

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 10, No.1 (Jan-2021)

E-mail: yoksa77@gmail.com, onwukaliz@futminna.edu.ng, agajojul@gmail.com, carol@futminna.edu.ng, achonu@futminna.edu.ng

 http://journals.uob.edu.bh

VLSI Design of a Processor for Discrete Wavelet Packet

and Hilbert Transforms

Peter Yusuf Dibal1, Elizabeth N. Onwuka2, James Agajo3, Caroline O. Alenoghena2

and Achonu Adejo2

1 Computer Engineering Department, University of Maiduguri, Maiduguri, Nigeria
2Telecommunications Engineering Department, Federal University of Technology Minna, Minna, Nigeria

2Computer Engineering Department, Federal University of Technology Minna, Minna, Nigeria

Received 12 Mar. 2020, Revised 31 Jul. 2020, Accepted 5 Aug. 2020, Published 1 Jan. 2021

Abstract: Very Large Scale Integration (VLSI) design is a technological advancement in electronics that has widely shortened the

window from concept to a working prototype in any design. It has also made it possible to design and develop sophisticated and

intelligent electronic systems which are easily adaptable to any field of human endeavor with relative ease. In this paper, the VLSI

design of a processor system is presented, which implements two transforms i.e. the discrete wavelet packet, and the Hilbert transforms.

The combination of these two transforms in a single processor makes it possible to have a system with enhanced sub-band frequency

edge detection in a wideband signal and other specialized areas, which is very useful in such specialized areas of application as spectrum

sensing in cognitive radio networks. The results obtained from the simulation and design verification of the processor system showed

the effectiveness of the design methodology presented in this paper. As a matter of fact, the arithmetic operators designed in this paper

outperformed the arithmetic operators of the Xilinx IP CORE when compared in terms of speed. From the results obtained, it was clear

that the processor design performed as expected, at a great speed.

Keywords: Processor, Discrete Wavelet Packet Transform, Hilbert Transforms, FIR Filter, Lifting Steps

1. INTRODUCTION

Processor design is important in the electronics world;

it makes it possible to design and develop electronic

systems and devices, which have practical and viable

applications in solving real-life problems. The design

approach for processors varies based on the expected

functionality of the processor. It could range from simple,

medium, to complex processors. Also, depending on the

level of complexity of the processor, the associated tools

for the design vary in sophistication. Simple and medium

range processors usually perform a limited number of

tasks, and are thus said to be application-specific, while

the complex range processors perform a large number of

tasks, which spread across different applications, and are

thus said to be non-application-specific. This paper

focuses on the design of a processor of the medium range

category, which will be used to perform Discrete Wavelet

Packet Transform (DWPT) function enhanced with a

Hilbert transform (HT). The output of the DWPT stage of

the design will be enhanced for better signal representation

by passing it through a Hilbert transform stage. We refer

to our work in [1] for exactly how this enhancement is

achieved mathematically.

To realize the objective of this paper, two design

approach will be used. The first design approach is the

lifting step, which will be used in the processor-design-

implementation of the DWPT transform. The second

design approach is the Finite Impulse Response (FIR)

filter design, which will be used to perform the processor-

design-implementation of the Hilbert transform. As stated

earlier, the tools employed in the design of processors vary

in sophistication and level of complexity. For the design

in this paper, the tool of choice is the VHSIC (Very High

Speed Integrated Circuit) Hardware Description Language

(VHDL). VHDL is a powerful, independent, portable, and

reusable language, which is used in the design of medium

to complex range processors [2]. It allows the description

of the behavior of an electronic device from which the

physical circuit can be realized. Further information on

VHDL can be found in [3]–[5]. Once the circuit is

realized, it can then be implemented on a Complex

Programmable Logic Device (CPLD) or Field

2 Peter Yusuf Dibal, et. al.: VLSI Design of a Processor for Discrete Wavelet Packet…

http://journals.uob.edu.bh

Programmable Gate Array (FPGA). In this paper, the

target device is an FPGA.

A. Review of Related Works in Wavelet Processor

Design

Quite a number of research has been done in the

development of processors for wavelet transforms; the

authors in [6] proposed a wavelet processor based on the

lifting scheme that had no multipliers but with reduced

complexity, it however has low efficiency in area

requirements. An efficient dual mode Integer Haar Lifting

Wavelet Transform (IHLWT) was proposed in [7], which

had reduced requirements by exploiting arithmetic

operations redundancies involved with IHLWT

computations; the architecture was also multiplier-free and

performed IHLWT with a single adder and subtractor. In

[8], the authors proposed a DWT architecture based on

word serial pipeline and parallel filter processing in which

high and low-pass filters were used concurrently at each

level; this approach made the design work twice faster

than most traditional designs. Using residue number

system, the authors in [9] proposed the design of a 2-

dimensional DWT processor. A symmetric extension

scheme was employed by the design to reduce distortion

at image boundaries.

B. Review of Related Works in Hilbert Transform

Processor Design

In the design of Hilbert transform processors, authors have

used different approaches to realize their objectives. As an

example, the authors in [9] proposed a low power and fast

reconfigurable Hilbert transform processor based on ripple

carry adder and carry save adder thereby bypassing

multipliers; power reduction was achieved by turning off

adders when the multiplier operands were zero. Using fast

Fourier transform (FFT), the authors in [10] designed a HT

processor by multiplication with +j and –j in the frequency

domain; an efficient signal flow graph was developed in

the design by utilizing decimation-in-frequency and

decimation-in-time approach. For approximations in

image applications based on HT, the authors in [11]

proposed a model that exploited the symmetry and

alternating zero-valued coefficients of an HT-FIR filter in

the generation of in-phase and quadrature components that

were essential for envelope computation. The target FPGA

for their design was the Stratix IV FPGA on a Terasic

DE4-230 board. The authors implemented a hardware for

computing the instantaneous frequency of a

phonocardiogram using discrete HT. Their design

involved the use of a system level modeling tool for DSP,

a System Generator provided by Xilinx in Simulink to

achieve a faster design cycle. The results obtained from

their design were similar to those computed using

MATLAB.

The rest of this paper is organized as follows: we

review in section 2, the DWPT and the mechanism by

which it decomposes a signal alongside an analysis of the

DWPT lifting steps. Section 3 presents the implementation

of the floating point arithmetic operations that will be used

in the lifting steps; the implementation involves the use of

logic gates and buffers. In section 4, the Hilbert transform

is presented with its design using FIR filter technique; in

section 5, a complex finite-state-machine (CFSM) design

of the wavelet processor stage is shown; the design in this

section is based on the lifting steps in section 2. Section 6

presents the design of the Hilbert transformer stage of the

processor; this section builds on section 4 and also utilizes

a CFSM in the design, while section 7 presents the

simulation of the designs made, the verification of the

designs, and also performance measurement. Finally, a

conclusion is presented in section 8.

