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Abstract

A Markov model of order 1 may be used to describe the occurrence of wet and dry days in Nigeria. Such models feature two
parameter sets;P01 to characterise the probability of a wet day following a dry day andP11 to characterise the probability of a
wet day following a wet day. The model parameter sets, when estimated from historical records, are characterised by a
distinctive seasonal behaviour. However, the comparison of this seasonal behaviour between rainfall stations is hampered
by the noise reflecting the high variability of parameters on successive days. The first part of this article is concerned with
methods for smoothing these inherently noisy parameter sets. Smoothing has been approached using Fourier series, averaging
techniques, or a combination thereof. It has been found that different methods generally perform well with respect to estimation
of the average number of wet events and the frequency duration curves of wet and dry events. Parameterisation of theP01

parameter set is more successful than theP11 in view of the relatively small number of wet events lasting two or more days. The
second part of the article is concerned with describing the regional variation in smoothed parameter sets. There is a systematic
variation in theP01 parameter set as one moves northwards. In contrast, there is limited regional variation in theP11 set.
Although this regional variation inP01 appears to be related to the gradual movement of the Inter Tropical Convergence Zone,
the contrasting behaviour of the two parameter sets is difficult to explain on physical grounds.q 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Time series of daily rainfall records are often
required as input for water resources projects. The
availability of such records is often constrained by
economic, technical and personnel reasons. As an
alternative, the rainfall records can be simulated
using stochastic rainfall models (Haan et al., 1976).
This involves using the historical rainfall records to
estimate the model parameters of an appropriate

model, which may then be used to simulate the desired
length of rainfall series. Stern (1980a,b), Garbutt et al.
(1981) and Jackson (1981) reported that Markov chain
models of various orders are adequate for describing
the occurrence of daily rainfall in Nigeria. Jimoh and
Webster (1996), however, showed that the order 1
Markov model is sufficient for representing the occur-
rence of daily rainfall in the country. This observation
was based upon the ability of the model to reproduce
the characteristics of the observed series, rather than
formalised statistical tests. They estimated the para-
meter sets of the order 1 model,P01 andP11, using 30
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years of daily rainfall records for a period of station-
ary record from 1931 to 1960. An example of the
parameters obtained for Bida in the Midland region
is shown in Fig. 1.

The seasonal behaviour of the parameter sets is

evident in Fig. 1, with a bi-modal pattern for theP01

set and an uni-modal pattern for theP11 set. However,
the figure also illustrates the considerable noise that
characterises the parameter sets. Its presence limits
the ability to compare parameter sets either from
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Fig. 1. Model parameters at Bida (H1-0, estimated using 1931-1960 records).

Fig. 2. Map of Nigeria showing the geographical regions and the selected seven synoptic stations.



different periods of record for the same gauge, or
between gauges for equivalent periods of record. It
is essential that some form of smoothing is carried
out before such comparisons can be made. This
paper describes different approaches that have been
adopted for smoothing the parameter sets obtained
from seven gauges in Nigeria. Their locations are
shown in Fig. 2, and other station details are shown
in Table 1. The approaches are compared in terms of
the ability of the smoothed sets to reproduce the char-
acteristics of the observed series. Once smoothed, the
parameter sets could then be more readily compared
between gauges and between periods of record. Prior
to analysis, the records were subjected to some quality
control checks including double mass analysis and
were found to be of acceptable quality.

2. Smoothing model parameters

Smoothing of the model parameters can be
achieved using mathematical functions. For example,
Coe and Stern (1982) and Zucchini and Adamson
(1984) used Fourier functions to smooth the model
parameters at some stations in Africa. In addition,
Woolhiser and Pegram (1979) averaged the model
parameters over an interval of 15 days for stations
in the US, and then used Fourier series to smoothen
the variation in the parameters. For these studies, the
performance of the Fourier series in describing the
seasonal behaviour was described in terms of statisti-
cal tests such as log-likelihood function or deviance of
the estimation. It is perhaps of more direct relevance
to know the extent to which the Fourier fitted model
parameters are able to reproduce the characteristics of
the observed sequence of wet and dry days. Although

Jimoh and Webster (1996) reported that the sequences
of wet and dry days generated with the unsmoothed
model parameters are similar to the observed
sequences, the ability of the Fourier fitted parameters
to reproduce the characteristics of the historical
sequence has not previously been reported. This is
clearly of importance in the use of models where
limited observed data are available for parameter
identification.

