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ABSTRACT 

This project will be design to give an introduction to the study of computer programme 

solving reaction kinetics and Quantum Mechanical Problems. 
, 
~ 

The project is an introduction to the essential ideas in differential equation rather than ai 
~ 

comprehensive account of the subject. It considers some types of reactions, Quantum, claSSiCaIf 

" mechanics, Schrodinger equation and wave equations are considered in the work were calculated. t 
! , 

While in the study of most of differential equations, the tools used are restricted almostl 
r 

completely to algebra, here in this course work one use much of differential calculus and some time t 
integral calculus. Therefore, the work deals essentially with simple reactions ofkinetics and Quantum I 

r 
In chapter four, one shall be discuss mainly on programming. 
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This facts has been known for a long period of time, but Wenzel (1740-l793) Working on 

the corrosion of metals by acids (1777) \v,-<s the first to introduce the idea of relationship 

between the acid concentration and the rate of attach the metal or the weight devolve in unit 

time. 

It was not until or 1850 that Vlilhelmy, using the inversion of sugarcane by acid, Showed 

the proportionality of the reaction rate with the concentration of the reagents. 

This becomes the first experimental fact in kinetics although at the time it past almost 

unnoticed. 

Chemical kinetic did not come on its own however, until 1884 with vanthoff (1852-1911) 

and is classic works. A study of chemical dynamics therefore Vanthoff and \Vithelmy, can both 

be considered the true founders of this branch of chemistry. 

Up to that time-and one must not forget that the first edition of Mendeleef' speriodic 

classification of chemistry only appeared in 11870 chemist had restricted themselves to the 

study of what is easiest in a chemical reaction, that is initial and final state. All of the static 

characteristics in a chemical reaction are beginning to be properly explored, the reagents the 

products of the reaction, are all balance tl1e energy involved etc The manner however, in 

which the reaction took place was completely known, its mechanism and the relationship would 

have with the reaction rate or with the struCture of the different reacting species had not been 

foreseen nor the dependence of the mechanism on the external condition of temperature, 

pressure physical rate of the reagent etc. 
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Thermodynamics, this science which ceveioped long before chern ical kinetics, predict 

whether a reaction will proceed under a ginn set of conditions of temperature and pressure. It 

can also predict the direction in which the equilibrium will be shifted in response to a variation 

in these parameters. However, it can not tell us what the rate of the reaction will be nor how 

this rate will vary with the significant f8.ctors such as temperature pressure composition of the 

reaction mixture etc. 

The Quantum mechanical plays an essential role in our understanding of 

molecular vibrations. Their spectra, and their influence on thermodynamic properties. The 

problem provides a good domesticatio.:1 of mathematical techniques that are important in 

quantum chemistry. Since many chemists are overly familiar with some of the 

mathematical concepts, one shall deal with them in detail in the context of this problem. 

1.2 CLASSIFICATION OF D1FFERENTIAL EQUATION 

Differential equation is classified into two main categorieG- partial and Ordinary 

differential equation One of the must obvious classifications is based on whether the unknown 

function (l'2pend on a single independent variables or in several indepelldent variable. In the 

first case only portion derivatives appear is called partial differential equation. 

Example d2u/dx2(x,y)+du/dy(x,y) =0 is called second order partiai differential equation. 

In the second case only ordinary derivatives appear in the differential equation, 

and it is said to be an ordinary differential equation. 

Example dRldt(t)=-kR(t) where k is a known constant is called first order ordinary 

differential equation 
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(i) Ld2 8(t)/de+ Rd8(t)/dt+_l 8(t) =E(t) for tile charge 8(t) on a condenser in a circuit with 
c 

capacity c, resistance R, inductance L, and irn.pressed voltage E(t), is the example cf second 

order ordinary differential equation. 

1.3 ORDER OF DIFFERENTIAL EQUATION 

The order differential equation is the order of the high power derivatives 

Example-: 

(i) dy/dx+f(x,y)=0 is called first order differential equation 

(ii) dy/dx +f(x,y) = is called first differential equation. 

(iii) d2y/dx2+dy/dxp(x)+q(x)y=o is called second order 

differential equation etc 

1.4 DEGREE OF DIFFERENTIAL EQUATION 

The degree of differential equation is ~he cxponc~ .• of the 

highest power of the highest order derivative. 

Example-: 

(i) dy/dx=x/y is called differential equation of degree one . 

4 (ii) dy/dx=(9x2+2xy+3l)/2x(x+y) is differential Equation of degree two etc 
" 

; 1.5 ORDINARY DIFFERENTIAL EQUATION 

If in a differential equation, the dependellt variable is a function of only one 
1 , 
I Independent variable Example c:y/dx=3x+7x +5 
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Ordinary differential equation is furthef classified as linear or non-linear 

homogenous or non-homogeneous and first order or second order or third order. 

A differential equation is said to be linear if each term is linear (degree one or Zero) 

in term of all dependent variable and their derivatives. For example dx/dt+x = e 
So it is called a non linear differential equation ExC"mple (dx/dt)2 +dx/dt-x-y=7t 

If in the differential equation the only term consiStiJ.lg entirely of the independent 

variable is zero, then the differential equation is called a homogeneous differential equation. 

An example of homogeneous differential equation is d2y/dx2+xdy/dx+y=O 

An equation that is not homogeneous is called non-homogeneous equation. An example 

of non homogeneous eql:z..~ioa is dy/dx+y=3x 

A differential equation can be linear and homogeneous equation. An example of linear 

homogeneous equation is dy/dx + = 0 It can be liaear non homogeneous. 

This is called a linear non-homogeneous equation. An example of linear non 

I homogeneous equation is dy/dx + y = 3x. All these types of differential equation can be of 
J 
J 

first order or second order or otherwise. 

These are further categorized as first order homogeneous, first order linear, 

first order exact and variable separable equations. Second order equations 

are also further classified or non linear, homogeneous or non homogeneous differential 

equations. 
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CHA..PTER TWO 

2.1 FmST ORDER REACTIONS 

Let us consider a first reaction, let a be the initial concentration of the reactant A and X 

the concentration which has reacted at the time (in order words oc = x/a is the fraction of A 

which has reacted). Obviously the concentration present at time is a-x and we have 

dx/dt = k(a-x) 

To integrate this differential equation separate the variables 

i.e. f dx/(a-x) = fkdt 

Ln a/(a-x) = kt 

which may be written as 

(a-x)ae-kt 

If log a/(a-x) is plotted as a function of t gives a straight line graph of slope( -k). The units of 

the first order constant are S-l 

For examp~e:- The liquid phase dissoch,tion of dicyclopentaclience has been studied 

longer and patton using gas chromatographic techniques. The techniques involved measured a 

quantity proportional to dc/dt rather than -dc/elt 

Solution:-

Then, one can apply first order equation as dctdt = kc (rather than -dc/dt). The one of the 

reactant and the positive of the products. 

fdc/c = fkdt 

Lnc = kt+c 
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If t = 0 

c= Inco 

then, the equation becomes 

Inc = Inco + kt 

Where c and Co are the equations that are proportional to the concentration. The value of k can 

be determined from the following data at 190°c 

(a) separating the variaoles and integration l~avc 

C (co) t(second) Lnc 

1.85 524 0.6125 

2.04 620 0.7129 

2.34 752 0.8502 

2.70 876 0.9933 

3.83 1188 1.3428 

5.25 1452 1.6585 

Then, one can plot graph of Inc against t a sLraight line which is linear is obtained as first order 

reaction satisf". 
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3 
2 cm = 1 unit 011 Inc 

2 2 cm = 500 units on taxis 

In c 1 

0------------------
500 1000 1500 2000 t (second) 

22. SECOND ORDER REACTIONS 

If we call a and b the initial concentration of the reactions A and B respectively in the 

~ following type of reaction. 

A + B - > products 

and x the concentration of A and B reacted at time, it is evident that dx/dt = k(a-x)(b-

x) ......................... (1) 

(a) if, at the start, the reactants are of equal concentration (a = b), this equation becomes 

dx/dt = k(a-x)2 

(b) dx/dt = k(a-x)2 This expression is also obtained for a reaction of the type A + A -> 

products. 

