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Abstract

We derive a two-step method for solving non-linear dynam-

ical problems employing Bhaskara points as off grid points.

Deterministic in nature, non-linear dynamical systems dis-

play a periodic behavior that is highly dependent on the

beginning circumstances, making long-term predictions impos-

sible. Four Bhaskara points are generated as hybrid points

to optimized the system. The method is use to solve non-

linear dynamical systems to demonstrate the accuracy and

efficient of the method. The method is zero stable and con-

sistent. Some examples from literature were considered to

demonstrate the efficiency and the accuracy of the method.

1. Introduction

Ordinary differential equations (ODEs) arise science and technology, whose solutions are
not only important but also necessary and compulsory for the advancement of science and
technology. Obtaining solutions to ODEs is as important as modelling that gives rise to
them.
A linear ODE is one that can be split down into components, solved individually, and then
recombined to produce the result. Nonlinear interactions take place whenever components
of a system interact, compete, or cooperate. This kind of system is deterministic, but
its long-term predictions are erroneous because of the periodic behavior it displays in
response to the starting circumstances. However, most non-linear dynamical systems do
not have analytical solutions, thereby relying on numerical methods. On of such methods
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is the block method. Block methods were introduce by Milne [13]. The block methods
proposed by Milne [13] has some draw backs, which led to the introduction of hybrid
method. Hybrid methods has the advantage of easy change of step size and making use
of data from off-set points that generally enhance the accuracy and effectiveness of the
methods. The solution of non-linear dynamical problems is considered in this paper.
Motsa [16] considered one-step solution of first order ODEs with equal space interval as
hybrid point. Bothayna [10], considered single step method with equally three intra-step
points for solving first order ODEs. Many researchers recently have applied different
steps with different hybrid points for the development of numerical integrators for first
order differential equation [3–7,14,20–23]. Recently, there have been discussions on how to
generate intra-step points methodically, in order to yield optimal accuracy for block hybrid
algorithms. By minimizing the local truncation errors (LTEs), Ramos [17] presented an
optimized two-step block hybrid method for solving general first order IVPs. In [18],
Ramos et al. expanded the concept of minimizing the LTE to derive optimized two-
step block hybrid methods for the numerical solution of general second order IVPs. It is
important to note that, in both [17] and [18], only two intra-step points were established.
In light of the above we present a more direct method for the solution of first order non-
linear ODEs, which will be applicable to special, stiff, non-linear and general forms of
first order differential equations. The proposed method is a two-step hybrid method using
four generated Bhaskara points as hybrid points to optimize the method. The proposed
methods will be time efficient, have wider integration range and economically reliable.
The aim of the study is to develop an optimized multi-derivative method with intra-step
point for solving non-linear dynamical system and Partial Differential Equations.
We implement an implicit two-step method using Bhaskara points as hybrid points. The
Gauss-Lobatto grid points are points generated from the algorithm {x}Mi=0 = k

2 cos πi
M +

k
2 , while Bhaskara points are points generated from approximating the cosine function

{cos πi
M }

M
i=0 ≈ M2−4i2

M2+i2
where M = m+ 1 is number of intra-steps and M ∈ N : m ≥ 2, and

k is the step size.
We studied the order, zero stability, convergence and consistency of the method. Some
numerical problem which are non-linear will be solved and compared to others in literature
to show the efficiency and accuracy. The solution of first order initial value problem is of
the form.

(1.1) y′ = f(x, y), y(x0) = y0, x0 ∈ [a, b]

The function f(x, y) satisfies the existence and uniqueness theorem and is continuous [8].
The hybrid block technique has recently been extended by a number of authors [3–7, 14,
20–23] to numerically solve first order differential equations with varied numbers of steps
and hybrids.

2. Derivation of the Method

To derive the method, the power series of the form below is considered:

(2.1) y(x) =

I+C1+C2∑
j=0

αjx
j
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where I is the interpolation point, C1 is the number of collocation points for the first
derivative and C2 is the number of collocation points for the second derivative as an
approximate solution to the general first order problems of the form:

(2.2) y′ = f(x, y), y(a) = α.