In this analysis a day is defined as a wet day if
rainfall depth is equal to, or exceeds a threshold
value (2 mm for this study); otherwise the day is
referred to as a dry day. A wet (or dry) event refers
to a sequence of consecutive wet (or dry) days. A
sequence of wet and dry daysQ, is obtained from
the daily rainfall record as:

Q� { X1;X2;X3;…;Xn21;Xn} �1�
where X1; X2; X3 or Xn is either 0 or 1 and the
suffixes 1, 2,…,n denote the days when the records
are taken. The sequence is said to fit a first order
Markov chain model if the probability that it rains
on day t�X1 � 1� depends only on the previous
day’s rainfall. The Markov chain is referred to as a
two-state chain, sinceXt is 0 or 1. The parameters of
the model,Pal�a� 0;or 1� are estimated as:

Pa1�t� � Prob�Xt � 1=Xt21 � a�

� number of yearsXt � 1; and Xt21 � a
number of yearsXt21 � a

�2�
The present study presents two techniques for

fitting mathematical functions to the model para-
meters that have previously been identified using
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Table 1
Summary of daily rainfall records collected for this study

Region Climatic mean (mm) Mean no of wet days Station Period of record 1931–1990 Latitude (N) Longitude (E)

Sahel 875 49 Kano ok 12.058 8.538
Midland 1050 70 Samaru ok 11.188 7.638

1300 81 Minna ok 09.628 6.538
1200 70 Bida ok 09.108 6.028

Coastal 2000 94 Enugu 1966–68 & 70 missing 06.478 7.55
2000 88 Lagos 1936 missing 06.608 3.408
3000 147 Calabar 1967 missing 04.978 8.358
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Fig. 3. Historical parameters (H1-0) and fitted Fourier function (F1-0).



historical data. These techniques are Fourier series
fitting, and averaging, coupled with Fourier fitting.

2.1. Fourier fitting at daily time step

The values of the model parameters on a daily time
step estimated from the historical records (represented
as H1-0 in this study) form the series of a binomial
distribution (Collett, 1991). TheH1-0 values may be
expressed as a function of the Julian day using either a
polynomial function or a Fourier series. A Fourier
series is preferred to a polynomial function because
the former is more flexible and thus may fit bi-modal
functions more easily. The Fourier series to the para-
meters of a first order model at daily time step is
expressed as

Y�t� � A0 1
Xcm

i�1

�Ai cos�it�1 Bi sin�it��
Xj�k

j�0

bjxji �3�

where i is the harmonic,cm the maximum harmonic
required for the series,Ai andBi (or b j) are the coeffi-
cients of the series,xji the cosine or sine of (it ) for a
given harmonicI, Yp�t� is the transformed model para-
meter at dayt, andk � 2cm 1 1:

The derivation of the coefficients is given in Appen-
dix A of this article. The Fourier fitted values of the
model parameters are denoted as theF1-0 set. The
main problem encountered in adopting this technique
to the seven stations in Nigeria is that values of model
parameters estimated from the historical data (H1-0)
are zero for some Julian days (see Fig. 1 for Bida
station). Thus, it becomes impossible to obtain the
logarithm of such values. The following assumptions
were made during the fitting procedures so that trans-
formed values of model parameters for all Julian days
could be obtained.

• If the calculatedPa1�t� � 0; i.e. Na1 � 0; then set
Na1 � 0:01Na:

• If the calculatedPa1�t� � 1; i.e. Na1 � Na; then set
Na1 � 0:99Na:

• If the calculatedPa1�t� � ∞;, i.e. Na1 � 0 and
Na � 0; then setPa1 � 0:0066, so that Logarithm
Pa1 equals 5.0.

The Fourier fitted (F1-0) and historical (H1-0)
values for Samaru and Enugu stations are shown in
Fig. 3. The figure shows that the variability ofH1-0
aroundF1-0 is high, especially forP11. The parameter
P11 shows higher variability thanP01 because there are
fewer wet events lasting two or more days than lasting
one day (Jimoh and Webster, 1996). The bi-modal
shape of theP01 parameter set requires more harmo-
nics than the uni-modalP11 set. The large number of
harmonics cannot be defended on physical grounds,
but does provide a systematic approach to smoothing
of these complex and noisy functions. An alternative
approach could be to model the beginning and end of
the rainy season using an alternative procedure, whilst
retaining a Fourier fit to the seasonal variation. Preli-
minary studies were carried out into fitting functions
to different seasons, but these were not particularly
successful.