And X the concentration of A and B reacted at time t, it is evident that dx/dt = k(a-x)(b-

x) ....................... (1) 

(a) if at the start, the reactants are of equal concentration (a=b), this equation becomes 

dx/dt = k(a-x)2 

{ This expression is also obtained for a reaction of the type 
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A + A - > Products 

Separating the variables and integration have 

Jdx/(a-x)2 Jkdt 

l/(a-x) = k+c (where c is constant) 

with the condition that x = 0 at t = 0 the constant become 1/a and the find expression is 

x/a(a-x) = kt 

b. if a and b are different (i.e. b > a), then separating the variables 

Jdx/(a-x)(b-x) = Jkdt 

By using the partial fraction we have 

lIb-a In(b-x)(a-x) = kt+c 

if a-x = 0 at f = 0 one have 

-l/(b-a)ln b/a = c 

then, the final expression becomes lIeb-a) lna(b-x)/b(a-x) = kt 

it is clear that if the reaction is really second order, then 

(1) for the case a = b, if we plot x/a(a-x) as a function of t a straight line wiiI result which 

passes through the origin and slope ak i.e. if a=b 

(2) if a = b, we plot loga(b-x)/b(a-x) as a function of t a straight line is also obtained. The 

units of the second order concentration are mol-: cm3 S-I 

2.3 THIRD ORDER REACTIONS 

A third order reaction may be first order with respect to three reactants of A.B and C such that 

the rate of the reaction is then of the form V = K.[A].[B].[C]. it may also be of third order 
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with respect to a single reactant when V = I(lA]3 I.e. 

V = dx/dt or first order with respect to another 

i.e. V = K[A].LB]2 

of these three types of reactions, the last is t;le most frequent 

The rate expression for the first of these corresponding to the reaction these are 

A+B+C-.. products 

This is easily to integrate if the initial conceI~tration of the three reactants are equal (a=b=c) 

and one have 

V = dx/dt = K.(a-x)3 

The above eqilation is known as the case of third order reaction with respect to a single 

reactant. And if one integrate have 

Jdx/(a-x)3 = Jklit 

1I2(a-x)2 = kt+c(where c is constant) 

when x = 0 at t = 0 then, the constant is equal to 

1I2a2 = c and the final equation becomes 

2kt = 1I(a-x)2 - lIa2 

if t is plotted as function of 1/(a-x)2, straight line of slope 2k is obtained. The constant k is 

expressed in units of time-! concentratiorf2 (i.,:. r!c-2
) 

Example:- For the reaction 

A + B +~ products, with CA. 0 :t:CB. o:t:Cc.o ,the differential rate equation is dx/dt = -dCA /dt 

= kCA CBCc ............. (i) 
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and the integrated equation is 

KT Ln (CA/CA.O+ln(CnlCn.O)+(Cc/Cc.0) 

(CA.O-Cn.O)(Cc.O-CA"O)(CA.O-Cll.O)(CB.O-Cc.O)(CB.O-Cc.O)(Cc.O-CA.O) 

Where CA.O is a concentration of order A and CA = concentration of A, for further reaction. 

For the case where Cn. O;tCA.O = Cc.o in equation (i) above, the reaction is 2A + B - > product(2 

J 
1 atoms combined in presence of another molecule) Where CA.o;tCn.o= Cc.o, 
\ 
" 

The differential rate equation is 

-dcA = KCA 2Cn ........................................ (2) 
dt 

and the integrated equation :8 2 [2(2Cn. O-CA. O)(CA. O-CA) + LnCn. OCA] = kt 
(2Cn. O-CA. 0)2 CA. OCA CA. OCB 

For the reaction A + B--"Products, with CA.O :;~CB.O Where equation (2) is valid, the 

integrated form is 

I (CB.O-CA.O)(CA,O-CA)+:'-,nCn,CCA = kt.. ......... (3) 
CA.OCA CA,OCB 

For the case where CA,O = Cn,O = Cc,O for the equation (i) or CA,O = Cn,O or CA,O = 

2CB,a fo,' equation (2) or for the reaction 3A- > produc~s, the differential rate equation is -

dc/dt = kc:; .... (4) which integrates to gives 

i.e J-dc = Skdt 
C3 

= >- '/2 LnC2 x-I = kt+C(where C is constant) 

= > '/2 InC2 =kt+C if t = 0 = > C = 1I2LnC2o the equation becomes 
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1/2 InC2 =kt+ 1I21nCo2 = > 1I21nC2-1I2111Co2 = kt 

= > 1 h(C2-Co2
) =kt 

or 1/2(1/C2-lICo2
) = kt 

If one plots the graph of equation (1) or (2) or (4) against t a straight line is obtained which is 

linear and slope in each case equal to k 

2.4 ZERO ORDER REACTIONS 

These occur when the rate is entirely independent of the concentration of reacting 

substance. 

i.e V = k i.e dx/dt = V = k 

= > dx/dt = k 

Here n is zeroExample The decomposition of some gases, such as ammonia, on metal 

catalysts. For the overall reaction i.e A- > products, the differential rate equation is 

Rd[A]/dt = k[A]o 

= > -ALA] = kdt 

integrating gives 

-[AJ = kt +[A] where [A] is constant, at t = 0 

= > -[AJo = [A] 

Equation becomes 

-[A] =kt-[A]o .......................................... (7) 

[AJ = -kt+[AJo 
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So, in the zero order case also a plot of concentration verses time a straight line graph of slope 

(-k) is obtained, the units zero order constant are mol em -3 

2.5 HALF LIFE ORUER REACTHJI'<T 

Another important quantity is the reaction half life t1l2. It is the time at which the 

concentration of the reactant has fallen to half its value. Under these condition and taking into 

consideration that at t = t1l2 (in first order reaction is independent or the initial concentration 

at t = t1l2 then, [A]t = 1I2[A]0 and this lead to t1l2 = lIk[A]o 

If one plotted the graph against lI[Ajo. A straight line is obtained which is second order 

kinetics and the slope gives (-k) 

Example:- The half life of a chemical reaction, t1l2 is defined by the condition [A]t == 112 at t 

= tl12. For a zero order reaction in equation ('7) gives 

i.e [A]t = 1I2[A]0 ................................... (8) 

Put equation (8) into (7) and we have 

i.e 1I2[A]0 = -kt+[A]o 

= > 2kt =2[A]0 -[A]o 

2kt = [Alo 

but t = t1l2 

= > t1l2 ~ 2[A]0 12k 
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TABLE (RATE EXPRESSIONS) 

Let list the differential equation at order reaction in the table below 

Order Differential flntegral t1l2 reaction 
I 

I , 
I halI life 
I 

I 
0 dx/dt = k I kt =x 

I kt =k loga/(a-x) 1 dx/dt= (a-x) t1/2= 11k 
I 

2 dx/dt = k(a-x)2 
I I kt = lI(a-x)-l/a t1l2= lIka 

2 dx/dt = k(a-x)(b-x) ! kt =k/(b-a)log,,-,o·-x)/b(a-x) 

3 dx/dt = k(a-x)3 kt = 112 [ 1I(a-x)2 -lIa2J 
I 

3 dx/dt =k(a-x)2(b-x) I kt= l/(b-a) [x-k t1l2= lIka2 

I 
J 

: lolTa(b-x)/a(a-x)(b-a) • /:;> 
I 

i 
! 

i 
l 

2.6 A REACTIONS OF SIMPLE ORDER (EQUATIONS OF FIRST ORDER AND 

FIRST DEGREE) 

These equations only contain dy/dx and a function of x and y and are of the general form of 

equation 

dy/dx +f(x,y) =0 

The nature of above equation depends on function f(x,y) Example if f(x,y)is a function 

of x alone, the solution of the problem simply involves integration if dy/dx=f(x) 

y=[f(x)dx+c(where c is arbitrary constant) 

14 



2.7 VARIABLES SEPARABLE 

The equation of the form 

dx/dt=k(a-x)(b-x)can be solve by se~J.rable variable as 

dx/(a-x)(b-x) =kdt 

J 

I 
Then, one can integrates both sides Idx/(a-x) (b-x) = Ikdt 

l/a-b In (a-x)(b-x)=kt+c(\vhere c is constant), and assuming at t=o,x=o 

J = > l/a-b In(a/b) = c 

Then, the above equation becomes 

l/a-b In (a-x)/(b-x) = kt + l/a--b In (a/b) 

= > lIa-b In(a-x)/(b-x)-lIa-b In(a/b) = kt 

= > lIa-b [(a-x)/(b-x)/a/b] = kt 

= > l/a-b In(a-x)b/(b-x)a = kt 

= > 1/a-bin(a-x)/a(b-x) = kt 

ExampIe:- xcosy-e-X secy dy/dx = 0 

Rearranging gives 

Sec2 dy = xedx 

tany = Ixe dx uv - Ivdu 

= > tany = xe -Sex dx 

tany = xe _ex +c 

= > tany = eX(x-I)+c 

15 
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2.8 HOMOGENEOUS EQUATION 

A function f(x,y) is said to be homogeneous of degree n if f(AX,AY) =Anf(x,y) 

