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Abstract

A Markov model of order 1 may be used to describe the occurrence of wet and dry days in Nigeria. Such models feature two
parameter set$; to characterise the probability of a wet day following a dry day Bndo characterise the probability of a
wet day following a wet day. The model parameter sets, when estimated from historical records, are characterised by a
distinctive seasonal behaviour. However, the comparison of this seasonal behaviour between rainfall stations is hampered
by the noise reflecting the high variability of parameters on successive days. The first part of this article is concerned with
methods for smoothing these inherently noisy parameter sets. Smoothing has been approached using Fourier series, averaging
techniques, or a combination thereof. It has been found that different methods generally perform well with respect to estimation
of the average number of wet events and the frequency duration curves of wet and dry events. Parameterisatign of the
parameter set is more successful tharRhen view of the relatively small number of wet events lasting two or more days. The
second part of the article is concerned with describing the regional variation in smoothed parameter sets. There is a systematic
variation in thePy; parameter set as one moves northwards. In contrast, there is limited regional variationPin sie¢.
Although this regional variation iRy; appears to be related to the gradual movement of the Inter Tropical Convergence Zone,
the contrasting behaviour of the two parameter sets is difficult to explain on physical greuh@39 Elsevier Science B.V. All
rights reserved.
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1. Introduction model, which may then be used to simulate the desired
length of rainfall series. Stern (1980a,b), Garbutt et al.
Time series of daily rainfall records are often (1981)and Jackson (1981) reported that Markov chain
required as input for water resources projects. The models of various orders are adequate for describing
availability of such records is often constrained by the occurrence of daily rainfall in Nigeria. Jimoh and
economic, technical and personnel reasons. As anWebster (1996), however, showed that the order 1
alternative, the rainfall records can be simulated Markov model is sufficient for representing the occur-
using stochastic rainfall models (Haan et al., 1976). rence of daily rainfall in the country. This observation
This involves using the historical rainfall records to was based upon the ability of the model to reproduce
estimate the model parameters of an appropriate the characteristics of the observed series, rather than
formalised statistical tests. They estimated the para-
* Corresponding author. meter sets of the order 1 mod®&; andP,4, using 30
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years of daily rainfall records for a period of station-
ary record from 1931 to 1960. An example of the
parameters obtained for Bida in the Midland region

is shown in Fig. 1.
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evident in Fig. 1, with a bi-modal pattern for thy,;
set and an uni-modal pattern for tRe, set. However,
the figure also illustrates the considerable noise that

characterises the parameter sets. Its presence limits
The seasonal behaviour of the parameter sets isthe ability to compare parameter sets either from
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Fig. 2. Map of Nigeria showing the geographical regions and the selected seven synoptic stations.
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Table 1
Summary of daily rainfall records collected for this study

Region Climatic mean (mm) Mean no of wet days Station Period of record 1931-1990 Latitude (N) Longitude (E)
Sahel 875 49 Kano ok 12.08.53
Midland 1050 70 Samaru ok 1118.63
1300 81 Minna ok 09.626.53
1200 70 Bida ok 09.106.02
Coastal 2000 94 Enugu 1966—-68 & 70 missing 06485
2000 88 Lagos 1936 missing 066840
3000 147 Calabar 1967 missing 04.B135

different periods of record for the same gauge, or Jimoh and Webster (1996) reported that the sequences
between gauges for equivalent periods of record. It of wet and dry days generated with the unsmoothed
is essential that some form of smoothing is carried model parameters are similar to the observed
out before such comparisons can be made. This sequences, the ability of the Fourier fitted parameters
paper describes different approaches that have beerto reproduce the characteristics of the historical
adopted for smoothing the parameter sets obtainedsequence has not previously been reported. This is
from seven gauges in Nigeria. Their locations are clearly of importance in the use of models where
shown in Fig. 2, and other station details are shown limited observed data are available for parameter
in Table 1. The approaches are compared in terms of identification.

