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Abstract 
This paper deals with the study of Magnetohydrodynamics (MHD) flow of continuous dusty particles in a 
Non-Newtonian Darcy fluid between parallel plates where the lower plate is kept fixed and the upper plate 
is moving with some velocity. The analytical solutions of the coupled equations were obtained using direct 
integration and Eigen function expansion techniques after transformation. The resistive forces of Darcy 
porous medium and the external uniform magnetic field were applied on the flow. The effects of the 
continuous dusty fluid, non-Newtonian fluid, Darcy model were shown for both the fluid and dust particles. 
Some results obtained shows that increase in Hartmann number leads to a considerable decrease the velocity 
of both the fluid phase and that of the particle phase as well as increase in viscosity ratio leads to a slight 
decrease in the velocity of the fluid but a considerable decrease in the velocity of the particles. 
 
Keywords: Continuous dusty fluid, Eigen function expansion, MHD flow, non-Newtonian Darcy fluid, 
parallel plates 
 
Introduction 
The problem of boundary layer dusty fluid flow has been under investigation over many years ago. The 
concept of an unsteady flow and heat transfer of a dusty fluid has a wide range of applications in 
refrigeration, air conditioning, space heating, power generation, chemical processing, pumps, accelerators, 
nuclear reactors, filtration geothermal systems, and so on. One common example of heat transfer is the 
radiator in a car, in which the hot radiator fluid is cooled by the flow of air over the radiator surface. On 
this basis many mathematicians were attracted by this field. The efficiency of these devices is affected by 
magnetic, Darcy resistance forces and dust particles. The high particle concentration leads to higher 
particle-phase viscous stresses and can be accounted for endowing the particle phase by the particle-phase 
viscosity. Datta and Dalal (1995) discussed the flow and heat transfer behavior of dusty fluid over a circular 
pipe. Unsteady convective flow of a dusty fluid over rectangular channel was discussed by Dalal et al. 
(1998). Bagewadi and Shantharajappa (2000) extended the previous work by considering flow over frenet 
frame. Ugwu et al. (2021a) studied the MHD effects on convective flow of dusty viscous fluid. The problem 
was solved numerically under the influence of magnetic field. 
 
Similarly, Shawky (2009) studied the unsteady flow of dusty conducting fluid through pipes has been 
studied analytically and numerically under the influence of transverse magnetic field. Attia (2011) 
considered the velocities, skin friction factors, and volumetric flow rates are computed and discussed. 
Madhura and Swetha (2017) studied the influence of volume fraction of dust particles on flow through 
porous rectangular channel. They used Laplace transform and Finite Difference Method (FDM) to obtain 
velocities and skin friction factors for fluid as well as dust particles. 
 
Non-Newtonian viscoelastic and temperature-dependent viscosity effects on hydromagnetic dusty fluid 
flow between parallel plates were studied by Dey (2016). These problems have been solved analytically. In 
another study, Ghadikolaei et al. (2018) applied FDM on the governing equations of the above problem to 
obtain shear stresses. Ugwu et al. (2021b) studied the effects of MHD flow on convective fluids 
incorporating viscous dissipation energy though it was a Newtonian fluid. This problem was analysed 
numerically using method of lines and various fluid parameter and that of the particles were obtained. 
The aim of this work is to compute the effects of continuous dusty viscous particles and conducting power-
law fluid and Darcy resistance force on the velocities and skin friction factors of both fluid phase and 
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particle phase. A linearization transformation technique is applied on these equations to transform them due 
to the nonlinear term in the momentum equation. 
 
Formulation of the Problem 
The dust particles are assumed to be electrically non-conducting, spherical in shape, and uniformly 
distributed throughout the fluid. The two plates are assumed to be electrically non-conducting. A constant 
pressure gradient is applied in the x direction  and a uniform magnetic field (Bo) is applied in the positive
y direction . Due to the infinite dimensions in the x and z directions, the physical quantities do not 

change in these directions, therefore we have ∂/∂x = ∂/∂z = 0 and the problem becomes unsteady one-
dimensional as shown in the figure below. 
 

