
I.J.Computer Network and Information Security, 2013, 1, 17-24

Published Online January 2013 in MECS (http://www.mecs-press.org/)

A FULL-TEXT WEBSITE SEARCH ENGINE

POWERED BY LUCENE AND THE DEPTH

FIRST SEARCH ALGORITHM

Modinat. A. Mabayoje (MSAN, MNCS) and O. S. Oni

Department of Computer Science, University of Ilorin, P.M.B 1515, Ilorin, Nigeria

 mmabayoje@yahoo.com

Olawale S. Adebayo (MCPN, MNCS)

Cyber Security Science Department, Federal University of Technology PMB 65, Minna, Nigeria

 waleadebayo@futminna.edu.ng, olawalebayo@yahoo.com

ABSTRACT - With the amount of available text data

on the web growing rapidly, the need for users to

search such information is dramatically increasing.

Full text search engines and relational databases each

have unique strengths as development tools but also

have overlapping capabilities. Both can provide for

storage and update of data and both support search of

the data. Full text systems are better for quickly

searching high volumes of unstructured text for the

presence of any word or combination of words. They

provide rich text search capabilities and sophisticated

relevancy ranking tools for ordering results based on

how well they match a potentially fuzzy search

request. Relational databases, on the other hand,

excel at storing and manipulating structured data --

records of fields of specific types (text, integer,

currency, etc.). They can do so with little or no

redundancy. They support flexible search of multiple

record types for specific values of fields, as well

strong tools for quickly and securely updating

individual records. The web being a collection of

largely unstructured document which is ever growing

in size, the appeal of using RDBMS for searching

this collection of documents has become very costly.

This paper describes the architecture, design and

implementation of a prototype website search engine

powered by Lucene to search through any website.

This approach involves the development of a small

scale web crawler to gather information from the

desired website. The gathered information are then

converted to a Lucene document and stored in the

index. The time taken to search the index is very

short when compared with how long it takes for a

relational database to process a query.

Index Terms—Full Text search engine, Relational

Database, Information Retrieval, Lucene, Depth first

search algorithm

I. INTRODUCTION

Many applications that handle information

on the internet would be completely inadequate

without the support of information retrieval

technology. How would we find information on the

World Wide Web if there were no web search

engines? How would we manage our email without

spam filtering? Information retrieval (IR) is the area

of study in information system concerned with

searching for documents, for information within

documents, and for metadata about documents, as

well as that of searching structured or unstructured

storage, relational databases, and the World Wide

Web [1].

The system assists users in locating the

information they need. It does not explicitly return

information or answer questions. Instead, it informs

on the existence and location of documents that

might contain the desired information. Some

suggested documents will, hopefully, satisfy the

user’s information need. These documents are called

relevant documents. A perfect retrieval system would

retrieve only the relevant documents and no

irrelevant documents. However, perfect retrieval

systems do not exist and will not exist, because

search statements are necessarily incomplete and

relevance depends on the subjective opinion of the

user. In practice, two users may pose the same query

to an information retrieval system and judge the

relevance of the retrieved documents differently:

Some users would like the results, while others will

not [2].

There are three basic processes an

information retrieval system has to support: the

representation of the content of the documents, the

representation of the user’s information need, and the

comparison of the two representations. Representing

I.J.Computer Network and Information Security, 2013, 1, 17-24

Published Online January 2013 in MECS (http://www.mecs-press.org/)

the documents is usually called the indexing process.

The process takes place offline, that is, the end user

of the information retrieval system is not directly

involved. The indexing process results in a

representation of the document. Users do not search

just for fun; they have a need for information. The

process of representing their information need is

often referred to as the query formulation process.

The resulting representation is the query. In a broad

sense, query formulation might denote the complete

interactive dialogue between system and user, leading

not only to a suitable query but possibly also to the

user better understanding his/her information need.

The comparison of the query against the document

representations is called the matching process. The

matching process usually results in a ranked list of

documents. Users will walk down this document list

in search of the information they need.

II. RELATED WORKS

According to [10], the following sites offer

free search capabilities for Web site developers who

are willing to use them.

A. FUSIONBOT

It offers multiple levels of search, at the free

level you get: 250 pages indexed, 1 automatic index

per month, 1 manual index per month, basic

reporting, sitemap, and more. It even supports

searching across SSL domains.

B. FREEFIND

 It is simple to sign up for this free service. It has

additional features of a site map, and "what's new"

pages that are automatically generated along with

your search field. You control how often they spider

your site, so you can be sure that new pages are

added to the index. It also allows you to add

additional sites to the spider to be included in the

search.