the ability of the smoothed sets to reproduce the char- In this analysis a day is defined as a wet day if
acteristics of the observed series. Once smoothed, therainfall depth is equal to, or exceeds a threshold
parameter sets could then be more readily comparedvalue (2 mm for this study); otherwise the day is
between gauges and between periods of record. Priorreferred to as a dry day. A wet (or dry) event refers
to analysis, the records were subjected to some qualityto a sequence of consecutive wet (or dry) days. A
control checks including double mass analysis and sequence of wet and dry dagy is obtained from
were found to be of acceptable quality. the daily rainfall record as:

Q = { X4, X5, X3, .0y X1, X} D

2. Smoothing model parameters where X;, X5, X3 orX, is either 0 or 1 and the

suffixes 1, 2,..n denote the days when the records
are taken. The sequence is said to fit a first order
Markov chain model if the probability that it rains
on day t(X; =1) depends only on the previous
day’s rainfall. The Markov chain is referred to as a
two-state chain, sinck; is 0 or 1. The parameters of
the model,P,(a = 0,0r 1) are estimated as:

Smoothing of the model parameters can be
achieved using mathematical functions. For example,
Coe and Stern (1982) and Zucchini and Adamson
(1984) used Fourier functions to smooth the model
parameters at some stations in Africa. In addition,
Woolhiser and Pegram (1979) averaged the model
parameters over an interval of 15 days for stations
in the US aqd then used Fourier series to sm.oothen P.,(t) = Prob(X, = /X, = a)
the variation in the parameters. For these studies, the

performance of the Fourier series in describing the __ number of yearsX; =1, and X;_; =a
seasonal behaviour was described in terms of statisti- B number of yearsX,_; = a
cal tests such as log-likelihood function or deviance of )

the estimation. It is perhaps of more direct relevance

to know the extent to which the Fourier fitted model The present study presents two techniques for
parameters are able to reproduce the characteristics offitting mathematical functions to the model para-
the observed sequence of wet and dry days. Although meters that have previously been identified using
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Fig. 3. Historical parameter$i(L-0) and fitted Fourier functior=(-0).
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Coefficients of Fourier function

A0 Al Bl A2

B2 A3 B3 A4 B4

Pr{wet/dry
Pr{wet/wet

Samaru
-2.29366 2.48820 0.60801 -0.17953 0.34400 -0.45301 -0.28336 0.12078 -0.13827
-1.98010 2.16147 0.47229 -0.92811 0.26635

Pr{wet/dry
Pr{wet/wet

Enugu
-1.47282 1.45193 0.38923 -0.68635 -0.26237 0.04871 -0.53190 0.25949 0.03750
-0.77221 0.71456 0.61766 -0.10845 -0.08214

Fig. 3. continued

historical data. These techniques are Fourier series e

fitting, and averaging, coupled with Fourier fitting.

2.1. Fourier fitting at daily time step

The values of the model parameters on a daily time

step estimated from the historical records (represented

asH1-0 in this study) form the series of a binomial
distribution (Collett, 1991). Thé&i1-0 values may be

If the calculatedP,;(t) = 0, i.e. Ng; = 0; then set

o [f the calculatedP,;(t) = 1, i.e. Ny = Ny; then set
Nap = 0.99N,.

If the calculatedPg(t) = oo,, i.e. N;; =0 and
N, = 0; then setP,; = 0.0066, so that Logarithm
P,; equals 5.0.

The Fourier fitted F1-0) and historical K11-0)
values for Samaru and Enugu stations are shown in

expressed as a function of the Julian day using either aFig. 3. The figure shows that the variability BifL-0

polynomial function or a Fourier series. A Fourier

series is preferred to a polynomial function because
the former is more flexible and thus may fit bi-modal

functions more easily. The Fourier series to the para-
meters of a first order model at daily time step is

expressed as

Cm j=k
Y(t) = Ay + > (A cogin) + B sinin) > Bix;
i=1 j

=0

(©)

wherei is the harmonicg,, the maximum harmonic
required for the seriegy andB; (or 3;) are the coeffi-
cients of the series; the cosine or sine off) for a
given harmonid, Y,(t) is the transformed model para-
meter at day, andk = 2¢,,, + 1.

