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ABSTRACT

This project will be ‘design to give an introduction to the study of computer programme for
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solving reaction kinetics and Quantum Mechanical Problems.
The project is an introduction to the essential ideas in differential equation rather than a.:f
comprehensive account of the subject. It considersv some types of reactions, Quantum, classical}
mechanics, Schrodinger equation and wave equations are considered in the work were calculated. !
While in the study of most of differential equations, the tools used are restricted almost

completely to algebra, here in this course work one use much of differential calculus and some time}

integral calculus. Therefore, the work deals essentially with simple reactions of kinetics and Quantum, i

In chapter four, one shall be discuss mainly on programming.
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This facts has been known for a long period of time, but Wenzel (1740-1793) Working on
the corrosion of metals by acids (1777) wus the first to introduce the idea of relationship
between the acid concentration and the rate of attach th¢ metal or the weight devolve in unit
time.

It was not until or 1850 that Wilhelmy, using the inversion of sugarcane by acid, Showed
the proportionality of the reaction rate with the concentration of the reagents.

This becomes the first experimental fact in kinetics although at the time 1t past almost
unnoticed.

Chemical kinetic did not come on its own however, until 1884 with vanthoff (1852-1911)
and is classic works. A study of chemical dyaamics therefore Vanthoff and Withelmy, can both
be considered the true founders of this branch of chemistry.

Up to that time-and one must not forget that the first edition of Mendeleef' speriodic
classification of chemistry only appeared in 11870 chemist had restricted themselves to the
study of what is easiest in a chemical reaction, that is initial and final state. All of the static
characteristics in a chemical reaction are beginning to be properly explcred, the reagents the
products of the reaction, are all balance tie energy involved etc The manner however, in
which the reaction took place was completely known, its mechanism and the relationship would
have with the reaction rate or with the structure of the different reacting species had not been
foreseen nor the dependence of the mechanism on the external condition of temperature,

pressure physical rate of the reagent etc.
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Thermodynamics, this science which developed long before chemical kinetiés, predict
whether a reaction will proceed under a given set of conditions of temperature and pressure. It
can also predict the diréction in which the equilibrium will be shifted in response to a variation
in these parameters. However, it can not tell us what‘ the rate of the reaction will be nor how
this rate will vary with the significant factors such aé temperature pressure composition of the
reaction mixture etc.

The Quantum mechanical plays an essential role in our understanding of
molecular vibrations. Their spectra, and their influence on thermodynamic properties. The
problem provides a good domestication of mathematical techniques that are important in
quantum chemistry. Since many chemisis are overly familiar with sore of the

mathematical concepts, one shall deal with them in detail in the context of this problem.

1.2 CLASSIFICATION OF DIFFERENTIAL EQUATION

Differential eqdation is classified into two main categories- partial and Ordinary
differential equation One cof the must obvious classifications is based on whether the unknown
function depend on a single independent variables or in several independent variable. In the
first case only portion derivatives appear is called partial differential equation.

Example d’u/dx*(x,y)+du/dy(x,y) =c is called second order partial differential equation.
In the second case cnly ordinary derivatives appear in the differential equation,

and it is said to be an ordinary differential equation.
Example dR/dt(t)=-kR(1) where k 15 a known constant is called first order ordinary

differential equation

L2
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(i) Ld*6(t)/dt®+Rde(t)/dt+ 1 8(t)=E(t) for the charge 8(t) on a condenser in a circuit with
‘ c
capacity c, resistance R, inductance L, and impressed voltage E(t), is the example ¢f second

order ordinary differential equation.

1.3 ORDER OF DIFFERENTIAL EQUATION
The order differential equation is the crder of the high power derivatives
Example-:
(i) dy/dx+1(x,y)=0 is called first order differential equation
i (ii) dy/dx +1f(x,y)= is called first differential equation.
(iii) d2y/dx2+dy/dxp(xj+q(x)y=o is called second order

differential equation etc

| 1.4 DEGREE OF DIFFERENTIAL EQUATION

The degree of differential equation is iie exponei.. of the
highest power of the highest order derivative.
Example-:

’

(1) dy/dx=x/y is called differential equation ¢f degree one.

~

(ii) dy/dx=(9x2+2xy+3y2)/2x(x+y) is differential equation of degree two etc

1.5 ORDINARY DIFFERENTIAL EQUATION
If in a differential equation, the depende:ut variable is a function of only one

Independent variable Example cy/dx=3x+7x-+5

St i - i
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Ordinary differential equation is further classified as linear or non-linear
homogenous or non-homcgeneous and first order or second order or third order.
A differential equation is said to be linear if each term is linear (degrec one or Zero)
in term of all dependent variable and their derivatives. For example dx/dt+4-x = ¢
So it is called a non linear differential equation Exemple (dx/dt)® +dx/dt-x-y =Tt

If in the differential equation the only term consistiig entirely of the independent
variable is zero, then the differential equation is cailed a homogeneous differential equation.

An example of homogeneous differential equation is d’y/dx*+xdy/dx+y=0
An equation that is not homogeneous is called non-homogeneous equation. An example
of non homogeneous equciion is dy/dx+y=3x

A differential equation can be linear and homogeneous equation. An example of linear
homogeneous equation is dy/dx + = O It can be linear non homogeneous.

This is called a linear non-homcgeneous equation. An exainple of linear non
homogeneous equation is dy/dx + y = 3x. All these types of differential equaiion can be of
first order or second order or otherwise.

These are further categorized as first order homogeneous, first order linear,
first order exact and vériable separable equaiions. Second order equations

are also further classified or non linear, homogeneous or non homogeneous differential

equations.
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CHAPTER TWO

2.1  FIRST ORDER REACTIONS

Let us consider a first reaction, let a be the initial concentration of the reactant A and X
the concentration which has reacted at the time {in order words o«c = x/a is the fraction of A
which has reacted). Obviously the concentration present at time is a-x and we have
dx/dt = k(a-x) |
To integrate this differential equation separate the variables
ie. | dx/(ax) = Jkdt
Ln a/(a-x) = kt
which may be written as
(a-x)ae™
If log a/(a-x) is plotted as a function of t gives a straight line graph cf slope(-k). The units of

the first order constant are S

For examp:e:- The liquid phase dissociation of dicyclopentadience has been studied
longer and patton using gas chromatographic techniques. The techniques involved measured a
quantity proportional to dc/dt rather than -dc/dt

Solution:-

Then, one can apply first order equation as dctdt = kc (rather than -dc/dt). The one of the
reactant and the positive of the products.

fde/e = Jkdt

Lnc = kt+c
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Ift=0

c¢= Inco

then, the equation becomes

Inc = Inco + kt

Where ¢ and co are the equations that are proportional to‘ the concentration. The value of k can
be determined from thé following data at 190°c

(a) separating the variaoles and integration have

C (co) t(second) Lnc

1.85 | 524 0.6125
2.04 | 620 0.7129
234 | 752 0.8502
2.70 | 876 0.9933

3.83 | 1188 1.3428

5.25 | 1452 1.6585

Then, one can plot graph of Inc against t a siraight iine which is linear is obtained as first order

reaction satisfv.




2 cm = 1 unit on Inc
2 cm = 500 units on t axis

500 1000 1500 2000 t (second)

22.  SECOND ORDER REACTIONS
; If we call a and b the initial concentration of tie reactions A and B respectively in the
+ following type of reaction.

IA+B-> products

tand x the concentration of A and B reacted at time, it is evident that dx/dt = k(a-x)(b-

f (a) if, at the start, the reactants are of equai cencentration {a = b), this equation becomes
dx/dt = k(a-x)?

| (b) dx/dt = k(a-x)* This expression is also obtained for a reaction of the type A+A ->

products.

