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ABSTRACT

In this paper, a modified single-step method is proposed to
integrate nonlinear dynamical systems resulting to ordinary
differential equations. In order to obtain higher order A-stable
method, we have used second derivative of the solutions and
imposed some special sets of off-grid points in the formulation
process of the algorithms. The consistency, convergence and order
of accuracy of the algorithms were successfully established and
in addition, the method is found to be A-stable. The proposed
method which is self-starting were applied as simultaneous
numerical integrators on non-overlapping intervals. In order
to demonstrate the effectiveness of the proposed algorithms,
some nonlinear dynamical systems of IVPs with applications
in population growth models, chaos and vibratory theory are
considered. and results obtained are compared with those
from related schemes and from other methods in the literature.

1. INTRODUCTION

Numerical methods for Ordinary Differential Equations (ODEs) are very important tools
for scientific computation, as they are widely used for solution of real life problems. More
so, nonlinear problems have shown up in large domains as science and technology have
progressed. Nonlinear problems cannot be solved using the standard linear technique.
Because of this, a new approach to understanding complex systems has been developed
over the years. Nonlinear dynamic systems often exhibit population growth and chaos as
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two of their primary complicated dynamic features. Even while nonlinear dynamic systems
may be used to examine chaotic or disordered problems and unearth their intricate laws,
they are not the primary focus of nonlinear problems [2,(]. An appropriate nonlinear
mathematical model must be constructed to accurately depict the data’s underlying law
in order to get insight into the system’s features. Nonlinear dynamics, on the other
hand, are more diversified and dynamic, and they vary based on the prior state in a
more complicated manner. As a result, practical engineering has hit an insurmountable
obstacle. In general, finding an analytical solution is very impossible when there is a
complex chaotic state present. When it comes to describing an unknown system state,
individuals tend to focus on methods with high approximation accuracy and ease of use,
rather than attempting to solve the precise problem themselves.

Many approaches have been developed to solve the numerical solution of nonlinear dy-
namic systems throughout the years, and the major ones are as follows: perturbation
method [16], averaging method [8], Runge-Kutta method [3], Euler method [5], gradient
method [4], linear multistep method and others. These approaches have certain bene-
fits for handling specific systems, but they provide unpleasant results when dealing with
issues of generic nonlinear dynamic systems, such as reduced accuracy, complexity and
big computation quantities, Runge phenomena, etc. As a result, the issue today is: can
we discover an effective approach for studying nonlinear dynamic systems that has both
high approximation accuracy and avoids the Runge phenomenon? Good convergence and
approximation, stability, are properties of block hybrid linear multistep methods derived
through point collocation technique of orthogonal functions [1,7,10,12-14,17].

Because of this, the goal of this work is to develop a class of one-step block hybrid methods
that improve accuracy and zero-stability while also ensuring convergence by using the
derivative of the iterative method in our derivation process.

The methods are implemented as block method whereby, there is no requirement for a dif-
ferent strategy for finding starting values. In the implementation process, we obtain initial
conditions at x, 11, n =0,1,..., N — 1 using the computed values y,+1 over sub-intervals
[0, x1],...,[*N—1,2N]| . For instance when n = 0, (y,,y1) are obtained simultaneously
over the sub-interval [zg,z1], as yo is known from the IVP, for n = 1, (y,+1,¥2) are also
obtained simultaneously over the sub-interval [z, z2] , as y; is now known from the pre-
vious block, and so on. Therefore, the sub-interval [z,,z,+1] do not over-lap and the
solutions obtained in this manner are more accurate than those obtained in the conven-
tional way.