C. GOOGLE CUSTOM SEARCH ENGINE

The Google custom search engine allows

you to search not only your own site, but also create

collections to search within. This makes the search

more interesting for your readers because you can

specify multiple sites to include in the search results.

You can also invite your community to contribute

sites to the search engine.

The drawbacks to this method are that you

are limited to the features that the search company

provides. Also, they can only catalogue pages that are

live on the Internet (Intranet and Extranet sites cannot

be catalogued). Finally, they only catalogue a site

periodically, so you don't have any guarantee that

your newest pages will be added to the search

database immediately.

III. INFORMATION RETRIEVAL MODELS

Much of the development of information

retrieval technology, such as web search engines and

spam filters, requires a combination of

experimentation and theory. Experimentation and

rigorous empirical testing are needed to keep up with

increasing volumes of web pages and emails.

Furthermore, experimentation and constant

adaptation of technology is needed in practice to

counteract the effects of people that deliberately try

to manipulate the technology, such as email

spammers. However, if experimentation is not guided

by theory, engineering becomes trial and error. New

problems and challenges for information retrieval

come up constantly.

A. THE BOOLEAN MODEL

The Boolean model is the first model of

information retrieval and probably also the most

criticised model. The model can be explained by

thinking of a query term as an unambiguous

definition of a set of documents. Using the operators

of George Boole's mathematical logic, query terms

and their corresponding sets of documents can be

combined to form new sets of documents. Boole

defined three basic operators, the logical product

called AND, the logical sum called OR and the

logical difference called NOT.

B. THE VECTOR SPACE MODEL

Gerard Salton and his colleagues suggested a

model based on Luhn's similarity criterion that has a

stronger theoretical motivation. [6]

They considered the index representations and the

query as vectors embedded in a high dimensional

Euclidean space, where each term is assigned a

separate dimension. The similarity measure is usually

the cosine of the angle that separates the two vectors �� and��. The cosine of an angle is 0 if the vectors are

orthogonal in the multidimensional space and 1 if the

angle is 0 degrees.

Mathematically According to [7], Documents and

queries are both vectors ������ � 	 	w�,
, w�,�, …w�,��
, w�,��
Where each w�,
 is a weight for term j in document i

Similarity of a document vector to a query vector =

cosine of the angle between them

I.J.Computer Network and Information Security, 2013, 1, 17-24

Published Online January 2013 in MECS (http://www.mecs-press.org/)

The cosine similarity measure formula is given by:

������ , �� � ∑ ��,�.��,���
!∑ ���,��".#∑ ���,��"�� ��

sim(d,q) = 1 when d = q

sim(d,q) = 0 when d and q share no terms

C. FUZZY SET THEORY MODEL

The IR models discussed so far assumed that

index terms are independent of each other. They all

represented document as a collection of index terms

and this way lost the semantics of the document. As a

result the matching of the query and document is

often a vague one.

In fuzzy set theory each query term qi defines a fuzzy

set of documents. Each document dj in the collection

has a degree of membership ($�,% 	< 1) in this set.

The term $�,% 	is defined as:

$�,% � 1 −)�1 −	*�,+�,-∈/�

Where *�,+ is the correlation of the index term i and

index term l (a query term is also an index term). The

correlation is calculated as the odds of the term

appearing together and not appearing together; given

by: *�,+
�	 #	1��2�	123��	�	45�	6	477243	18921ℎ23#	1��2�	123��	�	45�	6	�82�	581	477243	18921ℎ23

� 5�,+5� +	5+ −	5�,+

The equation actually calculates the algebraic

sum of correlations of query term qi with all the terms

in the document. The sum is implemented as

complemented of a negated algebraic product.

Firstly, this formulation ensures that whenever there

is one index term in the document which is strongly

related to qi (i.e. *�,+ 	 ≈ 1) then $�,% will also be ≈1.

The degree of membership is calculated using an

algebraic sum overall index terms instead of a usual

max function to allow smooth transition for the

values of the $�,% factor. [9]

D. CRAWLING

The web crawler automatically retrieves

documents from the web as per some defined

strategy. The crawler creates a copy of all the

documents it crawls to be processed by the search

engine. The crawler starts from a list of URLs

(documents) called seed. The crawler visits the

URLs, identifies the outgoing hyperlinks there and

adds them to the list of URLs (documents) to be

visited. This way the crawler traverses the web graph

following hyperlinks. It saves a copy of each

document it visits. According to [9], the following

policies are used by crawlers:

E. INDEXING

Once all the data is stored to a repository (e.g.