And X the concentration of A and B reacted at time t, it is evident that dx/dt = k(a-x)(b-

DS TEUU T (1)

(a) if at the start, the reactants arc of equal concentration (a=b), this equation becomes

dx/dt = k(a-x)*

,§
{ This expression is also obtained for a reaction of the type

sl s,
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A+A -> Products
Separating the variables and integration have
Jdx/(a-x)? Jkdt

1/(a-x) = k-+c¢ (where c is constant)

with the condition that x == 0 at t = 0 the ccnstant become 1/a and the final expression is
x/a(a-x) = kt

b. if a and b are different (i.e. b>a), then scparating the variables

fdx/(a-x)(b-x) = Jkdt

By using the partial fraction we have

1/b-a ln(b-x)(a—k) = kt+cC

ifa-x = 0 at f = 0 one have

-1/(b-a)ln b/a = ¢

then, the final expression becomes 1/(b-2) Ina(b-x)/b(a-x) = kt

it is clear that if the reaction is really second order, then

(1) for the case a = b, if we plot x/a(a-x) as a funciion of t a straight line wiil result which
passes through the origin and slope ak i.e. if a=b

(2) if a = b, we plot loga(b-x)/b(a-x) as a function of t a straight line is also obtained. The
units of the second order concentration are mol*cm® S

2.3 THIRD ORDER REACTIONS

A third order reaction may be first order with respect to three reactants of A.B and C such that

the rate of the reaction is then of the form V = K.[A].[B].[C]. it may also be of third order




with respect to a single reactant when V = I{JA}’ i.e.

V = dx/dt or first order with respect to another

i.e. V = K[AL[B})?

of these three types of reactions, the last is the most frequent

The rate expression for the first of these corresponding td the reaction these are

A +B+C—¥ products

This is easily to integrate if the initial concertration of the three reactants are equal (a=b=c)
and one have

V= dx/dt = K.(a-x)’

The above equation is known as the case of third order reaction with respect to a single
reactant. And if one integrate have

fdx/(a-x)* = [kat

1/2(a-x)* = kt+c(where ¢ is constant)

when x = 0 att = O then, the constant is equal to

1/2a* = ¢ and the final equation becomes

2kt = 1/(a-x)*- 1/a°

if t is plotted as function of 1/(a-x)*, straight line of slope 2k is obtained. The constant k is

expressed in units of time'' concentration (i.2. t'c?)

Example:- For the reaction

A+B+C—» products, with Ca, o#Cs, 0#Ce,0 ,the differential rate equation is dx/dt = -dca /dt

= kCaCrcc.oovunnnnnn. (i)

10
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and the integrated equation is

KT  La (CA/CaO+In(Cs/Cs, O)+(Cc /Cc, O)
(CA.0-Cs,0)(Ce.0-Ca, 0){Ca,0-Cs,O)C8,0-Ce.0)(C,0-Ce, O)(Ce. O-Ca0)

Where Ca. O is a concentration of order A and Ca = concentration of A, for further reaction.
For the case where Cs, 0#Ca,0=Cc,0 in equation (i) ébove, the reactioi is 2A+B - > product(2
atoms combined in presence of another moiecule) Where Ca,0#Cpo= C-.0,
The differential rate equation is

dCA = KCAZCB et er e @)
dt

and the integrated equation :s 2 {2(2Cs, O-Ca, 0)(Ca, O-Ca)+ LnCs, OCa] = kt
(2Cs,0-Ca, O)*  Ca, OCa Ca, OCs

For the reaction A-+B—®Products, with a0 5:Cs,O Where equation 2) is valid, the

integrated form is

1 (C5,0-Ca,0) (Ca,0-Ca)+20Cs,CCA = Ktovror.. (3)
(Cs.0-Cr.0)? Cr.OCa Ca,OCs

For the case where Ca,0 = C5,0 = C.,0 for the equation (i) or Ca,0 = C5,0 or Ca,0 =
2Cs,0 for equation (2) or for the reaction 3A-> products, the differeutial rate equation is -
dc/dt = kcs....(4) which integrates to gives

i.e -dc = fkdt
Cs
=>-1/:LnC?x-1 = kt+C(where C is constait)

=>'InC’ =kt+Cif t = 0 =>C =1/2LnCh the equation becomes

11
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2 InC? =kt +1/2InCe* = > 1/2inC>-1/21aCeé = kt
=>!/(C*Co%) =kt

or '/2(1/C*-1/C%) = kt

If one plots the graph of equation (1) or (2) or (4) against t a straight line is obtained which is |

linear and siope in each case equal to k

2.4  ZERO ORDER REACTIONS

These occur whern the rate is entirely independent of the concentration of reaciing
substance.
ieV=kieds/dt =V =k
=> dx/dt =k
Here n is zeroExample The decomposition of some gases, such as airinonia, on metal
catalysts. For the overall reaction i.e A->proaucts, the differential rate equation is
Rd[A])/dt = k{A].
=>-A[A] = kdt
integrating gives
-[A]l = kt +[A] where [A] is constant, att = 9
=>-[A]o = [A]
Equation becomes
[A] =kt-{AJo e (7)

[A] = -kt+[Alo

12
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So, in the zero order case also a plot of cenceniration verses time a straight line graph of slope

(-k) is obtained, the units zero order constant are molcm

2.5 HALF LIFE ORDER REACTiOM

Another important quantity is the reaction haif life t1/2. 1t is the time at which the
concentration of the reactant has fallen {o half its value. Under these condition and taking into
consideration that at t = t1/2 (in first order reaction is independent or the initial concentration
att = t1/2 then, [A]t = 1/2[A]o and this lead 0 t1/2 = 1/k[A]o
If one plotted the graph against 1/[Af. A straight line is obtained which is second order
kinetics and the slope gives (-k)
Example:- The half life of a chemical reaction, t1/2 is defined by the condition [A]t = 1/2 att ¢
= t1/2. For a zero order réaction in equation (7) gives
Le [Alt = 1/2{AJoeviiiiiiiiciiiien e (8)
Put equation (8) into (7) and we have
i.e 12[A]o = -kt+[Al
=>2kt =2[A]o-[Alo
2kt = [Alo
butt = ti/2

=>t1/2 = 2[A]o/2k

13
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TABLE (RATE EXPRESSIONS)

Let list the differential equation at crder reaction in the table below

Order | Differential Integral t1/2 reaction
hauf life

0 dx/dt = k kt =x

1 dx/dt= (a-x) kt =k loga/(a-x) t1/2=1/k

2 dx/dt = k(a-x)? kt =1/(a-x)-1/a tl/2=1/ka

2 dx/dt = k(a-x)(b-x) | kt =k/(b-a)logaid-x)/b{a-x)

3 dx/dt = k(a-x)° kt =1/2[1/(a-x)*1/a%

3 dx/dt =k(a-x)*(b-x) kt=1/(b-a)[x-k t1/2=1/ka’
| : wga(b-x)/a(a-x)(b-a)

2.6 A REACTIONS OF SIMPLE ORDER (EQUATIONS OF FIRST ORDER AND

FIRST DEGREEL)

These equations only contain dy/dx and a function of x and y and are of the general form of

equation

dy/dx-+f(x,y)=0

The nature of above equation depends on functioa f(x,y) Example if f(x,y)is a function

of x alone, the solution of the probiem siimiply involves integration if dy/dx=1f(x)

y=[f(x)dx+c(where c is arbitrary constant)

14
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2.7 VARIABLES SEPARABLE

The equation of the form

dx/dt=k(a-x)(b-x)can be solve by separable variable as

dx/(a-x)(b-x) =kdt

Then, one can integrates both sides

1/a-b In (a-x)(b-x)=kt-+c(where ¢ is constant), and assuming at t=0,x=9

=> [/a-b In(a/b) = ¢

Then, the above equation becomes

1/a-b In (a-x)/(b-x) = kt + 1/a-b In (a/b)
=> l/a-b In(a-x)/(b-x)-1/a-b In(a/b) = kt
=>1/a-b [(a—x)/(b-x)/a/bj = kt