2. THEORETICAL PROCEDURE OF THE METHOD

The proposed one-step second derivative block intra-step point method for the solution of
nonlinear dynamic systems of first order ordinary differential equations is of the form:

1 1
(2‘1) Yn+l = Yn + h Z ijn-i-j + h? Z’ngn—f—j
=0 =0

and the additional method

1 1
(2'2) Yn+n = Yn + h Z ijn+j + h? Z'ngn+j
=0 =0

where 51 # 0, 71 # 0, Bj, Byj, Vj» Vy; are unknown coefficients, v is the intra-step points.
The general approach in the derivation of (2.1) and (2.2) involves the use of continuous
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collocation approach using a trial function of the form:

r+2s+1

(2.3) Y(z)= Z a;x’
j=0

where a; are unknown coefficients to be determined, r and s are numbers of interpolation
and collocation points respectively. We interpolate (2.3) at z, and collocate its first
derivative at x,, and z,41, and a countable number of intra-step points defined as x4, =
Zn+hn. Here, nin(0, 1) are points generated from the Bhaskara cosine formula [15]. These
lead to a system of equations of the form:

Y(2n) = Yn,

Y/(xnﬁLju) = fn+ju>
Y”(SUTLJer) = Gn+jv,
7=0,1, v=12,....m

(2.4)

which is solved using matrix inversion method to obtain a; and then substituted into (2.3)
to get the continuous scheme of the form:

(2.5) y(x) = yn + h(Bo(x) fr + B (@) frtjv)
‘ +h2(70(x)gn + 'Yu($)gn+jy +7 ($)9n+1)

The continuous scheme (2.5) generated produces the main and additional algorithms which

are merged to generate approximations simultaneously. In this paper, we consider two
different blocks.

The specification of one-step second derivative block method with 5 intra-points is given
5 113 69

ask=1m=>5,n= (7—4, T 50 1s ﬁ), x € [Ty, Tpi1] which results in system of equations
(2.6) Y,=DVY, ,
where

Yw - (y'nnfn?fn+%7fn+i7fn+%7fn+%7fn+%7fn+l7

-
9n, gnJr% ) gnJri ) gnJr% ) gnJr% ) gnJr% ’ gn+1)

and

D, = (a07507B%75%>6%7ﬁ%76%75177077%77%77%77%77%7WI>-
The matrix D for this method is given in Appendix.
Equation (2.6) is solved by matrix inversion technique which yield the continuous coeffi-
cients ag(x), Bj(x),~;(x), which are then substituted into (2.5) to obtain its equivalent
continuous scheme:

y(@) =y + b (Bo(@) fo+ B, (@) Fry 3 + By (0) s
+ By () gy + B3 (@) s + B (@), 0 + Br(@)fura )
+h? (70(36)% +75 (@), 5 +71(2)g, 1 +71(2)g, 11

72 ()91 3789 89 + 1 (@)1 )
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Evaluating (2.7) at x = %h, ih, %h, 31,89 and h gives the following discrete schemes

’ 74

which form the block for the one-step second derivative block intra-points method with
m =5 (OSDBM5).

(2.8)

(2.9)

yn+% = UYn

yn—l—i =Yn

+

229000240671549836847060385 h fy,
8197163229070036195593562944
30821966534203471711296035015 A f, | 5
74
794803209597695208727781572608
4799066842733736181946180000 h f1, 41 /4

7906636097053004139215836776327
3450076071236439375 h fy, 11 /2

34102759007157505753088
6140574416512977257660000 /. f,, 4 3/4

7906636097053004139215836776327
107315656776943207525779655 hfn+%
794803209597695208727781572608

2277064615176808809084415 h fr,+1

8197163229070036195593562944
55058925194280275534125 h2g,,

237598934175943078133146752
20909102194147642656275 h2gn+7;>4

29304099459426191709044736
205700279607826605965000 h2g,, 414

2899389841236891873566496801

26786422976951818125 h2g,, 11 /o
282361305345975432249344

89947576742759078605000 h2g,, 4 3/4

2899389841236891873566496801
102495359829189387925 h29n+%

4186299922775170244149248
1334898531657665905075 h2 gy, 11

237598934175943078133146752

1943212527496001 A f;,

34093872933120000
672766595746510020168338779492501 hfn+%

6873973704628715318726759546880000
AT060462768187769 h f 11 /4

526168068417351360
1963790013 . f,, 41 /2

671759728640
19206102090155 A f,, 1 3/4

105233613683470272
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641769922504699857049741591517hj%+$%

