model's performance and
generalization were increased by training and validating the model on
these additional data points, which could be similar to real-life test
images [32-34].

It is important to note that generalization of a model is that ability
of a make accurate predictions on unseen data points. Further details
on the data augmentation techniques used are summarized in Table 2.
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4.3. DenseNet CNN architecture

DenseNet is made up of a composite layer for batch normalization,
rectified linear units, pooling and convolution operations. It has several
Densenet blocks with transitional layers between them [28] as shown in
Fig. 2. It has different variations (DenseNet-121,169,201 and 264) based
on the number of layers in the network.

One of DenseNet architecture's many advantages is that it reduces the
vanishing gradient problem, common to gradient-based learning algo-
rithms like CNN. In DenseNet, the input to a layer [l is the concatenation of
the feature maps of the preceding layer xo,x1; ...; x;_1. Hence, each layer
is fed from all preceding features in the dense block [35]. Therefore, the
output to the layer is:

x = Hi([xo, %15 ...;%-1]) 3)

However, a drawback to this model is the computational re-
quirements required since it has numerous hidden layers. Mixed Preci-
sion Training was therefore used to speed up the training time and
computational requirements of this model. In addition, the hyper-
parameters (learning rate) of the network were optimized by selecting an
optimal learning rate for each layer of the densenet model.

4.3.1. Hyperparameter selection and optimization

In transfer learning, parameters of the pre-trained network are
transferred to the new task. However, it is crucial to tune the hyper-
parameters to suit the new task. The learning rate is considered the most
vital hyperparameter to tune when compared to the batch size, mo-
mentum, weight decay [31]. In the literature review section of this work,
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we reviewed various methods of selecting and optimizing the learning
rate. We adopted the LR range test and 1 cycle policy because it reduced
the computation time without hindering the performance of the model.

LR range test was useful in selecting an optimal rate (LR), the most
critical hyperparameter during training. It adjusts the weight of the
model with respect to the loss function (see Algorithm 1 for details). It
was adopted because it required only a single one-epoch trial experiment
to determine the optimal LR, reducing the computational cost. Also, it
reduced the number of iterations required for a CNN model to reach its
optimal performance.

In CLR, an initial LR o, pre-set increases linearly by a predetermined
step size to Amayx (upper limit) in the first cycle. Itlater drops from gy to Amin
in the second cycle. As a result of this, it can also be referred to as the
triangular learning rate policy. This cycle continues throughout the training
of the model. However, in super-convergence, the large LR (Qmax targe) iS
obtained from the LR range test while a;;, is one-tenth of the @max iarge- In the
first cycle, the amin increases to Qnax large and further decreases to a LR lower
than @y, in the second cycle. Other hyperparameters such as batch size,
momentum and weight decay must be tuned for optimum performance of
the model. It is based on pre-setting a boundary (maximum and minimum
LR) in which the LR changes at every layer in response to the loss function.

In the initial training, we set the LR to 1e~> (default pre-trained LR) with
a weight decay of 1e~*. We observed from the graph that the loss at that
learning rate was considerably low. We further unfreeze other layers and
trained the models for a few more epochs to observe the relationship be-
tween the LR and the loss of the model. A graph showing this relationship is
observed in Fig. 5. The part of the graph with the steepest LR is selected.
Hence, the maximum and minimum boundary to be selected is 1e~> and.

Algorithm 1 Optimal Hyperparameter Selection PseudoCode

1: procedure LR

2: Input: (@i, : minimum learning rate,

3: Qe - Maximum learning rate,

4: D : size of dataset, bs: batch size)

5: OUtPUt: (Qmin: (Ym,a:r)

6:

T ] %

8: pct < random number between 0.5 and 1

9: // pct determines how rapidly the learning rate increases or reduces
10:

11: while 57 < pct x 7 do:

12: QO = Qin, + % // Increase the learning rate
13: Wj 4 Wj_1 — aj%]:ib) // perform parameter update

14: J(wj,b) < L(F(x;|w;,b))
15: end while

16:

17: while 57 > pct x j do:

18: Qj < Qmaz — w
19: “/‘4] — u".]*l Uy] ow; 1

20: J(wj, b) + L(F(x;
21: end while

wj, b))

23: plot a; vs J(w;,b)

// estimate the local loss j + j+ 1

// Increase the learning rate

// perform parameter update
// estimate the local loss j < j+ 1

24: (Qmin, maz ) <— steepest slop of the graph where loss reduces the most.
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Table 2
Augmentation parameters.

