
 

 

 

International Journal of Computing and Digital Systems 
ISSN (2210-142X)  

Int. J. Com. Dig. Sys. 10, No.1 (Jan-2021) 

 

 

E-mail: yoksa77@gmail.com, onwukaliz@futminna.edu.ng, agajojul@gmail.com, carol@futminna.edu.ng, achonu@futminna.edu.ng 

  http://journals.uob.edu.bh 

 

VLSI Design of a Processor for Discrete Wavelet Packet  

and Hilbert Transforms  

 

Peter Yusuf Dibal1, Elizabeth N. Onwuka2, James Agajo3, Caroline O. Alenoghena2  

and Achonu Adejo2 
 

1 Computer Engineering Department, University of Maiduguri, Maiduguri, Nigeria  
2Telecommunications Engineering Department, Federal University of Technology Minna, Minna, Nigeria  

2Computer Engineering Department, Federal University of Technology Minna, Minna, Nigeria  

 

Received 12 Mar. 2020, Revised 31 Jul. 2020, Accepted 5 Aug. 2020, Published 1 Jan. 2021 

 

 

Abstract: Very Large Scale Integration (VLSI) design is a technological advancement in electronics that has widely shortened the 

window from concept to a working prototype in any design. It has also made it possible to design and develop sophisticated and 

intelligent electronic systems which are easily adaptable to any field of human endeavor with relative ease. In this paper, the VLSI 

design of a processor system is presented, which implements two transforms i.e. the discrete wavelet packet, and the Hilbert transforms. 

The combination of these two transforms in a single processor makes it possible to have a system with enhanced sub-band frequency 

edge detection in a wideband signal and other specialized areas, which is very useful in such specialized areas of application as spectrum 

sensing in cognitive radio networks. The results obtained from the simulation and design verification of the processor system showed 

the effectiveness of the design methodology presented in this paper. As a matter of fact, the arithmetic operators designed in this paper 

outperformed the arithmetic operators of the Xilinx IP CORE when compared in terms of speed. From the results obtained, it was clear 

that the processor design performed as expected, at a great speed. 
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1. INTRODUCTION  

Processor design is important in the electronics world; 

it makes it possible to design and develop electronic 

systems and devices, which have practical and viable 

applications in solving real-life problems. The design 

approach for processors varies based on the expected 

functionality of the processor. It could range from simple, 

medium, to complex processors. Also, depending on the 

level of complexity of the processor, the associated tools 

for the design vary in sophistication. Simple and medium 

range processors usually perform a limited number of 

tasks, and are thus said to be application-specific, while 

the complex range processors perform a large number of 

tasks, which spread across different applications, and are 

thus said to be non-application-specific. This paper 

focuses on the design of a processor of the medium range 

category, which will be used to perform Discrete Wavelet 

Packet Transform (DWPT) function enhanced with a 

Hilbert transform (HT). The output of the DWPT stage of 

the design will be enhanced for better signal representation 

by passing it through a Hilbert transform stage. We refer 

to our work in [1] for exactly how this enhancement is 

achieved mathematically. 

To realize the objective of this paper, two design 

approach will be used. The first design approach is the 

lifting step, which will be used in the processor-design-

implementation of the DWPT transform. The second 

design approach is the Finite Impulse Response (FIR) 

filter design, which will be used to perform the processor-

design-implementation of the Hilbert transform. As stated 

earlier, the tools employed in the design of processors vary 

in sophistication and level of complexity. For the design 

in this paper, the tool of choice is the VHSIC (Very High 

Speed Integrated Circuit) Hardware Description Language 

(VHDL). VHDL is a powerful, independent, portable, and 

reusable language, which is used in the design of medium 

to complex range processors [2]. It allows the description 

of the behavior of an electronic device from which the 

physical circuit can be realized. Further information on 

VHDL can be found in [3]–[5].  Once the circuit is 

realized, it can then be implemented on a Complex 

Programmable Logic Device (CPLD) or Field 
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Programmable Gate Array (FPGA). In this paper, the 

target device is an FPGA. 

A. Review of Related Works in Wavelet Processor 

Design 

Quite a number of research has been done in the 

development of processors for wavelet transforms; the 

authors in [6]  proposed a wavelet processor based on the 

lifting scheme that had no multipliers but with reduced 

complexity, it however has low efficiency in area 

requirements. An efficient dual mode Integer Haar Lifting 

Wavelet Transform (IHLWT) was proposed in [7],  which 

had reduced requirements by exploiting arithmetic 

operations redundancies involved with IHLWT 

computations; the architecture was also multiplier-free and 

performed IHLWT with a single adder and subtractor. In 

[8], the authors proposed a DWT architecture based on 

word serial pipeline and parallel filter processing in which 

high and low-pass filters were used concurrently at each 

level; this approach made the design work twice faster 

than most traditional designs. Using residue number 

system, the authors in [9] proposed the design of a 2-

dimensional DWT processor. A symmetric extension 

scheme was employed by the design to reduce distortion 

at image boundaries. 

B. Review of Related Works in Hilbert Transform 

Processor Design 

In the design of Hilbert transform processors, authors have 

used different approaches to realize their objectives. As an 

example, the authors in [9] proposed a low power and fast 

reconfigurable Hilbert transform processor based on ripple 

carry adder and carry save adder thereby bypassing 

multipliers; power reduction was achieved by turning off 

adders when the multiplier operands were zero. Using fast 

Fourier transform (FFT), the authors in [10] designed a HT 

processor by multiplication with +j and –j in the frequency 

domain; an efficient signal flow graph was developed in 

the design by utilizing decimation-in-frequency and 

decimation-in-time approach. For approximations in 

image applications based on HT, the authors in [11] 

proposed a model that exploited the symmetry and 

alternating zero-valued coefficients of an HT-FIR filter in 

the generation of in-phase and quadrature components that 

were essential for envelope computation. The target FPGA 

for their design was the Stratix IV FPGA on a Terasic 

DE4-230 board. The authors implemented a hardware for 

computing the instantaneous frequency of a 

phonocardiogram using discrete HT. Their design 

involved the use of a system level modeling tool for DSP, 

a System Generator provided by Xilinx in Simulink to 

achieve a faster design cycle. The results obtained from 

their design were similar to those computed using 

MATLAB.  