The variability for Samaru is higher than for Enugu
due to regional variation in the monthly number of
wet days, with the number decreasing from the
Coastal to the Sahel region (Jimoh, 1997). Samaru is
broadly typical of stations in the Sahel and Midlands,
whilst Enugu is typical of stations in the Coastal
region (Fig. 2).

2.2. Fourier fitting at weekly time step

The value of the model parameters at a weekly time
step is the arithmetic average of the daily values of the
parameter within a seven days interval, and the
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parameter sets are denoted asH7-0. In order to fit
Fourier series toH7-0, Eq. A3 was modified to
become:

t �
Q��wkday 2 3:5�2 182:5�

182:5
�4�

where wkday is the Julian day at the end of the week.
With this technique, the daily variability in the

model parameters is smoothed, but the model para-
meters show the average value of the parameter for
each time interval. The Fourier fitted values at a
weekly time step (denoted asF7-0) have been evalu-
ated, and plotted in the same style as Fig. 3. It is
generally noted that the start and end of the wet season
are better represented than with fitting over a daily
time step. The use of linear interpolation to overcome
the unnatural breaks at the end of a time period is
discussed in the following Section.

2.3. Averaging technique and Fourier series at daily
time step

The variability in the model parameters may also be
described by a combination of arithmetic averaging
of the parameter values and Fourier fitting. This
procedure is described below, while Table 2 gives
an explanation of the symbols used.

1. Use the historical records to estimate the model
parameters at a daily time step (H1-0).

2. Average theH1-0 values over ann-day time step,
noting the value at the mid-point of the time
interval.

3. Interpolate the parameter values between the

mid-points by linear interpolation, with the
interpolated values denoted asH1-n.

4. Fit a Fourier series to the interpolatedH1-n values,
denotedF1-n.

This procedure was applied to the seven stations in
Nigeria usingn values of 7 and 15. The problem of
having zero probability value, especially at the middle
of the wet season (June–September) inH1-0 is elimi-
nated in theH1-15 andH1-7 sets. An investigation of
the variability of model parameters (H1-n) with n (n
varying between 1 and 15) shows that the daily varia-
bility in H1-n decreases with the value ofn increasing.
However, the concept of linear interpolation assumed
in obtainingH1-n values (step 2 above) is affected at
highn values. Thus a balance between inter day varia-
bility and linear interpolation is required in selecting a
value forn. It was found that values ofn between 7
and 15 achieved a reasonable compromise.

The residual of the Fourier fitting toH1-n (n is 7 or
15) at Enugu, in the Coastal region is independent of
the estimated probability of wet day. For the Sahel
region using Samaru station for example, the residual
is high at low probability, especially when the prob-
ability of wet day given a previous wet or dry day is
less than 0.1. This suggests that a better Fourier fitting
to H1-n values is achieved at the Coastal than at the
Sahel regions. Generally, theF1-15 set is better than
theF1-7 at all stations, and further discussion is based
on theF1-15 set.

2.4. Performance of the fitting procedure

Synthetic sequences of wet and dry days were
generated using the different sets of model parameters
(H1-0, F1-0 and F1-15) in order to compare the
performance of the different smoothing methods.
The procedure for generating synthetic sequences of
wet and dry days for an order 1 Markov model is
described in Jimoh and Webster (1996). The synthetic
sequences of wet and dry days were compared with
those of the historical records, using the following
criteria:

• the monthly number of wet days;
• the first and last wet day;
• average number of wet events and
• frequency duration curves for wet and dry events.

The results of this analysis usingH1-0, F1-0 and
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Table 2
Notation representing values of model parameters

Description Fourier fitted

H1-0 Values of parameters estimated at daily
time step from the historical record.

F1-0

H7-0 Values of parameters at seven day time
step, obtained by averagingH1-0 for
the time interval.

F7-0

H1-n Values of parameters at one day time
step. They are obtained by averaging
H1-0 atn-day time step and the
intermediate values at one day time
step obtained by linear interpolation.

F1-n
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Fig. 4. Historical parameters (H7-0) and fitted Fourier function (F7-0).