274958948185148612749070381875200

(2.10)

ynJr% = Un

_|_

6710626995623 h fr, 41
1363754917324800
597715882969 h2g,,

790582560768000
4963027059592093628627263h?gn+%1

1369950595619632044834816000
669184831493 h?g,, 11,4

154358069209344
299379159 h2g,, 11 /2

150323855360
445505665001 h?g,, 1 5/4

771790346046720
119775813900021295336589h?gn+$%

273990119123926408966963200
2241217229 h%g, 11

22588073164800

17996522320261 h f,,

213086705832000
239716174678396247167366105871hfn_%I

2685145978370591921377640448000
319896474521248 hf,y 114

1644275213804223
153451983 h f 412

1312030720
26394146969312 hf,, 1 3/4

8221376069021115
124862096558323497238818907979hj%+$%

13425729891852959606888202240000
22213495592711 A fr4+1

1065433529160000
1596937613 h2g,

1235285251200
3370173164797268362157h?gnJr%I

535136951413918767513600
1551045736 h2g,,.41/4

430686577035
5197001 h?g,, 112

293601280
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1671184136 h*g,,43/4
602961207849
5047051038806095992223h?gn+g%
B 2675684757069593837568000
2579379871 hgn i1
6176426256000
o 1564933587251 hf,,
Ynti = Un 15589333760000

:yn

86235065051280332051276556917hfn+%I

1047702134526553165481902080000
158451557296 73 h fy, 1 1/4

80196321965760
155171040579 hfp, 11 /2

671759728640
26061104016757 hfy,43/4

240588965897280
56251752175435417469664759647hjh+g%
3143106403579659496445706240000
753115181853 h fr41
15589333760000

1747267617 h2g,,

1084475392000
231080940715692766313hzgnJr%1

29828871810038366208000

681768631 h2g,, 11,4
117633035520

299379159 h2g, 112

150323855360
3778927211 h?g,, 54

352899106560
2857204560657354607459h?gn+$%

626406308010805690368000
1034958591 hg,, 41

1084475392000

20221603651679559569621 h f,,
192535718271610673960000
498507078481817039654801hfn+%i

6222803449116088074240000
1191607029513799685019841568 h f, 1.1 /4

6025480945780372000621732035

47
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39868522991012976378507 h f,,41 /2

(2.13)

170513795035787528765440

Yn+1 = Yn

_l’_

3563863323867605677819724704 hf,, 1 3/4

18076442837341116001865196105
769051431703194651320653hj%+$g
4

18668410347348264222720000
14896308994129235863371 h fr, 11

192535718271610673960000
131291407474186803729 h%g,,
77014287308644269584000
8611510805044157833h?gn+§%

1055389290508320768000
14012917501073299128088 h2g,,11 4

2209563969849788045699205
26786422976951818125 h2g,, 11 /o
282361305345975432249344
6131490692161136847752 h?g,,3/4
946955987078480591013945
28171179896528379749h?gn+g%
3166167871524962304000
113877534642128422479 h2g,, 11
77014287308644269584000

3506128349813 h fy,

33294797786250
262138373250404721337405181 1 f, | 5
74

3277766086878163966525440000
1625876519575552 hf,y 1 /4

8221376069021115
153451983 hfy 11 /2

656015360
1625876519575552 h f,,13/4

8221376069021115
262138373250404721337405181hj%+$%

3277766086878163966525440000
3506128349813 h fr, 11

33294797786250
330127123 h2g,,

193013320500
10692342218160370021h?gn+;i

1306486697787887616000
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19213240832 hg,, 1/
3014806039245

19213240832 h?g,, 1 3/4
3014806039245
10692342218160370021h?gn+$%
1306486697787887616000
330127123 h2g,, 11
193013320500

3. ANALYSIS OF THE METHOD

3.1. Local truncation error and order. Let the linear operator defined on the method
be

k k k
(3.1) Lly(@),h] =Y aj-y(@+jh) +hY_ Bifari + P> D vignti

j=0 Jj=0 Jj=0
Assuming that y(z) is sufficiently differentiable, we can expand the terms in (3.1) as a
Taylor series about the point x to obtain the expression