Example:- the function X4 _x3y is homogeneou.:, and or degree 4 since 

Where as the function X4_X3 +y2 is not homogeneous i.e f(AX,AY) =(AX)4_(AX)3 :;t:}.uf(x,y) 

A homogeneous first order differential equation is of the form A(x,y)dx + B(x,y)dy = 0 

where A(x,y) and B(x,y) are homogeneous functions of the same degree. 

i.e A(AX,AY) = An A(x,y) and B(AX,Icy) = AllB(x,y) 

such equation can often be reduced to the variabl~ separable type by the substitution 

J Y = vx 

~ 
J Example dy/dx =(9x2+2xy+3y2)/2x(x+y) is homogeneous of degree two 

Applying the chain rule to y vx gives 

dy/dx = xdv/dx +v and y/x = v and eliminating an~. Jy/dx from equation (1) 

i.e xdv/dx+v = (9x2+2xy+3i)/2x(x+y) 

xdvdx+v =9+2v+3v2/2(1 +v) 

= > xdv/dx = 9+v2/2+2v 

which is now of the variable separable type. Separable of the variables gives 

fdx/x = f2(l +v)dv/v2+9 

Lnx = In(v2+9)+2/3 tan- iv/3+c 

The general solution is obtained by substituting for v to give 
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2.9 EXACT DIFFERENTIAL EQUATIDNS 

The exact differential equations is of tIle form 

1 

J, M(x,y)dx + N(x,y)dy=O is exact if 

aM(X, Y)/DY =aN(X, y)/ax 

The consequence of this is that some function 

Z = f(X, Y)exists such that 

az/ ax = M (x, y); az/oy = N (X, Y) 

If one have differential equation 

M(x,y)dx + N(x,y)dy =0 and the left hand side is an exact differential dZ, then dZ is zero and 

t f(x,y)is a constant. The solution of this equation is equivalent to the determination of the 

function f(x,y) often this can be done by iIlspection For example 

Thus, the solutiori to the equation is 

One can proceed more fcrmally as follow;:;-Giveu 

M(x,y)dx + N(x,y)dy=O 

We are looking for function Z=f(x,y)such that 

aZ/8x=M(x,y)and aZ/fJy=N(X,Y) 

let us integrate with respect to x 
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Z(X,Y) fM(x,y)dx+0(x) 

Since Z is a function of two variables, the comtant of integration will be a function of y 

To determine 0(y), we now consider the y Jeriv2.tive of ZN(x,y)=0Z/0y=0!0y 

I [fM(x,y)dx +0(y)] 

This enables us to find 0{y) and hence the fUi1stion Z 

- xy2+ 4-'--0'-\ (2) - e x I I..Y J •••••••••••••••• , 

But aZ!aY must be equal to 2,,-yeeXY2_Ji 

From the equation (2) above 

az/ay = 2z/2y = 2xyey2 

and hence, d0/dy must be equal to -3land 0=-l 

and the general solution to the equation A above i.s 

Differential equation occurring in practice c;.rc rarely exact but can often easily be transformed 

into exact equations by use of integrating f'jl1ctk~lS 

For example 

dy/y+(l/x-x/y]dx =0 

Here, is not exact, but multiplication by xy gives 

xdy+(y-x2)dx=O 
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Which is now exact and can be solved by inspection to give the generai solution 

i.e. [xy-x3]/3 = C 

2.10 LINEAR EQUATIONS 

A particuIar important type of differential equation is the linear equation which has the 

general form. 

dy/dx +p(x)y=Q(X) 

The equation is of the form 

dx/dt+-kt for successive first order re,<l.ctiol1. 

~ To solve linear equatioll is to find an illtegrating factor U(x) that will transform 
J 
t 
t dy+p(x)dx into exact differential. Thus, Olle require U{x)dy+p(x)u(x)dx. 

To be an exact differential, there is some functicn 

Z=f(x,y) such that 

0Z/0x=p(x) and 0z/0y=u(x) 

Applying the criterion for an exact differenti:::l we get 

0u/0x(x) = 0/0y [p(x)u(x)y] 

i.e. 0u/0x(x) = p(x)u(x) 

Hence, l/U0u/0x = p(x) 

0/0x In u(x) = p(x) 

In u(x) = fp(x)dx and u(x) = .~p(X)dx 

then, the equation becomes 
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eP(X)dx dy/dx +p(x)y eP9X)dx ~ Q(x)el>(X)dX 

The left-iiand side is the differential of yep(X),IX and ti-,e equation becomes 

d/dx [yeP(X)clX] = Q(x)eP(X)(\X 

Vie shall now apply this technique to tr,e differential 

equation for successive first order reaction consider the process 

Akl ~Bk2--i-C in which ~:~e concentration of A,L,.:.-~ld C~N~'_>Bk2->C 

at time t are a, band c respectively, and rat~ constant for 

the two reactions are kl andk2.The rate of appc2.rance of A is given by da/dt=kln 

which has the solution 

a=ao e-k,t 

Where is the concentration of A at time t = 0 the rate of change of concentration of B is 

given 

db/dt = kla-bb = ktaoe(k,t)-bb 

db/ dt + bb = klaoe-k,t 

Multiplying by the integrating factor e(s:'2
dt

) ='ek 
2t C :/es -}e(Sk 2dt

) =ek2t 

~ek2 + db/ dt + bbek2t = klaoe(k2-k1)t 

Which cal~-,; rewriting as~d/ dt(bek
2t) = kt.s_oe(k2 -kilt 

Therefore, 

and applying the initial ccnddon that t = 0, b = 0 leads to the equation of the solution 

b = kl ao[ e-kl t_e -k2t ] 
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Example: -The equation 

(x-2)dy/dx =y +2(x-2)3 

is linear as can be seen by rearranging it to give 

dy/dx =y/(x-2) +2(x-2)2 

in this case the integrating factor is 

eI-dxJ(x-2) = 1/x-2 

and the equation becomes 

[lIx-2]dy Idx-y l(x-2)2 =2(x-2) 

i,e d/dx[y/(x-2) =2(x-2) 

Therefore. 

y/(x-2) =(X_2)2 + C 

y=(X_2)3 -+- e(x+2) 

2.11 RADIOACTIVE DISINTEGRATIOl'~S 

Among reaction of first order, particular mention must be made of those reactions for 

which the rate is always proportional to the remaining concentration of radioactive substance, 

with a constant prov'Jrtionality h, independent of temperature. If Nt represents the number of 

radioactive atoms present at a thEe t, we h,';ve 

dNt/dt=hnt 

Then, if No i3 the initial number of atoms, eaa be written as the first order law 

i.e. Nt = Noe-m 
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Where h is characteristics of the subs:anc'c ~nder study and is called the disintegration or decay 

constant 

2.12 B COlVIPLEX REACTIONS (Fffi.3'i" EQUATION OF HIGHEl:{ DEGREE) 

These are of little importance in chclIlis~ry and we have the foHewing 

2.13 LINEAR SECOND ORDER DIFir.'ERENTIAL EQUATIONS 

These equations have the general fon;[ 

d2y/dx2+X)dy/dx + q(x)y~f(x) 

If f(x) =0, the equation is termed homogcL\..uS, where as equation with f(x);tO are 

inhomogeneous. Here one shall be concerned only with .:le case in which p(x) and q(x)are 

constants, that is 'with linear equation anu COilst,:;.nt coefficients 

Before consider the solution of second order equation let us look agzin of the first order 

case cons:der the equation 

dy/dx+xy=f(x) ............. 1 

-+dy/dx +xy = .............. 2 

That is, the inhomogeneous and homog::iloliS C2.se 

Equations are above has the solution 

Whereas equation(2)above has the sClluLan 

Y=ce·ax 
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Thus, tile solution to the inhomogeneous equation consists of the general solution to the 

homogenous or reduced equation plus anJthcr term, which is a I~articular solution (the solution 

with c=o) to the inhol1lOgeneous equation is the general functioIl. This is also true for second 

order equation so one can write general ::olutio •. =particular solution complementary function. 

Thus the solution of a linear second ordei i;1homogeneous differentia! equation with constant 

coefficients involve t"IVO processes, the s:Jju~ion of the redw,.;ed equation and the determination 

of a particular integral 

2.14 SOLUTION vJ." THE HOMDGENEOUS EQUATION 

Consider the equation 

Let D = dl dx( differential operator 

One can envisage factorising tl:is by the ,nethod:; of elementary algebra to give 

Remembering that D is an operator Expansion gi ves 

D2y-(kl+k2)Dy+klk2y=O and one see tlut b m;,d b are roots of the auxiliary 

equation = > b+akl+b=o 

The general solution to the homogeneous equation kI:tb i.e. 