= > 1/a-b In(a-x)b/(b-x)a = kt

=> l/a-bin(a-x)/a(b-x) = kt

Example:- xcosy-e™secy dy/dx = 0
Rearranging gives

Sec’dy = xe*dx

Jsec’ydy = [xe* but sec’y = tany

tany = fxe*dx uv - Jvdu

=>tany = xe*-Je*dx

tany = xe*-e* +c¢

=> tany = e*(x-1)+c

15

fdx/(a-x)(b-x) =[kdt
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2.8 HOMOGENEQOUS EQUATIOM
A function f(x,y) is said to be homogeneous of degree n if f(Ax,Ay) =Anf(x,y)
Example:- the function x*-x’y is homogencous aud of degree 4 since
. 3y) = 000 -0 Og) = N y) = ¥ (x,9)
Where as the function x*-x*+y? is not homogeneous i.e f{Ax, Ay} =(x)*-(Ax)’ #hnf{x,y)
A homogeneous first order differential equation is of the form A(x,y)dx+B(x,y)dy = 0
where A(x,y) and B(x,y) are homogeneous fuictions of the same degree.
i.e A(Ax,Ay) = An A(x,y) and B(Ax,ky) = AuB(x,y)
such equation can often be reduced to the variable separable type by the substitution
y = vx
Example dy/dx =(9x*+2xy+3y%)/2x{(x+y) is homogeneous of degree two
Applying the chain rule to y vx gives
dy/dx = xdv/dx+v and y/x = v and eliminaiing an< dy/dx from equation (1)
i.e xdv/dx+v = (9x*+2xy+3y)/2x(x+Y)
xdvdx+v =9+2v+3v¥/2(1+v)
=> xdv/dx = 9+v*/2-+2v
which is now of the variable separable type. Separable of the variables gives
fdx/x = R(14+v)dviv>+9
Lox = In(v®+9)+2/3 tan''v/34-¢c
The general solution is obtained by substituting for v to give

Lnx =ln (y*/x*+9)+2/3tan'y/3x+¢

16




2.9 EXACT DIFFERENTIAL EQUATIONMS
The exact differential equations is of tiic form

M(x,y)dx+N(x,y)dy=0 is exact if

OM(X,Y)/0Y =oN(X,Y)/oX

The consequence of this is that some function

Z=1(X,Y)exists such that

0Z/0x =M(x,y);0Z/0y =N(X,Y)

If one have differential equation

M(x,y)dx+N(x,y)dy=0 and the left hand side is an exact differential dZ, then dZ is zero and
f(x,y)is a constant. The solution of this equation is equivalent to the determination of the
function f(x,y) often this can be done by inspection For example

(4x*y’-2xy)dx +(3x*y*-x)dy =0

Here 0Z/0x =4x%y*-2xy, 0Z/0y=3x"y"x* and one see of once that

Z = x%’'xy

Thus, the solutior io the equation is

x*y-xly=C

One can proceed more fcrmally as follows:-Given

M(x,y)}dx+N(x,y)dy=0

We are looking for function Z=1{(x,y)such that

0Z/0x =M(x,y)and 0Z/3y=N(X,Y)

let us integrate with respect to x

17
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Z(X,Y) IM(x,y)dx +@D(x)
Since Z is a function cf two variables, the constant of integration wiil be a function of y
To determine @(y), we now consider the v derivaiive of ZN(x,y) =QZ/Cy =y
M, y)dx+2(y)]

This enables us to find &(y) and hence the {uinction Z

Example (y’e¥?+4x ) dx-+(2xye *-e¥)dy =0

Z(x,y) = Ve +4x%)dx+2(y)

= X DY) 2)
But 0Z/0Y must be equéi to 2xye¥-3y?

From the equation (2) above

OZIdy = 2z/2y = 2xye™?

and hence, d/dy must be equal to -3y’and (J=-y°

Thus Z{x,y)=e¥*+x*y’

and the general solution to the equation A above is

=>e¥- - x"y'=C

Differential equation occurring in praciice are rarcly exact but can often easily be tranéformed
Into exact equations by use of integrating functicas

For examgple

dy/y+{1/x-x/yldx =0

Here, is not exact, but multiplication by »y gives

xdy +(y-x>)dx =0
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Which is now exact and can be solved by iuspection to give the general solution

ie. [xyx'}1/3=C

2.10 LINEAR EGQUATIONS

A particuiar important type of differential equation is the linear equaiion which has the

general foriu.
dy/dx+p(x)y =Q(X)
The equation is of the form
dx/dt+-kt for successivle first order reaction.
To solve linear equation is to find an intezrating facter Uix) that will transform
dy+p(x)dx into exact differential. Thus, oue require U{Xx)dy+p(x)u(x)dx.
To be an exact differential, there is somne functicn
Z=1f(x,y) such that
DZI/Dx=p(x) and Dz/Dy=u(x)
Applying the criterion for an exact differentia! we get
DulDx(x) = Iy [p(x)u{x)y]
i.e. Qu/Dx(x) = p(x)u(x)
Hence, 1/ JQ0u/Ox = p{x)
BIDx In u(x) = p(x)
In u(x) = Jp(x)dx and u(x) = ®dx

then, the equaticn becomes
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PN dy/dx +p(x)y 0% = Q(x)e"P™
The left-iand side is the differential of ye"™*and ti:e equation becomss

d/dx [yeP®™] = Q(x)eP™

We shail now apply this teciinique to the differential

equation for successive first order reaction consider the process
A¥  5B¥C in which e concentration of A,L,.ad C—>A¥—5B¥—=C
at time t are a, b and ¢ respectively, and rate constant for
the two reactions are ki a2 The rate of appearance of A is given by da/dt=k"
which has the solution
a=ao ™
Where is the concentration of A at time t = O the rate of change of concentration of B is
given

db/dt = kinkab = kiae®-kab

db/dt+kob=kiasec™

Multiplying by the integrating facior e, =¢",' T ves —e™ W =¢'

—e%+db/dt +kabets =kiae® ™ "

Which car . 3 rewriting as—d/di(be") =kize®*

Therefore,

—be% =kiaoe™¥" + C

and applying the initial condition that t = G, b = O leads to the equaticn of the solution

b=kiao[e™-e*]
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Ezample:-The equaiion
(x-2)dy/dx =y +2(x-2)’

is linear as can be seen by rearranging it to give
dy/dx =y/(x-2) +2(x-2)?

in this case the integrating factor is
ef-dvx2 = 1/X-2

and the equation becomes
[1/x-2]dy/dx-y/(x-2)*=2(x-2)

i,e d/dx{y/(x-2)=2(x-2)
Therefore.

yI(x-2)=(x-2)"+ C

y=(x-2)’ + c{(x+2}

2.11 RADICGACTIVE DISINTEGRATIONS

Among reaction of first order, particular mention must be made of those reactions for
which the rate is always proportional to the remaining concentration of radioactive substance,
with a constant proportionality h, independent of temperature. I Nt represents the number of
radioactive atoms present at a time t, we have

dNt/dt=hnt

Then, if No is the initial number of atoms, can be written as the first order law

i.e. Nt = Noe™

e}
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Where h is characterisiics of the substance under study and is called the disintegration or decay

constant

2.12 B COMPLEX REACTIONS (FiRsT EQUATION OF HIGHER DEGREE)

These are of little importance in chemisiry and we have the following

2.13 LINZAR SECOND ORDPER DIFFERENTIAL EQUATIONS
These equations have the general forin
dy/dx*+x)dy/dx + q(x)y=1(x}
If {(x)=0, the equaticn is termed honiogzi.cus, where as equation with f(x)=0 are
inhomogeneous. Here one shali be concerned only with ‘e case in which p(x) and g(x)are
constants, that is with linear equation and constant cocfficients
Before consider the solution of second order equation let us lock again of the first order
case consider the equation
dy/dx+xy={{x)............ 1
—dy/dx+xy=.............. 2
That is, tie inhomogeneous and homogzincus case
Equaticns are above has the sotution
y= e-axj F0@axdx 4 i
Whereas equation(2)above has the soiution

Y =ce™
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Thus, tiie solution to the inhomogeneous equation consists of the generél solution to the
homogenous or reduced eciuation plus another term, which is a particular solution (the solution
with c=0) to the inhomiogeneous equation is the gencral function. This is also true for second
order equation so one can write general solutic.. =particular solution complementary function.
Thus the solution of a linear second order inhomogeneous differential equation with constant
coefficients invelve two processes, the solution of the reduced equation and the determination

of a particular integral

2.14 SOLUTION O THE HOMOGE!MEOQUS EQUATICN
Consider the equation

d’ y/dx*+ady/dx+by =0

Let D=d/dx(differeniial operator

i.e. D’V +aDy--by=o0

One can envisage facterising this by tie methods of elementary algebra to give
—(D-Ki)(D-K2)Y =0

Remembering that D is an operator Expansion gives
D’y-(ki+k2)Dy+kikey=0 and one see thit ki and k2 are roots of the auxiliary
equation = >ka+aki+b=0

The general solution to the homogeneous cquation kizka i.e.

