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ABSTRACT

This thesis investigated the effect of temperature dependent thermal conductivity and
diffusion coefficient on the filtration combustion in a wet porous medium. The model which
relies on several assumptions and based on the conservation of total mass, chemical species
and energy written in transient state mode of operation which governed the phenomenon is
presented. The existence of unique solution of the problem was examined by actual solution
method. The properties of solution were investigated. The coupled nonlinear governing
equations were solved simultaneously for the temperature and concentration field
analytically via parameter expanding method, direct integration and eigenfunction
expansion technique. The influence of dimensionless parameter such as scaled thermal
conductivity 4, , species diffusion coefficient D,, Frank kamenetskii parameter & peclet mass

number p,,, on the filtration combustion was investigated. He thesis established that the

maximum temperature is attained when o6 =0.5 for fixed time t. Simulation results also
revealed that high temperature front created by combustion; the oxygen molar fraction,
vapor molar fraction, passive gas molar fraction, molar concentration of the solid fuel and
molar concentration of liquid depend appreciably on the values of the parameters involved.
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CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Study

Air injection leading to in situ combustion is generally considered applicable to
recovery of heavy oils because it causes a significant reduction in oil viscosity.
However, it can also be used to recover light oils by mechanisms such as combustion
gas drive recovery, distillation and thermal expansion. The air injection process usually
refers to high pressure air injection (HPAI), whereas the term in situ combustion
traditionally has been used for heavy oil reservoirs (Negar et al., 2014). The method of
air injection has also been reported to increase recovery rates of light oils (Negar et al.,
2015) in this case; thermal expansion and gas drive promoted by the oxidation reaction
are responsible for enhancing the recovery of oil. The reaction that takes place between
light oil and injected oxygen occurs at lower temperatures, bounded by the boiling
point; it is termed low temperature oxidation (LTO). Aldushin et al. (1997) described
Filtration combustion as the propagation of exothermic reaction waves in a porous
medium through which there is gas filtration. The porous solid is composed of both
reactive and inert components. Filtration combustion covers a wide range of natural and
technological combustion processes in porous media having a common mechanism of
reaction front propagation. The principal feature of this mechanism is the delivery of
gaseous reactants to the reaction front by filtration from the surrounding environment,
where it reacts with the solid reactants. Filtration can be caused by two different
mechanisms, referred to as forced and natural. In the former case an external force
pushes the gas into the porous matrix, and is often used in technological processes while
in the natural filtration combustion, the gas flow is induced by combustion process

itself, which is due to consumption of gas in the reaction.



Filtration combustion (FC) waves involve a heterogeneous exothermic reaction front
propagating through a porous solid that reacts with a gas carrying oxidizer flowing
through its pores (Aldushin, 2003). Filtration combustion involves exothermic reactions
within the matrix of a porous media (Micheal and Janet, 1999) the solid may be a
condensed fuel with an oxidizer filtrating through the matrix, or the solid may be inert
with the filtrating gas consisting of both fuel and oxidizer. In either case, the
characteristics of the reaction front differ substantially from homogeneous combustion.
The propagation of combustion fronts in porous media is a subject of interest to a
variety of applications, ranging from in situ combustion for the recovery of oil to
catalyst regeneration, coal gasification, waste incineration, calcinations and
agglomeration of ores, smoldering, and high-temperature synthesis of solid materials.
The percolation of the oxidizing fluid plays a crucial role; therefore, such processes are
often referred to generically as Filtration Combustion (FC). While these problems may
differ in application and context, they share a common characteristic that the reaction
involves a stationary fuel reactant. The fuel may pre-exist as part of a solid matrix or, as
in the case of in situ combustion, may be created in an inert porous medium by
processes preceding the combustion region, such as vaporization and low temperature
oxidation (Yucel and Yannis, 2003). Filtration combustion FC is a process of
importance to a variety of applications, from the recovery of oil from oil reservoirs to
the processing of materials (Chuan and Yannis, 2005). The process involves the
combustion of a stationary fuel in a porous medium through the injection of an
oxidizing agent. It can also serve as an example of a strong exothermic chemical
reaction taking place in a confined geometry. When ignition occurs at the gas inlet,
reaction and thermal fronts propagate in the direction of the injected gas, and the

process is referred to as forward FC. When it is on the opposite side, the fronts



