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Abstract

In this paper, a modified single-step method is proposed to

integrate nonlinear dynamical systems resulting to ordinary

differential equations. In order to obtain higher order A-stable

method, we have used second derivative of the solutions and

imposed some special sets of off-grid points in the formulation

process of the algorithms. The consistency, convergence and order

of accuracy of the algorithms were successfully established and

in addition, the method is found to be A-stable. The proposed

method which is self-starting were applied as simultaneous

numerical integrators on non-overlapping intervals. In order

to demonstrate the effectiveness of the proposed algorithms,

some nonlinear dynamical systems of IVPs with applications

in population growth models, chaos and vibratory theory are

considered. and results obtained are compared with those

from related schemes and from other methods in the literature.

1. Introduction

Numerical methods for Ordinary Differential Equations (ODEs) are very important tools
for scientific computation, as they are widely used for solution of real life problems. More
so, nonlinear problems have shown up in large domains as science and technology have
progressed. Nonlinear problems cannot be solved using the standard linear technique.
Because of this, a new approach to understanding complex systems has been developed
over the years. Nonlinear dynamic systems often exhibit population growth and chaos as
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two of their primary complicated dynamic features. Even while nonlinear dynamic systems
may be used to examine chaotic or disordered problems and unearth their intricate laws,
they are not the primary focus of nonlinear problems [2, 6]. An appropriate nonlinear
mathematical model must be constructed to accurately depict the data’s underlying law
in order to get insight into the system’s features. Nonlinear dynamics, on the other
hand, are more diversified and dynamic, and they vary based on the prior state in a
more complicated manner. As a result, practical engineering has hit an insurmountable
obstacle. In general, finding an analytical solution is very impossible when there is a
complex chaotic state present. When it comes to describing an unknown system state,
individuals tend to focus on methods with high approximation accuracy and ease of use,
rather than attempting to solve the precise problem themselves.
Many approaches have been developed to solve the numerical solution of nonlinear dy-
namic systems throughout the years, and the major ones are as follows: perturbation
method [16], averaging method [8], Runge-Kutta method [3], Euler method [5], gradient
method [4], linear multistep method and others. These approaches have certain bene-
fits for handling specific systems, but they provide unpleasant results when dealing with
issues of generic nonlinear dynamic systems, such as reduced accuracy, complexity and
big computation quantities, Runge phenomena, etc. As a result, the issue today is: can
we discover an effective approach for studying nonlinear dynamic systems that has both
high approximation accuracy and avoids the Runge phenomenon? Good convergence and
approximation, stability, are properties of block hybrid linear multistep methods derived
through point collocation technique of orthogonal functions [1, 7, 10,12–14,17].
Because of this, the goal of this work is to develop a class of one-step block hybrid methods
that improve accuracy and zero-stability while also ensuring convergence by using the
derivative of the iterative method in our derivation process.
The methods are implemented as block method whereby, there is no requirement for a dif-
ferent strategy for finding starting values. In the implementation process, we obtain initial
conditions at xn+1, n = 0, 1, . . . , N − 1 using the computed values yn+1 over sub-intervals
[x0, x1], . . . , [xN−1, xN ] . For instance when n = 0, (yη, y1) are obtained simultaneously
over the sub-interval [x0, x1], as y0 is known from the IVP, for n = 1, (yη+1, y2) are also
obtained simultaneously over the sub-interval [x1, x2] , as y1 is now known from the pre-
vious block, and so on. Therefore, the sub-interval [xn, xn+1] do not over-lap and the
solutions obtained in this manner are more accurate than those obtained in the conven-
tional way.