=>y = cie" "+ e

Where ¢i and ¢ are arbitary constant. This is a result that can be remembered casily

N
(o8]




Example:- Find the general solution ¢f D*y-Dy-Gy = o

solution

The Auxiliary equation is m*m-6 = o

(m+2)(m-3) = o

So, its roots are m = -2, m = 3. The general solution of the differential equation is

= cie*4-ce™ (Where crand ¢z are arbitrary constants)

2.15 SOLUTION OF THE INHOMOGENECUS EQUATION
The sclution of this type of equation is more difficult and one still cnly consider a method
applicable to fairly straight forward cases. More powerful method such as the D - operator
method. The general solution of an equation of this type can be exposed as the sum of
complementary functicn
d’y/dx*+ady/dx+by = f(x)

2A-10AX-5B+6AX*+6Bx+c = 4x*

Equating the coefficient of x> one have

6A = 2/3

Equating the coefficient of x, we have

-10A-+-6B = 0
=>6B = 10*2/3
=>068 = 20/3

=>06p =20/18==10/9




Equating the constants term, one have
2A-5B+6C = o

6C = 5B+2A

6C = 5%10/9+2%2/3

6c = 50/9+4/3

6c = 38/9

C = 19/27 yu(x) = 2/3x*4-10/9x+19/27
The general solution is y{x)-y«(x) -+ vp(x)
y(x) = C162X+Cze3x-i-2/3x2—+ 16/6+4-19/27

REACTIONS IN GPPOSITKON
These types of reaction besed on forward and backward reactions and one shall treats the

following

2.16 THE TWO REACTION IN OPPOSITION ARE OF THy FiRST ORDER
The equilibrivm is the form

The function f{x) is polynomial

For example. Find the general solution of D’y-5Dy+6y=4x>

Solution

One begin vy finding the gereral sclution of complementary equation

D%-5Dy+6y = o
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The auxiliary equation for this homogeneous equation is
m%-5m+6 = o =>{m-2}(m-3) = o0
The roots are m = 2 and m = 3. Thus, w.c general sclution of ye (x) of the complementary
equation is
ye (%) = Cie™+Coe™
Where Ciand C: are arbitrary constants
The technique is try the polynomial
AX+Bx+C
and to determine coefficient A,B,C such thei the polynomial
solution of the equation

Thus

Then, substitute in to general equation have
2A-5C2AX+B+6(AXBx +¢) =4

Now determine A,B and C by equating the right hand sides of ¢quation

Let a be the initial concentiation of B, when the concentration of P is zero, x and xe represexi:
the concentration of R at time t and ai equilibrium (t=2) respectively

dx/dt = Ki—(a-x)-ki<—x




e = ki—>{a-xe)-kKi—>xe

If one compare this with the expression

dx/dt = ki—(a-x)its order reacticn

Obtained for a complete reaction one can conclude, as a treaty stated, that as a general rule this
reaction can oe mathematically treated as if it wezre complste the initial concentration a being
replaced x. and the raie constant by the sum

(ki—+ki—). One can immediaiely obtained

N

(—ki+—-kdt = Inxe/Xe-X .
Example:- Maturation of oc-glucose, which in sclution is partially transformed into B-glucose
according to an equilibrium reaction. This cases a variation of the specific rotation [oc], of

polarised light. The following data was chiained of 150°%

{
TIME G ! 4 G
fec] 110 ; 74.6 52.6
Solution

Form this one can obtain (—>ki+—>kijin min”, aithough the speuific rotaticn of B- glucose

3
§

is not given, it will be recalled that thie Gifference from the initial valus is proportional to the
function cf substance transformed
X/xe = {110-74.6)/(110-52.6) = 0.616

(=kit+—ki*4=log xe/Xe-x=log 1/(1-X)/%e




Hence, —ki+—ki = 1/4 log 1/(1-0.616)hour’
In min™ this becomes
—ki +—ki = 0.001731% min™
Example Z Given an equilibrium whose forward and backward reactions are first order,
express the reaction half-life as a function of k and ki discuss
Solution :- Making use of the relationship previously demonsiracted one can replace
% =al2 for v = tin
ki + ki = 1/tw2 In Xe/%e ™2 = 1/t12 In (1-2/2xe
X can be easily be fou.... " terms of k
Xe/a-Xe = k
Hence xe = a.k/(k+1)
and therefore,
1-a/2x. = k-1/2k
hence
=>"ki+ki = 1/t In 2k/{k-1)
Dividing both sides by —ki
-
i.e. 1+1/k = -1/kitiz In 2k/{k-1)
hence, tiz = 1/ki (1+k) In 2k(k-1)
if k<1, tw2 has no meaning. To understand for this one need only examine the expression for
Xe as a function of k

i.e. (xe = ak/k+1);
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Under these conditions

xe> a/2 and it is therefore, impossible to transform one-life of the initial reactant

2.17 THE TWO REACTION IN OFPUSIT:ON ARE SECOND ORDER
The ¢ uilibrium is of the form
4
=>Ri+ R Pi+i»
P
To simplify this, let assume that the initial concentration of Riand 1R are equal to a, and that
of P1 and P2 are zero
Consider V. = dx/dt
One simply replace k by
=>k2.8{2xe-a)/xe,al ke and b by are/2ie-a
If this is done in the integrated equation are arrive at
t = xe/2k2 a(a-xe) In x(a-2xe-+ ax’)/alke-x)
Example;- How many days are required to traasform one-life of the alcolol in the esterification
of an equimolar,2/3 of the alcohol is transforin and that is 54 days v+ has been transformed?
Solution
One will make use of the preeceding formula by letting
Xe = 2a/3
One wili first apply it to the case of hand
t unknown, x = a/2, and then to know case

t =04, x = ald
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t = constant. Ln (2a>-a°)/36 /(3a-a)/2

= > 64 =constant. In (2a>-a?/312*a(2/3a-a/4)

Dividing the first equation by the second

t/64 = In3/lnl4 = icg3/logld = 3.35

Example 2 The equilibrium constant of the esterification reaction

CHOOH+CHSOH _ BE:0 +CHsCCOXS

is H and both the forward and backwe.d rzactions cbey, veri Hoff's low. A small quantity of
acetic acid is dissolved in 50% by weight aquenus alcohol. Calculaie keb knowing that after
159 minutes one quarter of the acid has reacted

Solution

Molecular weights of water = 18

Moiecular weights of alcohol = 46

At equilibrium

[Esterle{water]c{Alcokolle ="ko/<-kr =k = 4

But in 56% aqueous alcohol

{water}/[Alcohol] = m/18*46/m = 2.5

Since this ratio is the one in the equilibrium expression cie can obtain
[Ester]e/[Acid]e = 4/2.5 = Xe/l-Xe

From which xe = (.61

To calculate k2 b one will appiy the forinuia

i.e ko—b+kie—c = 1/t Inxee/7-%
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taking ihe following into ccnsideratio.
ket— = ka—/k = ko—>/4

=>C =226

One deduce that

ka¢—c = 2.5/4 ke¢b and

ko->b+koe—c = 6.5/4ka b

and conclude that

6.5/4k—>b = 1/15C * 2.3+log 0.61/{1.61

and ka—b = 2.2*10%min™

)

"U.AS)
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CHAPTER TIIREL
3.1 QUANTUM MECHANICAL PROBLEM
The application of quantum niechanical principle to chemical problems has
revolutionised the field to chemistry our undeistanding of chemical bonding, spectral
phenomena, moleculer reactivates and various other fundamental chemical problems rest

heavily an our knc vledge of the detailed behavious of eiectrons in atoms and molecules.