2. DISCRETE WAVELET PACKET

TRANSFORM (DWPT)

In signal processing, DWPT belongs to the category of

wavelet transforms. It operates by representing known and

unknown signal features through wavelet basis. DWPT

can be viewed as a generalization of the wavelet transform,

and it uses filter banks arranged in a tree structure format

when implementing a wavelet algorithm. A typical

example of a DWPT tree is shown in Fig. 1[12], where the

decomposition of a signal is implemented by a low-pass

(H) and high-pass filter (G) pairs i.e. H-G pairs. Each

parent node decomposing an input signal in Fig. 1 is split

into two subspaces jnW , which has the property of

orthogonality, and is mathematically expressed as:

, 2 , 1 2 1, 1n j n j n jW W W    (1)

where n is a nonnegative integer, j is the decomposition

level, and  is orthogonal addition. The wavelet packet

coefficients
2

1[]
p

l n 
 are generated using the scaling filter,

and the coefficients
2 1

1 []
p

l n 


 are generated using the

wavelet filter. The coefficients are mathematically

expressed as [12]:

   2
1 2 [] 2 , 0,1,..., 1
p p

l l
k

n h k n k n N      (2)

     2 1
1 2 2 , 0,1,2,..., 1
p p

l l
k

n g k n k n N 
     (3)

where  kh is the low-pass filter,  kg is the high-pass

filter, and p is the position at level l. For the signal in each

subband channel, the energy is calculated as [13]–[15]:

 

2

, , , ,

0 0

1
T

j k j k j k j k

j j k

E c t d dt
T

 


 
  
 
 
  (4)

 Int. J. Com. Dig. Sys. 10, No.1, ..-.. (Jana-2021) 3

http://journals.uob.edu.bh

 2 2
, ,

0

1
j k j k

j j k

E c d
T



   (5)

where cj,k is scaling function coefficient, dj,k is the wavelet

function coefficient.

Figure 1. Analysis filter bank of a wavelet packet

According to [16], the decomposition functions in (2)

and (3) can be factored into lifting steps for an orthogonal

Daubechies wavelet with 4 vanishing moments (Db4) as

shown below in (6):

       

               

           

     

     

1

1

1 1 1

1 1 1

2 1 1

1 1 1

2
1 1

1
1 1

2 3 2 1

1 1
2 1 3 3 2 1

4 4

1

3 1

2

3 1

2

j jj

jj j j

j j j

j j

j j

s n s n s n

d n s n s n s n

s n s n d n

s n s n

d n d n



  

  

 

 

  



      


  






 


 (6)

where  1js n is the updated value at the next iteration (H

filter output of Fig. 1), and  1jd n is the predicted value

at the next iteration (G filter output in Fig. 1). The lifting

steps in (6) is the basis by which the DWPT stage of the

processor will be designed, and its close inspection reveals

that the incoming signal  js n is composed of several data

points upon which the lifting steps act to achieve discrete

wavelet packet transformation of the incoming signal.

For the design in this paper, each of these data points

will be represented using the IEEE-754 single precision

floating point representation. The IEEE-754 single

precision floating point representation of numbers is a 32-

bit format representation, consisting of 1-bit sign

representation, 8-bit exponent representation, and 23-bit

mantissa representation. The structure of the IEEE-754

single precision floating point format is shown in Fig.

2[17].

Figure 2. IEEE-754 floating point single precision data format

As an example of this data format, we present in Table

1, the IEEE-754 single precision floating point

representation for three samples of an input data.

TABLE I. IEEE-754 SINGLE PRECISION FLOATING POINT DATA

REPRESENTATION

S/N Input

Data

IEEE-754 single precision floating point

representation

1 0.5377

00111111000010011010011010110101
2 1.8339

00111111111010101011110100111100

3 -2.2588

11000000000100001001000000101110

A. Analysis of DWPT Lifting Steps

A close inspection of (6) reveals that there are three

fundamental arithmetic operations involved in the

realization of the lifting steps. These are: multiplication,

addition, and subtraction. Owing to the IEEE-754 single

precision floating point representation of the data points in

 js n , the arithmetic operations will be floating point in

nature; thus the multiplication operation will be IEEE-754

single precision floating point multiplication, the addition

will be IEEE-754 single precision floating point addition,

and the subtraction will be IEEE-754 single precision

floating point subtraction.

To perform floating point multiplication on a pair of

32-bit numbers A and B using the structure shown in Fig.

2, different operations are performed on the constituent

parts of the numbers i.e. sign bit, exponent bits, and

mantissa bits [18], [19]. We propose the algorithm to

achieve this multiplication in Algorithm 1, where s1, e1,

and m1 are the sign bit, exponential bits, and mantissa bits

of the first number A, and s2, e2, and m2 are the sign bit,

exponential bits, and mantissa bits of the second number

B.

4 Peter Yusuf Dibal, et. al.: VLSI Design of a Processor for Discrete Wavelet Packet…

http://journals.uob.edu.bh

Algorithm 1: IEEE-754 Floating Point Unit Multiplier Algorithm

1 Initialize s1, e1, m1, s2, e2, m2, overflow
2 XOR [s1, s2]  product_sign_bit
3 Add [e2, (e1 – 127)]  product_exponent
4 Append [1 , m1]  intermediate_m1
5 Append [1 , m2] intermediate_m2
6 Multiply [intermediate_m1, intermediate_m2]  product_mantissa
7 If product_exponent > 255

8 1 Assert overflow

9 2 Product_sign_bit  final_sign_bit
10 3 Assert final_product(30 down to 0)

11 4 Append [final_sign_bit , final_product(30 down to 0)] final_product(31 down to 0)
12 End

13 If product_mantissa(47) == 1

14 1 product_mantissa(46 downto 24)  normalized_mantissa
15 2 Add [1, product_exponent]  final_exponent
16 3 Append [product_sign_bit, final_exponent, normalized_mantissa]  final_product(31 down to 0)
17 Else

18 1 Product_mantissa(45 downto 23)  normalized_mantissa
19 2 Append [product_sign_bit, product_exponent, normalized_mantissa]  final_product(31 down to 0)
20 End

For floating point addition and subtraction, operations will

also be performed on the sign bit, exponential bits, and

mantissa bits of both numbers A and B [19], [20].

We propose the algorithm shown in Algorithm 2 which is

used to achieve floating point addition and subtraction.

Algorithm 2: IEEE754 - Floating Point Unit Addition and Subtraction Algorithm

1 Initialize s1, e1, m1, s2, e2, m2 31 Begin: mantissaProcess
2 If e1 == e2 32 If xor (s1, s2) == 0

3 1 Jump to mantissaProcess 33 1 Add (m1, m2)  Result_mantissa
4 End 34 2 OR (s1, s2)  Result_sign
5 If e1 > e2 35 Else if (m1 >= m2)

6 1 Sub (e1, e2)  exp_diff 36 1 Sub (m1, m2)  Result_mantissa
7 2 If exp_diff > 23 37 2 s1  Result_sign
8 1 Result_mantissa  m1 38 Else if (m1 < m2)

9 2 Result_sign  s1 39 1 Sub (m2, m1)  Result_mantissa
10 3 Result_exponent  e1 40 2 s2  Result_sign
11 4 Jump to exitProcess 41 End if

12 3 Else 42 End: mantissaProcess

13 1 m2 (24 downto exp_diff)  m2

(exp_diff downto 0)

43 If (Result_mantissa == 0)

14 2 0  m2 (24: sub (25, exp_diff)) 44 1 0  Result_mantissa
15 3 Jump to mantissaProcess 45 2 0  Result_exponent
16 4 End if 46 3 Jump to exitProcess