The rest of this paper is organized as follows: we 

review in section 2, the DWPT and the mechanism by 

which it decomposes a signal alongside an analysis of the 

DWPT lifting steps. Section 3 presents the implementation 

of the floating point arithmetic operations that will be used 

in the lifting steps; the implementation involves the use of 

logic gates and buffers. In section 4, the Hilbert transform 

is presented with its design using FIR filter technique; in 

section 5, a complex finite-state-machine (CFSM) design 

of the wavelet processor stage is shown; the design in this 

section is based on the lifting steps in section 2. Section 6 

presents the design of the Hilbert transformer stage of the 

processor; this section builds on section 4 and also utilizes 

a CFSM in the design, while section 7 presents the 

simulation of the designs made, the verification of the 

designs, and also performance measurement. Finally, a 

conclusion is presented in section 8. 
 

2. DISCRETE  WAVELET PACKET 

TRANSFORM (DWPT) 

In signal processing, DWPT belongs to the category of 

wavelet transforms. It operates by representing known and 

unknown signal features through wavelet basis. DWPT 

can be viewed as a generalization of the wavelet transform, 

and it uses filter banks arranged in a tree structure format 

when implementing a wavelet algorithm. A typical 

example of a DWPT tree is shown in Fig. 1[12], where the 

decomposition of a signal is implemented by a low-pass 

(H) and high-pass filter (G) pairs i.e. H-G pairs. Each 

parent node decomposing an input signal in Fig. 1 is split 

into two subspaces jnW , which has the property of 

orthogonality, and is mathematically expressed as:  

, 2 , 1 2 1, 1n j n j n jW W W      (1) 

where n is a nonnegative integer, j is the decomposition 

level, and  is orthogonal addition. The wavelet packet 

coefficients
2

1[ ]
p

l n 
 are generated using the scaling filter, 

and the coefficients
2 1

1 [ ]
p

l n 


 are generated using the 

wavelet filter. The coefficients are mathematically 

expressed as [12]: 

   2
1 2 [ ] 2 , 0,1,..., 1
p p

l l
k

n h k n k n N          (2) 
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p p

l l
k
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where  kh is the low-pass filter,  kg is the high-pass 

filter, and p is the position at level l. For the signal in each 

subband channel, the energy is calculated as [13]–[15]: 
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where cj,k is scaling function coefficient, dj,k is the wavelet 

function coefficient. 

 
Figure 1. Analysis filter bank of a wavelet packet 

 
According to [16], the decomposition functions in (2) 

and (3) can be factored into lifting steps for an orthogonal 

Daubechies wavelet with 4 vanishing moments (Db4) as 

shown below in (6): 
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 (6) 

where  1js n is the updated value at the next iteration (H 

filter output of Fig. 1), and  1jd n is the predicted value 

at the next iteration (G filter output in Fig. 1). The lifting 

steps in (6) is the basis by which the DWPT stage of the 

processor will be designed, and its close inspection reveals 

that the incoming signal  js n is composed of several data 

points upon which the lifting steps act to achieve discrete 

wavelet packet transformation of the incoming signal.  

For the design in this paper, each of these data points 

will be represented using the IEEE-754 single precision 

floating point representation. The IEEE-754 single 

precision floating point representation of numbers is a 32-

bit format representation, consisting of 1-bit sign 

representation, 8-bit exponent representation, and 23-bit 

mantissa representation. The structure of the IEEE-754 

single precision floating point format is shown in Fig. 

2[17]. 

 
 

Figure 2. IEEE-754 floating point single precision data format 
 

As an example of this data format, we present in Table 

1, the IEEE-754 single precision floating point 

representation for three samples of an input data. 

TABLE I.  IEEE-754 SINGLE PRECISION FLOATING POINT DATA 

REPRESENTATION 

S/N Input 

Data 

 
IEEE-754 single precision floating point 

representation 

1 0.5377 
 

00111111000010011010011010110101 
2 1.8339 

 
00111111111010101011110100111100 

3 -2.2588 
 

11000000000100001001000000101110 

 

 

A. Analysis of DWPT Lifting Steps 

A close inspection of (6) reveals that there are three 

fundamental arithmetic operations involved in the 

realization of the lifting steps. These are: multiplication, 

addition, and subtraction. Owing to the IEEE-754 single 

precision floating point representation of the data points in 

 js n , the arithmetic operations will be floating point in 

nature; thus the multiplication operation will be IEEE-754 

single precision floating point multiplication, the addition 

will be IEEE-754 single precision floating point addition, 

and the subtraction will be IEEE-754 single precision 

floating point subtraction.  

To perform floating point multiplication on a pair of 

32-bit numbers A and B using the structure shown in Fig. 