The first and second derivatives of (2.1) are

(2.3) y′(x) =

I+C1+C2∑
j=1

jαjx
j−1

(2.4) y′′(x) =

I+C1+C2∑
j=2

j(j − 1)αjx
j−2

(2.1) is interpolated at x = xn+1 while (2.3) and (2.4) are collocated at

x = xn+i, i = 0, 5/26, 20/29, 1, 38/29, 47/26, 2,

where (2.3) satisfies (2.2). The points i are the Bhaskara hybrid points that optimized the
method, n represent the number of iterations for *-++++ step number of 2.

Figure 1: Two-step interpolation and collocation method for first order ordinary
differential equations
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(2.5)



1 xn+1 x2n+1 x3n+1 . . . x13n+1 x14n+1

0 1 2xn 3x2n . . . 13x12n 14x13n
0 1 2xn+ 5

26
3x2

n+ 5
26

. . . 13x12
n+ 5

26

14x13
n+ 5

26

0 1 2xn+ 20
29

3x2
n+ 20

39

. . . 13x12
n+ 20

39

14x13
n+ 20

39

0 1 2xn+1 3x2n+1 . . . 13x12n+1 14x13n+1

0 1 2xn+ 47
26

3x2
n+ 47

26

. . . 13x12
n+ 47

26

14x13
n+ 47

26

0 1 2xn+2 3x2n+2 . . . 13x12n+2 14x13n+2

0 0 2 6xn . . . 156x11n 182x12n
0 0 2 6xn+ 20

29
. . . 156x11

n+ 20
29

182x12
n+ 20

29

0 0 2 6xn+1 . . . 156x11n+1 182x12n+1

0 0 2 6xn+ 38
29

. . . 156x11
n+ 38

29

182x12
n+ 38

29

0 0 2 6xn+ 47
26

. . . 156x11
n+ 47

26

182x12
n+ 47

26

0 0 2 6xn+2 . . . 156x11n+2 182x12n+2





α1

α2

α3

α4

α5

α6

α7

α8

α9

α10

α11

α12

α13

α14

α15



=



yn+1

fn
fn+ 5

26

fn+ 20
29

fn+1

fn+ 38
29

fn+ 47
26

fn+2

gn
gn+ 5

26

gn+ 20
29

gn+1

gn+ 38
29

gn+ 47
26

gn+2


The system (6) was solved using the power series method, enhanced by Maple, to obtain
the unknown coefficient αj which are substituted into (1.1) to have the continuous form
of the collocation method:

y(x) = α0(x)yn+1 + h

k∑
j=0

γj(x)fn + h2
k∑
j=0

βj(x)gn(2.6)

+ γ 5
26

(x)fn+ 5
26

+ γ 20
29

(x)fn+ 20
29

+ γ 38
29

(x)fn+ 38
29

+ γ 47
26

(x)fn+ 47
26

+ β 5
26

(x)gn+ 5
26

+ β 20
29

(x)gn+ 20
29

+ β 38
29

(x)gn+ 38
29

+ β 47
26

(x)gn+ 47
26

where h = xn+1 − xn and whose derivative is given by

(2.7) f(x) =
dy

dx
, g(x) =

d2y

dx2

where αj(x), γj(x) and βj(x) are continuous coefficients that are uniquely determined.
The main methods are gotten by evaluating (2.6) at 0, 5/26, 20/29, 38/29, 47/26, 2 to
give the following:
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yn+ 5
26

= yn+1 − 134080534372101666726573h2gn
99064732150286353285120000

(2.8)

+
797053372151911h2gn+1

7623023165282304

+
34190738020242271746243h2gn+2

99064732150286353285120000

−
1987403759042034403h2gn+ 5

26

105383133144575000000

+
1663475072237910222028797981397h2gn+ 20

29

19918586701524685003315200000000

+
1574473641884535170865428853007h2gn+ 38

29

59755760104574055009945600000000

+
257675377558397869h2gn+ 47

26

105383133144575000000

− 994251974669039544822714231hfn
34024925311617582109081600000

− 7437477576455479hfn+1

23583727917592128

− 119544008219271944528449509hfn+2

17692961162041142696722432000

−
1163888407709356085364181hfn+ 5

26

6691322305001932812500000

−
31833672916846063655073421809594864101hfn+ 20

29

358915503598110989660362003200000000000

−
68678001114966269287893215421630368723hfn+ 38

29

358915503598110989660362003200000000000

−
15838025909754656597563hfn+ 47

26

6691322305001932812500000

yn+ 20
29

= yn+1 − 769431646345766277383001h2gn
33066146958818461463261440000

(2.9)