Database, file system or internet), the fun can start.

At this stage the files and data are not very searchable

as the data is stored in a so called “heap”. To search

all of this unstructured data would be very inefficient

and slow. In order to make the content more

accessible the data need to be stored in a structured

format called an index. Thus this is why this process

is called indexing. In its simplest form an index is a

sorted list of all of the words and phrases that are

found in the content that has been retrieved. The

words and phrases will be stored in alphabetical order

along with their source and rank or popularity.

IV. LUCENE LIBRARY

Lucene is a high performance Information

Retrieval (IR) library, also known as a search engine

library. Lucene contains powerful APIs for creating

full text indexes and implementing advanced and

precise search technologies into your programs.

Some people may confuse Lucene with a ready to use

application like a web search/crawler, or a file search

application, but Lucene is not such an application, it's

a framework library. Lucene provides a framework

for implementing these difficult technologies

yourself. Lucene makes no discriminations on what

you can index and search, which gives you a lot more

power compared to other full text indexing/searching

implications; you can index anything that can be

represented as text. There are also ways to get

Lucene to index HTML, Office documents, PDF

files, and much more.

A number of products have used Lucene to

build their searches; some well-known websites

include Wikipedia, CNET, Monster.com, Mayo

Clinic, FedEx, and many more. Lucene is currently

undergoing incubation at the Apache Software

Foundation. Its source code is held in a

subversion repository and can be found on

https://svn.apache.org/repos/asf/incubator/lucene/. If

you need help downloading the source, you can use

the free TortoiseSVN, or RapidSVN. The Lucene

project always welcomes new contributors [16].

I.J.Computer Network and Information Security, 2013, 1, 17-24

Published Online January 2013 in MECS (http://www.mecs-press.org/)

V. DEPTH-FIRST SEARCH ALGORITHM

Depth first search follow a path to its end to

its end before starting to explore another path.

Precisely, suppose that a search starts from vertex v

of the graph G, then the depth first search algorithm

proceeds as follows. (The vertices here represent a

web page on the website).

The main steps in the algorithm are listed

below:

Initialization: Mark all vertices on the graph as

unvisited.

Visit v and mark it as visited.

Select a vertex, say w, yet unvisited, but adjacent to v

and perform a depth first search with w taken as the

starting point.

On reaching a vertex with no unvisited

adjacent vertices backtrack to the most recently

visited vertex w that has an unvisited adjacent vertex

say u, and perform a depth first search on a sub-tree

having u regarded as a start vertex. Where no vertex

with yet unvisited adjacent vertex can be found,

terminate the search.

In [12], this is put in a recursive procedure as

follows,

Procedure DepthFirstSearch(v:vertex);

Var w: vertex;

Begin

 Visit v and mark it visited;

 For each vertex w adjacent to v but yet

unvisited do DepthFirstSearch(w)

End;

Some constraints are added to the

implementation of the algorithm such that any

external link encountered during the traversal of the

website is ignored so as to prevent the crawler from

traversing the entire web.

The implementation of the crawler using this

algorithm will be explained in the next chapter.

VI. DATABASE SEARCH ENGINE

ARCHITECTURE OF MOST WEBSITES

Databases are built for searching. One of the

primary benefits of a database driven approach to

web search development is advanced searching. It is

significantly faster to search through a thousand

database records than a thousand HTML pages.

Additionally, since content is broken up into logical

data fields within the database, users can search for

very specific content. Advanced queries such as one

that would locate, say, all of the articles in a database

that have an author named "John," a title containing

the words "buy" and "sell," and were published in

1997, are fast and manageable with a database

approach. These types of queries would be virtually

impossible to facilitate with a static site.

Figure 1. A DATABASE DRIVEN INFORMATION

RETRIEVAL ON A WEBSITE. [4]

VII. CHALLENGES OF THE DATABASE

SEARCH MODEL

1) For every user query, the query has to be

reformulated to SQL query; the entire tables

of the database has to be searched in other to

get all relevant documents; this increases the

time it takes for the result to be returned to

the user.

2) Another challenge with the database

approach is that it takes into consideration

only the information in the database. From

research, it is discover that most contents on

websites are in the form of text which are

literally stored on web pages and not stored

in the database. Therefore, any search by the

user will not search through the pages on the

site but only through the database.