17 End if 47 Else if (Result_mantissa(24) == 1)

18 If e2 > e1 48 1 Append (0, Result_mantissa(24:1)  Result_mantissa
19 1 Sub (e2, e1)  exp_diff 49

20 2 If exp_diff > 23 50 2 Add (exponent, 1)

21 1 Result_mantissa  m2 51 3 Jump to exitProcess

22 2 Result_sign  s2 52 Else if (Result_mantissa(23) == 0)

23 3 Result_exponent  e2 53 1 Begin loop for j from 0 to 22

24 4 Jump to exitProcess 54 1 If Result_mantissa(j) == 1

25 3 Else 55 1 Result_mantissa(j+1:0) 

Result_mantissa(24: sub(23, j) 26 1 m1 (24 downto exp_diff)  m1

(exp_diff downto 0)

56

27 2 0  m2 (24: sub (25, exp_diff)) 57 2 0 Result_mantissa(22-j: 0)
28 3 Jump to mantissaProcess 58 3 (Result_exponent – 23) + j 

Result_exponent 29 4 End if 59

30 End if 60 2 End if

 61 2 End loop

 62 End if

 63 Begin: exitProcess
 64 1 Result_sign  final_result(31)
 65 2 Result_exponent  final_result(30:23)
 66 3 Result_mantissa(22:0)  final_result (22:0)

 Int. J. Com. Dig. Sys. 10, No.1, ..-.. (Jana-2021) 5

http://journals.uob.edu.bh

 67 End: exitProcess

3. IMPLEMENTATION OF LIFTING STEPS USING

FLOATING POINT ARITHMETIC

The lifting steps in (6), consists of three fundamental

arithmetic operations which are multiplication, addition,

and subtraction. All these operations are floating point in

nature due to the data representation of the incoming

signal. To design the architecture of the processor based

on this lifting steps, it is important to analyze the lifting

steps in details, and this done as follows:

 The first line in the lifting steps involves splitting

the incoming signal values into even and odd

components based on their index values. Each

odd-indexed signal values are then multiplied by

the square root of 3 and then added to the even

values to get the first preliminary “update” value

of the lifting step.

 In the second line of the lifting steps, we multiply

the updated values in (i) above by a factor of

3 4 and subtract the product from the odd-

indexed signal values in the original signal. We

also multiply the unit delayed values of the

updated values in (i) above by a factor of

 3 2 4 and then subtract the product from the

odd-indexed signal values in the original signal.

The final result is the first preliminary “predict”

value of the lifting step.

 In the third line of the lifting step, we compute the

difference between the first preliminary updated

values and the first preliminary predicted values to

obtain the second preliminary updated values.

 The fourth line of the lifting step involves the

multiplication of the second preliminary “update”

values by a factor of  3 1 2 to obtain the

final “update” values for the current level of

iteration.

 In the fifth line of the lifting scheme, the first

preliminary “predict” value is multiplied by a

factor of  3 1 2 to obtain the final

“predict” values for the current level of iteration.

To efficiently implement the lifting steps using floating

point arithmetic based on the analysis above, it is

imperative to split all the operations in (6) into what we

call distinct atomic operations, and associate each atomic

operation with an atomic instruction. Each atomic

instruction would thus cause a specific atomic operation to

be executed by the processor, and then the wavelet

transform of the input signal will be computed by gluing

the atomic operations together at different levels during

the progressive computation of the transform as defined in

the relationship in (6).

From the foregoing therefore, the following atomic

instructions are proposed as shown in Table 2, alongside

the arithmetic operations they perform. Table 2 actually

shows the relationship between the control unit and the

data path of the processor to be designed. The atomic

instructions will be handled by the control unit of the

processor while the atomic operations will be handled by

the datapath of the processor. Each of the atomic

instructions actually represents a control signal issued

from the control unit of the processor, and for each atomic

instruction, there will be a corresponding status signal

from the datapath which will tell the control unit that a

particular operation has been executed. The control unit

will then issue the next atomic instruction for the next

atomic operation to be executed. This will continue till the

control unit issues all the atomic instructions.

TABLE II. ATOMIC INSTRUCTIONS WITH CORRESPONDING ATOMIC OPERATIONS

SN Atomic Instruction Atomic Operation SN Atomic
Instruction

Atomic Operation

1 Ld_reg_2n x2n_reg ← x_input(2n) 8 Ld_diff_one diff_one_reg ← x2np1_reg - rt3b4_sjp1_1_reg

2 Ld_reg_2np1 x2np1_reg ← x_input(2n+1) 9 Ld_djp1_1 djp1_1_reg ← diff_one_reg -
rt3m2b4_sjp1_1_lsh_reg

3 Ld_reg_rt3_2np1
rt3_2np1_reg ←  3  x2np1_reg

10
Rsh_djp1_1

djp1_1_rsh_reg(n) ← djp1_1_reg(n+1)
djp1_1_rsh_reg ← 0 & djp1_1_rsh_reg

4 Ld_reg_sjp1_1 sjp1_1_reg ← x2n_reg + rt3_2np1_reg 11 Ld_sjp1_2 sjp1_2_reg ← sjp1_1_reg + djp1_1_rsh_reg

5 Ld_reg_rt3b4_sjp1_1
rt3b4_sjp1_1_reg ←  3 4  sjp1_1_reg

12 Ld_update
update_reg ←  3 1 2 

  
 sjp1_2_reg

6
Lsh_sjp1_1

sjp1_1_lsh_reg(n) ← sjp1_1_reg(n-1)
sjp1_1_lsh_reg ← sjp1_1_lsh_reg & 0

13 Ld_predict
predict_reg ←  3 1 2 

  
  djp1_1_reg

6 Peter Yusuf Dibal, et. al.: VLSI Design of a Processor for Discrete Wavelet Packet…

http://journals.uob.edu.bh

7 Ld_rt3m2b4_sjp1_1_lsh
rt3m2b4_sjp1_1_lsh_reg ←  3 2 / 4 

  
 

sjp1_1_lsh_reg

From Table 2, there will be 13 atomic instructions or

control signals, and for each of these, there will 13 status

signals indicating the completion of an atomic operation

by the datapath. With such a large number of information-

exchange between the control unit and the datapath, it is

clear an RT (register transfer)-level approach will not be

powerful in designing the processor. The reason is because

an RT-level design requires the direct connection of

standard components like memories, registers, and

counters to obtain desired system functionality; this

approach is ideal for small designs characterized by

standard functionalities. The design in this paper is a

custom design and has non-standard functionality; hence

it is imperative to use a complex finite state machine

(CFSM). The design of the processor using CFSM will be

discussed in Section 6 after an analysis of the design of the

Hilbert transformer in Section 4.

4. HILBERT TRANSFORM

The Hilbert transform in signal analysis is a technique

that is applied in diverse fields of engineering and science

including diagnosis and detection of faults in gear boxes,

communication systems, and QRS-wave detection in

biomedical engineering [21]–[23]. Hilbert transform has a

major advantage over other transforms in the sense that it

does not require a change of domain for its operation [24].