propagate in the direction opposite to the gas flow, and the process is reverse FC. The
combustion process is a subject of interest to a variety of applications, ranging from in-
situ combustion for the recovery of oil to catalyst regeneration, coal gasification, waste
incineration, calcinations and agglomeration of ores, smouldering, and high-temperature
synthesis of solid materials (Oliveira and Kaviany, 2001).The use of air injection as a
method of enhanced oil recovery has been explored for a long time. In this method, part
of the oil burns with the injected air, increasing the well temperature and lowering the
oil viscosity, thus enhancing its mobility. Traditionally, air injection has been used to
recover heavy oils, oils with a very high viscosity. In this case, chemical reactions crack
the oil into a non-volatile part (coke) and volatile components, which are expelled from
the high temperature region (Endo and Mailybaev, 2017).

1.1.1 Eigenfunction expansion method

The method of eigenfunctions is closely related to the Fourier method, or the method of
separation of variables, which is intended for finding a particular solution of a
differential equation. When using these methods, we are often concerned with special
functions being solution of an eigenfunction problem. The method of separation of
variables was proposed by d’Alembert(1749). In the 18" century it was used by Euler,
Bernoulli, an lagrange for solving the problem of oscillation of a string. Early in the 19"
century, Fourier developed this method in considerable detail and applied it to the heat

conductivity problem.

1.1.2 Existence and uniqueness of solution

When a problem is formulated, we need to examine the solution(s) so as to predict the
behavior of such solution(s). Moreover, for a problem that has two solutions, any design
from such a problem could behave either way. Thus the necessity for uniqueness of

solution is as important as the existence of solution.



Generally, there are some rules that must be satisfied before concluding that an equation
has a unique solution. The rules make use of first order differential equation. Thus for
an ordinary differential equation of order greater than one, the equation will be re-

written as a system of first order equations.

1.2 Statement of the Problem

The applications of filtration combustion includes, but are not limited to, such important
processes as smouldering and self- propagating high-temperature synthesis (SHS).
Smouldering and SHS are both complicated processes involving chemistry; diffusive
and convective transport of reactants, products, and heat through a porous medium; heat
losses to the environment by radiation and convection (wahle et al., 2013). For this
reason, it is necessary to increase our knowledge about this phenomenon. Hence the

need for this research work.

1.3 Aim and Objectives of the Study

1.3.1 Aim

The aim of this research work is to provide an analytical solution to a mathematical
model describing Filtration Combustion in a wet porous medium taking into

consideration the temperature dependent thermal conductivity and diffusion coefficient.

1.3.2 Objectives

The objectives are to:

I. Formulate a mathematical model governing the phenomena;

ii. Establish the criteria for the existence and uniqueness of solution of the
model;

iii. Obtain the analytical solution using parameter expanding method and

eigenfunctions expanding technique; and



iv. Provide the graphical representation of the results obtained.

1.4 Significance of the Study

Filtration combustion, where air is injected into a porous medium containing fuel, is a
method of enhancing oil recovery and has numerous applications in technology and
nature. The essence of the research work is to study the effect of temperature dependent

thermal conductivity and diffusion coefficient on the process.

1.5 Scope and Limitation of the Study

The essence of the research work is to study the process of filtration combustion in a
porous taking into consideration the temperature dependent thermal conductivity and
diffusion coefficient. The work is limited to the mathematical modeling of the

phenomenon.

1.6 Definition of Terms

Combustion: is the exothermic oxidation of fuel. In the case of a carbon-base
compound, the products are primarily carbon dioxide, water and energy (Olayiwola,

2015).

Convection: is the transfer of heat by mass motion of a fluid such as air or water when

heated fluid is caused to move away from the sources of heat, convening the energy.

Differential Equations: An equation involving derivatives of one or more dependent
variables with respect to one or more independent variables is called a differential
equation. In physics, engineering, economics and other sciences mathematical models
are built that involve rates at which things happen. These models are equations and the

rates are derivatives. Equation containing derivatives are called differential equations.



Diffusion: is the movement of atoms or molecules from an area of higher concentration

to an area of lower concentration.

Diffusion coefficient: is a measure of rate of material transport as a result of the

random thermal movement of particles.

Filtration: is any mechanical, physical or biological operations that separate solids

from fluids (liquid or gases) by adding a medium through which only the fluid can pass.

Heat: Is the transfer of the kinetic energy from one medium or object to another. Such
energy transfer can occur in three ways: radiation, convection and conduction. The

standard unit of heat is calorie (cal).