Where Cl and C2 are arbitai), constant. Tlds is a ~·esult that can be remcr-:-lbered easily 
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Example:- Find the general solution vf D2y-Dy-6y = 0 

solution 

The Auxiliary equation is m2-m-6 = 0 

(m +2)(m-3) = 0 

So, its roots are m = -2, m = 3. The ge~neral s'Jlution of the differenti2J equation is 

y = cle-2x -i-c2e3x (Where cland C2 "i"e arbitrary constants) 

2.15 SOLUTION OF THE INHOl\fOGENEGUS EQUATION 

The solution of this type of equation is morc difficult and one still enly consider a method 

applicable to fairly straight forward cases. More powerful method such as the D - operator 

method. The general solution of an equation of this type can be exposed as the sum of 

complementary function 

d2y/dx2+ady/dx +by = f(x) 

2A-IOAx-5B+6Ax2+6Bx+c = 4x2 

Equating the coefficient of x2 one have 

6A = 2/3 

Equating the coefficient of x, we have 

-lOA+6B = 0 

= > 6B = 10*2/3 

= >6B = 20/3 

= > 6B =20118 = 10/9 
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Equating the constants term, one have 

2A-SB+6C = 0 

6C = 5B+2A 

6C = 5*10/9+2:(.2/3 

6c = 50/9+4/3 

6c = 38/9 

C = 19/27 yp(x) = 2!3x2+ 1O/9x + ; 9/27 

The general solution is y(x)-yc(x) + yp(x) 

y(x) = Cle2x+C2e3x+2/3x2+ 10/9+ 19/27 

REACTIONS ll~ OPPOSITION 

These types of reaction b<"sed on fcrw~:trd and backward reactions and O!le shall treats the 

following 

2.16 THE T'NO R~ACTION IN OPPOSI'TION ARE OF TfHt FIRST ORDER 

The equilibrium is the form 

The fUI1 I::tion f(x) is polynomial 

For example. Find the general solution of D2y-5Dy+6y=4x2 

Solution 

One begin by finding the ger::cral solut~on of complementary equation 

D2y-5Dy+6y = 0 
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The auxiliary equation for this homogf,ncom. equation is 

m2-Srn +6 = 0 = > (m-2)(m-3) = 0 

The roots ale m = 2 and ill = 3. Thus, l1i"; [,eneral solution of yc (x) of the complementary 

equation is 

¥lhere Ci and C2 are arbitraty COI~stailts 

The technique is u:y the polynomial 

and to determine coefficient A,B,e such the.!: the polynomial 

solution of the equation 

Thus 

yP = AX2+Bx+C 

Vi - ')Av+B j P - k .It. 

Then, substitute in to general equatiorl have 

2A-5(2AX + B +6(AX2Bx +c) =4x2 

Now determine A,B and C by equatbg the right hand sides of equation 

Let a be the initial concentration of R, wheE the concentration of P is zero, x and Xe reolres:eIf 

the concentration of R at tir!:le t and ~:t equilibrium (t=2) respectively 

dx/dt = Kl-t(a-x)-kl*-X 
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e = kl~(a-xc)-kt-->xc 

If one compare this with the expression 

dx/dt = kl->(a-,~)its order reaction 

Obtained for a complete reactlor.:: one can COndL;Ge, as a treaty stated, that as a general rule this 

reaction can be mathcrnatically tn:ateJ as if it vr:re cornp~ete the initial concentration a being 

repl2.ced Xc and the rate constant by the mill 

(b~+kI-+). One can immediately obtaiw~d 

Example:- Maturation of oc-glucose, '/,hich in 501ution is partially transformed into B-glucose 

according to an equilibrium reaction. This ca3es a variation of the specific rotation roc], of 

polarised !ight. The foHowing data WetS c;iytained of 1S0°c 

_ -=:-!----=c·=-I~=_==__=====__=___=:_I-=c-

o I -4 I 0 I ' 
I I --r------------·--- i---------ll 

tl ____ ==="==1 = 110 ~~_1 74.6 __ .c::.kl =5=2=.6======:!I 

TIIv1E 

SolutiO!1 

Form this one can obtain (--->kt +-+kJ)in min-!, although the spec.~fic rotatiC'll of B- glucose 

is not given, it will be recalled that tlle difference from the initial value is proportional to the 

function cf substance transformed 

x/xc = 010-74.6)/(110-52.6) :---: 0.616 

(-+kl+->kl)*4=iog Xc/xe-x=log 1/(l-x)/;zc 
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Hence, ~ki+->k! = 1/4 log 1/(l-0.616)hour-! 

In min-! this becomes 

~kl +~kI = 0.0017319 min-! 

Example 2 Given an equilibrium whose fo;.-vval'd and backward reactions are first order, 

express the F~action half-life as a function of Ie afl'~ kl discuss 

Solution :- Making use of the relationship previously demoIl3tracted one can replace 

x = a/2 for t'h = t1l2 

k! + kl = 1/t1l2 In xc/xc -a/2 = lItli2 in (l-a/2xe 

Xc can be easily be fou"~\.: °;1 terms of k 

xc/a-xc = k 

Hence Xc = a.k/(k+ 1) 

and therefore, 

1-a/2xe = k-l/2k 

hence 

= > ~kI + +--kl = 1/t1l2 In 2k/(k-l) 

Dividing both sides by ~kl 
~ 

i.e. 1 + 11k = -lIklt1l2 In 2k/(k-l) 

hence, b/2 = lib (1 + k) In 2k(k-l) 

if k < I, t1l2 has no meaning. To understand for this one need only examine the expression for 

Xe as a function of k 

i.e. (Xe = ak/k+ 1); 
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Under these conditions 

Xe> a/2 and it is therefore, impossible to t~andorm one-life of the initiai reactant 

2.17 THE TWO REACTION IN OP~?OSII'jON ARE SECOND ORDER 

The ~'_iJilibrium is of the form 

To simplify this, let assume that the initial concentratioa of RI and 112 are equal to a, and that 

of PI and P2 are zero 

Consider V = dx/dt 

One simply replace k by 

If this is done in the integmted equatioll are arrive at 

t = xc/2k2 a(a-xe) In x(a·-2xe+ ax3)i<;(xc-x) 

ExampIc;- How many days are required to tru1sform one-life of the alcolol in the esterificati04 
i 

of an equimolar.,2/3 of the alcohol is tn:,nsform and that is 64 d8.ys 114 bas been transformed? I 
! 

Solution ! 

One will make use of the preeceding formula by letting 

Xe = 2a/3 

One will first apply it to the case of hand 

t unknown, x = a/2, and then to know case 

t = 64, x = a/4 
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t = constant. Ln (2a2 -a2)/36 /(3a-a)/2 

= > 64 = constant. In (2a2-a2)/312*a(2/Ja.-a/4) 

Dividing the first equation by the second 

t/64 = In3/ln14 = iog3/log14 = 3.35 

Example 2 The equilibrium constant of the esterification reaction 

CHOOH+C2HSOH H20 +CH3COOHS 

is H and both the forward and backw.:..~J r,;actions obey, veri Hoff's low. A small quantity of 

acetic acid is dissolved in 50% by weig1lt aque:Ju3 alcohol. Calculate k2b knowing that after 

159 minutes one quarter of the acid has reacted 

Solution 

Molecular weights of water = 18 

Molecu18.r weights of alcohol = 46 

At equilibrium 

[Ester]e[ water]c[AlcohoIJe = -7kz/f-b ~~ k = 4 

But in 50% aqueous alcohol 

[water]/[Alcohol] = m/18*46/m = 2.S 

Since this ratio is the one in the eqeilibrium expression cne can obtz.in 

[Ester]e/lAcid]e = 4/2.5 = xc/l-xe 

From which Xe = 0.61 

To calculate k2 b one will appiy the formula 
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takingi.he following into cC!1side!"at:ju 

b-(- = b-~/k = 10-->/4 

= > C = 2.26 

One deduce that 

bf-C = 2.5/4 b~--b and 

1 
and conclude that 

6.5/4b->b = 1I15C * 2.3+10g 0.61/(D.61-0.25) 
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CHAPTER THREE 

3.1 QUANTUlW :MECHANICAL PROBLEIVi 

The application of quantum mechanical principle to chemical problems has 

revolutionised the fielj to chemistry our understanding of chemical bonding, spectral 

phenomena, moleculz.r reactivates and various other fundamental chemical problems rest 

heavily an our knc ,;1edge of t]le detailed behavious of e:ectrons in atoms and molecules. 