(3.2) Liy(z), h| = Coy(z) + Crhy(z) + ... Cyhly(z) + ...
where the constant Cy, ¢ = 0,1, ... are given as follows
k
Co = Z%;:O aj; i
C1 = Zj:kjaj - ijoizﬂj? i
(3.3) Gy = % Zj:l jPaj — Zj:l JBj — ijo Vs

LN~k 1 ko .q—1 1 E o .q—2
Co = g 225=17% = oy 225=17 85 = ey 225=19"
According to Henrici [9], we say the method (2.1) is of order pif Cp =C1 = ... =C, =0,
Cp+1 #= 0. The Cpyy is the error constant and C’p+1hp+1y(7’+1)(xn) is the principal
truncation error at the point x,. From our analysis, the block methods have the following

order and error constants summarized in Table 1 respectively. It is noted from Table 1
that OSDBMS5 is of uniform accurate order 14.

TABLE 1. Order and Error Constants for the Proposed One-step Second
Derivative block method with 5 intra-points (OSBDMS5)

Methods, Equation Order, p Error Constant, Cp1
(8) 14 21374359100493024975
9807327507265805514550207132752882434048
(9) 14 4754047589
T41115163246626160693477376000

222373

(10) 14 140984885 1457067521671 1680000
12402993

(11) 14 61524537378420886005248000
(12) 1 250824629782342469253

T12100885124903755732224745236 3430297600
222373

(13) 14 984341261485952571801600
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3.2. Consistency. The block method OSBDMS5 is said to be consistent if the order of
the individual block member is greater or equal to one. That is, p > 1 Therefore, we can
infer from tablel that the methods are consistent. In what follows, the method OSBDMS5
can generally be written as a matrix difference equation as follows:

(3.4) AWY, = AOy, , + W(BOF,_, + BOFE,) + h*(CYG,_1 + CYG,)

And the matrices A©, AD BO) BL) ) and ¢ and are matrices whose entries are
given by the coefficients of the method OSBDMS5.

3.3. Zero stability. Zero-stability is concerned with the stability of the difference system
in the limit as h tends to zero [9]. Thus, as h — 0, the method (3.4) tends to the difference
system

(3.5) AWy, — AOy, =0

whose first characteristic polynomial p(\) is given by

(3.6) p(A) = |AAW — 4O,

Definition 3.1. (Zero-stability). The block method (3.5) is said to be zero stable if the
roots of the first characteristic polynomial p(\) satisfies |A;| <1, j =1,2,--- and for those
roots with |\;| = 1, the multiplicity must not exceed 1 [11].

Therefore, the characteristic polynomials of the methods OSDBM5 and OSDBMG6 are
respectively given as: p(\) = A5(A—1) =0, A = {0,0,0,0,0,1} and p(\) = A(A—1) = 0,
A ={0,0,0,0,0,0,1} Therefore, our methods are zero stable since they both satisfy |\;| <
1.

3.4. Convergence. The necessary and sufficient conditions for one-step second derivative
method OSDBMS5 to be convergent are that they must be consistent and zero stable [9].
Following this theorem, OSDBMS5 are convergent.

3.5. Region of Absolute stability. The region of absolute stability is determined by
obtaining the stability polynomial of the form:

(3.7) o(z) = (AW — zBM — 220 =1(A0) 4, BO) _ 22¢(0)
where z = Ah. The matrix o(z) has eigenvalues {0, 0, ..., A}, and the dominant eigenvalue
A is a rational function with real coefficient given by
P(z)
3.8 A\p =

It is clear from the stability functions that for Re(z) < 0, |A\x| < 1. The method is A-stable
since their regions of absolute stability contains the left half-plane (Figure 1).
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Figure 1: Stability region for OSDBM5

4. NUMERICAL EXPERIMENTS

In this section, we test the performance of the one-step second derivative block methods
on some systems of initial value problems on nonlinear dynamic problems. We find the
absolute errors of the approximate solution on the partition 7V as |y(z) — y(z,)| and also
make comparisons with some existing methods in the literature. For the purpose of com-
parative analysis of performance of the new methods on the various numerical examples,
we use the following notations: OSDBMS5 is the new One step second derivative block
method with 5 intra-points.