 

Figure 1: Problem geometry and boundary conditions 
Given the governing equations, 
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Where,  
u  = velocity of the fluid     = electric conductivity of the fluid 

pu = velocity of fluid particles 
K= Stokes constant 
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0B = Magnetic field intensity 
N = number density of dust particles 
 
Non-Dimensionalisation 
Using the following dimensionless variable we non-dimensionalise equation (1) to (3). 
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Parameter expansion; 
Using parameter expansion technique, we obtain equation (5), (6) and (7)  
For 1;n   we have: 
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Again, using perturbation techniques, where 
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Therefore, substituting equation (11) into equation (8), (9) and (10) and collecting like powers of Q , we 
have that for; 
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Transformation 
Since the boundary conditions are from -1 to 1, we wish to transform it to 0 to 1; thus let, 
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Analytical solution 

Using Eigen-function expansion techniques, we obtain the solution to equation (19)- (22) as follows; 
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Where, 
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Results and Discussion 
The coupled differential Equation (12) - (16) with respect to the boundary conditions (14) and (17) are 
solved analytically using Eigen function expansion techniques. For numerical results and graphically 
representation, we considered : 

1Re = 1, L = 0.1,  = 1, Ha = 0.1,S = 1,  = 1,  = 1, Q = 0.5, n = 1, t = 1   :  
These values are kept as common in entire study except the varied values as displayed in the respective 
figures. The results obtained show the influences of the non-dimensional governing parameters, namely 
Reynold number parameter (Re), Hartmann number (Ha), Pressure gradient ( ), viscosity ratio (  ), time 
(t), for both the fluid flow and particles. 
 
Figs. 2 and 3 depicts the effects of Reynold number on both the fluid flow and the particles. It shows that 
increase in Reynold number leads to an increase in both the fluid flow and that of the particles. This is 
because Reynolds number helps to predict flow pattern in different situation, thus increase in the Reynold 
number leads to a more turbulent flow which increases both the velocity of the fluid and that of the particles. 
 
Figs. 4 and 5 depicts the effects of Hartmann number on both the fluid flow and the particles. Its shows that 
increase in Hartmann number leads to a considerable decrease the velocity of both the fluid phase and that 
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of the particle phase. This is because of its resistive effect but the fluid phase reaches its steady state faster 
than the particle phase. 
 
Figs 6 and 7 depicts the effect of pressure gradient on both the fluid phase and particle phase. Its shows that 
increase in pressure with time leads to an increase in the velocity of the fluid phase and the velocity of the 
particle phase. 
 
Figs. 8 and 9 depicts the effects of viscosity ratio on both the fluid phase and the particle phase. It shows 
that increase in viscosity ratio leads to a slight decrease in the velocity of the fluid but a considerable 
decrease in the velocity of the particles. This is because the particle phase is influenced more than the fluid 
phase. Viscosity ratio is the main parameter than governs the dusty particle motion. 
 
Figs. 10 and 11 depicts the effect of time on both the fluid phase and the particle phase. It shows that an 
increase in time leads to an increase in both the fluid phase and particle phase. This is because with time, 
heat is been generated which reduces the Lorentz force. 
 
Figs. 12 and 13 depicts the effect of the power law index. It is observed that increasing the index, n there is 
little or no change in velocity profiles of both the fluid phase and particle phase. 
 

           

 

 

Figure.2: Effects of Reynoid number on 
the fluid phase. 

Figure.3: Effects of Reynoid number on 
the particle phase. 
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Figure.4: Effects of Hartmann number on 
the fluid phase. [Ha = 0.1, 0.3, 0.5 for Red, 
Green, Blue] 

Figure.5: Effects of Hartmann number on 
the particle phase. [Ha = 0.1, 0.3, 0.5 for 
Red, Green, Blue] 

Figure.6: Effects of pressure gradient on 
the fluid phase.  

 

Figure.7: Effects of pressure gradient on 
the particle phase.  
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Figure.8: Effects of viscosity ratio on the 
fluid phase. 

Figure.9: Effects of viscosity ratio on the 
particle phase.  

 

Figure.10: Effects of time on the fluid 
phase.  

Figure.11: Effects of time on the particle 
phase.  
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Conclusion 
This paper presents the continuous dusty viscous particle model and non-Newtonian power law fluid flow.  
The conducting fluid was studied considering magnetic and Darcy resistance forces. The governing 
mathematical equations were solved analytically using Eigen function expansion techniques and were 
analyses using MAPLE software. The effects of some governing parameters on the flow are presented 
graphically and discussed. The findings are summarized as follows; 

1. Increase in Reynold number leads to an increase in both the fluid flow and that of the particles. 
2. Increase in Hartmann number leads to a considerable decrease the velocity of both the fluid phase 

and that of the particle phase. 
3. Increase in pressure with time leads to an increase in the velocity of the fluid phase and the velocity 

of the particle phase. 
4. Increase in viscosity ratio leads to a slight decrease in the velocity of the fluid but a considerable 

decrease in the velocity of the particles. 
5. Increase in time leads to an increase in both the fluid phase and particle phase. 
6. Increasing the index, n there is little or no change in velocity profiles of both the fluid phase and 

particle phase. 
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