The derivation of the coefficients is given in Appen-
dix A of this article. The Fourier fitted values of the
model parameters are denoted as HieO set. The
main problem encountered in adopting this technique
to the seven stations in Nigeria is that values of model
parameters estimated from the historical d&a-Q)
are zero for some Julian days (see Fig. 1 for Bida
station). Thus, it becomes impossible to obtain the
logarithm of such values. The following assumptions
were made during the fitting procedures so that trans-
formed values of model parameters for all Julian days
could be obtained.

aroundr1-0 is high, especially foP,;. The parameter
P.1 shows higher variability thaRy; because there are
fewer wet events lasting two or more days than lasting
one day (Jimoh and Webster, 1996). The bi-modal
shape of the?,; parameter set requires more harmo-
nics than the uni-modd?, set. The large number of
harmonics cannot be defended on physical grounds,
but does provide a systematic approach to smoothing
of these complex and noisy functions. An alternative
approach could be to model the beginning and end of
the rainy season using an alternative procedure, whilst
retaining a Fourier fit to the seasonal variation. Preli-
minary studies were carried out into fitting functions
to different seasons, but these were not particularly
successful.

The variability for Samaru is higher than for Enugu
due to regional variation in the monthly number of
wet days, with the number decreasing from the
Coastal to the Sahel region (Jimoh, 1997). Samaru is
broadly typical of stations in the Sahel and Midlands,
whilst Enugu is typical of stations in the Coastal
region (Fig. 2).

2.2. Fourier fitting at weekly time step

The value of the model parameters at a weekly time
step is the arithmetic average of the daily values of the
parameter within a seven days interval, and the
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Table 2
Notation representing values of model parameters

Description Fourier fitted
H1-0  Values of parameters estimated at dailyF1-0

time step from the historical record.
H7-0  Values of parameters at seven day time=7-0

step, obtained by averagirtdfl-0 for

the time interval.
H1-n  Values of parameters at one day time F1-n

step. They are obtained by averaging
H1-0 atn-day time step and the
intermediate values at one day time
step obtained by linear interpolation.

parameter sets are denoted H8-0. In order to fit
Fourier series toH7-0, Eq. A3 was modified to
become:

_ [ 1(WKgay — 3.5) — 1825)
T 1825

where wl,, is the Julian day at the end of the week.
With this technique, the daily variability in the

4
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mid-points by linear interpolation, with the
interpolated values denoted E&-n.
4. Fit a Fourier series to the interpolatdd-n values,

denotedF1-n.

This procedure was applied to the seven stations in
Nigeria usingn values of 7 and 15. The problem of
having zero probability value, especially at the middle
of the wet season (June—Septembeiir0 is elimi-
nated in theH1-15 andH1-7 sets. An investigation of
the variability of model parametersi{-n) with n (n
varying between 1 and 15) shows that the daily varia-
bility in H1-n decreases with the valuewincreasing.
However, the concept of linear interpolation assumed
in obtainingH1-n values (step 2 above) is affected at
highnvalues. Thus a balance between inter day varia-
bility and linear interpolation is required in selecting a
value forn. It was found that values af between 7
and 15 achieved a reasonable compromise.

The residual of the Fourier fitting td1-n (nis 7 or
15) at Enugu, in the Coastal region is independent of
the estimated probability of wet day. For the Sahel
region using Samaru station for example, the residual

model parameters is smoothed, but the model para-iS high at low probability, especially when the prob-
meters show the average value of the parameter for ability of wet day given a previous wet or dry day is
each time interval. The Fourier fitted values at a !€ssthan 0.1. This suggests that a better Fourier fitting
weekly time step (denoted &7-0) have been evalu- 10 H1-n values is achieved at the Coastal than at the
ated, and plotted in the same style as Fig. 3. It is Sahel regions. Generally, tiel-15 set is better than
generally noted that the start and end of the wet seasontheF1-7 at all stations, and further discussion is based
are better represented than with fitting over a daily On theF1-15 set.

time step. The use of linear interpolation to overcome
the unnatural breaks at the end of a time period is
discussed in the following Section.