Given a real valued signal  x t , the Hilbert transform

of such a signal is defined as the convolution of  x t with

1 t . The parameter 1 t is defined as the kernel of the

Hilbert transformer. Mathematically, the Hilbert transform

of x(t) can be expressed as [24]:

1
() ()* () ()y t h t x t x t

t
  (7)

1 1 1 1
() () ()y t x d x d

t t
   

   

 

 

  
   (8)

where h(t) is the Hilbert transformer. The coupling at

t  is possible owing to the Cauchy principal value of

the integral. The summation of  x t and its Hilbert

transform forms an analytic signal, which is expressed as:

() () ()z t x t iy t  (9)

For the Hilbert transform of  x t in (8) to be

implemented on an FPGA, it will have to be expressed in

terms of a Finite Impulse Response (FIR) filter. The exact

means by which this is achieved is discussed in the

following subsection.

A. Finite Impulse Response Filter Design of a Hilbert

Transformer

Hilbert transforms can be designed using Finite

Impulse Response (FIR) filters or Infinite Impulse

Response (IIR) filters. However, the FIR filter approach is

preferred over IIR filter because it guarantees that the

stability and phase response of the filter are less sensitive

to effects of rounding coefficients [25].

To design the FIR Hilbert transformer, consider the

conceptual representation of the expression in (9) in Fig. 3

with the real output as  rx t and imaginary output as

 iy t .

Figure 3. Conceptual Hilbert Transformer

In Fig. 3,  iy t is the convolution of  rx t and  h t

. This is mathematically expressed as [26]:

     i r
k

y n h k x n k




  (10)

The expression in (10) makes it possible to implement a

Hilbert transformer as a discrete non-recursive FIR filter

according to the structure shown in Fig. 4[26] where

 rx n is the input signal,  iy n the output signal, and

 h n the coefficients of the filter.

Figure 4. FIR implementation of a k-tap Hilbert Transformer

To design the Hilbert FIR transformer according to the

structure shown in Fig. 4, we will utilize the FIR technique

having anti-symmetric coefficients with an even number

of taps (type III system) [27]. The reason is because even-

tap FIR Hilbert transformer is computationally efficient,

has low complexity and latency. It should be noted that for

the type III Hilbert transformer structure shown in Fig. 4,

the  h k coefficients have alternate zeros.

For an ideal lowpass filter with cut-off frequency

2c c sw f f , the impulse response is [28]:

 Int. J. Com. Dig. Sys. 10, No.1, ..-.. (Jana-2021) 7

http://journals.uob.edu.bh

   sin ,cb n w n n n    (11)

The expression in (11) is not realizable in hardware

owing to the fact that  b n spans  to . To make it

hardware-realizable, we must truncate  b n in such a

manner that it will give an acceptable approximation of the

impulse response. To achieve this, we will truncate  b n

to 1N  samples and then apply a window technique.

Using a halfband filter approach [27], we define cw as:

2 4 2cw    (12)

Substituting (12) into (11) yields:

   sin / 2 ,
2 2

N Nb n n n n    

Applying a window function  w n having a length of

1N  , we obtain the filter coefficients for  h n in Fig. 4

as:

      , 2 2
N Nh n b n w n n    (13)

 
 

 
sin / 2

,
2 2

n
N Nh n w n n

n




    (14)

The window function  w n could be Rectangular

window, Barlett window, Hanning window, Hamming

window, or Blackman window etc. [29], [30]. In this

paper, the choice of our window will be Blackman window

because it has a cosine term which reduces side lobes in a

signal being processed [31]. This ensures less power

wastage and increased efficiency. The Blackman

window[29] is presented in (15).

 
2 4

0.42 0.5cos 0.08cos ,0 1
1 1

0,

n n
n M

w n N N

otherwise

     
              




(15)

where 2M N for N even and  1 2N  for N odd.

Exploiting the coefficient symmetry of the FIR filter

[32], the FIR filter is designed as shown in Fig. 5a with

negative symmetry and an even number of taps [32]. For

the FIR filter structure shown in Fig. 5a to perform Hilbert

transformation of  rx n , the  h k coefficients must have

alternating zeros. Hence, the FIR filter structure is

redesigned as shown in Fig. 5b, where the alternating zeros

can be seen in the coefficients. The impulse response of

the FIR Hilbert transform is also shown in Fig. 6a [32].

Using the relationship in (14) and (15), we compute

values for  0h to  6h . These values are shown in Table

3. Fig. 6b shows the impulse response of the FIR Hilbert

transformer designed in this paper based on the computed

coefficients in Table 3. The reader is referred to [32] for

the analysis of signals in an FIR filter.

Figure 5. FIR filter coefficient symmetry – even number of taps

Figure. 6: Impulse response of Hilbert transformer based on FIR filter

TABLE III. FIR HILBERT TRANFORMER COEFFICIENTS

5. WAVELET PROCESSOR STAGE DESIGN

USING COMPLEX FINITE STATE MACHINE

(CFSM)

In the design of both the wavelet processor stage and

the FIR Hilbert transform stage, a CFSM will be used

because of the large number of control and potential status

signals involved in the design as shown in Table 2. Using

either a Moore or Mealy FSM for the entire design

becomes impractical because of the presence of circuit

components like memory and shift operators. Hence, the

use of CFSM is inevitable.

In a processor design, a CFSM is a design approach in

which the control unit is designed as an FSM, while the

datapath is designed as an RT-level circuit [33]. The

control unit design and the datapath design are then

integrated together to implement complex processor

behavior and functionalities. Table 4 shows the differences

between the control unit and the datapath in the context of

CFSM [33].

TABLE IV. CFSM-CONTEXT BASED DIFFERENCES

BETWEEN CONTROL UNIT AND DATA PATH

S/N Control unit Datapath

1 Modeled using FSM

models

Modeled using RT-level

models 2 Defines clock-based

sequencing of actions in
datapath

Defines synchronous and

asynchronous transformation
of data moving through the

datapath blocks

S/N 1 2 3 4 5 6 7

Filter

Coefficients h(0) h(1) h(2) h(3) h(4) h(5) h(6)

Values -0.8276 0 -1.3163 0 1.3163 0 0.8276

8 Peter Yusuf Dibal, et. al.: VLSI Design of a Processor for Discrete Wavelet Packet…

http://journals.uob.edu.bh

The control unit operates on the basis of the values of

the present state of the processor which includes the

control inputs, and the incoming conditioning signals from

the datapath. In each state, the control unit determines the

next state to branch to, and the set of control signals

necessary to enable the next set of concurrent operations

to be performed by the datapath on the next rising edge of

the clock.

The datapath is essentially an interconnection of

system resources as shown in Table 5, and the execution

of operations in the datapath is enabled by the control

signals from the control unit. The status signals from the

datapath, gives the control unit the precise information to

make the appropriate transition through states.

TABLE V. DATAPATH SYSTEM RESOURCE

CATEGORIZATION

S/N Resource category Resource type

1 Functional resources Adders, multipliers,

subtractors, dividers etc. 2 Memory resources Registers, RAM, ROM, D-
flip flops etc. 3 Interface resources Bus, steering logic, I/O pad

etc.
For proper coordination between the control unit and

the datapath, synchronization is very important and this is
achieved using clock signals. A good synchronization
between the control unit and the datapath eliminates the
negative effects of timing skew which causes
unpredictability in output. Based on the atomic instructions
and the atomic operations in Table 2, we propose the design
of the wavelet processor stage as shown in Fig. 7 where the
interconnection between the datapath and the control based
on the atomic instructions and atomic operations of Table
2 can be seen.