F1-15 to estimate the average monthly number of wet
days are presented in Fig. 4 for two stations. The
figure. also shows the variation of the standardised
residual with the predicted probability. The results
show that there is no noticeable difference between
the monthly number of wet days estimated byF1-0
andF1-15, and that ofH1-0. The study also showed
that the different fitting procedures present similar
numbers of wet events and frequency duration curves.
A comparison of the mean and standard deviation of
the number of events with one and two days’ duration
is shown in Table 3. The results show good general
agreement for both wet and dry events. There is a
tendency for the standard deviation of one day wet
events for generated sequences to be lower than
those for observed sequences, though this is not
universal. This trend has been noted by Smith and
Schreiber (1973) and Gregory et al. (1992) and high-
lights a limitation of Markov chain models in repre-
senting seasonal variations in rainfall series. The use
of a conditioned Markov model, as outlined in Jimoh
and Webster (1998) provides a possible means of
overcoming this problem.

This investigation showed that there is little differ-
ence between theH1-0,F1-0 andF1-15 in represent-
ing the characteristics of wet and dry days. ForF1-0
andF1-15 however, the inherent variability inH1-0
has been smoothed. In addition, the smoothed curve
represents the start of wet season better than theH1-0.
The start of the planting season under rainfed agricul-
ture depends on the start of wet season, and the proper
representation of this criterion by smoothed curve is
considered advantageous.

3. Regional variation in the model parameters

The principal benefit of the smoothing techniques is

that it facilitates the comparison of parameter sets
between different gauges. Model parameters for an
order 1 Markov model have been evaluated for the
seven gauges used in this study. The smoothed values
for theP01 set are shown in Fig. 5 and those for theP11

parameter set in Fig. 6. Various features of these sets
are summarised in Tables 4 and 5.

The following observations can be made from Fig.
5 about theP01 parameter set:

• The only set that is clearly uni-modal is that for
Kano in the north. The set for Samaru is charac-
terised by a turning point around Julian day 150,
and all other sets are bi-modal.

• The timing of the peaks varies systematically in a
north-easterly direction. The timing of the first
peak varies from day 155 at Lagos and Calabar
to day 175 at Samaru. The timing of the second
peak varies over a greater range from day 285 at
Lagos to day 230 at Kano.

• The modal values of probability for the first peak
are reasonably constant in the north at around 0.4,
with higher values in the south. There is less varia-
bility for the second peak with values in the range
0.5–0.6 for all stations, with the exception of
Lagos. There is slight evidence of a decrease in a
northerly direction.

• The set for Lagos is distinctive in that the first peak
is higher than the second peak.

• The set for Calabar in the southeast also shows a
distinctive behaviour, partly in terms of the area
under the curve (i.e. average annual number of
wet days), but also the consistently high value of
probability between days 120 and 270.

In general terms, the timing of the peaks would
appear to conform to general models of the movement
of the rain bands. The observed timing suggests a
generally north-eastward movement, with Lagos in
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the southwest, experiencing the earliest appearance of
the first peak. The greater range in timings of the
second peak implies a slower retreat to the south of
rain bands, and contributes to the relatively large
range in timings between the peaks. The trend from
bi-modal behaviour in the south to uni-modal beha-
viour in the north also confirms these trends in relative
timing. The modal values of probability for each peak
vary over a surprisingly small range 0.40–0.50 for the
first peak (with the exception of Calabar) and 0.52–
0.66 with the exception of Lagos for the second peak.
Although some systematic trend may be identified,
this is probably confounded by the relative timing of
the peaks.

The observations that can be made from Fig. 6 and
Tables 3 and 4 about theP11 parameter set are limited
due to the decreased confidence in the parameter
values. This follows from the smaller number of wet
events lasting two days or longer relative to those of
one day duration. Nevertheless, the following general
observations can be made:

• The parameter sets are uni-modal throughout,
although the set for Samaru is characterised by a
turning point, as it was for theP01 set.

• The timing of the peak is reasonably uniform from
day 210 (Lagos) to day 250 (Minna), although
stations in the north show a slight reduction.

• The modal value of probability shows a general
decline in a northerly direction.

The typical shape for theP01 set is negatively
skewed, with a relatively steep rate of change from
the second peak. In contrast, the typical shape of the
P11 set is symmetrical. These typical shapes are also
evident in Fig. 7 which explores the joint variation of
theP01 andP11 parameter sets at three of the stations.
The left-hand panels show the joint variation of theH-
1 values, from which little can be gained. The right-
hand panels show the variation of the Fourier fitted
values, which reveal a hysteretic pattern throughout
the season. The hysteresis is less pronounced for Kano
and Samaru in the north than for Enugu in the south.