2.4. Performance of the fitting procedure

Synthetic sequences of wet and dry days were
generated using the different sets of model parameters
(H1-0, F1-0 and F1-15) in order to compare the
performance of the different smoothing methods.
The procedure for generating synthetic sequences of
wet and dry days for an order 1 Markov model is
described in Jimoh and Webster (1996). The synthetic
sequences of wet and dry days were compared with
those of the historical records, using the following

2.3. Averaging technique and Fourier series at daily
time step

The variability in the model parameters may also be
described by a combination of arithmetic averaging
of the parameter values and Fourier fitting. This
procedure is described below, while Table 2 gives
an explanation of the symbols used.

criteria:
1. Use the historical records to estimate the model .
o ¢ the monthly number of wet days;
parameters at a daily time stefdX-0). « the first and last wet day:
2. Average théH1-0 values over an-day time step, '
. . : . e average number of wet events and
noting the value at the mid-point of the time .
o frequency duration curves for wet and dry events.

interval.

3. Interpolate the parameter values between the The results of this analysis usiigl-0, F1-0 and
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Coefficients of Fourier function
A0 Al B1 A2 B2 A3 B3 A4 B4
Samaru
Pwetidry) | -2.41839 2.65521 0.61961 -0.20781 0.41186 -0.42159 -0.42452
Pr{wetwety | -2.39840 2.84090 0.63123 -1.18578 0.09056
Pr{wet/dry} Enugu
Priwetidry} | -1.54207 1.56843 0.37923 -0.74304 -0.27007 0.03409 -0.50742 0.29493 -0.00722
Priwetwett | -0.75281 0.62848 0.59882 0.00208 -0.02274 -0.06474 -0.18693

Fig. 4. continued

F1-15 to estimate the average monthly number of wet that it facilitates the comparison of parameter sets
days are presented in Fig. 4 for two stations. The between different gauges. Model parameters for an
figure. also shows the variation of the standardised order 1 Markov model have been evaluated for the
residual with the predicted probability. The results seven gauges used in this study. The smoothed values

show that there is no noticeable difference between for thePy, set are shown in Fig. 5 and those for the

the monthly number of wet days estimated By-0

parameter set in Fig. 6. Various features of these sets

andF1-15, and that oH1-0. The study also showed are summarised in Tables 4 and 5.

that the different fitting procedures present similar

The following observations can be made from Fig.

numbers of wet events and frequency duration curves. 5 about thePy; parameter set:

A comparison of the mean and standard deviation of
the number of events with one and two days’ duration
is shown in Table 3. The results show good general
agreement for both wet and dry events. There is a
tendency for the standard deviation of one day wet .
events for generated sequences to be lower than
those for observed sequences, though this is not
universal. This trend has been noted by Smith and
Schreiber (1973) and Gregory et al. (1992) and high-
lights a limitation of Markov chain models in repre-
senting seasonal variations in rainfall series. The use
of a conditioned Markov model, as outlined in Jimoh
and Webster (1998) provides a possible means of
overcoming this problem.

This investigation showed that there is little differ-
ence between thd1-0,F1-0 andF1-15 in represent-
ing the characteristics of wet and dry days. Fdr0
andF1-15 however, the inherent variability iH1-0
has been smoothed. In addition, the smoothed curve
represents the start of wet season better tharihe. .
The start of the planting season under rainfed agricul-
ture depends on the start of wet season, and the proper
representation of this criterion by smoothed curve is
considered advantageous.

e The only set that is clearly uni-modal is that for

Kano in the north. The set for Samaru is charac-
terised by a turning point around Julian day 150,
and all other sets are bi-modal.