2, different operations are performed on the constituent 

parts of the numbers i.e. sign bit, exponent bits, and 

mantissa bits [18], [19]. We propose the algorithm to 

achieve this multiplication in Algorithm 1, where s1, e1, 

and m1 are the sign bit, exponential bits, and mantissa bits 

of the first number A, and s2, e2, and m2 are the sign bit, 

exponential bits, and mantissa bits of the second number 

B. 
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Algorithm 1: IEEE-754 Floating Point Unit Multiplier Algorithm 

1 Initialize s1, e1, m1, s2, e2, m2, overflow 
2 XOR [ s1, s2 ]  product_sign_bit 
3 Add [ e2,  (e1 – 127) ]   product_exponent 
4 Append [ 1 , m1 ]  intermediate_m1 
5 Append [1 , m2 ] intermediate_m2 
6 Multiply [ intermediate_m1, intermediate_m2 ]  product_mantissa 
7 If product_exponent > 255 

8  1 Assert overflow 

9  2 Product_sign_bit  final_sign_bit 
10  3 Assert final_product(30 down to 0) 

11  4 Append  [ final_sign_bit ,  final_product(30 down to 0) ] final_product(31 down to  0) 
12 End    

13 If product_mantissa(47) == 1 

14  1 product_mantissa(46 downto 24)   normalized_mantissa 
15  2 Add [ 1, product_exponent ]  final_exponent 
16  3 Append [ product_sign_bit, final_exponent, normalized_mantissa ]   final_product(31 down to  0) 
17 Else   

18  1 Product_mantissa( 45 downto 23 )    normalized_mantissa 
19  2 Append [ product_sign_bit, product_exponent, normalized_mantissa ]   final_product(31 down to  0) 
20 End    

 

For floating point addition and subtraction, operations will 

also be performed on the sign bit, exponential bits, and 

mantissa bits of both numbers A and B [19], [20].  

We propose the algorithm shown in Algorithm 2 which is 

used to achieve floating point addition and subtraction. 

 
Algorithm 2: IEEE754 - Floating Point Unit Addition and Subtraction Algorithm 

1 Initialize s1, e1, m1, s2, e2, m2  31 Begin: mantissaProcess  
2 If e1 == e2  32 If xor ( s1, s2 ) == 0  

3  1 Jump to mantissaProcess  33  1 Add ( m1, m2 )   Result_mantissa 
4 End   34  2 OR ( s1, s2 )   Result_sign 
5 If e1 > e2  35 Else if ( m1 >= m2 )  

6  1 Sub ( e1, e2 )   exp_diff  36  1 Sub ( m1, m2 )    Result_mantissa 
7  2 If exp_diff > 23  37  2 s1   Result_sign 
8  1 Result_mantissa   m1  38 Else if ( m1 < m2 )  

9  2 Result_sign   s1  39  1 Sub ( m2, m1 )    Result_mantissa 
10  3 Result_exponent   e1  40  2 s2   Result_sign 
11  4 Jump to exitProcess  41 End if  

12  3 Else   42 End: mantissaProcess  

13  1 m2 ( 24 downto exp_diff )   m2 

(exp_diff downto 0 ) 

43 If ( Result_mantissa == 0 )  

14  2 0   m2 ( 24: sub ( 25, exp_diff ) ) 44  1 0   Result_mantissa 
15  3 Jump to mantissaProcess  45  2 0   Result_exponent 
16  4 End if  46  3 Jump to exitProcess 

17 End if  47 Else if ( Result_mantissa(24) == 1 ) 

18 If e2 > e1  48  1 Append (0, Result_mantissa(24:1)   Result_mantissa 
19  1 Sub ( e2, e1 )  exp_diff  49  

20  2 If exp_diff > 23  50  2 Add ( exponent, 1 ) 

21  1 Result_mantissa   m2  51  3 Jump to exitProcess 

22  2 Result_sign   s2  52 Else if ( Result_mantissa(23) == 0 ) 

23  3 Result_exponent   e2  53  1 Begin loop for j from 0 to 22 

24  4 Jump to exitProcess  54  1  If Result_mantissa(j) == 1 

25  3 Else   55  1 Result_mantissa(j+1:0)   

Result_mantissa(24: sub(23, j) 26  1 m1 ( 24 downto exp_diff )   m1 

(exp_diff downto 0 ) 

56  

27  2 0   m2 ( 24: sub ( 25, exp_diff ) ) 57  2 0 Result_mantissa(22-j: 0) 
28  3 Jump to mantissaProcess  58  3 (Result_exponent – 23) + j 

Result_exponent    29  4 End if  59  

30 End if  60  2 End if 

   61  2 End loop 

   62 End if  

   63 Begin: exitProcess  
   64  1 Result_sign    final_result(31) 
   65  2 Result_exponent   final_result(30:23) 
   66  3 Result_mantissa(22:0)  final_result (22:0) 
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   67 End: exitProcess  

 

3. IMPLEMENTATION OF LIFTING STEPS USING 

FLOATING POINT ARITHMETIC  

The lifting steps in (6), consists of three fundamental 

arithmetic operations which are multiplication, addition, 

and subtraction. All these operations are floating point in 

nature due to the data representation of the incoming 

signal. To design the architecture of the processor based 

on this lifting steps, it is important to analyze the lifting 

steps in details, and this done as follows: 

 

 The first line in the lifting steps involves splitting 

the incoming signal values into even and odd 

components based on their index values. Each 

odd-indexed signal values are then multiplied by 

the square root of 3 and then added to the even 

values to get the first preliminary “update” value 

of the lifting step.  

 In the second line of the lifting steps, we multiply 

the updated values in (i) above by a factor of 

3 4 and subtract the product from the odd-

indexed signal values in the original signal. We 

also multiply the unit delayed values of the 

updated values in (i) above by a factor of 

 3 2 4 and then subtract the product from the 

odd-indexed signal values in the original signal. 

The final result is the first preliminary “predict” 

value of the lifting step.  

 In the third line of the lifting step, we compute the 

difference between the first preliminary updated 

values and the first preliminary predicted values to 

obtain the second preliminary updated values. 

 The fourth line of the lifting step involves the 

multiplication of the second preliminary “update” 

values by a factor of  3 1 2 to obtain the 

final “update” values for the current level of 

iteration.  

 In the fifth line of the lifting scheme, the first 

preliminary “predict” value is multiplied by a 

factor of  3 1 2  to obtain the final 

“predict” values for the current level of iteration. 