6. HILBERT TRANSFORM PROCESSOR STAGE

DESIGN USING CFSM

Similar to the design of the wavelet stage of the

processor, the Hilbert transform stage is also designed

using CFSM, where the control unit is implemented using

FSM, and the datapath is implemented using RT-level

circuit. The complete design is shown in Fig. 8; the design

is such that the output from the wavelet processor state is

stored in a 16x32 bit RAM called hRAM. At each rising

edge of the clock, the contents of hRAM are transferred

one-by-one to a 1x32 bit register sequentially. Thus when

the control unit is in state S0, the first content of hRAM is

transferred to the first 1x32 bit register; when the control

unit transits to state S1, the content of the first 1x32

register is transferred to the second 1x32 bit register and

so on.

The transfer in this order is possible because unlike the

load signal of a current state in the wavelet processor stage

which is turned OFF when the control unit makes a

transition to the next state, the load signal of the current in

the Hilbert transform control unit is not turned OFF when

there is a transition to the next state; this makes the register

load the next data into the register associated with the

previous state, while the current state loads the previous

data coming from the previous state.

By this mechanism, the Hilbert transform is able to

perform data transfer according to the structure shown in

Fig. 5b. As the data is transferred from one 1x32 bit

register to the next 1x32 bit register, the necessary

computations are performed by the floating point

subtractors, multipliers, and adders. When the Hilbert

transform stage of the processor completes the

computation, it triggers the ld_reg2n_2np1 signal in the

wavelet processor stage which begins another round of

computation for another data set.

7. DESIGN SIMULATION, VERIFICATION, AND

PERFORMANCE MEASUREMENT

In this section, the simulation of the design will be

performed, alongside verification of the design. This

section will also present the performance of the design

starting with the floating point multiplier,

adder/subtractor, the wavelet transform stage of the

processor, and then the Hilbert transform stage.

Table 6 shows the performance of the floating point

multiplier designed using Algorithm 1 where it can be seen

that the same level of performance was obtained when

compared with the Xilinx IPCORE. The root mean

squared error (RMSE) between the Xilinx IPCORE and

the proposed multiplier computed using the

relationship[34]  
2

1
ˆ(1)

n

i
RMSE n x x


  was 0;

where n is the number of samples, x the value obtained

from Xilinx IPCORE, and x̂ the value from the proposed

multiplier. However, the proposed multiplier in this paper

was faster in the computation of the product of its input at

650ns as shown in Fig. 9 than that of Xilinx IPCORE at

850ns. Similarly, the floating point adder/subtractor

designed using Algorithm 2 gave the same level of

accuracy in comparison with the Xilinx IPCORE with an

RMSE = 0.000000xxx as shown in Table 7. This value xxx

of RMSE i.e. quantization error caused by the difference

in the internal representation of floating point numbers

between the proposed algorithm and Xilinx IPCORE is

insignificant to cause any distortion in computation

because it is highly accurate and competes better than

similar algorithms[34]–[37]. Fig. 10 shows that the

proposed adder/subtractor gave the same level of

performance at a lesser time 450ns than the Xilinx

IPCORE adder/subtractor time of 1150ns.

 Int. J. Com. Dig. Sys. 10, No.1, ..-.. (Jana-2021) 9

http://journals.uob.edu.bh

Figure 7. Wavelet processor stage design using CFSM

10 Peter Yusuf Dibal, et. al.: VLSI Design of a Processor for Discrete Wavelet Packet…

http://journals.uob.edu.bh

Figure 8. Hilbert processor stage design using CFSM

TABLE VI. COMPARISON BETWEEN PROPOSED FLOATING POINT MULTIPLIER AND XILINX IPCORE FLOATING POINT

MULTIPLIER

Operation Decimal Number IEEE-754 Floating Point Representation RMSE

 Input 1

Input 2

1.2915000 00111111101001010100111111011111
 9.3453000 01000001000101011000011001011001

sum - xilinx IP CORE adder 12.0694549 01000001010000010001110001111100
0.000000000

product - proposed adder 12.0694549 01000001010000010001110001111100

 Input 1

Input 2

-2.3682000 11000000000101111001000010010111

 6.4152000 01000000110011010100100101010010

sum - xilinx IP CORE adder -15.1924766 11000001011100110001010001100011
0.000000000

product - proposed adder -15.1924766 11000001011100110001010001100011

 Int. J. Com. Dig. Sys. 10, No.1, ..-.. (Jana-2021) 11

http://journals.uob.edu.bh

TABLE VII. COMPARISON BETWEEN PROPOSED FLOATING POINT ADDER/SUBTRACTOR AND XILINX IPCORE FLOATING

POINT ADDER/SUBTRACTOR

Operation Decimal Number IEEE-754 Floating Point Representation RMSE

 Input 1 1.2915000 00111111101001010100111111011111

 Input 2

sum - xilinx IP CORE adder

9.3453000 01000001000101011000011001011001

10.6368000 01000001001010100011000001010101
0.000000999

sum - proposed adder 10.6367990 01000001001010100011000001010100

 Input 1 -2.3682000 11000000000101111001000010010111

 Input 2 6.4152000 01000000110011010100100101010010

difference - xilinx IP CORE

subtractor

4.0470000 01000000100000011000000100000110
0.000000400

difference - proposed subtractor 4.0470004 01000000100000011000000100000111

To test the performance of the wavelet stage of the

processor, the 32x32 bit register was populated with 32

data points each being 32bits wide. Simulation was

performed as shown in Fig. 11, where the wavelet stage of

the processor can be seen computing the first update and

predict values at the rising edge of the clock at 123250ns.

The last or sixteenth values of the update and predict

values were computed at 124750ns. Fig. 12 shows a

zoomed-in view of some values computed by the wavelet

processor stage; the values shown are for the first two and

sixteenth values of both the update signal and predict

signal. To get to these results, the wavelet stage performed

all the computations in (6).

Table 8 shows the data points that were used in testing

the wavelet stage of the processor, alongside the complete

computed update and predict values. To further validate

the results obtained in Table 8, a model of the wavelet

processor stage was developed using Simulink as shown

in Fig. 13, and the results obtained confirm the accuracy

of the wavelet processor stage. The update signal and the

predict signal are fed concurrently into two versions of the

Hilbert transform that was designed according to the

architecture in Fig. 8. Simulation was performed as shown

in Fig. 14, where it can be that the first Hilbert transform

for the update and predict values were computed at

311550ns, and the last Hilbert transform for the update and

predict values were computed at 313050ns. A comparison

between Fig. 11 and 14 shows that the Hilbert transform

computations started after the completion of the wavelet

processor stage computations. This is not unexpected

based on the architecture proposed in Fig. 7 and 8. The

results obtained from the simulation in Fig. 14 are shown

in Table 9, where the Hilbert transform of the update and

predict signals are presented. A zoomed-in view of some

of the results obtained in Fig. 14 is shown in Fig. 15 for

the first two values and the sixteenth value of the update

signal and predict signal respectively.