The timing of the peaks varies systematically in a
north-easterly direction. The timing of the first
peak varies from day 155 at Lagos and Calabar
to day 175 at Samaru. The timing of the second
peak varies over a greater range from day 285 at
Lagos to day 230 at Kano.

e The modal values of probability for the first peak

are reasonably constant in the north at around 0.4,
with higher values in the south. There is less varia-
bility for the second peak with values in the range
0.5-0.6 for all stations, with the exception of
Lagos. There is slight evidence of a decrease in a
northerly direction.

e The set for Lagos is distinctive in that the first peak

is higher than the second peak.

The set for Calabar in the southeast also shows a
distinctive behaviour, partly in terms of the area
under the curve (i.e. average annual number of
wet days), but also the consistently high value of
probability between days 120 and 270.

In general terms, the timing of the peaks would

appear to conform to general models of the movement
of the rain bands. The observed timing suggests a
The principal benefit of the smoothing techniques is generally north-eastward movement, with Lagos in

3. Regional variation in the model parameters



0.D. Jimoh, P. Webster / Journal of Hydrology 222 (1999) 1-17

‘Z 8jgeL ul pauyep se ‘ST-T4pue 0-T4 ‘0-TH.

L€ L'ST Ts €0¢ 9°¢ €GT 8'G 9'9¢ ST-Td
L'E 8'GT Z'S '0€ L'E S'qT L'S '9€ 0-1d
9°¢ g'qeT T8 9'0¢€ S'e 6 VT A ¥°9€ O-TH
LY G'GT 0's L'1€ [ 8'GT SV G'GE panIssqo Jeqered
TE L6 6°¢ €6t e 60T €'g e ST-Td
Te 86 6'€ €'GT e STT €'Sq 6°€E 0-1d
TE 8'6 6'¢ €T 6°¢C 80T 6t ove 0-TH
6'¢ 80T 8V L'VT 9¢ 70T L/ 8'¢ce paniasqo sofen
TE €Tt 9y €61 e 9¢T 'S 8'¢ce ST-Td
e Ak 9v T0¢ €€ 6¢T €S Ve 0-1d
e 81T 1574 7'6T €€ L'CT TS 9'ce 0-TH
SV 0¢tT 8'G L'6T €€ ST1T L9 6°€EE paniasqo nBnug
8¢ 86 15074 91 6°¢ 7'6 LY V'ee ST-T4
6'¢C 00T v 99T 8¢ 9'6 61 Sve 0-1d
TE T0T v 9T LC 7’6 0'S 8'ce 0-TH
g¢ ¢ 0T eV G9T 8¢ 6'8 0's 6°€E panissqoO epid
oe S0t e 78T TE 90T LY 0'0g ST-Td
o€ 90T 154 98T Te 60T 8V 0'TE 0-1d
8¢ 70T v 7'8T (0> €01 8V 9'0€ 0-TH
6¢ 70T oV T0¢ 8¢ 66 €S 9'0€ panissqoO BUUIN
8¢ €6 (A4 99T 8¢ €6 Sy €lC ST-Td
6°¢ S'6 7'y 0T 8¢ 7’6 9v €8¢ 0-T4
YAYA 7'6 v 69T YAYA 16 vy XA O0-TH
v'e 66 154 ST &4 16 139 v'.lc panIssqo niewes
x4 89 v'e STT x4 99 Tv c've ST-T4d
e 89 7'e STT 4 T9 v 6'€C 0-TH
¥'C L e 91T 9T 9'G 8V Sve paAissqoO ouey|
(ou)
‘(ou) uoneinap (Aep) uoneinap (Aep) (ou) uoneinap (Aep) ‘(ou) uoneinap (Aep)
prepuels Aouanbali4 prepuels Aouanbali4 prepuels  Aouanbaiq prepuels  Aouanbalq wiay uonels
|lads Aep-g |lads Aep-T |lods Aep-z |1ods Aep-T
sjuane Aig SIUBAS 19\ uoireing