Heat Capacity: The heat capacity of a defined system is the amount heat (usually
express in calories, kilocalories, or joules) needed to raise the system’s temperature by

one degree (usually express in Kelvin or celcius).

In-situ combustion: is basically injection of an oxidizing gas (air or oxygen- enriched

air) to generate heat by burning a portion of resident oil.

Ordinary Differential Equation: is a differential equation involving ordinary
derivatives of one or more dependent variables.

Order of Differential Equation: the order of differential equation is the order of the
highest derivative appearing in the equation.

Degree of a Differential Equation: is given by the exponent that is raises the highest
derivative that occurs in the equation.

Partial Differential Equation: is an equation involving partial derivatives of one or

more dependent variables with respect to more than one independent variable.



Specific Heat capacity: Is the amount of heat required to change a unit mass (or unit

quantity, such as mole) of a substance by one degree in temperature.

Temperature: Is defined as the degree of hotness or coolness of a human subject or an

object over a period of time. It is measured in Celsius, Fahrenheit and Kelvin.

Thermal conductivity: Thermal conductivity is a material property describing the
ability to conduct heat. Thermal conductivity can be defined as “the quantity of heat
transmitted through a unit thickness of a material — in a direction normal to a surface of

unit area due to a unit temperature gradient under steady state conditions”.

Mathematical modeling: is the process of using various mathematical structures-
graphs, equations and diagrams to represent real world situations. The process of
developing a mathematical model is termed mathematical modeling. A mathematical
model may help to study the effects of different components, and to make a prediction

about a behavior (Bellomo et al., 1995).



CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Related Literature

Since last few decades, Filtration Combustion has been studied extensively; these
include the work of Olayiwola (2015) who formulated a model for forward propagation
of a combustion front through a porous medium with reaction involving oxygen and a
solid fuel. Dependence of thermal conductivity and diffusion coefficient on temperature
and gas composition was neglected. Existence and unigqueness of solution of the model
was proved by actual solution method and the show that temperature is a non-
decreasing function of time. The system of partial differential equations, describing the
problem under consideration was transform into a boundary value problem of coupled
ordinary differential equation and the numerical technique was used to solve the
reduced system. The heat transfer and species consumption are significantly influence
by the Frank-kamenetskii number was observed by the researcher. Grigori et al. (2012)
studied the asymptotic approximation of long time solution for low temperature
filtration combustion by considering a combustion process when air is injected into a
porous medium containing immobile fuel and inert gas. They focus on the case when
the reaction is active for all temperatures, but heat losses were neglected and developed
a method for computing the traveling wave profile in the form of an asymptotic
expansion and derived its zero-order approximation. Numerical simulations were
performed in order to validate the asymptotic formulae. Chapiro and Marchesin (2015)
studied the effect of thermal losses on traveling waves for in-situ combustion in porous
medium. The purpose of research is to identify waves that arise in one-dimensional

models of combustion in porous media, and to understand how the waves fit together in



solutions of Riemann problems. Diffusion effects and the dependence of gas density on
temperature was disregard. They simplify the proof of uniqueness and existence of the
travelling wave solution. Michael and Janet (1999) developed a model of filtration
combustion in a packed bed by investigating the low velocity filtration combustion
reaction of lean methane/air mixtures flowing through a packed bed and compare to
experimental results. The reaction is represented with a complete methane/air Kinetic
mechanism. Their results for solid temperature agree with the experiments for a mixture
with an equivalence ratio 0.15 which is consistent with the existing theory on filtration
combustion and discovered that gas-phase transport is not important to wave
propagation at this condition. They discovered that gas-phase dispersion is important
only at higher equivalence ratios. Olayiwola et al. (2014) presented a mathematical
model for forward propagation of combustion front with Arrhenius kinetics through a
porous medium with the reaction involving oxygen and solid fuel. They assume that the
solid fuel depends on the space variable and that the amount of gas produced by the
reaction is equal to the amount consumed by it. Existence and uniqueness of solution of
the model was proved by actual solution and provided the analytical solution of the
model through Homotopy perturbation method and represented the results graphically.
They discovered that the Frank-kamenestsskii number on the heat transfer and species
consumption is of great importance. Mailybaev et al. (2013) formulated a model for
recovery of light oil by medium temperature oxidation. They considered two phase flow
possessing a combustion front when a gaseous oxidizer (air) is injected into porous rock
filled with light oil. The temperature of the medium is bounded by the boiling point of
the liquid and, thus, relatively low. They disregarded the gas phase reactions. They
observed that the initial period, the recovery curve is typical of gas displacement but

after a critical amount of air has been injected the cumulative oil recovery increases



linearly until all oil has been recovered, they conclude that oil recovery is independent
of reaction rate parameters but recovery is much faster than for gas displacement and

among their findings is that oil recovery is faster when the injected pressure is higher.