Figure 9. Floating point multiplier product computing time

12 Peter Yusuf Dibal, et. al.: VLSI Design of a Processor for Discrete Wavelet Packet…

http://journals.uob.edu.bh

Figure 10. Floating point adder/subtractor computing time

Figure 11. Computation of predict and update values by wavelet stage of processor

Figure 12. Zoomed-in view of first two and sixteenth wavelet transform values

 Int. J. Com. Dig. Sys. 10, No.1, ..-.. (Jana-2021) 13

http://journals.uob.edu.bh

TABLE VIII. TEST DATA AND COMPUTED RESULTS FOR PROCESSOR WAVELET STAGE

S/N
Input signal value

S/N IEEE-754 format Decimal
IEEE-754 format Decimal

0 00111111000010011010011010110101 0.5377

U
p

d
at

e
 s

ig
n

al

0 00111111100101101000001111011011 1.175898
1 00111111111010101011110100111100 1.8339 1 10111110000001000001010010001111 -0.12898
2 11000000000100001001000000101110 -2.2588 2 10111111100010100110110100111011 -1.08145
3 00111111010111001011100100100100 0.8622 3 00111111000001010101011001000001 0.52084
4 00111110101000110011100111000001 0.3188 4 01000000010101100101111011010010 3.34953
5 10111111101001110110001010110111 -1.3077 5 01000000000000111010111010011001 2.05753
6 10111110110111100000000011010010 -0.4336 6 00111110111101111111001100000110 0.48427
7 00111110101011110110100101000100 0.3426 7 10111101010000000010011000111011 -0.04691
8 01000000011001010000010010000001 3.5784 8 00111111101010001100100010101110 1.31862
9 01000000001100010011110111011001 2.7694 9 01000000000010110000111010001000 2.17276
10 10111111101011001100100110000110 -1.3499 10 10111111001111000110100111011011 -0.73598
11 01000000010000100011101111001101 3.0349 11 00111111110101111100011000110110 1.68573
12 00111111001110011011001111010000 0.7254 12 00111111101001101110010001011111 1.30384
13 10111101100000010011101010010011 -0.0631 13 00111110100001111011000101010100 0.26502
14 00111111001101101111011010010100 0.7147 14 10111110001011010010000011011010 -0.16907
15
16

10111110010100011110101110000101
10111101111111100010100000100100

-0.2050
-0.1241

15 10111111000100011000111010100001 -0.56858

P
re

d
ic

t
si

gn
al

0 00111110110111110010111110011000 0.43591
17 00111111101111101010111001111101 1.4897 1 01000000001100100101011001001101 2.78651
18 00111111101101000101101000011101 1.4090 2 10111111011111110100111101101001 -0.99730
19 00111111101101010110011011001111 1.4172 3 00111110100011010111110101111101 0.27634
20 00111111001010111110011101101101 0.6715 4 10111111110100010100110010001100 -1.63514
21 10111111100110101000111101011100 -1.2075 5 01000000011010110110111110001100 3.67868
22 00111111001101111001101001101011 0.7172 6 10111110000001101110111100101111 -0.13177
23 00111111110100001010101001100101 1.6302 7 10111111000111011111110100000111 -0.61714
24 00111110111110100101000100011010 0.4889 8 00111111010111101010110100101001 0.86982
25 00111111100001000111000100001101 1.0347 9 10111110001101001001100001011101 -0.17636
26 00111111001110100001011000011110 0.7269 10 10111111001001010001110010000111 -0.64496
27 10111110100110110101011100111111 -0.3034 11 00111011011011111111100101011000 0.00366
28 00111110100101100111101000010000 0.2939 12 00111111000011001000011000111101 0.54892
29 10111111010010011000110001111110 -0.7873 13 10111110111010110011101100110011 -0.45943
30 00111111011000110110111000101111 0.8884 14 10111111000110011001101111101000 -0.60003
31 10111111100100101101010000101100 -1.1471 15 10111111101101111100000110001001 -1.43559

A verification model based on the Hilbert FIR structure

in Fig. 8 was developed and tested as shown in Fig. 16. A

comparison between the results shown in Table 10 and

Fig. 16 confirms the accuracy of the Hilbert transform

processor stage.
A second comparison in the context of FPGA resource

utilization was also made between the design of the Hilbert
transform processor presented in this paper and similar
other designs; this is shown in Table 10 where it can be
seen the Hilbert processor in this paper performs well in
comparison with similar designs.

8. CONCLUSION

In this paper, we undertook the design of a processor

that computed the DWPT and then the Hilbert transform

of the DWPT of an input signal. The design approach was

based on the lifting steps of a Db4 wavelet for the DWPT,

and FIR technique for the Hilbert transform. Using these

approaches, an architecture was developed for the

processor datapath, after which the processor unit was also

developed. The arithmetic and logic unit (ALU) of the

datapath in Figs 7 and 8 were designed to perform three

basic primitive arithmetic operations: multiplication,

addition, and subtraction. These operations are floating

point in nature based on the IEEE-754 single precision

floating point arithmetic owing to the fact that the data

representation in the VLSI design of the processor is also

based on the IEEE-754 single precision floating point

format. Simulation results were used to verify the

performance of the processor, where the DWPT of the

input signal was computed based on the lifting steps, and

then the Hilbert transform of the DWPT signal was

subsequently computed in the second stage of the

processor. The waveform analysis of the results and the

tabulation of the simulation results confirmed that the

processor performed as expected.

14 Peter Yusuf Dibal, et. al.: VLSI Design of a Processor for Discrete Wavelet Packet…

http://journals.uob.edu.bh

Figure 13. Simulink verification model for wavelet processor stage

Figure 14. Computation of the Hilbert transform of update and predict values

 Int. J. Com. Dig. Sys. 10, No.1, ..-.. (Jana-2021) 15

http://journals.uob.edu.bh

TABLE IX. HILBERT TRANSFORM OF UPDATE AND PREDICT SIGNALS

 S/N IEEE-754 format Decimal IEEE-754 format Decimal

U
p

d
at

e
 s

ig
n

al

0 00111111100101101000001111011011 1.17589

H
ilb

e
rt

 t
ra

n
sf

o
rm

10111111011110010010000111101101 -0.97317
1 10111110000001000001010010001111 -0.12898 00111101110110101001111010001100 0.10674
2 10111111100010100110110100111011 -1.08145 10111111001001110001111101000010 -0.65282
3 00111111000001010101011001000001 0.52084 10111110100001011100010101001000 -0.26127
4 01000000010101100101111011010010 3.34953 00111110010011000001000010101000 0.19928
5 01000000000000111010111010011001 2.05753 11000000001000111011100101010101 -2.55818
6 00111110111101111111001100000110 0.48427 11000000101010000101001100000001 -5.26013
7 10111101010000000010011000111011 -0.04691 11000000010001000001010111011111 -3.06383
8 00111111101010001100100010101110 1.31862 00111111111100100010110010000010 1.89198
9 01000000000010110000111010001000 2.17276 00111111010000000000100010111000 0.75013

10 10111111001111000110100111011011 -0.73598 01000000000000010110001011011100 2.02164
11 00111111110101111100011000110110 1.68573 11000000000110101000101110110000 -2.41476
12 00111111101001101110010001011111 1.30384 10111111000010000010111101011100 -0.53198
13 00111110100001111011000101010100 0.26502 11000000100111000001001000101110 -4.87720
14 10111110001011010010000011011010 -0.16907 11000000011000101101100010111111 -3.54446
15 10111111000100011000111010100001 -0.56858 01000000101111011001000111011011 5.92405