Problem 1. Consider the Mathieu equation expressed as a system of two first order
equations:

yll = Y2,
yh = —(6 4+ €cos2t)y;.
The problem is solved subject to the initial conditions xy = 0.1, yg = 0. In this problem
we define
{ o1(t) =0, 1(t) = yar

¢2(t) =0, a(t) — (0 + €cos2t)y1 ry1-
The simulation of the solution profiles and phase portrait is given in Figure 2.
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Figure 2: Simulation of the solution of Problem 1 when § = 103.7529 and ¢ = 64.8456:

solution profiles (left) and phase portrait (right)

Problem 2. Consider the following Lotka-Volterra model equation:

{ y/1 =Y — Y1Yy2,

Yh = —1y2 + y1yo.
With initial conditions y;(0) = 1, y2(0)

1. For this problem, the method parameters are
{ o1(ty1,y2) =1 — g2,

Y1t y1,y2) =0
G2t y1,y2 =1 — 0.2 a(t,y1,y2) =0
The solution and phase portrait is given in Figure 3.

L gl

s
ralil)

=
- &
P
=
=4
-

)
Figure 3: Solution (left) and phase portrait (right) for Problem 2, h = 0.1

Problem 3. We also consider the Kermack-McKendrick model. SIR model that tracks
the rise and fall in the number of infected patients observed in epidemics. If the population

is dived into three classes: y; — susceptible, yo — infectious, and those removed due to ys3
— immunity, the governing equations are:
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yll - byl — Vy1y2, Y1 (0) == 7007
yh =vyys —cy2,  y2(0) =1,
ys = cy2,  y3(0) =0,

where v is the infection rate, b is the birth rate and c is the immunity rate. The simulation
of the SIR model with b = 0.02, v = 0.0005, ¢ = 0.2 is given in Figure 4.

10

30

=0
1 .! 3004 .
wd | 'Ii [
[ f oy
o 80 ' ) ,
% [
5 | | = {
z ’ £ 1904 f \
4 | |
1: A 1 1 1004
| 1 'I |
w4l H | i 04
i l\.- / ! i ‘
1
] e
4~ T T T T T . . .
0 womw W W W 0 " " P P 1000

! bt

Figure 4: Time series solution (left), phase portraits (right) of problem 3, h = 0.1

Problem 4. Consider the predator —prey model with a Beddington-DeAnglis functional
response:

i =l — ) — o yi(0) = 0.15,
! E
Yo = Ty — Py2, v2(0) = 0.5,

In this example, the parameter used are « =1, =13, E =4, D =0.4.

3
»(@) »(@) »(@® -¥5(D)
% 1 I IIIIL [ { .;.P \ﬁl— ;-ﬂ r\ |l.|| |P[I r\ PI lﬂl Iul |I‘]| ( I| p :[ﬂIO OT:O 1 |
= ||I | “ ol || | i ﬂ NN i |(I'
AN
sl eI NI T AINT TN NI NI NI
(1] ZIS 5IU ?I5 160 ].?I.5 1%0 1::'5 200

t

Figure 5: Time series solution (left), phase portraits (right) of problem 4, h = 0.1
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1i=0.0001 =0,

Wl Ly

wit

Figure 6: Phase portraits of problem 4, h = 0.1 and different p

Conclusions: In this study, we derived a modified multi-step method to overcome the
Dahquist barrier theorem by imposing varieties of countable intra-step points for one-
step methods from the Bhaskara cosine approximation formula, and incorporating higher
derivatives in the derivation process of our algorithms for solving nonlinear dynamic sys-
tems of ordinary differential equations. Analysis of basic properties of numerical methods
was carried out and findings show that the method is convergent and is A-stable of higher
order. The effectiveness of the derived methods is demonstrated by considering test prob-
lem on Non-Linear dynamical system.
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