3) In case of big amounts of data, SQL makes

an inner join between result set returned by

Full-Text search and the rest of the query

which might be slow if database is running

on the low powered machine (2GB ram for

20 GB of data). Switching the same query to

I.J.Computer Network and Information Security, 2013, 1, 17-24

Published Online January 2013 in MECS (http://www.mecs-press.org/)

Lucene will improve speed considerably, i.e.

as the size of the database grows, more

memory is needed.

4) Relational Databases had shortcomings in

handling unstructured data. They are

designed to provide search results that

satisfy the user information need 100%

because queries are built on structural field

constraints, with the increase in unstructured

text, developments of information retrieval

systems have been gaining momentum. The

aim of this IR project is to perform fast full

text search specifically on free form text

data.

5) Lacks a ranking mechanism for the results;

when searching over unstructured data,

ranking mechanism is very important. Most

users examine top 10 or 20 results and

ignore the rest; therefore results must be

sorted by relevance in order to satisfy user’s

information need. The relevancy ranking of

results for unstructured text search for most

relational databases is not on par with that of

the best full text search systems.

VIII. PROPOSED DESIGN

Based on the shortcomings of the database system

analysed above, the design for the proposed system is

presented here. The proposed system makes use of a

crawler to gather information from every document

on the website and store this information in the index.

The index is a structured system of storing the

unstructured data returned by the crawler. The

sections below contain the design architecture of the

proposed system and explained how each part of the

architecture is designed.

Figure 2. Architecture for the proposed design

A. CRAWLER DESIGN

Figure 3.3 below shows the flow of the basic

sequential crawler. The crawler maintains a list of

unvisited URLs called the frontier. The list is

initialized with seed URLs which may be provided

by a user or another program. Each crawling loop

involves picking the next URL to crawl from the

frontier, fetching the page corresponding to the URL

through HTTP, parsing the retrieved page to extract

the URLs and application specific information, and

finally adding the unvisited URLs to the frontier. The

crawling process may be terminated when a certain

number of pages have been crawled. If the crawler is

ready to crawl another page and the frontier is empty,

the situation signals a dead-end for the crawler. The

crawler has no new page to fetch and hence it stops.

Figure 3. Architecture design of a Crawler

Crawling can be viewed as a graph search

problem. The Web is seen as a large graph with pages

at its nodes and hyperlinks as its edges. A crawler

starts at a few of the nodes (seeds) and then follows

the edges to reach other nodes. The process of

fetching a page and extracting the links within it is

analogous to expanding a node in graph search. The

relation among web pages on internet can be defined

as a directed graph G= (W, V), W is a set of web

I.J.Computer Network and Information Security, 2013, 1, 17-24

Published Online January 2013 in MECS (http://www.mecs-press.org/)

pages in internet, V is a set of urlij that the linkage

exists between web pagei and web pagei.

An information retriever is necessary to search web

pages in internet. The implement method of

information retriever depends mainly on the linkage

structure among web pages. The linkage structure

based on two Assumptions:

1) Assumption 1: A hyperlink from web page A

to web page B is a recommendation of page

B by the author of page A.

2) Assumption 2: If web page A and web page

B are connected by a hyperlink, then they

might be on the same topic.

Since the internet is a graph and crawling is carried

out by traversal of the graph. Therefore, the Depth

First Algorithm was used for the design of the

crawler.

B. INDEXER DESIGN

The crawling and the indexing process are

carried out together i.e. as the crawler fetches the

document, it is analysed and indexed. The heart of a

search engine resides in the index. An index is highly

efficient cross-reference lookup data structure. In

most search engines, a variation of the well-known

inverted index structure is used. An inverted index is

an inside-out arrangement of documents such that

terms take centre stage. Each term refers to a set of

documents.

INDEX CONSTRUCTION

ALGORITHM [2]

Algorithm CreateIndex(collection, stemmer) {

 For Each Document doc in collection {

 doc_entry =

index.addDocEntry(doc.id);

 For Each Token tok in doc.fullText

{

 If tok is compound word

tok_ont in onto {

 tok =

stemmer.stem(tok_ont);

} Else {

 tok =

stemmer.stem(tok);

}

doc_entry.countOccurence

(doc, tok);

If doc_entry is not in

index.termEntries {

 Index.addTermE

ntry(tok);

}

term_entry =

index.getTermEntry(tok);

term_entry.countOccurenc

e(doc, tok);

}

}

Index.computeWeightTerms();

Returns index;

}

The indexing process begins with collecting

the available set of documents by the data gatherer

(crawler).