Data Augmentation Parameters

Rotation Rotation angle: 30 & 60
Gaussian blurring Kernel Size: 3
Zoom Scale: 1.3
Lightning Intensity: 2
Warp Magnitude: 0.4
0.24 -
0.22 A
@
S 0.20 A
-
0.18 -
] \J
le-06 le-05 le-04 le-03

Learning Rate

Fig. 5. Graph showing the optimal LR for the model.

In addition, in order to complement the optimum learning rate
selected, we selected a cyclic momentum as suggested by the author in
Ref. [27]. In cyclic momentum, the momentum (m) reduces from the
Mimax t0 Mpin in the first cycle of 1 cycle policy and increases from mp;, to
Mmax in the second half cycle. The my,qy is kept constant when the LR
decreases further lower than the a,i,. We selected the boundaries of the
momentum between 0.85—0.95 as suggested.

4.4. Discriminative fine-tuning

Fine-tuning of a pre-trained CNN network involves tuning or adjust-
ing the pre-trained network to suit the required task. In this paper, the
required task is to classify the cervix lesions into the five categories
discussed previously.

The knowledge was transferred from CNN model pre-trained on
ImageNet, a dataset with over 15 million images classified into 22,000
images [36]. In fine-tuning, it is important to remove the classification
(SoftMax) layer with the 1000 and to replace it with the number of
classes in the required task (5 classes in for this paper).

CNN is made up of layers that learn different features of an image.
Low-level features such as edges, lines and corners are learnt in earlier
layers. In comparison, later layers learn more complex features specific to
the required task (cervix lesions). Features learnt in earlier layers of deep
CNN models are common to most images; therefore, those layers and the
weights are frozen. The weights of these layers from the pre-trained
networks are used directly in the new task. However, the last layer
(fully connected) is trained to ensure that the weights of the network are
specific to the task. If CNN's performance is not satisfactory, further
layers (middle) is unfrozen and trained again until the CNN model
classifies the images correctly. This technique, known as gradual un-
freezing, was first introduced in Ref. [37].

It has been established that different layers in the CNN learn different
features; therefore, different layers should be tuned with different
learning rates [38]. Therefore, each layer will have specific parameters to
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be learnt and updated using layer-specific learning rates.
Therefore, from the SGD equation to update the parameters of the
model

0
Wit wjfaﬁjj(w,b) (€3]
In this work, this was modified to reflect layer-specific learning rates
for weight updates and represented mathematically as:

0
Lo owh —d==J(w,b
Wil 1 W, aaW;J(w, ) (5)

From the equation, ;2 J(w,b) is the partial derivative of the cost
¢l

function obtained via the backpropagation that computes the gradients
used to update the weights of the model. Also, a is the learning rate, w} is
the parameter in layer [, and d'is the learning rate of the Ith layer, ranging
from (1,...,L). L is the number of layers in the model. The a! of the last
layers is obtained by using the LR range test.