In this chapter one shaH described in de::ail some of the basic principles, methods ~md 

result of quantum chemistry that lead to our unrlerstanuwg of electron behaviour 

3.2 CLASSICAL IV.u~CHAN)'CS 

The way in which classicaln:echanics describes systems can he illustrated by two 

equationt.. and these ar~ 

1. One equation express the total energy of a particle in te;: .. lS of its kinetic energy + mu2
, 

where u is its speed at the potential energy v at the location at the particle. 

eg E = 112 mu2+v, v and u are function of t 

in terms of the linear momentum p = mu 

i.e E = p2/2m+v 

This equation can be used in a number of ways. Example:-

Since p =mdx/dt it is differenti.al equation for x as function of t and its solution gives the 

position (and momentum) of the particl;:! as function of time. A statement of both x(t) and p(t) 

is calied the ~,:ajectory of the particle. T;ie simplest e:~ample of ~;lis procedure is the case of a 
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uniform, constant potential, so that v is indendependent of x and t. Then with" set equal to 

zero for simplicity the equation is 

E = p2/2rn or (2E/m)'/2 = dx/dt 

The solution being 

x( t) = x(G) + (2E/m)/ht 

The constant energy E can be expressed in terms of the initIal lTI0.nentum p(O) and so the 

trajectory is U(t) = x(O)+p(O)t/m 

pCt) =p(O) 

Hence, knowing the initial and L1omentum, all later positions a.'.1c1 momentum can be 

predicted 

2. Tile second law of motion: i.e pi = f = > Gt/dt = f 

Where pi dp/dt, the rate of ch? .. nge of m()r:::lentum which is proportional to the acceleration. 

i.e pi = m(d2x/de) end F is the acting on the particle. It following that if we kn.ow the 

force acting every where and at all times, then solving this equation will also give the 

trajectory. This calcuiation is equivalen); to the one based on E. 

For example consider the ca~e of a particle that is subject to a constant force F for a 

time 1:, and it then allowed to travel freely. The Newton's equation becomes 

dp/dt = F, a constant, for time between t = 0 and t = 'Cup/dt = 0 for times later than t = 't 

the first equation had the solution p( t) = p(O) -;- FtO::;t::;! and at the end. of period the particle I s 

momentum is p(t) = p(O)+P"t 
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Example 2 

The harmonic osciHmion occurs Whe!1 a particle experience a restoring force with a 

straight linearly proportional to the displacement, so that F = -kx, being the force constant, 

strong 3pring has a large force con stunt. The negative sign in F signifies that the force is 

directed opposite to the displacement when x is positive (displacement to the right), the 

negc:.ti ve (pushing towards the left) and vice versa. 

Newton's equation is now m(d2x/de) = -kx and a sobtion is 

x(t) = Asinwt, w~til w = (k/m)ll2 

Ti1e momentum is mx, and ~~a pet) = mwAc:Jswt 

i.e. x(t) = wAcoswt but p = m'x 

= >p(t) = m'x = mViAcoswt 

3.3 THE DIFFERENTIATION OF OPE1FtATORS 'WrfH RESPECT TO TIME 

The concept of the derivative 0f a physical qUClntLy with re~:)ect to time cannot be 

defined in quanum mechan:es in the same way as in classical mechanics. For the definition 

derivative in classic,J mechanics invclves the considera~~on of the, yalues Gf the quantity of 

two neighboring but distinct instant of time. In quantum mechanics, however, a quantity 

at sam ... ~ instant has a definite value dOeS not in general have definite values at subsequent 

instants. 

Hence, the idea of the derivative with resp-ect tJ time must be differently defined in 

quantunl mechanics. It is natural to Cefined the derivative of a quantity f as the quantity 
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mean .falue is equal to derivative with respect to time, of the mean valLie f. Thus, we have the 

definition f = f stluting from this definition, it is ea=/ to oJtain an expression for the quantum 

mechanical operator f corresponding to the quantity f. i.e. f = f 

= d/dt!'P' ftl'dq 

= J'P·Of/8t\Vdq + ilh f(!-f\jf*)f'l'dq-ilh\j/f(HII')dq 

Since the operator H ishermitian, we have 

J(H·'I'")(f\jf)dq = f'l'·Hf~fdq 

Thus, f = hl'·(ofl8t)+(ilhHf-ilhfH)\jfdq 

Since, on ~he other hand, one m:.:st have Jy the definition of mean values 

i.e f = f\I"f\jfdq 

It is seen that the exp~·ession in raren~hes:3 in the integral is the required operator f 

i.e f= Oflot +i1h(Hf-fH) 

If the operator f is independent of time t reduces a part frem a constant factor, to the 

commulator of the ope~ato[ f and the Hauilto~li,m 

A very important class of physica~ quantities is formed by those whole operators do not 

depend explicity on tir.1e and also compute with the Hami:tonian, so that f = 0, such quantities 

are said to be conserved 

For those f = f = 0, that is f is constant. In other wards, the mean value of the quantity 

remains ccnstant in time. One can also assert that, if is a given function of the operator f 
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3.4 THE SCHRODINGGER EQUA'tJiJN 

In 1926 Erwin schrod:nger proposed an equation which, when solved, gives the wave 

function for any ;:jJstem. Position is as central to quantum mechanics as Newton's equations 

one to classical mechanics. Just as I\fcNtcn's \;quation Viei'e an inspired postulate which, when 

solved give the trajectories of particle~), so sduodinger's equation can be regarded as an 

inspired postulate which solved gives \vave ft!nctioI1. For a particles of mass m moving in 

dimension with energy E the equation is 

-Ch2/2rn)d2\j1/dx2 =EI!' and a solution i:; 

\jI = eikx =coskx+isinkx where k = ~2mE/h2 

Coskx or Sinkx is a wave of wave ler:ght A = 2 7r /k. This can be seen by comparing coskx 

sta'Jdard form of a harmonic wave, i.';. cos2 TC x/A 

The energy of the pal tide is c,ltirely kinetic because v = 0 every where and so 

E = p2/2m 

But since, the energy is relat~d to oy E = k2~12/2m it follows that p = kh 

lnerefore, the linear momentum is related to the wave length of the p = kh = 

(27r /A)(h/2 7r) = 11/)v 

i.e. p = 27r /')..*h/2;r =h/\ 

Which is the Broglies relation. If the particle is in a region where its potential energy is 

uniform but non zero, the Schrodingcr equation is 

(-h2/2m)d2\jJ/dx2= (E-V)\l' 

36 



3.5 ':i'HE llARTICLE IN A ONE-L1.MENSIGNAL "BOX" 

For one-c!imensional system one have 

V is the potential eilergy~f the particle 

For example, for a fre~ particle v = 0 (or some const<.mt) and for a harmonic:> oscillator 

v = l/2kx2 

For three-dimensional system 

In system with spherical symmetry z it is more appropriate to take \If as a function of the 

spherical polar co-ordinates z 

see fig(l) 

Then, we have 

Where /).2 = (l/sin28)(62/8G2)+(l/sin9)(%8sinG(%8)Z8/o8) in the general case, 

the schrodinger equation is wrltten as EiV = E,V 

Where H is Hamiltonian operator for the system 

37 



H = (h212m)V2 + V 

When the system is time-dependently, use the time- dq;cndent schrodinger equation is 

H\jI = ih(o\jl/ot) 

But E-V - h2k2/2m 

Novi the relation A =--= 27r /k leads to 

1f = h/(2m(E-V)/ 11:2) 

3.6 THE POTENTIAL FOR THR€E DliVlENSIONAl, HARIVIONIC OS'CILLATOR 

v = dx/dt = 1I2kx2+ 1I2ky2+ 1I2kz2 and the :;chroding,~r eqLldtion for this problem is 

82\j1/8x2-/-82\jf/8y2+o2'.;rI8z2 +81f2/h2M[E-1I2kx2-1I2ky2-1I2kz2] = 0 ------(1) 

Where \jf(X,y,Z) is tLe wave fl..:Ilcticn, m is the mass of tile particle, 11 is plank's constant. E is 

the total energy and v is the potential energy. 

The one using the separation of vc.riabies approach and write the wave function 

(x,y,z) in prc·.1~ct form i.e \jf(X,y,Z) = x(x)y(y)z(z) and subsititute into equation (1) we have 

Y(y)Z(z)<?lox2+ X(x)Z(z)82y/8l -; ~~(x)Y(y)(?Z/oz2+8n2rn/h2 

[E-112kx2+ 1I2ki+ 1/2kz2] X(x)Y(y)Z(z) = 0 

If one introduce the sepc.ration constant EX,Ey, Ez such that 

E=Ex+Ey+Ez 

One can separate equation (2) into three one-dimension::..l tquations 

i.e 1/X(x)d2x(x)dx2+81f 2m/h[Ex-1I2kx2
] =0 

lIY(y)d2/dy2+8 Jf 2m/h2[Ey-l/2kyYj =0 
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In this example one have carried out the se;Jars.tion 111 carU~sian co-ordinates, but this may 

not necessarily always be the best co-o--1jnEtes sys:~m, it is b,';tter to the sphericai polar co-

ordinates in the case of the hydrogen atom, where the potential is of the form 1I~(X2+y2+Z2). 