2. Theoretical Procedure of the Method

The proposed one-step second derivative block intra-step point method for the solution of
nonlinear dynamic systems of first order ordinary differential equations is of the form:

(2.1) yn+1 = yn + h

1∑
j=0

βjfn+j + h2
1∑
j=0

γjgn+j

and the additional method

(2.2) yn+η = yn + h
1∑
j=0

βjfn+j + h2
1∑
j=0

γjgn+j

where β1 6= 0, γ1 6= 0, βj , βηj , γj , γηj are unknown coefficients, ν is the intra-step points.
The general approach in the derivation of (2.1) and (2.2) involves the use of continuous
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collocation approach using a trial function of the form:

(2.3) Y (x) =
r+2s+1∑
j=0

ajx
j

where aj are unknown coefficients to be determined, r and s are numbers of interpolation
and collocation points respectively. We interpolate (2.3) at xn and collocate its first
derivative at xn and xn+1, and a countable number of intra-step points defined as xn+η =
xn+hη. Here, ηin(0, 1) are points generated from the Bhaskara cosine formula [15]. These
lead to a system of equations of the form:

(2.4)


Y (xn) = yn,

Y ′(xn+jν) = fn+jν ,

Y ′′(xn+jν) = gn+jν ,

j = 0, 1, ν = 1, 2, . . . ,m

which is solved using matrix inversion method to obtain aj and then substituted into (2.3)
to get the continuous scheme of the form:

(2.5)
y(x) = yn + h(β0(x)fn + βν(x)fn+jν)

+h2(γ0(x)gn + γν(x)gn+jν + γ1(x)gn+1)

The continuous scheme (2.5) generated produces the main and additional algorithms which
are merged to generate approximations simultaneously. In this paper, we consider two
different blocks.
The specification of one-step second derivative block method with 5 intra-points is given
as k = 1, m = 5, ηj =

(
5
74 ,

1
4 ,

1
2 ,

3
4 ,

69
74

)
, x ∈ [xn, xn+1] which results in system of equations

(2.6) Yω = DΨω−n

where

Yω =
(
yn, fn, fn+ 5

74
, fn+ 1

4
, fn+ 1

2
, fn+ 3

4
, fn+ 69

74
, fn+1,

gn, gn+ 5
74
, gn+ 1

4
, gn+ 1

2
, gn+ 3

4
, gn+ 69

74
, gn+1

)>
and

Φω =
(
α0, β0, β 5

74
, β 1

4
, β 1

2
, β 3

4
, β 69

74
, β1, γ0, γ 5

74
, γ 1

4
, γ 1

2
, γ 3

4
, γ 69

74
, γ1

)
.

The matrix D for this method is given in Appendix.
Equation (2.6) is solved by matrix inversion technique which yield the continuous coeffi-
cients α0(x), βj(x), γj(x), which are then substituted into (2.5) to obtain its equivalent
continuous scheme:

(2.7)

y(x) = yn + h
(
β0(x)fn + β 5

74
(x)fn+ 5

74
+ β 1

4
(x)fn+ 1

4

+ β 1
2
(x)fn+ 1

2
+ β 3

4
(x)fn+ 3

4
+ β 69

74
(x)fn+ 69

74
+ β1(x)fn+1

)
+h2

(
γ0(x)gn + γ 5

74
(x)gn+ 5

74
+ γ 1

4
(x)gn+ 1

4
+ γ 1

2
(x)gn+ 1

2

+ γ 3
4
(x)gn+ 3

4
γ 69

74
gn+ 69

74
+ γ1(x)gn+1

)
.
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Evaluating (2.7) at x = 5
74h,

1
4h,

1
2h,

3
4h,

69
74h and h gives the following discrete schemes

which form the block for the one-step second derivative block intra-points method with
m = 5 (OSDBM5).

yn+ 5
74

= yn +
229000240671549836847060385hfn

8197163229070036195593562944
(2.8)

+
30821966534203471711296035015hfn+ 5

74

794803209597695208727781572608

+
4799066842733736181946180000hfn+1/4

7906636097053004139215836776327

+
3450076071236439375hfn+1/2

34102759007157505753088

+
6140574416512977257660000hfn+3/4

7906636097053004139215836776327

−
107315656776943207525779655hfn+ 69

74

794803209597695208727781572608

+
2277064615176808809084415hfn+1

8197163229070036195593562944

+
55058925194280275534125h2gn
237598934175943078133146752

−
20909102194147642656275h2gn+ 5

74

29304099459426191709044736

−
295700279607826605965000h2gn+1/4

2899389841236891873566496801

−
26786422976951818125h2gn+1/2

282361305345975432249344

−
89947576742759078605000h2gn+3/4

2899389841236891873566496801

−
102495359829189387925h2gn+ 69

74

4186299922775170244149248

− 1334898531657665905075h2gn+1

237598934175943078133146752

yn+ 1
4

= yn +
1943212527496001hfn

34093872933120000
(2.9)