The parser converts them to a stream of plain text.

For each document format, a parser has to be

implemented.

In the analysis phase, the stream of data is tokenized

according to predefined delimiters and a number of

operations are performed on the tokens. Each of the

tokenized word is added to the index. The search

process begins with parsing the user query. The

tokens and the Boolean operators are extracted. The

tokens have to be analysed by the same analyser used

for indexing. Then, the index is traversed for possible

matches in order to return an ordered collection of

hits. The fuzzy query processor is responsible for

defining the match criteria during the traversal and

the score of the hit.

Complete index creation operation occurs

usually once. The whole set of documents is parsed

and analyzed in order to create the index from

scratch. This operation can take several hours to

complete.

The operation of updating index is called incremental

indexing. It is not supported by all search engines.

Typically, a worker thread of the application

monitors the actual inventory of documents. In case

of document insertion, update, or deletion, the index

is changed on the spot and its content is immediately

made searchable. Lucene supports this operation.

Lucene divides its index into several

segments. The data in each segment is spread across

several files. Each index file carries a certain type of

information.

The exact number of files that constitute a Lucene

index and the exact number of segments vary from

one index to another and depend on the number of

fields the index contains. The internal structure of the

index file is public and is platform independent.

I.J.Computer Network and Information Security, 2013, 1, 17-24

Published Online January 2013 in MECS (http://www.mecs-press.org/)

IX. IMPLEMENTATION PHASE

A. Software requirement

The following software should be installed on

the computer to be able to implement the system

design earlier specified.

1) Windows vista OS or windows 7 must be

installed on the system

2) Java development kit (JDK 1.5 or later

version)

3) Netbeans Integrated development

environment with glassfish version 3

4) Lucene and HTML parser library

B. Crawler and Index Implementation

The frontier is implemented as an array of type

URL in which case the depth-first crawler can be

used to blindly crawl the Web. Iteration was done

over the array to get the URL to crawl next and the

new URLs are added to the tail of the queue. Due to

the limited size of the frontier, precaution must be

taken to make sure that no duplicate URLs exist in

the frontier. A linear search to find out if a newly

extracted URL is already in the frontier is costly.

In order to fetch a Web page, an HTTP client which

sends an HTTP request for a page and reads the

response is needed. The client needs to have timeouts

to make sure that an unnecessary amount of time is

not spent on slow servers or in reading large pages.

Modern programming languages such as Java and

Perl provide very simple and often multiple

programmatic interfaces for fetching pages from the

Web. However, one must be careful in using high

level interfaces where it may be harder to find lower

level problems. For example, with Java one may

want to use the java.net.Socket class to send HTTP

requests instead of using the more ready-made

java.net.HttpURLConnection class.

Once a page has been fetched, its content is

parsed in order to extract information that will feed

and possibly guide the future path of the crawler.

Parsing may imply simple hyperlink/URL extraction

or it may involve the more complex process of

tidying up the HTML content in order to analyse the

HTML tag tree. Parsing might also involve steps to

convert the extracted URL to a canonical form,

remove stop words from the page's content and stem

the remaining words. In this part, the concentration is

on crawling a website and then adding the crawled

site to a lucene index. In chapter three, the notion of

recursively crawling a web page to eventually find all

of the pages/links in a web site using the depth first

search algorithm was discussed. This can be achieved

by implementing a recursive indexing/crawling

function. The recursive crawler/indexer makes use of

an object called Link Parser; this is an object that

makes use of the HTML parser library to extract all

of the links form a particular web page. The link

extracted is then parsed into a function that fetches

the page and then converts it into a lucene document

because only lucene documents can be stored in the

index.

Figure 4. Process page

In order to write a document to the index, lucene

requires the use of an Analyser, an analyser processes

the content before it is added to the index.

Figure 5. Search Page (index.jsp)

I.J.Computer Network and Information Security, 2013, 1, 17-24

Published Online January 2013 in MECS (http://www.mecs-press.org/)

Figure 6. Result page (result.jsp)

X. SYSTEM PERFORMANCE EVALUATION

In this section, the evaluation of the

effectiveness of the website search developed using

lucene is carried out. Due to the absence of standard

corpora with suitable characteristics, we use three

locally compiled corpora. Evaluation based on the

precision and recall metrics as seen in chapter two

requires labour-intensive screening of the complete

corpora, as well as the collaboration of several

experts in the domain of the corpora. In comparison,

a known-item retrieval setting reduces the amount of

manual labour required and allows a semi-automatic

selection of items, as described in the following

sections.