4.5. Mixed Precision Training

Numerous computations occur during the training of a CNN. For
example, at the convolution layer, where the images are convolved with a
filter to form the feature map. Conventionally, these computations are
usually done in FP-32 (Single precision), which requires high memory
consumption and bandwidth. FP-16 (half precision) is ideal in reducing
the computational requirements; however, its dynamic range is narrower
than FP-32, which may result in loss of model accuracy [39]. If the
gradients of the model are smaller than the FP16 dynamic range 2”24 to
215, the gradient is truncated and result in inaccurate weight updates.
From (4), if the weight updates multiplied by the learning rate are too
small or too large, and the magnitude is outside FP-16's range, no updates
are done. Hence the equation becomes:

Wiy WJ[- (6)

Therefore, Mixed Precision Training (MPT) combines the strengths of
FP-16/32 by using FP16 where appropriate and adding loss scaling to
compensate for the small gradient values [39]. For example, FP32 is used
for layers that output probabilities. The process of MPT for a layer is
shown in Fig. 6.

As a result of the combined strength of FP16/32, MPT reduces
memory and computational cost of running the model without loss of
accuracy. It means larger batch-sizes can be used for training deep
learning models compared to traditional methods. Consequently, there is
a significant reduction in training time and improved performance in
some cases. Due to the efficient use of memory and computational re-
sources, MPT is beneficial for researchers in low-resources countries.

5. Results

Experiments were carried out to explore the effectiveness of the
techniques mentioned above in optimizing the DenseNet model. It is
important to note that the evaluation of the model was done on the out-
sample dataset. A comparison was made between a pre-trained DenseNet
model and a DenseNet model with Discriminative fine-tuning and
Optimal learning rate. Also, the role of Mixed Precision Training in
increasing the batch size and overall performance of the model was
considered.

5.1. Learning rate selection and scheduling

The DenseNet model was trained using learning rate annealing,
where a single learning rate was selected for all the layers but was
scheduled to decay after every 10 epochs. The performance of the model
was compared with a DenseNet model, whose learning rate was selected
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Fig. 6. Block diagram of mixed precision training.

using the LR range Test and 1cycle policy. Also, different learning rates
were used to train different layers of the model using discriminative fine-
tuning. The run-time and the accuracy of the model is shown in Table 3.

5.2. Effect of Mixed Precision Training

The DenseNet was trained on an ASUSTeK Computer with a processor
Intel(R) Core (TM) i7-8750H CPU and NVIDIA GTX 2070 8G GPU.
However, this limits the number of batch size the model could accom-
modate. It was observed that using MPT in training reduces the compu-
tation requirements. In the DenseNet model without DFT, the maximum

Table 3
Performance of learning rate scheduling.

Model Number of Epochs Best Accuracy
Densenet + Learning rate annealing 100 51.2%
Proposed Model 30 96.3%

batch size used was 20. However, with the model that uses MPT, a
maximum batch size of 42 can be used.

5.3. Evaluation metrics

In comparing and evaluating the performance of the model, the
Multiclass Sensitivity and Specificity of the model are required. Multi-
class Sensitivity (M.Sens) is the ability of a screening system to identify
the CIN class correctly. In contrast, Multiclass Specificity (M.Spec) can
determine that the image does not belong to a particular class [40].
Mathematically,

TP

M.Sens =——— )
TP+ FN
N
M.spec=—— 8
P IN Y FP ®

In understanding the definitions for multiclass classification, it is
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Fig. 7. Confusion Matrix of the proposed Model.
Table 4

Performance Evaluation of each class based on out-sample data.

Class M.Sens M.space. PPV(%) NPV F1 Score Acc.
(%) (%) (%) (%) (%)
Normal  94.97 98.62 95.13 98.57 95.04 97.75
CIN1 93.27 98.84 94.33 98.61 93.97 96.68
CIN 2 92.53 98.96 93.98 98.37 93.24 97.95
CIN 3 94.37 98.15 93.19 98.46 93.77 96.16
Cancer 99.69 99.72 98.91 99.92 99.29 99.64

important to note that if a class is misclassified, it is negative. At the same
time, if it correctly classified, it is positive. TP (True Positive) indicates
that the cervix image belonged to a particular class and was predicted

Table 5
Performance Comparison with other proposed methods.