Bruining et al. (2009) developed a model of filtration combustion in wet porous
medium. By considering a porous rock cylinder thermally insulated on the side filled
with inert gas, liquid and solid fuel. An oxidizer was injected. They assumed that the
amount of liquid is small, so its mobility is negligible, and that only a small part of the
available space is occupied by solid fuel and liquid, so that changes of rock porosity in
the reaction, evaporation, and condensation processes can be neglected. They neglected
the dependence of thermal conductivity and diffusion coefficients on the temperature
and gas compositions. They discovered that when the diffusion is dominant at the
reaction layer, it lead the oxygen to extinction and also discovered two possible
sequences of waves, and the internal structure of all waves was characterized. They
compared the analytical results with direct numerical simulations. Their model Equation

is as shown in equation (2.1) to equation (2.4)

o o o°T 21
/ng E(T —Tres)+ngU&(T _Tres):/l 8X2 +QrWr _QeW ( : )

The mass balance equations for the components X , Y, Z are:

oX OX o( oX

2 o =Do—| p== |+ W 2.2
PP (ppUE X(”ax[paxj e (2.2)

oY oY o oY

Ztpu—=D,p—| p— |- uW 2.3
vP— copua y(ﬂa(pijuor (2.3)

oz oz o( oz

o= =D, 0| p= |+ u W 2.4
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As the solid fuel and the liquid do not move, their concentrations satisfy the equations

for reaction and evaporation respectively as shown in equation (2.5) to equation (2.6)

on

—-=—uW, (2.5)
at

on,

—L--w 2.6
ot . (2.6)

Where p [mole/m?] is the molar density of gas, T [K] is the temperature, C, is the heat
capacity of rock, U[m/s] is the Darcy velocity of gas, T, is the initial reservoir
temperature, A [w/mk] is thermal conductivity of the porous medium, (Q, and Q)

[J/mole] are the heats enthalpies of combustion and evaporation of the solid and the
liquid at reservoir temperature, Y is the molar fraction of oxygen, X is the vapor
molar fraction in the gas phase (mole of vapo/mole of gas), Z is the molar fraction of

passive gas in the gas-phase, ¢ is the porosity, ns Is the molar concentration of solid
fuel, n; Is the molar concentration of liquid, D, [m?/s] is the diffusion coefficients for
vapor of porous medium, D, [m?/s] is the diffusion coefficients for oxygen of porous
medium, D, [m?/s] is the diffusion coefficients for passive gas in the gas-phase of
porous medium, x; is the moles of solid fuel, 4, is the moles of oxygen and , is the

moles of gaseous product.

This research work extended the work of Bruining et al. (2009) by incorporating
temperature dependent thermal conductivity and diffusion coefficient. We shall provide
the criteria for the existence and uniqueness of solution of the equations, examine the
properties of solution and provide the analytical solution of the model by parameter

expanding and eignfunction expansion methods.
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CHAPTER THREE

3.0 MATERIALS AND METHODS
3.1 Mathematical Formulation

Following Bruining et al. (2009), we consider a porous rock cylinder thermally
insulated on the side and filled with vaporizable liquid, inert gas, and combustible solid
fuel. An oxidizer (air) is injected. The liquid can be water or light oil, and the
combustible solid can be coke. We assume that the amount of liquid is small, so its
mobility is negligible. We assume that only a small part of the available space is
occupied by solid fuel and liquid, so that we can neglect changes of rock porosity in the
reaction, evaporation, and condensation processes. We assume that the solid, gas, and
liquid are in local thermal equilibrium, so they have the same temperature. Based on the
above assumptions, a one-dimensional model with time t and space coordinate X is
considered the energy equation governing the system is giving by equation (3.1):

£C, %(T —T.. )+ ngug(T ~T..)= g(z‘z—n Q,K,Yn, e*»:%—
Q.kn, (% e‘%@‘%) — xj (3.1)

We consider a single component liquid (water), and denote by X its vapor molar
fraction in the gas phase (mole of vapor/mole of gas). The gas has several components:
oxygen, vapor, and passive (inert and combusted) gas. We denote the molar fractions of
oxygen and passive gas in the gas-phase by Y andZ, respectively. Then, we write the
mass balance equations for the components X , Y, Z as equation (3.2) to equation