sAep z pue T JO SUORBINP UM SJUSAS JO SolisisIoeeyd

€ 9|qeL



10 0.D. Jimoh, P. Webster / Journal of Hydrology 222 (1999) 1-17
Q (=] [=3
3 3 3
i3 23 23
b=l © o
3 3 8
3 Q3 <3
o o o
- o) o - 0 -~ 0 -~ 0
o o o o
Aungeqoid Aungeqoid Aungeqoid Aungeqoid

f

\

SAMARU

CALABAR

e}

P
Aungeqoid

360

240
Julian day

120

/
S

o
Aiqeqoid

360

240

Julian day

w

=
Aungeqoid

240 360

120

Julian day

360

240
Julian day

120

Fig. 5. Model parameterBy;.



11

0.D. Jimoh, P. Webster / Journal of Hydrology 222 (1999) 1-17

Aep ueynp

09¢ (124 0z 0
Aep ueyne

09¢ (124 0z 0
Aep ueynp

09¢ ove 0z 0
Aep ueynp

09¢ ove 0zL 0

2
o

['e} o]
] )
Aynaeqoid Auigeqoid

Aungeqoid

0
S

Aungeqoid

Tgualawered [9pon -

9 b4

w002

00}

0

ER\Ze)

Hvavivo

NONN3
[ J

ONWY

NYVYAVS
[ ]

VNNIW
®

oVaig

S

Aep ueynp

09¢ (124 0z 0
Aep ueynp

09¢ o¥e (o145 0
Aep ueyne

09¢ (174 0r43 0

wn
S
Aungeqoid

0
o
Aunqeqoid

[Te]
=
Aungeqosd



12

Table 4
Timing in Julian days of peaks iRy, andP;; parameters sets

0.D. Jimoh, P. Webster / Journal of Hydrology 222 (1999) 1-17

Station Po; (Peak 1) Po; (Peak 2) Difference P41 (uni-modal)
Kano 230 230

Samaru 160-190 240 50-80 240

Minna 170 260 90 250

Bida 165 265 100 240

Enugu 160 270 110 240

Calabar 165 280 115 225

Lagos 155 285 130 210

the southwest, experiencing the earliest appearance ofe The timing of the peak is reasonably uniform from

the first peak. The greater range in timings of the

second peak implies a slower retreat to the south of

rain bands, and contributes to the relatively large
range in timings between the peaks. The trend from
bi-modal behaviour in the south to uni-modal beha-
viour in the north also confirms these trends in relative
timing. The modal values of probability for each peak
vary over a surprisingly small range 0.40-0.50 for the
first peak (with the exception of Calabar) and 0.52—
0.66 with the exception of Lagos for the second peak.
Although some systematic trend may be identified,
this is probably confounded by the relative timing of
the peaks.

The observations that can be made from Fig. 6 and
Tables 3 and 4 about th®&, parameter set are limited

due to the decreased confidence in the parameter

values. This follows from the smaller number of wet
events lasting two days or longer relative to those of
one day duration. Nevertheless, the following general
observations can be made:

e The parameter sets are uni-modal throughout,
although the set for Samaru is characterised by a
turning point, as it was for th€y; set.

Table 5
Magnitude of peaks iy; andP;; parameters sets

Station Po1 (Peak 1) Py (Peak 2) P11 (uni-modal)
Kano 0.52 0.47

Samaru 0.42 0.59 0.54

Minna 0.44 0.61 0.53

Bida 0.41 0.53 0.46

Enugu 0.48 0.60 0.53
Calabar 0.56 0.60 0.70

Lagos 0.49 0.39 0.57

day 210 (Lagos) to day 250 (Minna), although
stations in the north show a slight reduction.

e The modal value of probability shows a general
decline in a northerly direction.