+
672766595746510020168338779492501hfn+ 5

74

6873973704628715318726759546880000

+
47060462768187769hfn+1/4

526168068417351360

+
1963790013hfn+1/2

671759728640

+
19206102090155hfn+3/4

105233613683470272
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−
641769922504699857049741591517hfn+ 69

74

274958948185148612749070381875200

+
6710626995623hfn+1

1363754917324800

+
597715882969h2gn
790582560768000

+
4963027059592093628627263h2gn+ 5

74

1369950595619632044834816000

−
669184831493h2gn+1/4

154358069209344

−
299379159h2gn+1/2

150323855360

−
445505665001h2gn+3/4

771790346046720

−
119775813900021295336589h2gn+ 69

74

273990119123926408966963200

− 2241217229h2gn+1

22588073164800

yn+ 1
2

= yn +
17996522320261hfn

213086705832000
(2.10)

+
239716174678396247167366105871hfn+ 5

74

2685145978370591921377640448000

+
319896474521248hfn+1/4

1644275213804223

+
153451983hfn+1/2

1312030720

+
26394146969312hfn+3/4

8221376069021115

−
124862096558323497238818907979hfn+ 69

74

13425729891852959606888202240000

+
22213495592711hfn+1

1065433529160000

+
1596937613h2gn
1235285251200

+
3370173164797268362157h2gn+ 5

74

535136951413918767513600

+
1551045736h2gn+1/4

430686577035

−
5197001h2gn+1/2

293601280
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−
1671184136h2gn+3/4

602961207849

−
5047051038806095992223h2gn+ 69

74

2675684757069593837568000

− 2579379871h2gn+1

6176426256000

yn+ 3
4

= yn +
1564933587251hfn

15589333760000
(2.11)

+
86235065051280332051276556917hfn+ 5

74

1047702134526553165481902080000

+
15845155729673hfn+1/4

80196321965760

+
155171040579hfn+1/2

671759728640

+
26061104016757hfn+3/4

240588965897280

−
56251752175435417469664759647hfn+ 69

74

3143106403579659496445706240000

+
753115181853hfn+1

15589333760000

+
1747267617h2gn
1084475392000

+
231080940715692766313h2gn+ 5

74

29828871810038366208000

+
681768631h2gn+1/4

117633035520

−
299379159h2gn+1/2

150323855360

−
3778927211h2gn+3/4

352899106560

−
2857204560657354607459h2gn+ 69

74

626406308010805690368000

− 1034958591h2gn+1

1084475392000

yn+ 5
69

= yn +
20221603651679559569621hfn

192535718271610673960000
(2.12)

+
498507078481817039654801hfn+ 5

74

6222803449116088074240000

+
1191607029513799685019841568hfn+1/4

6025480945780372000621732035
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+
39868522991012976378507hfn+1/2

170513795035787528765440

+
3563863323867605677819724704hfn+3/4

18076442837341116001865196105

+
769051431703194651320653hfn+ 69

74

18668410347348264222720000

+
14896308994129235863371hfn+1

192535718271610673960000

+
131291407474186803729h2gn

77014287308644269584000

+
8611510805044157833h2gn+ 5

74

1055389290508320768000

+
14012917501073299128088h2gn+1/4

2209563969849788045699205

−
26786422976951818125h2gn+1/2

282361305345975432249344

−
6131490692161136847752h2gn+3/4

946955987078480591013945

−
28171179896528379749h2gn+ 69

74

3166167871524962304000

− 113877534642128422479h2gn+1

77014287308644269584000

yn+1 = yn +
3506128349813hfn

33294797786250
(2.13)

+
262138373250404721337405181hfn+ 5

74

3277766086878163966525440000

+
1625876519575552hfn+1/4

8221376069021115

+
153451983hfn+1/2

656015360

+
1625876519575552hfn+3/4

8221376069021115

+
262138373250404721337405181hfn+ 69

74

3277766086878163966525440000

+
3506128349813hfn+1

33294797786250

+
330127123h2gn
193013320500

+
10692342218160370021h2gn+ 5

74

1306486697787887616000
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+
19213240832h2gn+1/4