+
201236166015324651h2gn+1

14141652940152956414

+
551338964860893169402791h2gn+2

33066146958818461463261440000

−
997188894939633610991961592512h2gn+ 5

26

5299455559699695322963055926953125

−
1482810138576009927h2gn+ 20

29

210959219336800000000
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+
2578074557010805647h2gn+ 38

29

1476714535357600000000

+
657612478590711388173619834176h2gn+ 47

26

5299455559699695322963055926953125

− 138383511771402926057691797697hfn
295280692342248860866924659200000

− 414775413207763584hfn+1

2682037626580733113

− 3898585983635975383940973591hfn+2

11811227693689954434676986368000

−
20849926617627333885543535033008682368hfn+ 5

26

61241170879834641614076444673861181640625

−
9516977519857159758323397hfn+ 20

29

67967059519605400000000000

−
139581545998231359737133hfn+ 38

29

9709579931372200000000000

−
9630058111798680340184430651267713664hfn+ 47

26

61241170879834641614076444673861181640625

yn+1 = yn +
31390770194016413hfn

300800314636800000
(2.10)

+
2445924346575379542110794421632hfn+ 5

26

8595597158898736808670556640625

+
631917825685573712572445538817hfn+ 20

29

11209804782876811049400000000000

+
290009389184hfn+1

884260959813
+

269342114006369860597873651399hfn+ 38
29

1245533864764090116600000000000

+
22990550579431312246763678336hfn+ 47

26

8595597158898736808670556640625

+
659138643026173hfn+2

84224088098304000

+
706332168403h2gn
235789720320000

+
968454076853861104832h2gn+ 5

26

82645899987127911328125

−
254369447333755655449333h2gn+ 20

29

2799476751670552800000000
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− 6220321673h2gn+1

53591573322

−
83896869075739821207541h2gn+ 38

29

2799476751670552800000000

−
700266394943388764608h2gn+ 47

26

247937699961383733984375

− 94340553773h2gn+2

235789720320000

yn+ 38
29

= yn+1 +
551338964860893169402791h2gn
33066146958818461463261440000

(2.11)

+
201236166015324651h2gn+1

14141652940152956414

− 769431646345766277383001h2gn+2

33066146958818461463261440000

+
657612478590711388173619834176h2gn+ 5

26

5299455559699695322963055926953125

+
2578074557010805647h2gn+ 20

29

1476714535357600000000

−
1482810138576009927h2gn+ 38

29

210959219336800000000

−
997188894939633610991961592512h2gn+ 47

26

5299455559699695322963055926953125

+
3898585983635975383940973591hfn
11811227693689954434676986368000

+
414775413207763584hfn+1

2682037626580733113

+
138383511771402926057691797697hfn+2

295280692342248860866924659200000

+
9630058111798680340184430651267713664hfn+ 5

26

61241170879834641614076444673861181640625

+
139581545998231359737133hfn+ 20

29

9709579931372200000000000

+
9516977519857159758323397hfn+ 38

29

67967059519605400000000000

+
20849926617627333885543535033008682368hfn+ 47

26

61241170879834641614076444673861181640625
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yn+ 47
26

= yn+1 +
34190738020242271746243h2gn
99064732150286353285120000

(2.12)

+
797053372151911h2gn+1

7623023165282304

− 134080534372101666726573h2gn+2

99064732150286353285120000

+
257675377558397869h2gn+ 5

26

105383133144575000000

+
1574473641884535170865428853007h2gn+ 20

29

59755760104574055009945600000000

+
1663475072237910222028797981397h2gn+ 38

29

19918586701524685003315200000000

−
1987403759042034403h2gn+ 47

26

105383133144575000000

+
119544008219271944528449509hfn
17692961162041142696722432000

+
7437477576455479hfn+1

23583727917592128

+
994251974669039544822714231hfn+2

34024925311617582109081600000

+
15838025909754656597563hfn+ 5

26

6691322305001932812500000

+
68678001114966269287893215421630368723hfn+ 20

29

358915503598110989660362003200000000000

+
31833672916846063655073421809594864101hfn+ 38

29

358915503598110989660362003200000000000

+
1163888407709356085364181hfn+ 47

26

6691322305001932812500000
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yn+2 = yn+1 +
94340553773h2gn
235789720320000