To efficiently implement the lifting steps using floating 

point arithmetic based on the analysis above, it is 

imperative to split all the operations in (6) into what we 

call distinct atomic operations, and associate each atomic 

operation with an atomic instruction. Each atomic 

instruction would thus cause a specific atomic operation to 

be executed by the processor, and then the wavelet 

transform of the input signal will be computed by gluing 

the atomic operations together at different levels during 

the progressive computation of the transform as defined in 

the relationship in (6). 

From the foregoing therefore, the following atomic 

instructions are proposed as shown in Table 2, alongside 

the arithmetic operations they perform. Table 2 actually 

shows the relationship between the control unit and the 

data path of the processor to be designed. The atomic 

instructions will be handled by the control unit of the 

processor while the atomic operations will be handled by 

the datapath of the processor. Each of the atomic 

instructions actually represents a control signal issued 

from the control unit of the processor, and for each atomic 

instruction, there will be a corresponding status signal 

from the datapath which will tell the control unit that a 

particular operation has been executed. The control unit 

will then issue the next atomic instruction for the next 

atomic operation to be executed. This will continue till the 

control unit issues all the atomic instructions.  

TABLE II.  ATOMIC INSTRUCTIONS WITH CORRESPONDING ATOMIC OPERATIONS 

SN Atomic Instruction Atomic Operation SN Atomic 
Instruction 

Atomic Operation 

1 Ld_reg_2n x2n_reg ← x_input(2n) 8 Ld_diff_one diff_one_reg ← x2np1_reg - rt3b4_sjp1_1_reg 

2 Ld_reg_2np1 x2np1_reg ← x_input(2n+1) 9 Ld_djp1_1 djp1_1_reg ← diff_one_reg - 
rt3m2b4_sjp1_1_lsh_reg 

3 Ld_reg_rt3_2np1 
rt3_2np1_reg ←  3   x2np1_reg 

10 
Rsh_djp1_1 

djp1_1_rsh_reg(n) ← djp1_1_reg(n+1) 
djp1_1_rsh_reg ← 0 & djp1_1_rsh_reg 

4 Ld_reg_sjp1_1 sjp1_1_reg ← x2n_reg + rt3_2np1_reg 11 Ld_sjp1_2 sjp1_2_reg ← sjp1_1_reg + djp1_1_rsh_reg 

5 Ld_reg_rt3b4_sjp1_1 
rt3b4_sjp1_1_reg ←  3 4   sjp1_1_reg 

12 Ld_update 
update_reg ←  3 1 2 

  
  sjp1_2_reg 

6 
Lsh_sjp1_1 

sjp1_1_lsh_reg(n) ← sjp1_1_reg(n-1) 
sjp1_1_lsh_reg ← sjp1_1_lsh_reg & 0 

13 Ld_predict 
predict_reg ←  3 1 2 

  
   djp1_1_reg 
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7 Ld_rt3m2b4_sjp1_1_lsh 
rt3m2b4_sjp1_1_lsh_reg ←  3 2 / 4 

  
   

sjp1_1_lsh_reg 

   

 
From Table 2, there will be 13 atomic instructions or 

control signals, and for each of these, there will 13 status 

signals indicating the completion of an atomic operation 

by the datapath. With such a large number of information-

exchange between the control unit and the datapath, it is 

clear an RT (register transfer)-level approach will not be 

powerful in designing the processor. The reason is because 

an RT-level design requires the direct connection of 

standard components like memories, registers, and 

counters to obtain desired system functionality; this 

approach is ideal for small designs characterized by 

standard functionalities. The design in this paper is a 

custom design and has non-standard functionality; hence 

it is imperative to use a complex finite state machine 

(CFSM). The design of the processor using CFSM will be 

discussed in Section 6 after an analysis of the design of the 

Hilbert transformer in Section 4. 

4. HILBERT TRANSFORM  

The Hilbert transform in signal analysis is a technique 

that is applied in diverse fields of engineering and science 

including diagnosis and detection of faults in gear boxes, 

communication systems, and QRS-wave detection in 

biomedical engineering [21]–[23]. Hilbert transform has a 

major advantage over other transforms in the sense that it 

does not require a change of domain for its operation [24]. 

Given a real valued signal  x t , the Hilbert transform 

of such a signal is defined as the convolution of  x t  with

1 t . The parameter 1 t  is defined as the kernel of the 

Hilbert transformer. Mathematically, the Hilbert transform 

of x(t) can be expressed as [24]: 

1
( ) ( )* ( ) ( )y t h t x t x t

t
     (7) 

1 1 1 1
( ) ( ) ( )y t x d x d

t t
   

   

 

 

  
     (8) 

where h(t) is the Hilbert transformer. The coupling at 

t   is possible owing to the Cauchy principal value of 

the integral. The summation of  x t  and its Hilbert 

transform forms an analytic signal, which is expressed as: 

( ) ( ) ( )z t x t iy t      (9) 

For the Hilbert transform of  x t in (8) to be 

implemented on an FPGA, it will have to be expressed in 

terms of a Finite Impulse Response (FIR) filter. The exact 

means by which this is achieved is discussed in the 

following subsection. 

A. Finite Impulse Response Filter Design of a Hilbert 

Transformer 

Hilbert transforms can be designed using Finite 

Impulse Response (FIR) filters or Infinite Impulse 

Response (IIR) filters. However, the FIR filter approach is 

preferred over IIR filter because it guarantees that the 

stability and phase response of the filter are less sensitive 

to effects of rounding coefficients [25]. 

To design the FIR Hilbert transformer, consider the 

conceptual representation of the expression in (9) in Fig. 3 

with the real output as  rx t  and imaginary output as 

 iy t . 

 
Figure 3. Conceptual Hilbert Transformer 

 

In Fig. 3,  iy t  is the convolution of  rx t  and  h t

. This is mathematically expressed as [26]: 

     i r
k

y n h k x n k




    (10) 

The expression in (10) makes it possible to implement a 

Hilbert transformer as a discrete non-recursive FIR filter 

according to the structure shown in Fig. 4[26] where 

 rx n is the input signal,  iy n the output signal, and 

 h n the coefficients of the filter. 