This behaviour of the parameter sets must relate to
regional variation in the meteorological factors that
are responsible for rainfall in the country. Rainfall
in Nigeria occurs in response to the moist, warm,
southwest trade wind. Further investigation on the
position or boundary of this trade wind across Nigeria
and its relationship with the parameters of a Markov
model was subsequently studied.

4. Relationship with the ITCZ

The Inter-tropical Convergence Zone (ITCZ) is the
boundary between the moist, warm southwest trade
wind and the dry, cool, northeast trade wind. The
position of the ITCZ also shows the position of the
southwest wind. The position of the ITCZ may be
determined using information on cloud, dew
temperature, or wind at sea level. In this study, Highly
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Table 4
Timing in Julian days of peaks inP01 andP11 parameters sets

Station P01 (Peak 1) P01 (Peak 2) Difference P11 (uni-modal)

Kano 230 230
Samaru 160–190 240 50–80 240
Minna 170 260 90 250
Bida 165 265 100 240
Enugu 160 270 110 240
Calabar 165 280 115 225
Lagos 155 285 130 210

Table 5
Magnitude of peaks inP01 andP11 parameters sets

Station P01 (Peak 1) P01 (Peak 2) P11 (uni-modal)

Kano 0.52 0.47
Samaru 0.42 0.59 0.54
Minna 0.44 0.61 0.53
Bida 0.41 0.53 0.46
Enugu 0.48 0.60 0.53
Calabar 0.56 0.60 0.70
Lagos 0.49 0.39 0.57
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Fig. 7. Relationship between parameters of first order model.



Reflective Cloud (HRC) data is used to define the
position of ITCZ, and the merits of this technique
relative to other methods are discussed in Jimoh
(1997). The compilation of HRC data (Hastenrath,
1990) is based on National Oceanic and Atmospheric
Administration (NOAA) polar-orbiting satellites
during January 1971–February 1978 and February
1979–December 1987, and Defence Meteorological
Satellite Program (DMSP) during March 1978–
January 1979. The HRC data set used for this study
was supplied by Prof. Waliser, D.E of Institute for
Terrestrial and Planetary Atmospheres, Sunny,
Stony Brook, New York. For each month, the ITCZ
latitude (�u ) is calculated as the HRC-weighted mean
latitude (Waliser and Gautier, 1993):

u�t� �

Z1 25

2 25
H�u; t�u duZ1 25

2 25
H�u; t� du

�5�

wheret is the month index spanning the 204 months of
HRC data;H the zonally averaged HRC over the
given longitude domain; andu represents latitude in
degrees.

The area weighted mean technique is adopted for
defining the position of ITCZ because of the following
reasons:

1. It is felt that the ITCZ axis correlates with the axis
of maximum convection.

2. The technique is less influenced by the occurrence
of isolated convective cloud, and therefore less
affected by outliers in the series.

3. There is perhaps, a consistent relationship between
the axis of maximum convection and the northern
boundary of the band of convective activity.

4. The technique is numerically straightforward.

Graphs showing the monthly latitudinal position of
the ITCZ have been prepared for the period from 1971
to 1987 corresponding with the availability of the
HRC imagery. It is evident from these graphs that
there is considerable inter-annual variability in the
position of the ITCZ, corresponding with the devel-
opment of the Sahelian drought. The inter-decadal
variation of the Markov model parameter sets, and
their relationship with rainfall anomalies has been
discussed in Jimoh and Webster (1998). Of interest
in this article is the average behaviour of the ITCZ
over the 17 year period of available record. Accord-
ingly, the average latitudinal position was determined
in Fig. 8, and compared with the parameter sets
presented in Figs. 5 and 6, from which the following
observations are made:

1. The annual behaviour of the ITCZ typically shows
a period of advance and a period of retreat, giving
rise to a predominantly uni-modal pattern. Occa-
sional retreat is evident in individual years (e.g.
1984, 1987). However, the bi-modal pattern of
rainfall and theP01 set may be construed from
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Fig. 8. Latitudinal position of ITCZ over Nigeria.



the movement of the axis of maximum convection
over a given gauge.

2. TheP01 set is consistent with this general move-
ment of the ITCZ, displaying typically a bi-modal
pattern, with a trend towards a uni-modal pattern in
the north. There is however, no evidence from the
ITCZ position to explain the different magnitude of
the first and second peaks.