A. EVALUATION BENCHMARK

1) Start with a corpus of documents.

2) Collect a set of queries for this corpus.

3) Have one or more human experts

exhaustively label the relevant documents

for each query.

4) Typically assumes binary relevance

judgments, that is, relevant or not relevant.

5) Requires considerable human effort for large

document/query corpora.

B. CORPORA

The domain model for the information retrieval

as in figure 3 requires that a website is present in the

evaluation corpus. For the evaluation of this work,

the data gatherer (crawler) in conjunction with the

indexer was used to index three polytechnic websites.

The reason for choosing these tertiary institutions is

for us to have access to a lot of students who can help

us in determining whether a set of retrieved

document is relevant to a query or not. The corpora

consist of web information from Kwara State

Polytechnic Website (www.kwarapolytechnic.com),

FEDERAL polytechnic, Offa Website

(www.fedpoffa.edu.ng), and The Federal

Polytechnic, Ado-Ekiti Website

(www.fedpolyado.org).

Table 1. Corpus and the number of documents

C. Methodology for choosing search queries

Choosing representative search queries and

relevant documents is a central part of the known-

item retrieval scenario; it is usually performed by

experts in the subject matter with a reasonably

complete knowledge of the documents in the corpus.

Known items and search queries in a semi-automatic

manner were extracted due to a limited amount of

manpower available for the evaluation. Since

objective criteria are used for choosing search

queries, personal bias was prevented from affecting

the evaluation results. Where a human judgement is

necessary, two different judges choose relevant

documents independent from each other. Here, the 10

queries used are the ones obtained from FAQs

(Frequently Asked Questions) of most higher

institutions which are the ones based on admission,

registrations and requirements for a field of study.

D. 11-Point Average Precision

The 11-point average precision is a measure

for representing performance with a single value. A

threshold is repeatedly tuned such that allow the

recall to take the values 0.0, 0.1, 0.2 ….., 0.9, 1.0. At

every point the precision is calculated and at the end

the average over these eleven values is returned. The

retrieval system must support ranking policy. [1]

Precision: This is the ability to retrieve top-ranked

documents that are mostly relevant.

Recall: This is the ability of the search to find all of

the relevant items in the corpus.

CORPUS NUMBER OF DOCUMENTS

www.kwarapolytechnic.com 102

www.fedpoffa.edu.ng 50

www.fedpolyado.org 131

I.J.Computer Network and Information Security, 2013, 1, 17-24

Published Online January 2013 in MECS (http://www.mecs-press.org/)

TABLE 2. 11 Point Recall / Precision Table for

Kwara State Polytechnic, Ilorin, Nigeria Search

Module over 10 Queries on KWARAPOLY Website

RECALL AVERAGE PRECISION

0.0 1

0.1 1

0.2 0.889

0.3 0.889

0.4 0.516667

0.5 0.516667

0.6 0.166667

0.7 0

0.8 0

0.9 0

1.0 0

Figure 8. AVERAGE 11-POINT R-P CURVE

ACROSS 10 QUERIES ON KWARAPOLY

WEBSITE USING KWARAPOLY SEARCH

MODULE 11 POINT. AVERAGE PRECISION =

0.4525

TABLE.3. 11 POINT RECALL/PRECISION

TABLE FOR WEBSITE SEARCH ENGINE USING

LUCENE ON KWARA POLYTECHNIC WEBSITE

RECALL AVERAGE PRECISION

0.0 1

0.1 1

0.2 1

0.3 1

0.4 0.833333

0.5 0.833333

0.6 0.857

0.7 0.486

0.8 0.486

0.9 0.285667

1.0 0.285667

Figure 9. AVERAGE 11-POINT R-P CURVE

ACROSS 10 QUERIES ON KP WEBSITE USING

LUCENE SEARCH.

MEAN AVERAGE PRECISION= 0.7334

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
is
io
n

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
R
E
C
IS
IO
N

RECALL

Figure 7. A Typical Recall/Precision Curve

Ideal point,

where precision

and recall is 1

P
re

ci
si

o
n

Recall 1

1

I.J.Computer Network and Information Security, 2013, 1, 17-24

Published Online January 2013 in MECS (http://www.mecs-press.org/)

Figure 10. COMPARISON OF 11-POINT

AVERAGE OF BOTH SEARCH ENGINE

REMARK: The curve closest to the upper right-hand

corner of the graph indicates the best performance.