3014806039245

−
19213240832h2gn+3/4

3014806039245

−
10692342218160370021h2gn+ 69

74

1306486697787887616000

− 330127123h2gn+1

193013320500

3. Analysis of the method

3.1. Local truncation error and order. Let the linear operator defined on the method
be

(3.1) L[y(x), h] =

k∑
j=0

αj · y(x+ jh) + h

k∑
j=0

βjfn+j + h2
k∑
j=0

γjgn+j

Assuming that y(x) is sufficiently differentiable, we can expand the terms in (3.1) as a
Taylor series about the point x to obtain the expression

(3.2) L[y(x), h] = C0y(x) + C1hy(x) + . . . Cqh
qy(x) + . . .

where the constant Cq, q = 0, 1, . . . are given as follows

(3.3)



C0 =
∑k

j=0 αj ,

C1 =
∑k

j=1 jαj −
∑k

j=0 jβj ,

C2 = 1
2!

∑k
j=1 j

2αj −
∑k

j=1 jβj −
∑k

j=0 γj ,

...

Cq = 1
q!

∑k
j=1 j

qαj − 1
(q−1)!

∑k
j=1 j

q−1βj − 1
(q−2)!

∑k
j=1 j

q−2γj ,

According to Henrici [9], we say the method (2.1) is of order p if C0 = C1 = . . . = Cp = 0,

Cp+1 6== 0. The Cp+1 is the error constant and Cp+1h
p+1y(p+1)(xn) is the principal

truncation error at the point xn. From our analysis, the block methods have the following
order and error constants summarized in Table 1 respectively. It is noted from Table 1
that OSDBM5 is of uniform accurate order 14.

Table 1. Order and Error Constants for the Proposed One-step Second
Derivative block method with 5 intra-points (OSBDM5)

Methods, Equation Order, p Error Constant, Cp+1

(8) 14 21374359100493024975
9807327507265805514550207132752882434048

(9) 14 4754047589
141115163246626160693477376000

(10) 14 222373
44098488514570675216711680000

(11) 14 12402993
64524537378429886005248000

(12) 14 250824629782342469253
1121098851249037557322247452363430297600

(13) 14 222373
984341261485952571801600
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3.2. Consistency. The block method OSBDM5 is said to be consistent if the order of
the individual block member is greater or equal to one. That is, p > 1 Therefore, we can
infer from table1 that the methods are consistent. In what follows, the method OSBDM5
can generally be written as a matrix difference equation as follows:

(3.4) A(1)Yw = A(0)Yw−1 + h(B(0)Fw−1 +B(1)Fw) + h2(C(0)Gw−1 + C(1)Gw)

And the matrices A(0), A(1), B(0), B(1), C(0) and C(1) and are matrices whose entries are
given by the coefficients of the method OSBDM5.

3.3. Zero stability. Zero-stability is concerned with the stability of the difference system
in the limit as h tends to zero [9]. Thus, as h→ 0, the method (3.4) tends to the difference
system

(3.5) A(1)Yw −A(0)Yw−1 = 0

whose first characteristic polynomial ρ(λ) is given by

(3.6) ρ(λ) = |λA(1) −A(0)|.

Definition 3.1. (Zero-stability). The block method (3.5) is said to be zero stable if the
roots of the first characteristic polynomial ρ(λ) satisfies |λj | ≤ 1, j = 1, 2, · · · and for those
roots with |λj | = 1, the multiplicity must not exceed 1 [11].

Therefore, the characteristic polynomials of the methods OSDBM5 and OSDBM6 are
respectively given as: ρ(λ) = λ5(λ− 1) = 0, λ = {0, 0, 0, 0, 0, 1} and ρ(λ) = λ6(λ− 1) = 0,
λ = {0, 0, 0, 0, 0, 0, 1} Therefore, our methods are zero stable since they both satisfy |λj | ≤
1.

3.4. Convergence. The necessary and sufficient conditions for one-step second derivative
method OSDBM5 to be convergent are that they must be consistent and zero stable [9].
Following this theorem, OSDBM5 are convergent.