 
Figure 4. FIR implementation of a k-tap Hilbert Transformer 

 
To design the Hilbert FIR transformer according to the 

structure shown in Fig. 4, we will utilize the FIR technique 

having anti-symmetric coefficients with an even number 

of taps (type III system) [27]. The reason is because even-

tap FIR Hilbert transformer is computationally efficient, 

has low complexity and latency. It should be noted that for 

the type III Hilbert transformer structure shown in Fig. 4, 

the  h k coefficients have alternate zeros. 

For an ideal lowpass filter with cut-off frequency 

2c c sw f f , the impulse response is [28]: 
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   sin ,cb n w n n n     (11) 

The expression in (11) is not realizable in hardware 

owing to the fact that  b n  spans  to . To make it 

hardware-realizable, we must truncate  b n  in such a 

manner that it will give an acceptable approximation of the 

impulse response. To achieve this, we will truncate  b n

to 1N   samples and then apply a window technique. 

Using a halfband filter approach [27], we define cw as: 

2 4 2cw       (12) 

Substituting (12) into (11) yields: 

   sin / 2 ,
2 2

N Nb n n n n      

Applying a window function  w n having a length of

1N  , we obtain the filter coefficients for  h n in Fig. 4 

as:  

      , 2 2
N Nh n b n w n n            (13) 

 
 

 
sin / 2

,
2 2

n
N Nh n w n n

n




          (14)            

The window function  w n could be Rectangular 

window, Barlett window, Hanning window, Hamming 

window, or Blackman window etc. [29], [30]. In this 

paper, the choice of our window will be Blackman window 

because it has a cosine term which reduces side lobes in a 

signal being processed [31]. This ensures less power 

wastage and increased efficiency. The Blackman 

window[29] is presented in (15). 

 
2 4

0.42 0.5cos 0.08cos ,0 1
1 1

0,

n n
n M

w n N N

otherwise

     
              




 

(15) 

where 2M N  for N even and  1 2N  for N odd. 

Exploiting the coefficient symmetry of the FIR filter 

[32], the FIR filter is designed as shown in Fig. 5a with 

negative symmetry and an even number of taps [32]. For 

the FIR filter structure shown in Fig. 5a to perform Hilbert 

transformation of  rx n , the  h k coefficients must have 

alternating zeros. Hence, the FIR filter structure is 

redesigned as shown in Fig. 5b, where the alternating zeros 

can be seen in the coefficients. The impulse response of 

the FIR Hilbert transform is also shown in Fig. 6a [32]. 

Using the relationship in (14) and (15), we compute 

values for  0h to  6h . These values are shown in Table 

3. Fig. 6b shows the impulse response of the FIR Hilbert 

transformer designed in this paper based on the computed 

coefficients in Table 3. The reader is referred to [32] for 

the analysis of signals in an FIR filter. 

 
Figure 5. FIR filter coefficient symmetry – even number of taps 

 

 
Figure. 6: Impulse response of Hilbert transformer based on FIR filter 

 

TABLE III.  FIR HILBERT  TRANFORMER COEFFICIENTS 

5. WAVELET PROCESSOR STAGE DESIGN 

USING COMPLEX FINITE STATE MACHINE 

(CFSM) 

In the design of both the wavelet processor stage and 

the FIR Hilbert transform stage, a CFSM will be used 

because of the large number of control and potential status 

signals involved in the design as shown in Table 2. Using 

either a Moore or Mealy FSM for the entire design 

becomes impractical because of the presence of circuit 

components like memory and shift operators. Hence, the 

use of CFSM is inevitable.  

In a processor design, a CFSM is a design approach in 

which the control unit is designed as an FSM, while the 

datapath is designed as an RT-level circuit [33]. The 

control unit design and the datapath design are then 

integrated together to implement complex processor 

behavior and functionalities. Table 4 shows the differences 

between the control unit and the datapath in the context of 

CFSM [33]. 

TABLE IV.  CFSM-CONTEXT BASED DIFFERENCES 

BETWEEN CONTROL UNIT AND DATA PATH 

S/N Control unit Datapath 

1 Modeled using FSM 

models 

Modeled using RT-level 

models 2 Defines clock-based 

sequencing of actions in 
datapath 

Defines synchronous and 

asynchronous transformation 
of data moving through the 

datapath blocks 

S/N 1 2 3 4 5 6 7 

Filter 

Coefficients h(0) h(1) h(2) h(3) h(4) h(5) h(6) 

Values -0.8276 0 -1.3163 0 1.3163 0 0.8276 
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The control unit operates on the basis of the values of 

the present state of the processor which includes the 

control inputs, and the incoming conditioning signals from 

the datapath. In each state, the control unit determines the 

next state to branch to, and the set of control signals 

necessary to enable the next set of concurrent operations 

to be performed by the datapath on the next rising edge of 

the clock. 

The datapath is essentially an interconnection of 

system resources as shown in Table 5, and the execution 

of operations in the datapath is enabled by the control 

signals from the control unit. The status signals from the 

datapath, gives the control unit the precise information to 

make the appropriate transition through states. 

TABLE V.  DATAPATH SYSTEM RESOURCE 

CATEGORIZATION 

S/N Resource category Resource type 

1 Functional resources Adders, multipliers, 

subtractors, dividers etc. 2 Memory resources Registers, RAM, ROM, D-
flip flops etc. 3 Interface resources Bus, steering logic, I/O pad 

etc.  
For proper coordination between the control unit and 

the datapath, synchronization is very important and this is 
achieved using clock signals. A good synchronization 
between the control unit and the datapath eliminates the 
negative effects of timing skew which causes 
unpredictability in output. Based on the atomic instructions 
and the atomic operations in Table 2, we propose the design 
of the wavelet processor stage as shown in Fig. 7 where the 
interconnection between the datapath and the control based 
on the atomic instructions and atomic operations of Table 
2 can be seen.  