(2.13)

+
6220321673h2gn+1

53591573322

− 706332168403h2gn+2

235789720320000

+
700266394943388764608h2gn+ 5

26

247937699961383733984375

+
83896869075739821207541h2gn+ 20

29

2799476751670552800000000

+
254369447333755655449333h2gn+ 38

29

2799476751670552800000000

−
968454076853861104832h2gn+ 47

26

82645899987127911328125

+
659138643026173hfn
84224088098304000

+
290009389184hfn+1

884260959813

+
31390770194016413hfn+2

300800314636800000

+
22990550579431312246763678336hfn+ 5

26

8595597158898736808670556640625

+
269342114006369860597873651399hfn+ 20

29

1245533864764090116600000000000

+
631917825685573712572445538817hfn+ 38

29

11209804782876811049400000000000

+
2445924346575379542110794421632hfn+ 47

26

8595597158898736808670556640625

3. Analysis of the method

3.1. Local truncation error. The above two-step method is presented in this section.
The linear operator is considered as:

(3.1) L[y(xn), h] =

k∑
i=0

αi · y(xn + ih)− hγif(xn + ih) + h2βig(xn + ih)

The function y(x) is an arbitrary test function that is continuously differentiable in the
interval [a, b]. Expanding y(xn + ih), f(xn + ih) and g(xn + ih) in Taylors series about xn
and factoring the coefficients of h to get
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(3.2) L[y(xn), h] = C0y(xn) + C1hy(xn) + C2h
2y2(xn) + . . .+ Cph

pyp(xn) + . . .

where the constant Ci, i = 0, 1, . . . are given as follows

(3.3)



C0 = α0 + α1,

C1 = α1 − (γ0 + γ 5
26

+ γ 20
29

+ γ1 + γ 38
29

+ γ 47
26

+ γ2),

C2 = 1
2!αi −

(
5
26γ 5

26
+ 20

29γ 20
29

+ γ1 + 38
29γ 38

29
+ 47

26γ 47
26

+ 2γ2

)
−
(
β0 + β 5

26
+ β 20

29
+ β1 + β 38

29
+ β 47

26
+ β2

)
...

Cp = 1
p!α1 − 1

(p−1)!

((
5
26

)p−1
γ 5

26
+
(
20
29

)p−1
γ 20

29
+ γ1 +

(
38
29

)p−1
γ 38

29

+
(
47
26

)p−1
γ 47

26
+ 2p−1γ2)

− 1
(p−2)!

((
5
26

)p−2
β 5

26
+
(
20
29

)p−2
β 20

29
+ γ1 +

(
38
29

)p−2
β 38

29

+
(
47
26

)p−2
β 47

26
+ 2p−2β2)

From (3.2), we can obtain C0 = C1 = . . . = C14 = 0 and

C15 =

(
742953457

254252803376756856672000
,

1898244635071516210773

776272612894431197030421294481408000
,

373071477459644081757

4255162977443355289179772726293472000
,

1898244635071516210773

776272612894431197030421294481408000
,

742953457

254252803376756856672000

)>
.

Therefore the proposed method is of order 14 [8].

3.2. Stability Analysis. (2.8) can be written in the matrix form

(3.4) A1Yn+1 = A0Yn + h(B0Fn +B1Fn+1) + h2(C0Gn + C1Gn+1)

where A0, A1, B0, B1, C0, C1 are 6× 6 matrix and
Yn = (yn, yn− 5

26
, yn− 20

29
, yn− 38

29
, yn− 47

26
, yn−2)

>,

Yn+1 = (yn+ 5
26
, yn+ 20

29
, yn+1, yn+ 38

29
, yn+ 47

26
, yn+2)

>,

Fn = (fn, fn− 5
26
, fn− 20

29
, fn− 38

29
, fn− 47

26
, fn−2)

>,

Fn+1 = (fn+ 5
26
, fn+ 20

29
, fn+1, fn+ 38

29
, fn+ 47

26
, fn+2)

>,

Gn = (gn, gn− 5
26
, gn− 20

29
, gn− 38

29
, gn− 47

26
, gn−2)

>,

Gn+1 = (gn+ 5
26
, gn+ 20

29
, gn+1, gn+ 38

29
, gn+ 47

26
, gn+2)

>.