In this chapter one shail described in de:ail soine of the basic principles, methods and

result of quantum chemistry that lead tc our understanding of electron behaviour

3.2 CLASSICAL M._CHANICS

The way in which classical meclanics describes systems can te illustrated by two
equations and these are
1. One equation express the total energy of a particle in ter.is of its kinetic energy + mu?,

where u is its speed at the potential energy v at the lccation at the particle.

eg E = 1/2 mu*+v, v and u are function of t
in terms of the linear momentuin p = mu

i.e E = p*/2m-+v

This equation can be uvsed in a number of ways. Example:-

3
4
§
i
¥
g
3
i

Since p =mdx/dt it is differential equation for x as function of t and iis solution gives the

; position (and momentum) of the particle as function of time. A statement of both x(t) and p(t)
; is calied the «ajectory of the particle. Tlhie sitnplest example of (iis procedure is thé case of a
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uniform, constant potential, so that v is indendependent of x and t. Then with v set equal to
zero for simplicity the equation is
E = p¥/2mm or (2E/mm)"* = dx/dt
The solution being
x(t) = x(0)+(QRE/m)/ht
The constant energy E cair be expressed in terms of the initial mo.nentum p{0} and so the
trajectory is U(t) = x{)+p(0jt/m
p(t) =p{L)
Hence, knowing the initial and raomentum, ali later positions and momentum can be
predicted
2. Tue second law of motion: i.ep' ={ => dt/di = f
Where p* dp/dt, the rate of change of momentum which is proportional to the acceleration.
i.e p' = m(d*>/dt*) end F is the acting on the paxrticle. it following that if we know the
force acting every where and at ail times, then solving this equation wiil also give the
trajectory. This calculation is equivalen: to the one based on E.
For example consider the case of a particle that is subject (o a constant force I for a
time 7, and it then ailowed to travel freely. The Newion's equation becomes
dn/dt = ¥, a constant, for time between t = 0 and t = wdp/dt = O for times later than t = 1
the first equation had the solution p(t) = p{0)+Ft0<i<t and at the end of period the particle's

momentum is p(t)= p(0)-+prt

(%)
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Example 2

The harmonic oscillation occurs when a particle experience a restoring force with a
straight linearly proportional to the displaceinent, so that F = -kx, being the force constant, zf
strong spring has a large ferce coustant. The negativc sign in F signifies that the force is
directed opposite to the displacement when x is positive (displacement to the right), the force
negative (pushing towards the left) and vice versa.
Newton's equation is now m(d*x/dt?) = -kx and a soluticn is
x{t) = Asinwt, with w = (/m)"?
The momentum is mx, and o p(t) = mwAcoswt
i.e. x(t) = wAcoswtbutp = m'x

=>p{1) = m'x = mwAcoswt

3.3 THE DIFFERENTIATION OF OPERATORS WiTH RESPECT TO TIME

The concept of the derivative of a physical quanti:y with resnect to time cannot be
defined in quantzm mechanics in the same way as in ciassical mechanics. For the definition ¢
derivative in classical raechanics invcives the consideration of the, values of the guantity of
two neighboring but distinct instant of time. In quantum mechanics, however, a quantity wh
at same instant has a definite value does not in general have definite values at subsequent
instants.

Hence, the idea of the derivaiive witli respect to time must be differently defined in

quanturn mechanics. It is natural to Gefined the derivative of a quantity f as the quantity wha
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mean value is equal to derivative with respect to titne, of the mean value f. Thus, we have the
definition f = f starting from this definition, it is eac’ 10 udtain an expression for the quantum
mechanical operator f corresponding to the quaniity f. i.e. f = f
= d/dtf¥” fdq
= ["5f/8tpdq+i/h [ y*)fydg-i/hy f(Hy)dg
Since the operator H is hermitian, we nave
JE'y)(fw)dq = Jy"Hfydg
Thus, f = [y (§¢/8t)+(i/hHf-i/hfH)ydg
Since, on the cther hand, one must have by the definition of mean values
i.e f = hy'fydg
It is seen that the expression in parenihies’s in the integral is the required operator f
i.e f= &f/ot -i-i/h(Hf—fI-i)_
If the operator f is independent of time t reduces a pait {rom a constant factor, to the
commulator of the cperator f and the Haiziltoaian
A very important class of physica. quantities is forined by those whole operators do not
depend explicity on time and also compute with the Hamiltonian, so that f = O, such quantities
are said to be conserved
For those f = f = (, that is { is constant. i other wards, the mean value of the quantity

remains ccnstant in time. One can also assert that, if is a given function of the operator f
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3.4 THE SCHRODINGGER EQUAT.ON
In 1926 Erwin schrodinger pmposed an equation which, when sclved, gives the wave
function for any system. Position is as central to quantum mechanics as Newton's equations
one to classical mechanics. Just as Newtcn's squaiion weie an inspired postulate which, when
solved give the trajectories of particles, so sciirodinger's equation can be regarded as an
inspired postulate which solved gives wave function. For a particles of mass m moving in onef
dimension with energy E the equation is
-(W*/2m)dAy/dx* =Ew and a solution i5
y = e =coskx+isinkx where k = V2ZmE/h?
Coskx or Sinkx is a wave cf wave lenght A = 2 7 /k. This can be seen by comparing coskx th¢
standard form of a harmonic wave, i.2. c0s2 7 X/A
The energy of the pzrticle is eatirely kinetic because v = 0 every where and so
E = p’/Zm
But since, the energy is relatzd to by £ = kK’u*/2m it foliows that p = kh
Tnerefore, the linear momentum is related to the wave length of the p = kh =
Cr/)b2r) =hih
i.e.p =27 /X027 =h/A
Which is the Broglies relation. If the particie is in a region where its potential energy is
uniform but non zero, the Schirodinger equation is

(-h*2m)dAy/dx*= (B-V)u
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3.5 THE PARTICLE IN A GNE-L.MEMSICNAL "BOX"

For one-dimensional system one have |

(-h*/2m)dAy/dx® + Vy = By, V = v{x), v = w(x)

or dy/dx*+(2m/h*)(E-V)y = O

V is the potential energy ~f the particle

For example, for a fre= particle v = 0 (or some constant} and for a harmonics oscillator
Vo= 1/2kx?

For three-dimensional system

(-B*2m)Viy+Vy = By, V(x,y,2), ¥ = w(x,y,z) where V? = (§/6x%+(8%/8y?) +(5%/62).
In system with spherical symmeiry z it is more appropriaie to take y as a function of the

spherical pelar co-ordinates %

see fig(1) g NG
| ?<)\
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R
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Then, we have

V? = (8%/8r) +(2/r)(8/8r) (1/T5HA?

Where A* = (1/5in®0)(5%/60%) +{1/sin5)(&/60sint(5/80)(8/50) in the general case,
the schredinger equation is written as Hy = Ew

Where H is Hamiltonian cperator for the system




H = (WW2mn)V? +V

When the system is time-dependently, use the time- dependent schrodinger equation is
Hy = ik(6y/dt)

But E-V - h’k*/2m

Now the relation X = 27 /k leads to

w = h/(Em(E-V)/1/Z)

3.6 THE POTENTIAL FOR THRIE DIMENSIONAL HARMONIC GSTILLATOR
v = dx/dt = 1/2kx*+ 1/2ky2—i~ 1/2kz* and the schrodinger equaiion for this problem is
§y/8x2 4 82y /8y + 87 /5z° +8 7w AWML E-1/2kx*-1/2ky*-1/2kz?] = @ - (1)

Where yi(x,y,z) is the wave functicn, m is the mass of iite particle, h is plank's constant. E is
the toial energy and v is the potential energy.