TABLE 4. 11 POINT RECALL/PRECISION

TABLE FOR WEBSITE SEARCH ENGINE USING

LUCENE ON FEDPOLYADO WEBSITE

RECALL AVERAGE PRECISION

0.0 0.547667

0.1 0.547667

0.2 0.583333

0.3 0.5

0.4 0.428667

0.5 0.451

0.6 0.095333

0.7 0

0.8 0

0.9 0

1.0 0

Figure 11. AVERAGE 11-POINT R-P CURVE

ACROSS 10 QUERIES ON FEDPOADO WEBSITE

RUN FROM THE NEW SYSTEM

MEAN AVERAGE PRECISION = 0.2606

TABLE 5. AVERAGE 11-POINT R-P CURVE

ACROSS 10 QUERIES ON OFFA POLY WEBSITE

USING LUCENE SEARCH ENGINE

RECALL AVERAGE PRECISION

0.0 0.527667

0.1 0.527667

0.2 0.577667

0.3 0.633333

0.4 0.666667

0.5 0.576333

0.6 0.611

0.7 0.277667

0.8 0.222333

0.9 0

1.0 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
R
E
C
IS
IO
N

RECALL

LUCENE

SEARCH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
R
E
C
IS
IO
N

RECALL

I.J.Computer Network and Information Security, 2013, 1, 17-24

Published Online January 2013 in MECS (http://www.mecs-press.org/)

Figure 12. AVERAGE 11-POINT R-P CURVE

ACROSS 10 QUERIES ON OFFA POLY WEBSITE

FROM THE NEW SYSTEM

MEAN AVERAGE PRECISION = 0.42003

Figure 13. OVERALL R-P CURVE OF THE NEW

SEARCH ENGINE

MEAN AVERAGE PRECISION = 0.48003

XI. DISCUSSION

Table 2 and Figure 8 show the recall-

precision table and curve for results of the 10 queries

run from the Google powered search module on the

kwara polytechnic website respectively. Table 3and

figure 9 shows the recall-precision table and curve on

the same query set on kwara polytechnic website but

using the newly developed. On comparison of the

two curves in figure 9, we observed that the blue

curve (obtained from the newly developed system) is

closer to the upper right of the curve than the red

curve (obtained from Google powered search module

on kwara polytechnic website) signifying its

proximity to the ideal point of an information

retrieval system as explained in figure 8.

Table 4 and figure 9 show the recall-

precision table and curve for results of running

searches using the newly designed search engine on

the same query sets. It can be deduced from the graph

that the height of the curve is not as close to the

upper right as the curve in figure 8 and figure 9. This

doesn’t happen as a result of flaws in the new design

but largely has to do with how well the website is

structured. A similar scenario is observed from figure

12. Figure 13 shows the overall average recall-

precision curve for searches run across the entire

corpora. It is observed that the effect of the lowly

structured websites reduces the height of the graph.

This led to the conclusion that how structured well

the website is affects the precision and recall of the

result even though the effect might be minimal on

some websites.

From the figures above, it is also observed

that there is usually a trade-off between recall and

precision i.e. at a high recall value, more documents

containing a lot of junks is retrieved by the system

and hereby reducing precision while at a high

precision value, less but the most relevant documents

are retrieved and thereby providing a low recall

value. Another observation is that the system seems

to perform well on one query than it does to another.

This has to do with the query formulation skills of the

user and how much knowledge a user had about the

website content.

XII. FUTURE WORKS

The field of information retrieval is a very

fascinating research area where improvements can

always be made no matter how sophisticated your

retrieval application looks. Based on the limitations

outlined above and the challenges encountered during

the development and testing stages, the following

areas of improvements have been identified and they

are highlighted below:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
R
E
C
IS
IO
N

RECALL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.10.20.30.40.50.60.70.80.9 1

P
R
E
C
IS
IO
N

RECALL

I.J.Computer Network and Information Security, 2013, 1, 17-24

Published Online January 2013 in MECS (http://www.mecs-press.org/)

1) Apache Nutch should be used to develop a

better crawler: Nutch is a full-text crawler

library designed by apache using Lucene

technology. The crawler designed in this

work as stated above has a lot of flaws and

we’ve identified Nutch as a solution.

2) Semantic annotation should be

introduced to this work using ontology

model: The use of ontologies to overcome

the limitations of keyword-based search has

been put forward as one of the motivations

of the Semantic Web since its emergence in

the late 90’s. Ontology is a collection of

concepts and their interrelationships which

can collectively provide an abstract view of

an application domain. This involves the

application of sense or semantics to the

knowledge base and user queries. Hence,

result is not just returned based on the

keywords but also on the meaning of the

query.