According to Lambert [11], a numerical technique is considered to be zero-stable if no root
of the first characteristics polynomial ρ(z) has a modulus more than one, and every root
of modulus one has simplicity not greater than the order of the differential equation.
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The characteristics equation of the hybrid block method in (3.3) is

(3.5) ρ(z) = det(ZA1 −A0) = z5(z + 1) = 0.

This implies that z1 = z2 = z3 = z4 = z5 = 0 and |z6| = 1. Therefore, the method is zero
stable.
A method is consistency if it has order greater than or equal to 1. Therefore, the proposed
method is consistency Jator [9].
In addition, the method is converging only if it is consistent and zero stable Henrici [8].
Because the proposed method meets the two requirements, it is convergent.
The absolute stability region was studied. The linear stability properties of the proposed
method are studied by applying it to the test problem y′ = λy with λ < 0 to get

(3.6) Yn+1 = M(z)Yn, z = λh

where

(3.7) M(z) = (A1 − zB1 − z2C1)
−1(A0 + zB0 + z2C0).

The matrix σ(z) has eigenvalues {0, 0, 0, ..., λk}, and the dominant eigenvalue λk : C→ C
is a rational function (called the stability function) with real coefficients given by

(3.8) λk =
P (z)

P (−z)
.

It is clear from the stability functions that for Re(z) < 0, |λk| ≤ 1.
The absolute stability region is given Figure 2. The stability region contains the entire
left half complex plane and thus, the method is A-stable [2].

Figure 2: Absolute Stability Region of the Method
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3.3. Convergence of the method. Consistency and zero stability are both required and
sufficient for a linear multistep technique to reach convergence in the spirit of Lambert [11].
As a result, we infer that our technique is convergent since it has an order of accuracy
(which implies consistency) and zero–stable.

4. Numerical experiments

The efficiency of the method will be demonstrated using some examples.
Example 1. Consider the following nonlinear equation:

y′ + y = 2t+ et, y(0) = −1

with exact solution
y(t) = cosh(t) + 2t− 2.

Table 1 shows the comparison between the proposed method and Motsa [16]. Comparison
between the numerical solutions and the exact solutions is shown in Figure 3 when h = 0.1.

Table 1: Comparison between the absolute errors in the proposed method and the method
in paper [16].

t Error in our method Error in [16], M = 5
0.0 0.000 0.0000
0.1 2.62E-31 1.40E-15
0.2 5.33E-31 5.44E-15
0.3 1.30E-30 1.19E-14
0.4 2.05E-30 2.07E-14
0.5 3.27E-30 3.17E-14
0.6 4.44E-30 4.47E-14
0.7 6.08E-30 5.97E-14
0.8 7.66E-30 7.69E-14
0.9 9.72E-30 9.61E-14
1.0 1.17E-29 1.17E-13
1.1 1.42E-29 1.41E-13
1.2 1.67E-29 1.67E-13
1.3 1.97E-29 1.96E-13
1.4 2.27E-29 2.27E-13
1.5 2.63E-29 2.61E-13
1.6 2.98E-29 2.99E-13
1.7 3.42E-29 3.40E-13
1.8 3.85E-29 3.85E-13
1.9 4.37E-29 4.34E-13
2.0 4.88E-29 4.88E-13
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Figure 3: Exact solution and Numerical solution for Example 1

Example 2. Consider the following nonlinear equation

y′ = y2 − ty, y(0) =
1

2
with exact solution

y(t) =
2 exp{−t2}√
πt2 − 4

.

The exact and numerical solutions for Example 2 are displayed in Figure 4. The errors
comparison with other methods are illustrated in Table 2.