'The one using the separation cf variabies approach and write the wave function
(x,y,2) in preact form i.e yix,y,z) = x(x)v{y)z(z) and subsititute into equation (1) we have
Y{y)Z(z)8*/6x*+ X(X)Z(z)8%y/8y? - :{x) Y (y)*Z/82* +81 T m/h?
[E-1/2kx*+1/2ky*+1/2k2*] () Y{y)i{z) = 0
If one introduce the sepzration constant Ex,Ey, Ez such that
E=Ex+Ey-+Ez
One can separaie equation (2} into thrce one-cimensional equations
i.e I/X(x)d%(x)dx>+8 7 *m/h[Ex-1/2kx*} =0

1/Y (y)d*/dy*+8 7 *m/h*[Ey-1/2ky’} =0
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() d*Z(2) /<2’ +8 m 'm/W{Bz-1/2k7* =0

In this example one have carried out the separation in cartesian cc-ordinates, but this may

{ not necessarily always be the best co-o~7inates sysiein, it is beiter te the sphericai polar co-

ordinates in ths case of the hydrogen atom, where the potential is of the formn 1/V(x*+y*+2%).
The schrodinger equation in peiar co=crdinates for the hydrogen atom is

1/rcr/ocr{r?ec ¥ /ocr + 1/1? sind

sinfac/ccBfsinfoc W]+ 1/r2sinf’cc®V /e + 8 7 'm/M  [E+e¥/4 7 Tj¥ =0 ----A

Where ¢ is the electric charge and Xg is the permutivity of free space. Cne write the wave

function in produced form

i.e W(r,08,9) =R (1)6(0)J(@)

and proceed as before to substitute this into the original equation (a) to give

0(0) D(0)1/r°[8:/8]+R(r)D(@)/r sind66/30] + /D8 D /6@ +1rsin’0 8 # /h* U|E+e%4 7 Zor]= 0

At this stage we can separate to give two ecuations

i.e. 1/@(@)dD/de’= -m* and

sin®6/R(r)&/5r[r? SR/8r] +sin 6/6(¢) 8/5¢]+ 1/D(D}5*D/8D? +rsin68 7 *U/M?

[E+e¥4 7 Zor}-m® = 0

Rearrangement gives

i.e. VR{r)8/8:Ir” 58RI+ 1 sin 08 {sin0 80 +8 7 Ur?[E-+ 4 J-M® =
ér 6 89 s 47 Zor sin’d

Which can also be separated to give

1/6¢0) sind/d0[sin040/do]-M*/sin*s = -E




S

;quation (A) in three dimensional in to the following ordina

e d*D(P)/dd? = -m*D(P)

{O(@) = Cie™+Cre™®

i 3.7 THE WAVE EQUATION
The vibration of a string, for example, is described by the wave

VI Wox®-8 /80 = 0 covviiiieeeeene (.

S e

ind 1/R(r) d/dr {*dR/dr] -B+8 72U/ E-+eX/dn Tur] = 0

Thus, the separation of variables techaique results in the rezoluiion of the partial differential

rary differential equation

1 {sin0 d6 (0)] +B6{6)-i: f@g_l =0
kin0 dO do sin*9
(1 d [PdR (1) - BR_) +&7°U [E+ & ih( vy =0
P dr dr r’ h? 477
The first of these is a standard form and bas the gencral solation

€ equaticn

Where x is the position aleng the x-axis the time and ¥ is the displacemeit of the string

perpendicular tc the x-axis
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Let consicer a string of length L when it i35 uusireched and assume that it is fixed at the

pointsx=0and x=L és shown fig (2) avove
ie. y(O,T)= yw(L,T) =0, for T20 (B)
The constant V is given by
dx/dt = V = NT/M
Where T is the tension and M is the mass per unit lengih we shall also have to specify the
shape of the string when it is released at time t = 0
et this be defined by a function {(x)
y(u,0) = f(x), for O <x<L.
We also have to specify the value at t = 0 of the derivative of y with 1especi to t.
Let this be g(x)
i.e dy/dt(x,t)g(x), for =<l il e

These are the boundaries condition which will enabie us to give a specific solution for a
particular st of initial condition

The technique of separatic.. of varizble assumes that we can write the solution U(x,t) as
a product of two functicn of a siagle variable x{x) and T{t}
e w(x,t) = X(X). T iveeriiieiieiieeen 2)
and uses the assump.ion to reduce the pariial differential equation to two ordinary differential
equations, which hopefully, can be soived by staidard techinigues

Substituting equation (2) into equation (1) gives
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VATt §X(x) - X (x) §T()

t)
5x2 St?
That is

Vi1 8- 1 8T
X(x) & T(y of

In this equation the left-hand side depends only on x and the right hand side only on t
Since x and t are independent of each other, each side of this equation must be equal to a

constant so we can write

Vi1 X)) =-w —
X() & )

Vi1 8T =-w’
TGW 8¢

Where -w’ is the separation constant. Thus, we Lave two crdinary differential equations are

Vi1 dX@x) =w —}
-

X(x) dx’ e ererneen, (4)
|
Vi1 @@ =-w _]
Tt ¢t

Which are both of the fc:in of equation of simple harmonic motion which is
dx/dt* = - wk

We can therefore, write down their general solution as

X(x) = Acos{wx/v) +Bsir£(wx/v)

T(tcos(wt) + Dsin(wt)

Where A,B,C and D are arbitary constanis whoss vaiues are {0 be determined from the
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boundary conditions the function w{x,t) is then given by

wix,t) = (Acoswx/v = Bsinwx/v)y{Ccoswt+Dsinwt)

The condition that y(0,t) = 0 gives

0 = (Acosd+Bsind)(Ccoswi+Deinwt)

So, A = 0. Similary requiring trat (x,y) = U gives

0 = (Bsinwi/v){(Ccoswt+ Dsinwt)

since B= 0 would give the trivial solution (x,y) == 0, we require sin{wt/v) be zero and hence
wt/v = nrmr

Wheren = 1,2,3......

Thus, we have

y(x,t)= sinfnrx ] [Cicoswi-+Di sinwt]
t

Where C: = BC,D: =BD
Since n can be hav~ an infinite number of velues, there is an infinitc numeoeer of solution

wn(x,t) = sinfnz xj|Cacoswi+Dasinwt]
t

Which satisfy the boundary conditions of ecuation (b). Any liuear combina ion of these
functions is also Cu and Da in such a way as to satisfy the boundary conditions of equation
(D) and D when t = 0 we have

n(x,0) = ZCrsin(rz x/13ICr cos€ + Dy sind} = {(x)

From equation Cr so in order to deiermitie the coeificienis Cr are require ih: fourier expansion

of f(x) in the interval
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O<x<IL

Simiiarly the conditior of equation D Ieads to the Dllowing expression for the value of |

the derivatives dy/dtatt = 0

Le dy/dix,t) = (-Crsinwt+Diwcoswtywsin{ z rx}/it = 0
r=1
=y Dwsin[zrixj= 7v ) rDsinlzrx ]
r=1 - - r=1 -
L L
i.eg(x) = Z Dis? n[/z X
L L

for the interval 0<x<l
But taking care io change the variable to allow for the interval being {from © to 1, gives the
foliowing values for the coefiicient Cr and Dr

L

e Cr=Z/L J f(x)sin[ 7 1x}dx
L

L
=>Dr=_2 f gx)sing 7r rxjdx

3.8 LEGENDRE'S DIFFEREMNTIAL BQUATION

Legendre funciion arise as solution of the differential equation of the form
(1-Ay"2xy" +n+1y = 0 v (1)
The general solution of equaticn (1) in the case where n = 0,1,2,3................. is given by

y = Cipn(x)+C2Gn{x)
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Where Pn(x) are poiynomials and Qu{x} are called legendre functions of the second kind
The Qn are unbounded at x +legendre polynomials are defined by

Pu(x) = (2n-1)(2n-3)....1{x"-n(o-1)xn*' + n{n-D(-2)(n-3)X***
n! 2(2n-1} 2.4(2n-1){(2n-3)
The legendre polynomials can also be expressed by Rodriques formula which is given by