6. HILBERT TRANSFORM PROCESSOR STAGE 

DESIGN USING CFSM  

Similar to the design of the wavelet stage of the 

processor, the Hilbert transform stage is also designed 

using CFSM, where the control unit is implemented using 

FSM, and the datapath is implemented using RT-level 

circuit. The complete design is shown in Fig. 8; the design 

is such that the output from the wavelet processor state is 

stored in a 16x32 bit RAM called hRAM. At each rising 

edge of the clock, the contents of hRAM are transferred 

one-by-one to a 1x32 bit register sequentially. Thus when 

the control unit is in state S0, the first content of hRAM is 

transferred to the first 1x32 bit register; when the control 

unit transits to state S1, the content of the first 1x32 

register is transferred to the second 1x32 bit register and 

so on. 

The transfer in this order is possible because unlike the 

load signal of a current state in the wavelet processor stage 

which is turned OFF when the control unit makes a 

transition to the next state, the load signal of the current in 

the Hilbert transform control unit is not turned OFF when 

there is a transition to the next state; this makes the register 

load the next data into the register associated with the 

previous state, while the current state loads the previous 

data coming from the previous state. 

By this mechanism, the Hilbert transform is able to 

perform data transfer according to the structure shown in 

Fig. 5b. As the data is transferred from one 1x32 bit 

register to the next 1x32 bit register, the necessary 

computations are performed by the floating point 

subtractors, multipliers, and adders. When the Hilbert 

transform stage of the processor completes the 

computation, it triggers the ld_reg2n_2np1 signal in the 

wavelet processor stage which begins another round of 

computation for another data set. 

7. DESIGN SIMULATION, VERIFICATION, AND 

PERFORMANCE MEASUREMENT 

In this section, the simulation of the design will be 

performed, alongside verification of the design. This 

section will also present the performance of the design 

starting with the floating point multiplier, 

adder/subtractor, the wavelet transform stage of the 

processor, and then the Hilbert transform stage. 

Table 6 shows the performance of the floating point 

multiplier designed using Algorithm 1 where it can be seen 

that the same level of performance was obtained when 

compared with the Xilinx IPCORE. The root mean 

squared error (RMSE) between the Xilinx IPCORE and 

the proposed multiplier computed using the 

relationship[34]  
2

1
ˆ(1 )

n

i
RMSE n x x


  was 0; 

where n is the number of samples, x the value obtained 

from Xilinx IPCORE, and x̂ the value from the proposed 

multiplier. However, the proposed multiplier in this paper 

was faster in the computation of the product of its input at 

650ns as shown in Fig. 9 than that of Xilinx IPCORE at 

850ns. Similarly, the floating point adder/subtractor 

designed using Algorithm 2 gave the same level of 

accuracy in comparison with the Xilinx IPCORE with an 

RMSE = 0.000000xxx as shown in Table 7. This value xxx 

of RMSE i.e. quantization error caused by the difference 

in the internal representation of floating point numbers 

between the proposed algorithm and Xilinx IPCORE is 

insignificant to cause any distortion in computation 

because it is highly accurate and competes better than 

similar algorithms[34]–[37]. Fig. 10 shows that the 

proposed adder/subtractor gave the same level of 

performance at a lesser time 450ns than the Xilinx 

IPCORE adder/subtractor time of 1150ns. 
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Figure 7. Wavelet processor stage design using CFSM 
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Figure 8. Hilbert processor stage design using CFSM 

 

TABLE VI.  COMPARISON BETWEEN PROPOSED FLOATING POINT MULTIPLIER AND XILINX IPCORE FLOATING POINT 

MULTIPLIER  

Operation Decimal Number IEEE-754 Floating Point Representation RMSE 

 Input 1 

Input 2 

 

1.2915000 00111111101001010100111111011111   
 9.3453000 01000001000101011000011001011001 

sum - xilinx IP CORE adder 12.0694549 01000001010000010001110001111100 
0.000000000  

product - proposed adder 12.0694549 01000001010000010001110001111100 

 Input 1 

Input 2 

 

-2.3682000 11000000000101111001000010010111   

  6.4152000 01000000110011010100100101010010 

sum - xilinx IP CORE adder -15.1924766 11000001011100110001010001100011 
0.000000000 

product - proposed adder -15.1924766 11000001011100110001010001100011 
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TABLE VII.  COMPARISON BETWEEN PROPOSED FLOATING POINT ADDER/SUBTRACTOR AND XILINX IPCORE FLOATING 

POINT ADDER/SUBTRACTOR 

Operation Decimal Number IEEE-754 Floating Point Representation RMSE 

 Input 1 1.2915000 00111111101001010100111111011111   

  Input 2 

sum - xilinx IP CORE adder 

9.3453000 01000001000101011000011001011001 

10.6368000 01000001001010100011000001010101 
0.000000999 

sum - proposed adder 10.6367990 01000001001010100011000001010100 

 Input 1 -2.3682000 11000000000101111001000010010111   

  Input 2 6.4152000 01000000110011010100100101010010 

difference - xilinx IP CORE 

subtractor 

4.0470000 01000000100000011000000100000110 
0.000000400 

difference - proposed subtractor 4.0470004 01000000100000011000000100000111 

 

To test the performance of the wavelet stage of the 

processor, the 32x32 bit register was populated with 32 

data points each being 32bits wide. Simulation was 

performed as shown in Fig. 11, where the wavelet stage of 

the processor can be seen computing the first update and 

predict values at the rising edge of the clock at 123250ns. 