The schrodinger equation in pGiar co =ordinate3 for the hydrogen atom is 

Where e is the electric chi:lrge and Lo is the permutivity :;[ free space. One write the wave 

function in pfOduced form 

i.e 'P(r,e,0)=R (r)8(e)0(0) 

and proceed as before to substitute this ir:to the. original equz.tion (a) to give 

8(0) 0(0) lIrC[5r/o] + R(r)0(0)/r si1l808150J + l/0(?0/o0~+ r"sin::e 8 IT Ih2 U[ E+e2
/4IT Lor] = 0 

At this stage we can separate to giv~ tWD er;uations 

Rearrangement gives 

i.e. 1/R(r)o/or~r2 oRl + 1 sin Be [sinO 88.' -\-8 IT Cr22 [E+ (2 ]_M2 = 0 
or e-(-~T 00 00 - h2-- -4-;'-ior sinle 

Which can alw be separated to giv~; 

1/8(0) sincUdO[sin0d8/dO]-M2/sin28 = -E 



thus, the sepa:::atio:1 of variables technique rtsLllts in the recolu~ion of the partial differential 

" j 

tquation (A) in three dimensional in to the fc~loVi?ing ordinary differential equation 
} 

j.e d2cD(<D)/d<D" = _m2Q)(¢) 
1 

.. I_l __ d_ [sir;E) dB (0)] +Be(e)-m2S(Q} = 0 
fine do (ill sin2

(3 
,1 

i_I ~ [r dR (r) - BR{U +§.;r ~LL [E+ e2 JR(v) = 0 
¥ r2 dr dr r2 h2 4;r Lor 

* j 
iThe first of these is a standard form 2,nd hJS tile general solution 

I <})( <D) = Ct eimO 
-/- C2 e-im<l> 

J , 

I 
13.7 THE ''''AVE EQUATEON 
~ 
I 
j The vibration of a string, for example, is described by the wave equation 
't 
~ y2s:2 (" 2 s:2 Ie- 2 - 0 ( 1 \ ~ u 'Vox -u 'V ot - ....................... \. ,. 
~ J; 

~ Where x is the position along the x-axis the Lme £lad '¥ is the displacement of the string 

1 
i 
i 
I 
J 

perpendicular to the x-axis 

fig 2 



Let consicer a string oflength L v"hen it is u~;streched ,md assume that it is fixed at the 

points x = 0 and x = L as shown fig (2) above 

i.e. \jJ(O,T)= \I'(L,T) = 0, for T~O (B) 

The constant V is given by 

dx/dt = V = >IT/M 

Where T is the tension and Ivl is the mass per unit length we shall also have to specify the 

shape of the string when it is released at time t = ° 
Let this be defined by a function rex) 

\jJ(u,O) = f(x), for 0 :s;x:s;L 

We also have to specify the value at t = 0 of the derivative of \jJ with lespect to t. 

Let this be g(x) 

i.e o\jJlot(x,t)g(x), for O:::;x:s;L. ................. (1) 

These are the boundaries condition which will enable uS to give a specific solution for a 

particular set of initial condition 

The technique of separatic .. of varj.~bJ.c as:.;umes that we GUt write the solution U(x,t) as 

a product of two function of a single vari2.ble x(x) and T(t} 

i.e \jJ(x,t) =--= X(x).T(t) ........... oo •••••••••••••• (2) 

and uses the assumpjon to reduce the partial differential equation to two ordinary differential 

equations, I.vhich hopefully, can be solved by sta.~dard techniques 

Substituting equation (2) into equation (1) gives 
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y2 T(t) C?X{X) - x (x) ~?T(t) 
OX2 Oe 

That is 

In this equation the left-hand side depends only on x and the right hand side only on t 

Since x and t are independent of each other, each side of this equation must be equal to a 

constant so we can write 

02X(& = _ Vl2 

ox2 

y2 _1 __ c?!]l = _w2 

T(L) 8e 

J ............. (3) 

Where -v/ is the separation constant. Thus, we l:,ave tViO c;-dlnary differential equations are 

y2_1_ d"X(x) = w2 

X(x) dx2 

v2 _1 _ d2T(t) = _w2 

"I 
, I ................. (4) 

I 
_J 

Which are both of the fLin of equation o[ simple harmonk: motion which is 

We can therefore, write down their genera.! solut:on as 

X(x) = Acos{wx/v)+Bsin(wx/v) 

T(t)cos(wt) + Dsin(wt) 

Where A,B,C and Dare arbitary eonstan;s whos~ values are to be determined from the 
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boundary conditions the function \iJ(x, t) is then giv~n by 

IV(X,t) = (Acoswx/v = Bsinwx/v)(Ccos\vt+Dsinv/t) 

The condition that \Jf(O,t) ~ 0 gives 

° = (Acos8+ Bsin8)(Ccoswt+ D~~inwt) 

So, A = O. Similary requiring that (x,y) = 0 gives 

° = (Bsinwt/v)(Ccoswt+ Dsinwt) 

since B= 0 would give the trivial solution (x,y) :::-; 0, we rcquire sin(wt/v) be zero and hence 

wt/v = rur 

WheiC n = 1.,2,3 ..... . 

Thus, we have 

\Jf(X,t) = sin[.!.!Jr U [C coswt+ Dl sinwt] 
t 

Where Cl = BC,D; =BD 

Since n can be haw' an infinite number of values, there is an infinite number of solution 

\!fn(X,t) = sin[~ Jr ~[Cn coswt+ Dn sinwtJ 
t 

\\Thieh satisfy the boundary conditions of elluation (b). Any linear combina' ion of these 

functions is also en and On in sucll a way as to satisfy the bo~mdary condlti( Ins of equation 

(D) and D when t = 0 \ve have 

\Jfn(X,O) = L:Crsin(~'Jrx/1)[Cr cose + Dr sin0J = f(x) 

From equation Cr so in order to de~,~rmine the coeificient; Cr are require ill:! fourier expansion 

of f(x) in the interval 

43 



O:s;x:s;lL 

Simiiariy the conditio!: of equation D leads to tlls CJllmving expression for the value 

the derivatives o\jl/dt at t = 0 

00 

i.e o\jtldt(x,t) = L (-Crsinwt+DrCoswt)wsin[Jrrx]/lt = 0 
r=1 

00 00 

= L Drwsinl Jr ~::::J = 7r ~L rDrsin[ rc !'X 1 
ro=l r=1 

L L 

00 

i.e g(x) = Jr~I: rDrsin[lnx] 

L L 

for the iGterval O:S;x:s;l 

But taking care to change the variaJle to aUow for the interval being from 0 to I, gives the 

following values for the coefficient Cr and Dr 

L 

Leer = Z/L f f(x)sin[Jrrx-ldx 
o 

L 
L 

= > Dr = ~_ f g(x)sin[7f t{ldx 
o 

Legendre function arise as salmion of ,Jle differential equation of the form 

(1 2)112 I, (+1' -0 ('l -x Y - xy In n lJY - '" .......................... I; 

The general solution of equaticm (1) in the case where n = 0,1,2,3 ................. is given by 
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'Where Pn(X) are polynomials and Qll(X) are called legc;ndre functions of the second kind 

The Qn are unbounded at x ±legcndre polynomials are defined by 

PnCX) = (2n-l)(2n-32 .... 1(xn-n(n-ll·m2-1 + !ifQ:-llCn-:n(n-3)XnH 

nl 2(2n-l) 2.4(2n-l)(2n-3) 
The legendre polynomials can also be expressed by Rodriques formula which is given by 

Pi1(X) = 1 dn (X2-1)n for n = 0,1,2,3, 
2nnl dXIl 

Tae first legendre polynomials are a,:; follow 

Po(X) = 1 

PI(X) = X 

P2eX) = 1 (3x2--1) 
2 

P3(X) = 1 (5X2-3x) 

'"' '-, 

3.9 RECURIlliNCE FORM'JJLA 

Pn+l (x) = 2!1+ 1 X Pn{X) -_~_ ?n-I(X) 
n+J ;1~+'1 

PI () pi () 1'2 1 2'" ( ) n+1 \,X - II-I X =: \ Il-r _)1':1 X 

3.10 ORTHOGONALITY Oi'f LEGENJRE POLYNOMiALS 

Ex. Prove that jl-lPm(X)Pn(x)dx = 0 if In :tn 
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Solutio,) 