3.5. Region of Absolute stability. The region of absolute stability is determined by
obtaining the stability polynomial of the form:

(3.7) σ(z) = (A(1) − zB(1) − z2C(1))−1(A(0) + zB(0) − z2C(0))

where z = λh. The matrix σ(z) has eigenvalues {0, 0, . . . , λk}, and the dominant eigenvalue
λk is a rational function with real coefficient given by

(3.8) λk =
P (z)

P (−z)
It is clear from the stability functions that for Re(z) < 0, |λk| ≤ 1. The method is A-stable
since their regions of absolute stability contains the left half-plane (Figure 1).



Second Derivatives Single Step Block ... (Special Issue in Honor of Prof. J. A. Gbadeyan) 51

Figure 1: Stability region for OSDBM5

4. Numerical experiments

In this section, we test the performance of the one-step second derivative block methods
on some systems of initial value problems on nonlinear dynamic problems. We find the
absolute errors of the approximate solution on the partition πN as |y(x)− y(xn)| and also
make comparisons with some existing methods in the literature. For the purpose of com-
parative analysis of performance of the new methods on the various numerical examples,
we use the following notations: OSDBM5 is the new One step second derivative block
method with 5 intra-points.

Problem 1. Consider the Mathieu equation expressed as a system of two first order
equations: {

y′1 = y2,
y′2 = −(δ + ε cos 2t)y1.

The problem is solved subject to the initial conditions x0 = 0.1, y0 = 0. In this problem
we define {

φ1(t) = 0, ψ1(t) = y2,r
φ2(t) = 0, ψ2(t)− (δ + ε cos 2t)y1,r+1.

The simulation of the solution profiles and phase portrait is given in Figure 2.
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Figure 2: Simulation of the solution of Problem 1 when δ = 103.7529 and ε = 64.8456:
solution profiles (left) and phase portrait (right)

Problem 2. Consider the following Lotka-Volterra model equation:{
y′1 = y1 − y1y2,
y′2 = −1

5y2 + y1y2.

With initial conditions y1(0) = 1, y2(0) = 1. For this problem, the method parameters are{
φ1(t, y1, y2) = 1− y2, ψ1(t, y1, y2) = 0
φ2(t, y1, y2 = y1 − 0.2 ψ2(t, y1, y2) = 0

The solution and phase portrait is given in Figure 3.

Figure 3: Solution (left) and phase portrait (right) for Problem 2, h = 0.1

Problem 3. We also consider the Kermack-McKendrick model. SIR model that tracks
the rise and fall in the number of infected patients observed in epidemics. If the population
is dived into three classes: y1 – susceptible, y2 – infectious, and those removed due to y3
– immunity, the governing equations are:
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 y′1 = by1 − νy1y2, y1(0) = 700,
y′2 = νy1y3 − cy2, y2(0) = 1,
y′3 = cy2, y3(0) = 0,

where ν is the infection rate, b is the birth rate and c is the immunity rate. The simulation
of the SIR model with b = 0.02, ν = 0.0005, c = 0.2 is given in Figure 4.

Figure 4: Time series solution (left), phase portraits (right) of problem 3, h = 0.1

Problem 4. Consider the predator –prey model with a Beddington-DeAnglis functional
response: {

y
′
1 = y1(1− y1)− αy1y2

1+β1+µy2
, y1(0) = 0.15,

y
′
2 = Ey1y2

1+βy1+µy2
−Dy2, y2(0) = 0.5,

In this example, the parameter used are α = 1, β = 1.3, E = 4, D = 0.4.

Figure 5: Time series solution (left), phase portraits (right) of problem 4, h = 0.1
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Figure 6: Phase portraits of problem 4, h = 0.1 and different µ

Conclusions: In this study, we derived a modified multi-step method to overcome the
Dahquist barrier theorem by imposing varieties of countable intra-step points for one-
step methods from the Bhaskara cosine approximation formula, and incorporating higher
derivatives in the derivation process of our algorithms for solving nonlinear dynamic sys-
tems of ordinary differential equations. Analysis of basic properties of numerical methods
was carried out and findings show that the method is convergent and is A-stable of higher
order. The effectiveness of the derived methods is demonstrated by considering test prob-
lem on Non-Linear dynamical system.
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