The last or sixteenth values of the update and predict 

values were computed at 124750ns. Fig. 12 shows a 

zoomed-in view of some values computed by the wavelet 

processor stage; the values shown are for the first two and 

sixteenth values of both the update signal and predict 

signal. To get to these results, the wavelet stage performed 

all the computations in (6). 

Table 8 shows the data points that were used in testing 

the wavelet stage of the processor, alongside the complete 

computed update and predict values. To further validate 

the results obtained in Table 8, a model of the wavelet 

processor stage was developed using Simulink as shown 

in Fig. 13, and the results obtained confirm the accuracy 

of the wavelet processor stage. The update signal and the 

predict signal are fed concurrently into two versions of the 

Hilbert transform that was designed according to the 

architecture in Fig. 8. Simulation was performed as shown 

in Fig. 14, where it can be that the first Hilbert transform 

for the update and predict values were computed at 

311550ns, and the last Hilbert transform for the update and 

predict values were computed at 313050ns. A comparison 

between Fig. 11 and 14 shows that the Hilbert transform 

computations started after the completion of the wavelet 

processor stage computations. This is not unexpected 

based on the architecture proposed in Fig. 7 and 8. The 

results obtained from the simulation in Fig. 14 are shown 

in Table 9, where the Hilbert transform of the update and 

predict signals are presented. A zoomed-in view of some 

of the results obtained in Fig. 14 is shown in Fig. 15 for 

the first two values and the sixteenth value of the update 

signal and predict signal respectively. 

 

 
 

Figure 9. Floating point multiplier product computing time 
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Figure 10. Floating point adder/subtractor computing time 

 

 

 
 

Figure 11. Computation of predict and update values by wavelet stage of processor 

 

 

 
 

Figure 12. Zoomed-in view of first two and sixteenth wavelet transform values 
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TABLE VIII.  TEST DATA AND COMPUTED RESULTS FOR PROCESSOR WAVELET STAGE 

S/N 
Input signal value   

S/N IEEE-754 format Decimal 
IEEE-754 format Decimal 

0 00111111000010011010011010110101 0.5377 

U
p

d
at

e
 s

ig
n

al
 

0 00111111100101101000001111011011 1.175898 
1 00111111111010101011110100111100 1.8339 1 10111110000001000001010010001111 -0.12898 
2 11000000000100001001000000101110 -2.2588 2 10111111100010100110110100111011 -1.08145 
3 00111111010111001011100100100100 0.8622 3 00111111000001010101011001000001 0.52084 
4 00111110101000110011100111000001 0.3188 4 01000000010101100101111011010010 3.34953 
5 10111111101001110110001010110111 -1.3077 5 01000000000000111010111010011001 2.05753 
6 10111110110111100000000011010010 -0.4336 6 00111110111101111111001100000110 0.48427 
7 00111110101011110110100101000100 0.3426 7 10111101010000000010011000111011 -0.04691 
8 01000000011001010000010010000001 3.5784 8 00111111101010001100100010101110 1.31862 
9 01000000001100010011110111011001 2.7694 9 01000000000010110000111010001000 2.17276 
10 10111111101011001100100110000110 -1.3499 10 10111111001111000110100111011011 -0.73598 
11 01000000010000100011101111001101 3.0349 11 00111111110101111100011000110110 1.68573 
12 00111111001110011011001111010000 0.7254 12 00111111101001101110010001011111 1.30384 
13 10111101100000010011101010010011 -0.0631 13 00111110100001111011000101010100 0.26502 
14 00111111001101101111011010010100 0.7147 14 10111110001011010010000011011010 -0.16907 
15 
16 

10111110010100011110101110000101 
10111101111111100010100000100100 

-0.2050 
-0.1241 

15 10111111000100011000111010100001 -0.56858 

P
re

d
ic

t 
si

gn
al

 

0 00111110110111110010111110011000 0.43591 
17 00111111101111101010111001111101 1.4897 1 01000000001100100101011001001101 2.78651 
18 00111111101101000101101000011101 1.4090 2 10111111011111110100111101101001 -0.99730 
19 00111111101101010110011011001111 1.4172 3 00111110100011010111110101111101 0.27634 
20 00111111001010111110011101101101 0.6715 4 10111111110100010100110010001100 -1.63514 
21 10111111100110101000111101011100 -1.2075 5 01000000011010110110111110001100 3.67868 
22 00111111001101111001101001101011 0.7172 6 10111110000001101110111100101111 -0.13177 
23 00111111110100001010101001100101 1.6302 7 10111111000111011111110100000111 -0.61714 
24 00111110111110100101000100011010 0.4889 8 00111111010111101010110100101001 0.86982 
25 00111111100001000111000100001101 1.0347 9 10111110001101001001100001011101 -0.17636 
26 00111111001110100001011000011110 0.7269 10 10111111001001010001110010000111 -0.64496 
27 10111110100110110101011100111111 -0.3034 11 00111011011011111111100101011000 0.00366 
28 00111110100101100111101000010000 0.2939 12 00111111000011001000011000111101 0.54892 
29 10111111010010011000110001111110 -0.7873 13 10111110111010110011101100110011 -0.45943 
30 00111111011000110110111000101111 0.8884 14 10111111000110011001101111101000 -0.60003 
31 10111111100100101101010000101100 -1.1471 15 10111111101101111100000110001001 -1.43559 

 
 

A verification model based on the Hilbert FIR structure 

in Fig. 8 was developed and tested as shown in Fig. 16. A 

comparison between the results shown in Table 10 and 

Fig. 16 confirms the accuracy of the Hilbert transform 

processor stage. 
A second comparison in the context of FPGA resource 

utilization was also made between the design of the Hilbert 
transform processor presented in this paper and similar 
other designs; this is shown in Table 10 where it can be 
seen the Hilbert processor in this paper performs well in 
comparison with similar designs. 