Since, Pm(X), Pn(X) satisfy legendre's equation 

11 1 
i.e (1_;:2) p - 2xP +m(m + l)Pm = 0 ........ (1) dso 

1ll m 

11 
(1-x2) p -2xp1n+n(1l+ IJPn = 0 ........... (2) 

n 

Tilen, multiplying the equation (1)uy Pn al1d equadcil (2) by Pm and substituting, 

we have 

2 11 T) 11 I 1 _ . .(, \ (I-x )LPn -1 m ]-2x[PnP mPmP J - In(rd-l)-1Il)11 T l}lp~: pm 
m 11 11 

2 11 11 1 I 
(I-x )d/dy.[Pr.I:l -PmP ]-2x[PlIP PmP = [n(n+l)-m(m+l)] PmPlI 

m 11 III n 

Thus, by integrating we have 

II 1 1 I~ 
[n(n+l)-m(m+l)] Pm(X)Pn(X) dx = (l-7.?)lPnP -PiliP] 

-I III :1 J-I 

Then, since 1i17':Il = > fl Prr.(x)PIl(:()dx::: 0 
.1-1 

3.H SERmS OF LEGENDRE ,POLYNOIVllALS 

w 

If f(x) = ~Akpk(X), -l::;xs;l, show that 
.'--1 
k=o 

Ak = 2k+ 1 r Pk(n)f(x)dx 
",-I 

2 
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SoIutic:t 

MUltiplying the given series by Pn(Z) and integralin2, from -1 to 1, 'Ne have 

1 1 cO 1 -I L Pm (x)f(x)dx = ~ Ak L Pm (x) pn(x)dx =Am L [Pm(x)]2dx = 2Am 

2m+l 

f'l 
Then as reouired, Am = 2m -+- 1 J.. P IX')""v)dx ... -1 m\ lV'\' ... 

. 2 

3.12 HERlVIITES DIFFERENTIAL E<2UATlON 

An importantant equation v!hich arieses in problems Jf physics is called Hermite's 

differential equation, it is given by 

yl1-2xi+2ny = 0 .................... (2) 

Where n = 0,1,2,3 ............. . 

The equution (2) has polynomial scIutions called Her-mites polynomials given by 

Rod;igues formula 

. "'; ') - { l)n x2dn 1=.-x2).,. - () I r. 3 l.e. ti.;"X - ,- e _., \'- ;10rn - U, __ ,i" ....... 

dxn 

The first few Hermite polynomial are 

1-11 (x) = 2x 

H2 (x) = 4x2-2 H3 (x) = 8x3-12x 

3.13 RECURRENCE FORMULA FOR HERI\1ITE POLYNOMIALS 

Hn (x) = 2xHn(x)-2nHa-1 (x) 

Hln (x) = 2nI-ln-1 (x) 
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3.1/) ORTHOGONALITY OF HEl~1\HTE POLYNOMIALS 

From first prcblem of iegendre we have 

L: e -x2 I-1m (x)Hn (x) dx = 0 i.e m = :1 

So tj,at the Hermite polynomials are mutually ortl.ogonal with respect to the weight or density 

function e-x2 

In the case \vhere 111 = n we can shew as in pr:)blem of legendre and we have 

From this, we can normalize tile Hermite polynomials so as to obtain an orthogonal set 

3.15 S!SRIES OF HERMITE POLYNOIVHAL 

Using the orthogonality of the Hermite ,JOlynolnial it is possible to expand a function in a 

series having tte form f(x) = A.o Ho (x) -;-Al HI (x) + A2 H2 (x)t. ... 

('00 

\Vhere An = 1 ~ ex2f(;~)Hn (x) ex 
--'-- J-w 

3.16 LAGURRE'S :JIFFEt:..'2NTIAL EQUATION 

Another differential e~uation of importance in physics is lagueI'r' s differential equation 

given by 

Where n = 0,1 ,2,3 ......... . 



This equation has polynomial soiuti')ll called laguem~ polynomials given by 

"() xdntn -")" 0123 Ln x = e _~x e A Tor n = ,~, , ........ .. 
dxll 

Vv'hich is also referred to as Rodrigues fonr~ula for the lague::-re polynomials 

LoCx) = 1 , (.~) - x2 4,,':1-" L2V'- - - h , .:.. 

3.17 SOME IM'PORTANT PRO;PERTIES OF' LAGUERRE POLYNOMIALS 

00 

1. Generating function ~- xf lil -t) = 2~ Ln (~lJ.~ 
n~o 

1 - 6 n! 

2. Recurrence fonnula 

Un (x) - nU-ll (x) +nU'1l (x) = 0 

XU-n (x) = nLn (x) - n2ln -1(X) 

3. Orthogonality 10
'" e- XLm (x)Ln (x) dx = 0 if 111 =n 

4. Series Expansions 

Then, An = 1 [" e-xf (x) LjJ (x) dx 
-0 

Example 

Prove that the laguerre poIYi1onj<~!s Ln():) are orthogonal in (0,5--> with respect to the 
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weight function e-CX) 

Solution 

From laguerr's different~al equation we have for a~ly two laguerre polynomials 

T +( 1 )1' i 'nL - 0 (I) L -x _w ill,I m - ............ " 

XL !I '(1 . )1 I + L - 0 ('"I) ..r n' I-X J n n n - ............ \L_ 

Multiplying these equations (1) by Lll and (2) by Lm and then subtracting and VIC have 

h1ultiplying by the integrating factor 

i.e. (l-x)lxdx = einx-x = xe-x 

Thb can be written as 

_G_'. _ (xe-X(LnLlm-LmLnl) = (n--m)e-XLmLn 
dx 

So that by integrating from 0 to 00, we b.ave (n-.m) roo e-
x 

Lm (x) LuCx) 6x = x e-X(LnL1m-
"0 

Thus ifmln 

--> roo e-xL {x\L {x'.! (v)dx - 0 - i fi1, ) m\' J~n f>' -
~D 

Which prove the required result 
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Example (2) Expand X
3+x2_3x+2 in a series oflang,uerre poiynomials i.e. L = 0 AkLk(X) 

Sobticn 

Then, we need to applyiag the fOEnula 

L ' ) -- x ,n ( II -X) c: -, -- 0 'I 2 ') n(X - e ~ x e lor II - , , ,J,,", .... 

dx2 

Therefore, Lo (x) = LI (x) = I-x 

L2 (x) = eX d2 
_ (x2e-X) = 2-4X+X2 

dx2 

L3(X) = eX d3 (x3e-X
) = 6-18x+9x2-x? 

dx3 

Then, we have 

- 2 Ao Lo (x) Al Ll (x)+A2 L:;; (x)+AJ L3 (x) = x" +x -3x +2 

Then, equating like powers ofx 0:1 both sides \ve have 

Ao + Al +2A2 +6A3 = 2 "." .. "" .. "" .. "."" .. "" .. "" ..... ".(1) 

Al +4A2 +18A3 = ...................................................... (2) 

A2 +9A3 = 1 .............................................................. (3) 

A3 = 1 ........ , ............................................................. (4) 

Solving these, and we have 

An = 7, Al = -19, A2 = 10, A3=-1 
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Then, the require expression is 
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CIiA1FTER FOUR 

4.1 I'ROGHANI DE VELOPf"lEN]'/iMPLENTATION 

PROGRAlvlMlNG LANGUAGE 

=efore looking into programiiling language ill the computer, itself? 

Computer can be defined as an electronic device which is used to input data (raw informati 

processed the in-pu;ed data, store the data in the man memory and give it out as output for fut" 

m-:tnagerial and administrative uses. 
. I 

The programming language refers to the compui0f understands or converts to its mac~ 
I 

cede needed for the solution of a particular problem: Tlle language of the computer have u~ 

one changes and deve:opm"nt since the first set of computer programmes were written in bi1 

based machine language. I 
! 

The currerit used high levei languages are Basic, Cobol, FOi·tran, Pascal etc. the conuf 
• 

used high level language is basic. It is an acronym for, Beginners fiJI symbolic instruction ci 
~ 

The prngramming language is widely useci because of its advantage in both commercial f 

scientific application. It c(~n also be converted into its various vcrsicns (GW Basic, Q Bt" 

Turbo Basic), This, languab\; is capab!e of running the IBM and compatible compu~er systems. ". 

! 
i 
! 

4.2 CHIOCE OF fROGRA.IVIlVITII\G lLANGUAGE f 
f 

The program at hznd is academically in ilOture thecefore we require a language, which is I 
to write by non-programmers. t 

The problem to be solved is technical and so it requiros proper planning and development I 
r 
t. 
! 
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I 
good program to meet up the requirement. 