P
re

d
ic

t
si

gn
al

0 00111110110111110010111110011000 0.43591

H
ilb

e
rt

 t
ra

n
sf

o
rm

10111110101110001011010101101010 -0.36075
1 01000000001100100101011001001101 2.78651 11000000000100111001011101111111 -2.30612
2 10111111011111110100111101101001 -0.99730 00111110100000001100111101010000 0.25158
3 00111110100011010111110101111101 0.27634 11000000011110010110000111011101 -3.89659
4 10111111110100010100110010001100 -1.63514 01000000010011110101100010111001 3.23979
5 01000000011010110110111110001100 3.67868 00111110100001001111000111011000 0.25965
6 10111110000001101110111100101111 -0.13177 00111111101001111001101010011110 1.30940
7 10111111000111011111110100000111 -0.61714 11000000000000010110111011000010 -2.02238
8 00111111010111101010110100101001 0.86982 11000000101110101001000101110111 -5.83025
9 10111110001101001001100001011101 -0.17636 01000000110010001111110010100010 6.28083

10 10111111001001010001110010000111 -0.64496 11000000110000010001101001110110 -6.03448
11 00111011011011111111100101011000 0.00366 01000000101101100110111011101010 5.70103
12 00111111000011001000011000111101 0.54892 00111111110110000101100111010100 1.69024
13 10111110111010110011101100110011 -0.45943 00111111011100010010000111011100 0.94192
14 10111111000110011001101111101000 -0.60003 11000000000000010001000101010100 -2.01668
15 10111111101101111100000110001001 -1.43559 10111111111011111010101101111011 -1.87242

Figure 15. Zoomed-in view of first two and sixteenth values of Hilbert transform

TABLE X. PERFORMANCE COMPARISON OF PROPOSED HILBERT TRANSFORM PROCESSOR WITH SIMILAR PROCESSORS

Title of work LUTs FF IoBs BRAM Mults DSP GCLK BUF

G FPGA-Based implementation of instantaneous frequency estimation of

phonocardiographic signals [38]

5,555 2,168 49 2 4 - 1 -
Embedded Hilbert transform based algorithm within an FPGA to classify

nonlinear SDOG systems [39]

8,511 7,078 - 26 20 - - -

Efficient Architecture For Real Time Implementation of Hilbert Transform in

FPGA [34]

3,525 2,168 49 - - - - -

A High Performance Pipelined Discrete Hilbert Transform Processor [40] 6,486 5,268 - - - - - -

Ultrasound B-Mode Back End Signal Processor on FPGA [41]

2,190 883 52 134 - 21 - 1

Proposed Hilbert Transform processor 2,597 4,536 34 - - 2 - 1

16 Peter Yusuf Dibal, et. al.: VLSI Design of a Processor for Discrete Wavelet Packet…

http://journals.uob.edu.bh

Figure 16. Simulink-State flow verification model for Hilbert transform

REFERENCES

[1] P. Y. Dibal, E. N. Onwuka, J. Agajo, and C. Alenoghena,

“Enhanced Discrete Wavelet Packet Sub-band Frequency Edge

Detection using Hilbert Transform,” Int. J. Wavelets,
Multiresolution Inf. Process., vol. 16, no. 1, pp. 1850009-1-

1850009–17, 2018.

[2] H. Wang and X. Chen, “Development and Optimization Design of
Digital Logic device based on FPGA,” J. Phys. Conf. Ser., vol.

1345, no. 062051, pp. 1–9, 2019.

[3] J. Ashenden, P, Digital Design: An Embedded Systems Approach
using VHDL. Burlington: Morgan Kaufmann.

[4] P. Chu, P, FPGA Prototyping by VHDL Examples. New Jersey:

John Wiley & Sons, 2008.

[5] M. Ravi, A. Sewa, S. T.G., and S. S. S. Sanagapati, “FPGA as a

Hardware Accelerator for Computation Intensive Maximum

Likelihood Expectation Maximization Medical Image
Reconstruction Algorithm,” IEEE Access, vol. 7, pp. 111727–

111735, 2019.

[6] R. Krishnamoorthy, P. T. Kalaivaani, and A. S. Reddy, “An
Advanced Multiplier less Prediction Scheme based on Discrete

Wavelet Transformation Approach for Image Analysis,” Int. J.

Recent Technol. Eng., vol. 7, no. 4S, pp. 511–518, 2018.

[7] H. I. Shahadi, R. Jidin, and H. Way, W, “High Performance FPGA

Architecture for Dual Mode Processor of Integer Haar Lifting-

Based Wavelet Transform,” Int. Rev. Comput. Softw., vol. 8, no. 9,
pp. 2058–2067, 2013.

[8] M. A. FARAHANI and M. ESHGHI, “Implementing a New

Architecture of Wavelet Packet Transform on FPGA,” in 8th
WSEAS International Conference on Acoustics & Music: Theory &

Applications, 2007, pp. 37–41.

[9] Y. Liu and E. K. Lai, “Design and Implementation of An RNS-
Based 2-D DWT Processor,” IEEE Trans. Consum. Electron., vol.

50, no. 1, pp. 376–386, 2004.

[10] W. Xu, Z. YAN, and D. SHUNYING, “A High Performance
Pipelined Discrete Hilbert Transform Processor,” WSEAS Trans.

Signal Process., vol. 1, no. 9, pp. 21–30, 2013.

[11] A. A. Assef, B. M. Ferreira, J. M. Maia, and E. T. Costa, “Modeling
and FPGA-based implementation of an efficient and simple

envelope detector using a Hilbert Transform FIR filter for

ultrasound imaging applications,” Reasearch Biomed. Eng., vol.
34, no. 1, pp. 87–92, 2018.

[12] H. Nikookar, Wavelet Radio: Adaptive and Reconfigurable

Wireless Systems Based on Wavelets. Cambridge: Cambridge

University Press, 2013.

[13] Y. Arjoune and N. Kaabouch, “A Comprehensive Survey on

Spectrum Sensing inCognitive Radio Networks: Recent
Advances,New Challenges, and Future Research Directions,”

MDPI Sensors, vol. 19, no. 126, pp. 1–32, 2019.

[14] Q. Zhinjin, N. Wang, G. Yue, and C. Laurie, “Adaptive Threshold

for Energy Detector Based on Discrete Wavelet Packet Transform,”

in Wireless Telecommunications Symposium, 2012, pp. 1–5.

[15] N. Wei, Z. Chen, and A. Zhu, “Research on Adaptive Resolution

Spectrum Sensing Method Based on Discrete Wavelet Packet

Transform,” Telkomnika Indones. J. Electr. Eng., vol. 12, no. 2, pp.
1385 – 1394, 2014.

[16] I. Daubechies and W. Sweldens, “Factoring Wavelet Transforms

into Lifting Steps,” J. Fourier Anal. App.l, vol. 4, pp. 247 – 269,

1998.

[17] W. Lewis, D, Fundamentals of Embedded Software: Where C and

Assembly meet. New Jersey: Prentice Hall, 2002.

 Int. J. Com. Dig. Sys. 10, No.1, ..-.. (Jana-2021) 17

http://journals.uob.edu.bh

[18] K. Mishra, S, V. Nandanwar, A. Ayele, E, and B. Dhok, S, “FPGA
Implementation of Single Precision Floating Point Multiplier using

High Speed Compressors,” Int. J. Soft Comput. Eng., vol. 14, no. 2,

pp. 18–23, 2014.

[19] R. Fay, A. Hsieh, D. Jeang, and B. Jenkins, “A Synthesizable

VHDL Floating Point Package.” John Hopkins University ECE

Department, 2011.