8. CONCLUSION 

In this paper, we undertook the design of a processor 

that computed the DWPT and then the Hilbert transform 

of the DWPT of an input signal. The design approach was 

based on the lifting steps of a Db4 wavelet for the DWPT, 

and FIR technique for the Hilbert transform. Using these 

approaches, an architecture was developed for the 

processor datapath, after which the processor unit was also 

developed. The arithmetic and logic unit (ALU) of the 

datapath in Figs 7 and 8 were designed to perform three 

basic primitive arithmetic operations: multiplication, 

addition, and subtraction. These operations are floating 

point in nature based on the IEEE-754 single precision 

floating point arithmetic owing to the fact that the data 

representation in the VLSI design of the processor is also 

based on the IEEE-754 single precision floating point 

format. Simulation results were used to verify the 

performance of the processor, where the DWPT of the 

input signal was computed based on the lifting steps, and 

then the Hilbert transform of the DWPT signal was 

subsequently computed in the second stage of the 

processor. The waveform analysis of the results and the 

tabulation of the simulation results confirmed that the 

processor performed as expected. 
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Figure 13. Simulink verification model for wavelet processor stage 

 

 
 

Figure 14. Computation of the Hilbert transform of update and predict values 
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TABLE IX.  HILBERT TRANSFORM OF UPDATE AND PREDICT SIGNALS 

 S/N IEEE-754 format Decimal  IEEE-754 format Decimal 

U
p

d
at

e
 s

ig
n

al
 

0 00111111100101101000001111011011 1.17589 

H
ilb

e
rt

 t
ra

n
sf

o
rm

 

10111111011110010010000111101101 -0.97317 
1 10111110000001000001010010001111 -0.12898 00111101110110101001111010001100 0.10674 
2 10111111100010100110110100111011 -1.08145 10111111001001110001111101000010 -0.65282 
3 00111111000001010101011001000001 0.52084 10111110100001011100010101001000 -0.26127 
4 01000000010101100101111011010010 3.34953 00111110010011000001000010101000 0.19928 
5 01000000000000111010111010011001 2.05753 11000000001000111011100101010101 -2.55818 
6 00111110111101111111001100000110 0.48427 11000000101010000101001100000001 -5.26013 
7 10111101010000000010011000111011 -0.04691 11000000010001000001010111011111 -3.06383 
8 00111111101010001100100010101110 1.31862 00111111111100100010110010000010 1.89198 
9 01000000000010110000111010001000 2.17276 00111111010000000000100010111000 0.75013 

10 10111111001111000110100111011011 -0.73598 01000000000000010110001011011100 2.02164 
11 00111111110101111100011000110110 1.68573 11000000000110101000101110110000 -2.41476 
12 00111111101001101110010001011111 1.30384 10111111000010000010111101011100 -0.53198 
13 00111110100001111011000101010100 0.26502 11000000100111000001001000101110 -4.87720 
14 10111110001011010010000011011010 -0.16907 11000000011000101101100010111111 -3.54446 
15 10111111000100011000111010100001 -0.56858 01000000101111011001000111011011 5.92405 

P
re

d
ic

t 
si

gn
al

 

0 00111110110111110010111110011000 0.43591 

H
ilb

e
rt

 t
ra

n
sf

o
rm

 

10111110101110001011010101101010 -0.36075 
1 01000000001100100101011001001101 2.78651 11000000000100111001011101111111 -2.30612 
2 10111111011111110100111101101001 -0.99730 00111110100000001100111101010000 0.25158 
3 00111110100011010111110101111101 0.27634 11000000011110010110000111011101 -3.89659 
4 10111111110100010100110010001100 -1.63514 01000000010011110101100010111001 3.23979 
5 01000000011010110110111110001100 3.67868 00111110100001001111000111011000 0.25965 
6 10111110000001101110111100101111 -0.13177 00111111101001111001101010011110 1.30940 
7 10111111000111011111110100000111 -0.61714 11000000000000010110111011000010 -2.02238 
8 00111111010111101010110100101001 0.86982 11000000101110101001000101110111 -5.83025 
9 10111110001101001001100001011101 -0.17636 01000000110010001111110010100010 6.28083 

10 10111111001001010001110010000111 -0.64496 11000000110000010001101001110110 -6.03448 
11 00111011011011111111100101011000 0.00366 01000000101101100110111011101010 5.70103 
12 00111111000011001000011000111101 0.54892 00111111110110000101100111010100 1.69024 
13 10111110111010110011101100110011 -0.45943 00111111011100010010000111011100 0.94192 
14 10111111000110011001101111101000 -0.60003 11000000000000010001000101010100 -2.01668 
15 10111111101101111100000110001001 -1.43559 10111111111011111010101101111011 -1.87242 

 

 

 
 

Figure 15. Zoomed-in view of first two and sixteenth values of Hilbert transform 

 

TABLE X.  PERFORMANCE COMPARISON OF PROPOSED HILBERT TRANSFORM PROCESSOR WITH SIMILAR PROCESSORS 

Title of work LUTs FF IoBs BRAM Mults DSP GCLK BUF

G FPGA-Based implementation of instantaneous frequency estimation of 

phonocardiographic signals [38] 

5,555 2,168 49 2 4 - 1 - 
Embedded Hilbert transform based algorithm within an FPGA to classify 

nonlinear SDOG systems [39] 

8,511 7,078 - 26 20 - - - 

Efficient Architecture For Real Time Implementation of Hilbert Transform in 

FPGA [34] 

 

3,525 2,168 49 - - - - - 

A High Performance Pipelined Discrete Hilbert Transform Processor [40] 6,486 5,268 - - - - - - 

Ultrasound  B-Mode Back End Signal Processor on FPGA [41] 
 

2,190 883 52 134 - 21 - 1 

Proposed Hilbert Transform processor  2,597 4,536 34 - - 2 - 1 
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Figure 16. Simulink-State flow verification model for Hilbert transform 
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