Because of the above requirement Basic has been chosen as the most suitable language fol 
! 

this project. Specifically, Q Basic is tb~ progrrtm I used for this project work. Basic can be usef 

for both commercial and scientific "ppli:::atio:l. Basic also has seme flexible features such ~. 
screen design to create user iiiendly screen, directly output to printer for the production of har! 

I 
copie,. Basic is usullily used ,.ad it is usually installed l::y most con:p~ter hardware manufactur, 

without having to buy the soibvare. ! 
! 

4.3?'ROGRfi;..MME iNSTALATION AND OPEILi\TiON. 

The installation oi the program ::1tO th~ ::'O::lputer is quite easy. 

This was done by creating a batch me solely for installation purposes. 

The steps for installing the program are as follows: 

1). Make sure your system is sv/i~ched 011 and has booted successflllJy. 

2). At the system prompt (i.e. C:/.» change the derive to the diskette derive i.e. typing A: 

or B: at the prompt. 

3). At the new Promi)t type STARTUP 

4). The files to instalicd are displayr;:;d 

5) Answer the un-screen questions like strict any key to continue 

6) You will also be required to suppJy the password to be used by the installation. 

! 

i 

t , 
I 
! 
! 

I , 
j, 

l 
t 

I 
I 

I 
~ 

7) When you are true with the set up Illenu control will be taken back to the batch file in order f 
• perform the carrying of cJI files in the system diskette to the hard disk (md latter returning you t 
i 

the system prompt. 
t , 
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4.4 STARTING THE PROGRAM i 
i 
I' 

This refers to getting the program to use in order to solve the problem encountered whenf 

! 
running the program. : 

i 
l 

1) At the system prompt (i. e. C: \» or change the drive to the diskette drive (if you wantf 
! ;-

to work on the diskette i.e. A: or B:) 
I 
t 

2) Type file name' at the prompt, ali.": you are taken to the introductory part of th1 
i 

program. If usuaHy shows the name cf the sofl-ware and other necessary informatio1 

relating to the use of the program. After the introduction, down arrow keys or depressin1 

the :OfSt letter of the intended me"u can be using to select the option for the operation YOi 
want to perf 01 ;~;. This will actually allow you to highlight the menu options but thei; 

selection is completed by repressing the enter key. 

Program to solve reactions, kinetic and Quantum mechanic[lI problems 

10 Screen 9:Cls 

20 Line (1,1)-(630,300), 4,B 

30 Line (3,3)-(627;297),4, B 

40 Locate 4,30: Print "A Computer Programme fei' solving Reaction Kinetic" 

50 Locate 6,35 : Print" And " 

60 Locate 8,25 : Print "Quantum Mechanical Problems" 

'IJ Locate 12,32 : Print "By" 

80 Locate 12,27 : Print "Mohammed Abdullahi" 

90 Locate 14,29 : Prir:.t "PGDlWiCS/98/991770" 
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100 Locate 20,24 : Print "Strike allY key :0 continu.:,~ ":A$=input$(l): CIs 

110 CIs 

120 Line (1,1 )-(620,300),4, B 

130 Line (3,3)-(627,297), 4, B 

140 Locate 3,5 : Print "Menu" 

1 SO Locate 6,20 : Print "( 1) Equation oL:<.eacdons" 

160 Locate 8,20 : Print "(2) Add mor,e vc!ue of t CI':/Y)?" 

170 Locate 10,2.0 : Print "(3) Exit" 

180 Locate 20/,0 : Print" input ::;dect yC'Jr choice";ch 

190 if ch = 1 then go to 240 

200 if ch = 2 then go to 240 

210 if ch = 3 then go to 230 

211 220 if ch> 1 or ch <> 2 or ch <> 3 then go to 110 

230 Cis: Beep: Priat "P:'ogram terrninatcd" : End 

240 Rem on eh 

250 CIs 

260 Print "dy/dt = kt" 

270 input "Enter value of t";t 

280 input "Enter value cf k" ;k 

290 Ans = k*t 

300 Print "dy/dt = ";Ans 



310 Locate 25, I 0 : input "Gcto th~ next page (Y Il'r)" ;1<$ 

320 if R$= "y" then go to 110 Else: (13 : Pr;::lt "Progn:m terminated" 

330 End 
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CHAPTER FIVE 

5.1 FINDINGS SUMMARY AND RECOiviJ.filiNDATION 

It could be the 111ajor points to be ~lsed :'01' any irrespectively stuucnts who want to be 

ccpy of this project, because it C2:1 help then h studi ~0 or researching their differential 

equation in related to cheraistry. 

The investigation of a reactio.:1 to d.etermine the rate law and value of the rate 

constant, often at several temperatures, ideally, the first step is to identify all the products, 

and to inves~:gate whether transieflt inteimediates and side reacLiolls are involved. The 

isolation method may then be used to examine the role of each component in turn, and to 

determine the order with respect to each one. The order with respect to each substance 

can be gulged form the fiwthod of initial slopes or the dependence of the half life of the 

concentration and then the order cani1rmed, and k determined by a plot of the appropriate 

function of the c~licentratbn again:.>t time using one of integrated laws expression such as 

equation (T) or G:~llation (JIvl). However, since all tile laws considered so far disregarded 

the possibility that the re'/erse rehction is important, more of them is reliable when the 

reaction is close to equilibrium. Therefor'e, all plots can be expected to acquire some 

curative for times, so long that '(he reactions involving the prGL..l(.;,~s become important. In 

the case of more intricate rate iaw~; (such as those '.ve encounter later) the concentrations 

of reactants, intermediates and pre ducts ,se computed nur[l~:-ica!ly and the rate constant 

are varied until the experir::wntal data are p;-oduced. 
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Associated with any particle is a wave function having wave length relented to 

parhCle momentum by h = -v2m(E-\1). The wc,ve function \v for time··independent states 

are eigen functions of Schrodinger equation C;i.ll be constructed from the c'ii':;slcai wave 

equation. The wave function fer particle in [" varying poter.tial oscillation most rapidly. 

Find the condition thcJ must be satisfied by a and ~ in order that \jf(x) = Asinc(.x +Bcos~x 

satisfY. 
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CONCLUSION 
I. 

This project has shown the be.JiC definition of differential equations, and compu4 

pL':;,u~nme for soIviI1.g r~actics. ki:letics and quantum mechanical problerns, Wid~ 
I 

explained and fi01d work ir, ki;etics n,cstly a st·aight lines (:< COI!stants) is obtained whf 
t 

plotted on the graph. The structure 111£:niiests thf.;m2~lves : . quanlum properties. I 
1 

The extend of CJngregajon is ,~ useful n:l~asure or bond length and is direci 

i· 
contributor; to the tot&.l energy of the system. I 
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REeo lVj~MErU}ATIONS 

I 
Quantum mechanical prediction must apP;'oach classical prediction in the limits 04 

large E, or large mass, or ve~'y high Qm:ntum llw-;-lber value motion of a particle on a rin~ 
has Quantum r.1echanicd sobtioib velj simEar c: to those for free partIcle motion in onJ 

. I r 
I 

dimension. The basic ste~)s were j , 
1. Detennine the a symbolic cchav:ocT of the f>chrodinger equation and function. Thii 

. ~ 2/2·· ~ . , r produces a guess 1H ractor exp(-y' ) tImes iWi.ctlOn of y, [(x). . 

2. Obtain a differential equation for the next oftLe wave fiUictivn, fey) 

3. Represent f(y) as a power series in y, and find a recursion relation for the coefficienj 
! 

in the series. The symmetrie::; of the wave, ilmc-,tion 2.re lir,ked to the symmetries of 

f 
the series. The, schrodinger equation for an electron moving in the field of a fixe~ 

! , 
nucleus is almost identical vvith equation obtained from separation of variable it 

! 

reduced m1SS co-ordinates ill the moving, nucleus case. The bound state energies fof 
r 

time independent s~ates of the hydrc:gen like ion depend Oll the quantum number n <f 
, 

positive integc. ~ and vary as -1/n2 . \j' describes a state as completely as possible anf 

must meet certain lilathematical requirements (single value etc) \jf*\jf is the densi~ 
~ 

distribution for the system for aI'Y observable th';;se is an operator (hermitic) which f 
constructed from the classical expression according to a simple recipe if t~ 
Hamiltonian opeb"r for a systew is time independent, stationary eigen functi1 

exist, and the time dependerit experiential does not effect the measurable properties 1,' 

a system in this state and is aimost aiways compl'etely ignored in any timf 

, 
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utilize some of the known properties of these functions to establish orthogonality and 

normaiization constants for the wrve function. 
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