[20] U. Concordia, “Concordia, University Lectures,” 2010. [Online].

Available:

http://users.encs.concordia.ca/~asim/COEN_6501/Lecture_Notes/
L4_Slides.pdf. [Accessed: 11-Jun-2018].

[21] Z. Peng, P. Tse, and F. Chu, “A comparison study of improved

Hilbert-Huang transform and wavelet transform: Application to

fault diagnosis for rolling bearing,” Mech. Syst. Signal Process, vol.

19, pp. 974 – 988, 2005.

[22] N. Saravanan, “Gear box Fault Diagnosis using Hilbert Transform
Feature Classification by PVSM,” Int. J. Adv. Res. Comput. Sci.

Softw. Eng., vol. 6, no. 6, pp. 21 – 30, 2016.

[23] A. Fedotov, A. Akulova, and S. Akulov, “Effective QRS-Detector
Based on Hilbert Transform and Adaptive Thresholding,” in XIV

Mediterranean Conference on Medical and Biological Engineering

and Computing, 2016, pp. 140 – 144.

[24] S. Aditi, “Survey Paper on Hilbert Transform with its Application

in Signal Processing,” Int. J. Comput. Sci. Inf. Technol., vol. 5, no.

3, pp. 3880 – 3882, 2014.

[25] E. Romero, D, G. Jimenez, M, and G. Dolecek, J, “On the

Estimation of Minimum Number of Distinct Multipliers in FIR

Hilbert Transformers Based on Frequency Transformation,” in The
2013 Iberoamerican Conference on Electronics Engineering and

Computer Science, 2013, pp. 88–95.

[26] G. Lyons, R, Understanding Digital Signal Processing, 2nd ed.
New Jersey: Prentice Hall, 2004.

[27] S. Diniz, P, A. Silva, E, and L. Netto, S, Digital Signal Processing:

System Analysis and Design, 2nd ed. New York: Cambridge
University Press, 2010.

[28] J. Orfanidis, S, Introduction to Signal Processing. New York:

Prentice Hall, 2010.

[29] K. Ingle, V and G. Proakis, J, Digital Signal Processing using

MATLAB, 3rd ed. Stamford CT: Cengage Learning, 2010.

[30] F. Harris, J, “On the Use of Windows for Harmonic Analysis with

Discrete Fourier Transform,” Proc. IEEE, no. 1, pp. 51–83, 1978.

[31] S. Chakraborty, “Advantages of Blackman Window over Hamming
Window Method for Design of FIR Filter,” Int. J. Comput. Sci. Eng.

Technol., vol. 4, no. 8, pp. 1181–1189, 2013.

[32] Xilinx, “Xilinx FIR Compiler v7.2,” 2020. [Online]. Available:
https:www.xilinx.com/support/documentation/ip_documentation/f

ir_compiler/v7_2/pg149-fir-compiler.pdf. [Accessed: 17-May-

2020].

[33] A. Benso, “Introduction to Complex FSMs Design.” Torino, pp. 1–

38, 2011.

[34] A. A. Prince, P. K. Verma, C. Jayakumar, and D. Raju, “Efficient
Architecture For Real Time Implementation of Hilbert Transform

in FPGA,” in Electrical, Computer and Communication

Technologies (ICECCT), 2015 IEEE International Conference on.
IEEE, 2015, pp. 1–5.

[35] M. D. Linderman, M. Ho, D. L. Dill, T. H. Meng, and G. P. Nolan,

“Towards Program Optimization through Automated Analysis of
Numerical Precision,” in Proc CGO, 2010, pp. 230–237.

[36] T. Aamodt and P. Chow, “Numerical error minimizing floating-
point to fixed-point ANSI C compilation,” in 1st Workshop on

Media Processors and DSPs, 1999, pp. 3–12.

[37] N. Wiebe and V. Kliuchnikov, “Floating point representations in
quantum circuit synthesis,” New J. Phys., vol. 15, no. 093041, pp.

1–25, 2013.

[38] E. Hernandez, J. Toledo, J. Martinez, and R. Ruiz, “FPGA­based
implementation of the instantaneous frequency estimation of

phonocardiographic signals,” in International Federation of Auto.

Control workshop on Programmable Devices and Systems, 2004,
pp. 423–428.

[39] J. D. Jones, J. S. Pei, and M. P. Tull, “Embedded Hilbert transform

based algorithm within an FPGA to classify nonlinear SDOG

systems,” in Proceedings of the23rd International Modal Analysis

Conference, 2008.

[40] W. Xu, Z. Yan, and D. Shunying, “A High Performance Pipelined
Discrete Hilbert Transform Processor,” WSEAS Trans. SIGNAL

Process., vol. 9, no. 1, pp. 1–6, 2013.

[41] U. k Jayaraj, S. Gayathri, and A. Shamya, “Ultrasound B-Mode
Back End Signal Processor on FPGA,” Int. J. Eng. Res. Technol.,

vol. 4, no. 6, pp. 583–588, 2015.

Peter Yusuf Dibal has a PhD

student in communication at the

Federal University of Technology

Minna. He holds a Master’s degree

in Electronics and

Communications Engineering

from Teesside University in the

UK. His research interests are

digital signal processing,

communications, and VLSI

design.

Elizabeth N. Onwuka is a

Professor of Telecommunications

Engineering. She holds a PhD in

Communications and

Information Systems

Engineering, from Tsinghua

University, Beijing, People’s

Republic of China; a Master of

Engineering degree, in

Telecommunications; and a Bachelor of Engineering degree

from Electrical and Computer Engineering Department, Federal

University of Technology (FUT) Minna, Niger State, Nigeria.

Her research interest includes Mobile communications network,

Mobile IP networks, Handoff management, Paging, Network

integration, Resource management in wireless networks,

spectrum management, and Big Data Analytics.

18 Peter Yusuf Dibal, et. al.: VLSI Design of a Processor for Discrete Wavelet Packet…

http://journals.uob.edu.bh

James Agajo has a PhD in the field

of Telecommunication and

Computer, Signal Processing. He

also has a Master’s Degree in

Electronic and Telecommunication

Engineering. His research interest

is in Wireless Sensor Systems, and

Network and intelligent system

development.

Caroline O. Alenoghena holds a

PhD in Telecommunications

Engineering, and a Master’s degree

in Electronics Telecommunications.

She is a member of the Institute of

Electrical and Electronic Engineers

MIEEE, Nigerian Society of

Engineers (NSE), and Association

of Professional Women Engineers

of Nigeria APWEN. She is a

registered practicing Engineer with

the Council for the Regulation of

Engineering in Nigeria. Her

research interests include intelligent systems and networks.

Achonu Adejo obtained a first

degree in Electrical/Computer

Engineering from Federal

University of Technology Minna,

Nigeria in 2006, an MSc in

Electronic Communications and

Computer Engineering from

University of Nottingham (Malaysia

campus) in 2010 and a PhD in

Electrical Engineering from

Newcastle University, UK in 2018. His doctorate program was

carried out in the Communications, Sensors and Signal

processing group at School of Engineering. Since 2010, he has

been an academic staff with Federal University of Technology

Minna. His research interests and previous works are in Minimal

computer processors, FPGAs, Resource management and

modelling of Cellular communications with focus on 5G

communications and D2D networks.