Reference Sensitivity (%) Specificity (%) Accuracy (%)
[9] 57.56 78.55 73.08

[11] - - 81.35

[12] 87.83 90 88.9

[15] 80.87 73.91 77.39
Proposed DenseNet 94.97 98.86 96.3

Intelligence-Based Medicine 5 (2021) 100031

correctly. TN (True Negative) indicates that the cervix image did not
belong to a particular class and was classified correctly. FP (False Posi-
tive) indicates that the image does not belong to the same class, but it
predicts it as belonging to that class. False Negative (FN) shows that the
image belongs to a particular class, but it predicts it does not. TP, FN, TN
and FP values can be obtained from the Confusion Matrix. The confusion
matrix gives the predictability ability of the model, as shown in Fig. 7.

The multiclass Sensitivity, Specificity, Positive Predictive Value
(PPV), Negative Predictive Value (NPV) and F1 score of each class ob-
tained from the confusion matrix is summarized in Table 4. The average
accuracy of the model across all the classes is 96.3%.

It can be observed from Table 4 that the model was sensitive to each
category. However, it is observed that it could predict the cancer cate-
gory the best when compared to other categories. It can be attributed to
the model's capacity to detect cancerous features in the image without
misclassification.

6. Discussion
6.1. Performance comparison

The overall accuracy of the model obtained is 96.3%. However, for
diseases like cervical cancer that can be treated if detected early, sensi-
tivity and specificity are preferred. It is seen that the model has high
sensitivity and specificity, as shown in Table 4; thus, it can classify cervix
images into the correct class. The implication of this is the appropriate
treatment and follow-up treatment based on the CIN grade can be
administered correctly by the health practitioners.

In comparing the performance of the model with other proposed
methods in literature, it is observed that our proposed methodology had
one of the best performances. The performance comparison is summa-
rized in Table 5.

In addition, the inference and pre-processing times or computational
was also computed. However, it is essential to note that these parameters
are dependent on the hardware and system capability of the computer
where the training and evaluation of the model are carried out. Hence,
based on the system's capability as described in section 5.2, it was
observed that the model could make inference on an image in about 0.26
ms.

6.2. Visualization of CNN using Grad-Cam

The visualization of the region of interest where the CNN network
analyzes to make predictions could provide health practitioners further
information on how the model works. Recall that the abnormal lesions
that lead to cervical cancer start from the transformation zone of the
cervix. Detection of the transformation zone in the cervix is a daunting
task for health practitioners, therefore hindering administering appro-
priate treatments. Such treatments include Conization, Loop Electrical

Fig. 8. Visualizing the section of the cervix CNN model analyses to make a prediction.
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Excision Procedure (LEEP), where treatments are made on the trans-
formation zone. Gradient-weighted Class Activation Mapping (Grad-
Cam) highlight these important regions of the cervix (the transformation
zone). It highlights the import regions (features) that CNN uses in pre-
diction by using the gradients of the target to produce a localization map
[41]. It can be observed in Fig. 8 that there is a sharp colour contrast in
the cervix image on the right indicating the most prominent gradient
used in prediction. The use of Grad-Cam in cervical cancer screening will
give insight into the reasons why the model made predictions. It could
foster trust in health practitioners when using the deployed model.
Furthermore, it gives insight to researchers on ways of improving
screening models.

predictions. It could foster trust in health practitioners when using the
deployed model. Furthermore, it gives insight to researchers on ways of
improving screening models.

7. Conclusion

The classification of cervix images into the CIN grades is critical to
health practitioners in providing follow-up screening tests that may be
required for possible treatments options. We proposed an algorithm that
can classify the cervix images into five grades by optimizing a fine-tuned
CNN model. In extending this work, we hope to explore the options of
deploying the algorithm to a hardware device like a mobile phone for
cervical cancer screening. It will be an alternative screening method for
women in low-resource regions, where the ratio of experienced health
practitioners to women's total population is small. It could also provide
the screening personnel with the opportunity to liaise and share opinions
with doctors on the appropriate treatments that can be administered and
subsequent follow-up tests needed.
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