3) The keywords should be highlighted:
Google and other major search engine make

use of this technique to make the result page

more readable. We intend to integrate this in

later works.

XIII. REFERENCES

[1] Wikipedia, the Encyclopaedia: The vector Space Model

 [Online], July, 2012. Available:

 http://en.wikipedia.org/wiki/Information_retrieval.

[2] H. S. Al-Obaidy, Building Ontology Web Retrieval

 System Using Data Mining, Unpublished PhD thesis,

 Dept. of Computer Science, Ahlia University, Bahrain,

 2009.

[3] D. M. Christopher, R. Prabhakar and S. Hinrich, An

 Introduction to Information Retrieval, (online edition).

 Cambridge University Press, 2009.

[4] H. DJOERD, Information Retrieval Models (Author’s

 Version). Twente: University of Twente, 2005.

[5] Jarkata Lucene Javadoc: Lucene 3.6.0 Documentation

 [Online], May, 2010. Available:

 http://lucene.apache.org/core/3_6_0/api/all/index.html.

[6] G. Salton & M. McGill, Introduction to Modern

 Information Retrieval, London: McGraw-Hill, 1983.

[7] Lecture Note, The Vector Space Model [Online], May,

 2012.Available:

http://www.csee.umbc.edu/~ian/irF02/lectures/07Models-

 VSM.pdf.

[8] S. E. Robertson, C. J. Van Rijsbergen and M. F. Porter.

 Probabilistic models of indexing and searching. In R.

 Oddy et al. (Ed.), Information Retrieval Research, (pp.

 35-56), Butterworths, 1981.

[9] D. Joydip and B. Pushpak, Seminar Report on Ranking

 in Information Retrieval. Mumbai: Indian Institute of

 Technology, Bombay, 2010.

[10] K. Jennifer, Adding Search Functionality to Your Web

 Site [Online], April, 2010. Available:

 http://webdesign.about.com/od/administration/a/

 aa091399.htm.

[11] P. WILSON, Information Storage and Retrieval, vol.

 9(8), 457-471, 1973.

[12] P. B. SHOLA (2003), Data Structure with

 implementation in C and Pascal. Feyisetan Press,

 Ibadan, 2003, pp. 119-120.

[13] F. Burkowski, Retrieval activities in a database

 consisting of heterogeneous collections of structured

 texts, in the 15th ACM SIGIR Conference on

 Research and Development in Information Retrieval

 (SIGIR'92), 1992, pp. 125.

[14] Wikipedia, the Encyclopaedia: Java

 Programming Language [Online]. July, 2012.

Available:

http://en.wikipedia.org/wiki/Java_programming.

[15] Oracle Corporation, Java Server Pages: A developer’s

 perspective [Online], July, 2012. Available:

 http://java.sun.com/developer/technicalArticles/

 Programming/jsp/ Java Server Pages A developer’s

 perspective.htm.

[16] Smith. Introducing Lucene.Net. [Online], May, 2012.

 Available: http://www.codeproject.com/Articles/

 29755/Introducing-Lucene-Net

[17] Source Fourge, HTML Link Parser Documentation

 [Online], April, 2012. Available:

 http://htmlparser.sourceforge.net/HTML

 Parser.htm

[18] M. ZHU. Recall Precision and Average Precision,

 2004.

Authors

M. A. Mabayoje is a lecturer in the department of

Computer Science, University of Ilorin, Nigeria. She

bagged Bachelor of Science and Master of Science in

Computer Science in the University of Ilorin,

Nigeria. She is currently a PhD student in the same

university. She is a member of Nigeria Computer

Society, Science Association of Nigeria among

others. Her research interests include ontology,

Artificial Intelligence, Software Engineering. She is

married with children.

Olawale Surajudeen Adebayo (MCPN, MNCS) is

a lecturer in the department of Cyber security science

department, Federal University of Technology,

Minna, Niger State Nigeria. He bagged B.Tech. in

Mathematics and Computer science from Federal

University of Technology, Minna and MSc. in

Computer science from University of Ilorin, Kwara

state, Nigeria. He is presently a PhD student in the

department of cyber Security science, Federal

University of Technology, Minna. His current

research interests include: Information security,

Cryptology, Machine learning, Data mining and

Computational intelligent. He is a reviewer to more

than five international and local Journals.