3. It was observed that theP11 set was generally
symmetrical at each station; a pattern which is
similar to the advance and retreat of the ITCZ
(Fig. 8). The time of peak for both patterns is
also similar at between day 210 and 230.

It is therefore evident that there is general corre-
spondence of the ITCZ position and theP01 parameter
sets, although this does not appear to apply to theP11

set. However, the movement of the ITCZ cannot be
determined with sufficient resolution to correlate its
movement in detail with the specific shape of the
parameter sets.

5. Concluding remarks

5.1. Methods of smoothing parameter sets

It is essential that parameter sets be smoothed in
order to facilitate comparison between different
gauges and different periods of record. The compara-
tive work has shown that the use of different techni-
ques of smoothing based upon Fourier fitting and
averaging are equally good in terms of reproducing
the characteristics of the observed record. TheF1-15
curve appeared better able to reproduce the start of the
wet season and has been used in all subsequent analy-
sis.

5.2. Regional variation in parameter sets

The parameter sets have been evaluated for seven
stations across Nigeria. TheP01 set is predominantly
bi-modal, though this tendency declines in a northerly
direction, with the northernmost station being uni-
modal. There is a systematic variation of the relative
timing of the peaks, though the magnitude of the peak
value is remarkably consistent for all stations studied.
The P11 set is uni-modal at all stations. In contrast to
theP01 set, the timing of the peak varies over a narrow

range, whilst the magnitude shows a systematic
decrease in a northerly direction.

5.3. Linking the parameter sets with movement of the
ITCZ

The movement of the ITCZ has been deduced from
Highly Reflective Cloud Imagery data. The move-
ment of the axis of maximum convective activity
over rainfall stations can give rise to the observed
rainfall regimes andP01 parameter sets. It is therefore
evident that there is general correspondence of the
ITCZ position and theP01 and P11 parameter sets.
However, the movement of the ITCZ cannot be deter-
mined with sufficient resolution to correlate its move-
ment in detail with the specific shape of the parameter
sets.

5.4. Non-stationary periods

A characteristic feature of the rainfall records is the
non-stationarity during the period from about 1970
onwards. The relationship between rainfall anomalies
and the smoothed parameter sets was investigated by
Jimoh and Webster (1998). The work has identified a
system for forecasting the anomaly based upon pre-
season weather variables comprising sea surface
temperatures and the position of the ITCZ. However,
the predictive model is constrained by the limited
duration for which information on the ITCZ position
is available. It is hoped that the model can be refined
using HRC imagery from 1987 onwards.
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Appendix A

The Fourier series for the parameters of a first order
model at a daily time step may be expressed as:

Y�t� � loge
P�t�

�1 2 P�t�
� �

�A1�

and

P�t� � exp�Y�t��
1 1 exp�Y�t�� �A2�

P denotes either theP01 or P11

t �
Q�Julian day2 182:5�

182:5
�A3�

The maximum likelihood estimate of the coefficients
of the Fourier series,bj is expressed (Collett, 1991)
as:

�b r11 � �b r 1 I21� �b r �U� �b r � �A4�
where

U�b� �
Xn
i�1

niP�i��1

2 P�i�� �yi 2 niP�i��
ni

1
P�i��1 2 P�i�� xji �A5�

I �b� �
Xn
i�1

ni�P�i��1 2 P�i���2
P�i��1 2 P�i�� xji xqi �A6�

ForP� P01, n is the number of years withXt � 1 and
Xt-1 � 0, andE�y� � np.The maximum harmonic,cm

is determined using multiple regression techniques
(Coe and Stern, 1982). A computer programme was
written to perform these procedures, and the principal
steps are listed below:

1. Determine the conditional probabilities and the
log-transformed values.

2. Compute the sine and cosine values�xji � of the
Fourier series for a given harmonic.

3. Determine the coefficients of the Fourier series
using a least squares technique. The estimated
coefficients areb0�I � 0� values. Compute the

deviance.

Deviance� standardised residual

� 2
Xn
i�1

yi log
P�i�
�P�i�

� �
1 niyi log

1 2 P�i�
1 2 �P�i�

� �� �
�A7�

where �P�i� � P�i�=ni

4. Compute the efficient scoresU�br �and information
matrix I �br � and solve for Eq. A4.

5. Compute the deviance and check whetherbr11 is
better thenbr . Theb values with the least deviance
represent the best estimate.

6. Increase the harmonic and repeat steps (2)–(5).
7. Repeat step (6) until there is no justification for

increasing the harmonic.
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