Pax) = 1 d* (X:Dnforn =0,1,2,3,
2]l 4"

Tae first legendre polynomials are as {ollow

Po(x) = 1

Pix) = x

Pax) = _1_(3x*1)
2

Pix) = 1 (5x*3x)
2

Pa(x) = Y5 (35x*-30x%-+3)

Ps(x) ="s(63x-70x°+15x)

3.9 RECURRENCE FORMULA

Por1(x) = Zn+1 X Pa(x) -0 Pai{X)
n+1 n+-1

Pln+1 {X)-Pln-l ():) = (211 ”;-2>Pl (X)

3.10 ORTHOGONMALITY O LEGENDRE FOLYNOMIALS

Ex. Prove that fLiPm(x)Pu(x)dx = 0 if m =n




Sclutio:

Since, Pm(x), Pn(x) satisfy legendre's equation

11 1
e (1= p -2xP  +m(m+DFn=0........ (1) also
m m
a1 ,
(I-x5p  2xPat+n(+DPa=0 ..., (2)
I3

Then, multiplying the equation {1} &y Ps atd equaticn (2) by Pu and substituting,

we have

11 11 i
(I-x){Px  -Pm  }-2x{PsP'nwPuP : ] = (- D-m/m+1)ip: pm
in n i

11 11 1 1 _

(1-x)d/dx[P:P  -PmP  [-2x[PP  PuP = [n(n-1)-m{m-+1)] PuPa
m n it 7

Thus, by integrating we have

1 : . . 1 1.0
In(n+1;-m{m+1)]} jl Pu(X)Pa(x) dx = (1-z%{PaP  -PuP ] Jﬂ ]
_ -

mn

: 1 \
Then, since m=#n => { 1 Pu(})Pu()dx = €

3.1  SERIES OF LEGENDRE POLYNOMIALS

If f(x) = > Aip(x), -1<x<1, show that

k=0

Ax=2k+1 [ P)f(0dx
2
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Solutica
Multiplying the given series by Pa{x) and integrating from -1 to [, we have

1 o .
[ @i =) Ac j‘ Pu(x) palx)dx =Am | [Pu(Pdx = 2An
-1 T Pl - -1

2m+1
Then a5 required, Am = Zm+-1 j: Pm{x)fx)dx
2

3.12 HERMITES DIFFERENTIAL EQUATION

An importantant equation whicl: arieses in problems of physics is called Hermite's
differential equation, it is given by
YU 2xy 420y = 0o, (2)
Wieren = 0,1,2,3.eiieeeat.

The equation (2) has polynomial sciutions called Hermites polynomials given by
Rodrigues formula

Le. bwx) = -1)e?d &™) forn = 0,1,2,3.......
dx"

The first few Hermite polynomial are
Ho(x) =1 Hi(x) = 2x

Ha(x) = 4x*-2 B3 (x) = 8x*12x

3.13 RECURRENCE FORMULA FOR HERMITE PCLYNCMIALS
Hn(x) = 2xHa(x)-20Ha1 (X)
H' (X) = ZnHai (}\)
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3.14 ORTHOGONALITY OF BEEEMITE POLYNCMIALS

From first preblem of fegendre we have
j € 2Hn(x)Ha(x) dx = Ciem = 1
So tiat the Hermite polynomizals are mutually ortiiogonal with respect to the weight or density

function e™

In the case where m = n we car show as in probleim of iegendre and we have
« - x2yr n

[ ePHu@ dx =201y 2
-0

From this, we can normalize tie Hermite polyuniomials sc as to obtain an orthogonal set

3.15 SERIES OF EERMITE POLYNOMIAL
Using the orthogonality of the Hermite polynomial it is possible to expand a function in a

series having the form f(x) = Ao Ho () ~Ar Hi (Xj+ A2 Ha (X)t....

po . .
Where Aw=__ 1 1 e (0 Ha (%) dx
2" ni

3.16 LAGURRE'S DIFFEFENTIAL EQUATION
Another differential equation of importance in physics is laguerr's differential equation i

given by

Xy +{1-x)y'+NY =0

Where n = 0,1,2,3........;.
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This equation has polynomial sciution: called laguerre polynoinials given by

La(x) = e*d" (x%e®) forn = 0,1,2,3.........
dx*

Which 1s also referred to as Rodrigues forirula for the laguerre polynomials

Lo(x) = 1 Li(x) = x  12x) = x%4x+2  Ls(x) = 6-18x+9x*-x°

3.17 SOME IMPORTANT PROPERTIES OF LAGUERRE POLYNOMIALS

1. Generating function /(-0 =) La(x) t

I-% ni
2. Recurrence formula
Lot1(x) = 2n+1) - %) La(x) - n’La1 {X)
Lh(x) - nlls ®)+nla(x) =0
XL (x) = nLla(x) - 0*ln 1{x)
3. Orthogonality }r:) e Lm(X)La(x) dx = 0if m=n
(n)?f m=n
4. Series Expanstons
i) =A LX)+ A LI+ ALt

Then, A= _ 1 [ &f(x)La(x)dx
(nl)®

Example

Prove that the laguerre polynomiais Ly{(s0) are orthogonal in (0,5 ) with respect to the
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weight function e®

Solution

Frcm laguerr's differeni:al equation we have for any two laguerre polynomials

L {x)
LH(1-x)L pmLy, = 0. (1)
XLY (1)L 0Ly = 0......o..... (2)

Multiplying these equations (1) by Lyand (2) by Ly, and then subtracting and we have
X(Lol Lk (%)Ll - LinLe] = (n-m)LiyLy,
or ¢/dx(LaL  mLaln Y H( 1)/ Ll w-Lanl] =(n-m)/XLyLo-Lola' = (n-m)/x
Ll s
IMultiplying by the integrating factor

inx-x __ -X

ie {(I-x)/xdx=¢e Xe

This can be written as

¢ (xe(LoLlp-Laly) = (n-m)e™ L, L,
dx

“ . . " f’OO -X 1 -
So that by integrating from 0 {0 o, we have (-m) | ¢ Ly (%) Lo(x) dx =x & * (Lol -
(42

v . <«
Lmun> I
(4
Thus if ra'n
=> fw -X %Y Ieral > —
_ ia e Lrn\X/Lm\X/un()i)dx - O

Which prove the required result
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1 “N T 1 : P . . avrale o L
Exampie (2) Expand x’+x*-3x+2 in a series of languerre polynomials i.e. Z = 0 Aylk(x)
k=0

Soluticn
X0+ 2= Ao Lo (%) At Ly () + Aa Ly (3 + A L () e
Then, we need to applying the forizula

La(x) =¢'d” (x"e¢) forn=0,1,2,3........
dx?

Therefore, L, (x) =L (3) = 1-x

Ly(x)=e'd> (x*e™) = 2-4x+x
dx?

Li{x)=¢e"d’ (x’¢™) = 6-18x+9x%x’
3
dx

Then, we have

Ao Lo (x) A; Li (x)+A; Ly (x)+A; Ls (5) = x* +x%-3x +2

Ag + Ay (1-x)+Ag (2-4x+x* YAz (6-18x +9x%-x°)

(Ao + Ay +2A; +6A3 )i +4A; #1843 )x + (247 19A; % Az x°

Then, equating like powers of x o both sides we have

Ao+ AL 4280 H6A3 =2 .o (1)

A HAAG FIBAG= oo 2)
AgH9AG=T1 oo 3)
A= (4)

Solving these, and we have

Ao =7, A1=-19, A2= 10, A3=-i
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Then, the require expression is

K H-3% +2 = TLo (x)-19L1(x) +10La(x)-La(x)




CHAFTER FOUR
4.1 PROGEAM DEVYELOPMENT/IMPLEMNTATICN
PROGRAMMING LANGUAGE
Cefore looking inte programnming language in the computer, itseld?
Computer can be defined as an electronic device which is used to input data (raw informatiq
processed the in-pu'ed data, store the data in the man memory and give it cut as cutput for fut '
managerial and administrative uscs.
The programming language refers to the compuier understands or converts to its mach
ccde needed for the solution of a particular problem: The language of the computer have uni
one changes and development since the first set of computer programmes were written in bir}
based machine language.
The current used high level languages are Basic, Cobol, Foitran, Pascal etc. the comi
used high level language is basic. 1t 1s an acronym for, Beginners All symbolic instruction cc‘
The programming language is wideiy usea because of its advantage in both commercial f
scientific application. It can alsc be counverted into its various versicns {GW Basic, Q Bé

Turbo Basic), This languagw is capabie of rutning the IBIM and compatible computer systems. |

4.2 CHIOCE OF PROGRAMMING LANGUAGE
The program at hand is academically in nature therefore we require a language, which is |
to write by non-programmers.