The typical shape for thd®,; set is negatively
skewed, with a relatively steep rate of change from
the second peak. In contrast, the typical shape of the
P,, set is symmetrical. These typical shapes are also
evident in Fig. 7 which explores the joint variation of
the Py; andP,; parameter sets at three of the stations.
The left-hand panels show the joint variation of the
1 values, from which little can be gained. The right-
hand panels show the variation of the Fourier fitted
values, which reveal a hysteretic pattern throughout
the season. The hysteresis is less pronounced for Kano
and Samaru in the north than for Enugu in the south.

This behaviour of the parameter sets must relate to
regional variation in the meteorological factors that
are responsible for rainfall in the country. Rainfall
in Nigeria occurs in response to the moist, warm,
southwest trade wind. Further investigation on the
position or boundary of this trade wind across Nigeria
and its relationship with the parameters of a Markov
model was subsequently studied.

4. Relationship with the ITCZ

The Inter-tropical Convergence Zone (ITCZ) is the
boundary between the moist, warm southwest trade
wind and the dry, cool, northeast trade wind. The
position of the ITCZ also shows the position of the
southwest wind. The position of the ITCZ may be
determined using information on cloud, dew
temperature, or wind at sea level. In this study, Highly
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Fig. 7. Relationship between parameters of first order model.
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Average position of ITCZ (1971-1987)
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Fig. 8. Latitudinal position of ITCZ over Nigeria.

Reflective Cloud (HRC) data is used to define the 2. The technique is less influenced by the occurrence
position of ITCZ, and the merits of this technique of isolated convective cloud, and therefore less
relative to other methods are discussed in Jimoh  affected by outliers in the series.

(1997). The compilation of HRC data (Hastenrath, 3. There is perhaps, a consistent relationship between
1990) is based on National Oceanic and Atmospheric  the axis of maximum convection and the northern
Administration (NOAA) polar-orbiting satellites boundary of the band of convective activity.

during January 1971-February 1978 and February 4. The technique is numerically straightforward.
1979-December 1987, and Defence Meteorological
Satellite Program (DMSP) during March 1978-
January 1979. The HRC data set used for this study
was supplied by Prof. Waliser, D.E of Institute for
Terrestrial and Planetary Atmospheres, Sunny,
Stony Brook, New York. For each month, the ITCZ
latitude @) is calculated as the HRC-weighted mean
latitude (Waliser and Gautier, 1993):

Graphs showing the monthly latitudinal position of
the ITCZ have been prepared for the period from 1971
to 1987 corresponding with the availability of the
HRC imagery. It is evident from these graphs that
there is considerable inter-annual variability in the
position of the ITCZ, corresponding with the devel-
opment of the Sahelian drought. The inter-decadal
variation of the Markov model parameter sets, and

+25 their relationship with rainfall anomalies has been
_ Jf 25H(0’ vodo discussed in Jimoh and Webster (1998). Of interest
o) =% ® in this article is the average behaviour of the ITCZ
J, 25H(0, t) do over the 17 year period of available record. Accord-

ingly, the average latitudinal position was determined
wheret is the month index spanning the 204 months of in Fig. 8, and compared with the parameter sets
HRC data;H the zonally averaged HRC over the presented in Figs. 5 and 6, from which the following
given longitude domain; and represents latitude in  observations are made:
degrees.

The area weighted mean technique is adopted for
defining the position of ITCZ because of the following
reasons:

1. The annual behaviour of the ITCZ typically shows
a period of advance and a period of retreat, giving
rise to a predominantly uni-modal pattern. Occa-
sional retreat is evident in individual years (e.qg.

1. ltis felt that the ITCZ axis correlates with the axis 1984, 1987). However, the bi-modal pattern of
of maximum convection. rainfall and thePy; set may be construed from
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the movement of the axis of maximum convection range, whilst the magnitude shows a systematic

over a given gauge. decrease in a northerly direction.
2. The Py, set is consistent with this general move-

ment of the ITCZ, displaying typically a bi-modal 5 3, Linking the parameter sets with movement of the

pattern, with a trend towards a uni-modal patternin |Tcz

the north. There is however, no evidence from the

ITCZ position to explain the different magnitude of The movement of the ITCZ has been deduced from

the first and second peaks. Highly Reflective Cloud Imagery data. The move-
3. It was observed that thB,; set was generally = ment of the axis of maximum convective activity

symmetrical at each station; a pattern which is over rainfall stations can give rise to the observed

similar to the advance and retreat of the ITCZ rainfall regimes andPy; parameter sets. It is therefore