Table 2: Numerical, exact solutions, and the absolute errors.

t Solution by our method Exact solution Absolute Error
0.0 0.50000 0.50000 0.00000
1.0 0.530010126 0.530010126 2.04E-22
2.0 0.168387788 0.168387788 5.36E-22
3.0 1.48E-02 1.48E-02 1.40E-23
4.0 4.49E-04 4.49E-04 6.73E-26
5.0 4.99E-06 4.99E-06 1.05E-26
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Figure 4: Exact solution and Numerical solution for Example 2

Example 3. Consider the Riccati equation. A matrix equation with an analogous
quadratic term is referred to as Riccati equation, this matrix occurs in both discrete-time
and continuous-time linear-quadratic-gaussian control.

y′ = −y2 + 2y + 1, y(0) = 0,

with exact solution

y(t) = 1 +
√

2 tanh
√

2t+
1

2
log

√
2− 1√
2 + 1

.

The exact and numerical solutions are presented in the Table 3.

Table 3: Comparison between the absolute errors in our method and the methods in [10,
16].

t Error in our method Error in [16], M = 5 Error in [10]
0 0.0000 0.0000 0.0000
1 1.79E-23 3.54E-13 1.61E-10
2 2.21E-24 3.07E-14 2.14E-10
3 3.96E-24 8.08E-15 2.22E-10
4 3.73E-24 1.74E-15 2.14E-10
5 4.00E-24 1.81E-16 1.99E-10
6 4.72E-24 1.53E-17 1.82E-10
7 4.37E-24 1.18E-18 1.65E-10
8 3.96E-24 8.60E-20 1.50E-10
9 3.50E-24 6.04E-21 1.37E-10
10 3.75E-24 4.14E-22 1.25E-10
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Figure 5: Exact solution and Numerical solution for Example 3

Example 4. Consider the Lorenz system equation are derived to model some unpre-
dictable behavior of weather. y′1 = a(y2 − y1), y1(0) = 1,

y′2 = −y1y3 + by1 − y2, y2(0) = 5,
y′3 = y1y3 − cy3, y3(0) = 10.

The constants are a = 10, b = 28, and c = 8/3. The phase portraits for the Lorenz
equation are displayed in Figure 6.

Figure 6: Phase portraits for the Lorenz system, h = 0.01
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Example 5. Consider the chaotic the chaotic system called the Arnodo-Coullet which
is system given by the following set of equations y′1 = y2, y1(0) = 0.21,

y′2 = y3, y2(0) = 0.22,
y′3 = ay1 − by2 − y3 − y31, y3(0) = 0.61.

The constants are a = 5, b = 3.8. The phase portraits for the Arnodo-Coullet are displayed
in Figure 7.

Figure 7: Phase portraits for the Arnodo-Coullet system, h = 0.025

Discussion of Results. Example 1 is a non-linear equation, the result from our method
was compared to paper [16], our method performs better than that of [16] which has
4.88×10−29 as error compared to 1.40×10−15 of [16]. Example 2 is a non-linear equation,
we compared the result with the exact solution which compare favorably well with the
exact solution. Example 3 is a Riccati equation (this matrix occurs in both discrete-time
and continuous-time linear-quadratic-gaussian control) as shown in Table 3, our method
performs significantly better than papers [16] and [10]. The Lorenz system equation of
Example 4 are derived to model some unpredictable behavior of weather, The phase por-
traits shows the graphical solution of the problem that arises from chaos theory. Lastly,
we considered the chaotic system called the Arnodo-Coullet which is system given by a
set of equations, The phase portraits also demonstrates the solution of the problem solved
by our method. It is clearly demonstrated from the examples that the proposed method
is able to provide solution to non-linear dynamical problems.

Conclusion. For the self-starting solution of general first initial value problems of or-
dinary differential equations, we provide an optimized two-step block technique using
Bhaskara hybrid points for non-linear dynamical first order differential equations. The
method’s performance was assessed using four Bhaskara hybrid points. For orders up
to 14, the suggested hybrid block technique is both zero stable and converging. Riccati
equation, chaotic system dubbed Arnodo-Coullet and non-linear stiff issue are all solved
by the suggested approach. The absolute inaccuracy falls as h decreases in these situa-
tions. The numerical examples demonstrate the method’s effectiveness and accuracy in
comparison to other approaches in the literature.
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