The problem to be solved is technical and so it requirss proper planning and development |
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good program to meet up the requirement.

Because of the above requirement Basic has been ciiosen as the most suitable language fo;
this project. Specifically, Q Baszic is the program I used for this project work. Basic can be use(é
for both commercial and scientific epplication. Basic alsc has scme flexible features such a}
screen design to create user fiiendly screen, directly output to printer for the production of har€
copies. Basic is usuaily used 2nd it is usually installed by most computer hardware manufacture;

without having to buy the software.

4.3 PROGRAMME INSTALATION AND GPERATION.
The installation of the program iitc the computer is quile easy.
This was done by creating a batch file soiely for instailation purposes.
The steps for installirig the program are as follows:
1). Make sure your system is switched on and has booted successfully.
2). At the system prompt (i.e. C:/.>} change the derive to the diskette derive i.¢. typing A:
or B: at tiie prompt.
3). At the new promot type STARTUP
4). The files to instalied are displayed
5) Answer the un-screen questions like strict any key to continue
6) You will also be required io supply the password to be used by the installation.
7) "When you are trus with the set up nienu control will be taken back to the batch file in order
perform the carrying of ali‘ﬁles in the system diskette to the hard disk and latter returning you ¢

the system prompt.
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4.4

STARTING THE PROGRAM

This refers to getting the program to use in order to solve the problem encountered when}|
running the program.
1) At the system prompt (i.e. C:\>) or change the drive to the diskette drive (if you want;
to work on the disketie i.e. A: or B:}
2y Type file name- at the prompt, an.. you are taken to the introductory part of the)
program. If usually shows the name cf the sofiware and cther necessary informationg
relating to the use of the pregram. After the introduction, down arrow keys or depressing%
the st letter of the intended menu cém be using to select the option for the operation you
want to perfor:. This will actually allow you to highlight the menu options but theix%
selection is completed by repressing the enter key. |
Program to solve réactions, kinetic and Quantum mechanical problems
10 Screen 9:Cis
20 Line (1,1)-(630,300), 4,B
30 Line (3,3)-(627,297), 4, B
40 Locate 4,30: Print “A Computer Programme for solving Reaction Kinetic “
50 Locate 6,35 : Print “ And “
60 Locate 8,25 : Print “Quaniuin Mechanical Probiems”
+o Locate 12,32 : Print “By”
80 Locate 12,27 : Print “Mohammed Abdullahi”

90 Locate 14,29 : Prirt “PGD/M.CS/98/99/770”
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100 Locate 20,24 : Print “Strike auny key to continuz “:A$=input${(1): Cls

110 Cls

120 Line (1,1)-(620,360), 4, B

130 Line (3,3)-(627,297), 4, B

140 Locate 3,5 : Print “IMenu”

150 Locate 6,20 : Print “(i) Equaticn of Reaciions”
160 Locate 8,20 : Frint “(2) Add more velue of t (M/Y)?”
170 Locate 10,20 : Print “(3) Exit”

180 Locate 20,40 : Print “ input select your choice”;ch
190 if ch = 1 then go to 240

200 if ch = 2 then go to 240

210 if ch =3 then go to 230

211 220 ifch>1 orch<>2orch<>3 thengoto 110
230 Cls: Beep : Pri:;t “P:'ogram terminated” : End

240 Rem on ch

260 Print “dy/d: = kt”

270 input “Enter value of t”;t
280 input “Enter value cf'k” jk
290 Ans = k*t

300 Print “dy/dt = “;Ans

h
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310 Locate 25,10 : input “Geto the next page (Y/N)” ;RS
320 if R$="y” then go to 110 Else : Cls : Print “Program terminated”

320 End
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CHAPTER FIVE
5.1 FINDINGS SUMMARY AND RECCivuviENDATION
it could be the major points to be used for any irrespectively studacints who want to be
cepy of this project, because it can help then in studits or researching their ditferential
equation in related to chemistry.

The investigation of a reaction to determine the rate law and value of the rate
constant, often ét several temperatures, ideally, the first step iz to identify all the products,
and to inves.igaie whether transiest intermediates and side reactions are involved. The
isolation method may then be used to exauiine the role of each component in turn, and to
determine the order with respect to each one. The order with respect to each substance
can be gulged form the method of initial slopes or the dependence of the half life of the
concentration and then the order confirmed, and k determined by a plot of the appropriate
function of the cuicentration against time using one of integrated laws expression such as
equation (T) or ejuation {M). However, cince all the laws considered so far disregarded
the possibility that the reverse reaciion is important, more of them is reliable when the
reaction is close to equilibriumi. Therefore, all plots can be expected to acquire some
curative for times, so long that the reactions involving the prowacis become important. In
the case of more intricaie rate iaws {such as those we encounter later) the concentrations
of reactants, intermediates and prcducts are computed nuri-rically and the rate constant

are vaned until the experimental data are produced.
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S ineled Sitass

Associated with any particle is a wave function having wave length relented to
particie momen{um by h = V2m(E-V). The wave function v for time-independent states
are eigen functions of Schrodinger equation can be constructed from the c.ussical wave
equation. The wave function for particie in e varving potential oscillation most rapidly.

Find the condition thet must be satisfied by a and P in order that w(x) = Asinax +Bcosfx

satisfy.
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CONCLUSION

This project has shown ti:e basic definition of differential equations, and computi
pioz.wmme for solving reacticn kinetics anc cuantum mechanical problems, widg
explained and field work in kivetics mcstly a straight lines {k constasts) is obtained whe
ploited con the graph. The struciure manifests themzelves . quantum properties.

The extend of congregaion is & useful measure of bond length and is direct

contributory to the totzl energy of the sysiem.
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large E, or large mass, or very high Quantum number value motion of a particle on a ring
has Quantum mechanica] soluticius very simtiar or to those for free particle motion in one
dgtmrension. The basic stens were

1.

RECONMMENDATIONS

Quantum mechanical prediction must approach classical prediction in the limits of

Determine the a syinboiic tehaviour of the schrodinger equation and function. Thls
produces a guess in factor exp{-y”~  times furction of y, f{(x).

Obtain a differential equation for the next of tlie wave function, y)
Represent f{y) as a power szries in y, and find a recursion relation for the coefficient
in the series. The symmetries of the wave, function are lirked to the symmetries oi
the series. The. schrodinger equation for an electron moving in tie field of a fixeg

nucleus is almost identical with equation cbtained from separation of variable if

reduced mass co-ordinates ini the moving, nucleus case. The bound state energies fo‘lié
time indepeﬁden’c siates of the hydrogen like ion depend on the quantum number n (
positive intege. ), and vary as ~1/n° .y describes a state as completely as possible anf
must meet certain mathematicel requirements (single value etc) w*y is the densit}
distribution for the system for ary cbservable these is an cperator (hermitic) which §
constructed from the classical expression according to a simple recipe if th:‘
Hamiltonien oper...r for a systein is time independent, stationary eigen functiof
exist, and the time depender:t exponential does not effect the measurable properties ¢

a system in this state and is almost aiways complstely ignored in any tim¢
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independent problem. Any operation that leaves H unchanged also commutes with H.
Recognise the polynomials are as being Hermite, Legendre and laguere polynomials and
utilize some of the known properties of these functions to establish orthogonality and

normalization constants for the weve function.
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