(Fig. 8). The time of peak for both patterns is evident that there is general correspondence of the

also similar at between day 210 and 230. ITCZ position and thePy; and P;; parameter sets.
However, the movement of the ITCZ cannot be deter-
mined with sufficient resolution to correlate its move-
ment in detail with the specific shape of the parameter
sets.

It is therefore evident that there is general corre-
spondence of the ITCZ position and tAg parameter
sets, although this does not appear to apply toRthe
set. However, the movement of the ITCZ cannot be
determined with sufficient resolution to correlate its
movement in detail with the specific shape of the
parameter sets.

5.4. Non-stationary periods

A characteristic feature of the rainfall records is the
non-stationarity during the period from about 1970
onwards. The relationship between rainfall anomalies
and the smoothed parameter sets was investigated by
Jimoh and Webster (1998). The work has identified a
system for forecasting the anomaly based upon pre-

It is essential that parameter sets be smoothed inS€ason weather variables comprising sea surface
order to facilitate comparison between different {€mperatures and the position of the ITCZ. However,
gauges and different periods of record. The compara- the predictive model is constrained by the limited
tive work has shown that the use of different techni- duration for which information on the ITCZ position
ques of smoothing based upon Fourier fitting and is gvailable.. It is hoped that the model can be refined
averaging are equally good in terms of reproducing Using HRC imagery from 1987 onwards.
the characteristics of the observed record. Fhel5
curve appeared better able to reproduce the start of the
wet season and has been used in all subsequent analy£Acknowledgements
sis.

5. Concluding remarks

5.1. Methods of smoothing parameter sets

The rainfall data were obtained from the Federal
5.2. Regional variation in parameter sets Department of Meteorological Services, Lagos
(Nigeria), the International Institute of Tropical Agri-
The parameter sets have been evaluated for sevenculture and National Horticultural Research Institute
stations across Nigeria. TH&; set is predominantly ~ Project (Nigeria), and the Department of Applied
bi-modal, though this tendency declines in a northerly Statistics, University of Reading (UK). The authors
direction, with the northernmost station being uni- acknowledge these sources. This research was spon-
modal. There is a systematic variation of the relative sored by the Commonwealth Scholarship Commis-
timing of the peaks, though the magnitude of the peak sion in the United Kingdom. Their financial support
value is remarkably consistent for all stations studied. is appreciated. The assistance of Mary Andrews in
The Py; set is uni-modal at all stations. In contrast to producing Figs. 2, 5 and 6 is appreciated. We would
the Py, set, the timing of the peak varies over a narrow also like to acknowledge the valuable contribution
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made by the anonymous reviewers of earlier drafts of  deviance.

the paper. Deviance= standardised residual
; 4 P(i) 1 - P()
Appendix A =2 {.| <__)+ v ( _ )}
; Yilog 5y ) + il { T4
The Fourier series for the parameters of a first order (A7)
model at a daily time step may be expressed as: _ )
whereP(i) = P(i)/n,
Y(t) = IOge( PO ) (A1) 4. Compute the efficient scores8,)and information
(1-P) matrix 1(3,) and solve for Eq. A4.
and 5. Compute the deviance and check whetger; is
better therB,. The B values with the least deviance
P(t) = exp(Y(D) (A2) represent the best estimate.
1+ exp(Y(t) 6. Increase the harmonic and repeat steps (2)—(5).
P denotes either thBy, or Py 7. _Repeat. step (6) until Fhere is no justification for
increasing the harmonic.
i [](Julian day— 1825) A3)

1825
The maximum likelihood estimate of the coefficients

of the Fourier series; is expressed (Collett, 1991) References
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