(3.4):

12
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As the solid fuel and the liquid do not move, their concentrations satisfy the equations

for reaction and evaporation respectively giving by equation (3.5) to equation (3.6):

on E

Ff:ﬂfKrYnf err (3.5)
1 1
on _ . kn,| Pam o ) x (3.6)
at ORT
Where;

o [mole/m®] is the molar density of gas
T [K] is the temperature

T, 1S the initial reservoir temperature

C, is the heat capacity of rock
U [m/s] is the Darcy velocity of gas

A [w/mk] is thermal conductivity of the porous medium

(Q, and Qe)[J/mole] are the heats enthalpies of combustion and evaporation of the solid

and the liquid at reservoir temperature

13



K, [1/s] is the pre exponential parameter.

Y is the molar fraction of oxygen
X is the vapor molar fraction in the gas phase (mole of vapo/mole of gas)
Z is the molar fraction of passive gas in the gas-phase,

ny Is the molar concentration of solid fuel

n; Is the molar concentration of liquid

g, [J/mole] is activation energe

R =8.314[J/mole K] is the ideal gas constant

T, is the boiling temperature of the liquid at atmospheric pressure p,.,
¢ is the porosity

D, [m?/s] is the diffusion coefficients for vapor of porous medium

D, [m?/s] is the diffusion coefficients for oxygen of porous medium

D, [m?s] is the diffusion coefficients for passive gas in the gas-phase of porous

medium

M, is the moles of solid fuel
U, 1s the moles of oxygen

A, is the moles of gaseous product

14



3.2 Coordinate Transformation

The balance of mass can be eliminated by the means of streamline function (Olayiwola,

2015) giving by equation (3.7)

JENE
n(xt)= (p ) Z.L p(x,t)s (3.7)
Then coordinate transformation is giving by equation (3.8) to (3.9)

o _dang_d

OX 67] OX 877 (38)

oom,0__,0,9

° - —— 2 (3.9
ot onaot ot on ot
We make the additional assumptions that oc, oD, and A are constant. Although these

assumptions could be relaxed in the future, they considerably simplify the equations.
The equations (3.1) to equation (3.4) can be simplified as equation (3.10) to equation

(3.13):

o (et & Pan -2(2-1
ng _(T _Tres):%(ﬁ“%)_{_ QrKrYnf e RT — Qeknl(pRTtTe R[T Tbj_ X] (310)

X 0 X am (1L

¢pgz¢a(pr %Jﬁ- kn,(%e R[T Tb)—XJ (3.11)
oY 0 oY _E

¢PE = ¢%(PDY %j — 1K Yng @ RT (3.12)
oz 0 oX _E

¢PE = ¢%(PDZ %] +ugK Yn, @ R (3.13)

The initial and boundary conditions were formulated as follows:

15



Initial condition is giving by equation (3.14):

Att=0and V7

2
7=l (1—1)”0,
E U L

X =X, 1—1} Y =Y0(1—Q}
L L

L= Zo[l_%j’ nf = nfres, nI = I'-]Ires

(3.14)
Boundary Condition is giving by equation (3.15):
Tho=T T, =T
Y‘ n=0 Ylnj ’ Y‘ n=I = 0
X[, =0, X|,4=0
Z"FO =0, Z‘,,:o - (3.15)

3.3 Method of Solution

Here, we shall establish the criteria for the existence and uniqueness of solution of the

equations and solve the equations analytically.

We let Aand D to be constants, then equation (3.10) to equation (3.13) reduces as

shown in equation (3.16) to equation (3.19).

2 , Q1 1
g(T -T.)= A 0T QK Yn, e‘%——Qekn' (hew(ﬁbj—x)

M, 0n® P, £C, (3.16)
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Multiplying equation (3.17) by ——, we obtain equation (3.20)

0 9RutX _ 1y 0° ¢RueX | Qutty (
PRT

P _%[i_i] J
= atm RITT,)—X
at /xg 82 2 /x:g /xg e

Multiplying equation (3.16) by ., we obtain equation (3.21)

0 A 0% (u,T) QK E
Ho\T =T +——— YN RT —
8t( 0( )) <, on? <, ofNs @
Q.kn, 14, ( atm e-%[%-%j _ XJ
cy (ART
Q + 44

Multiplying equation (3.18) by , We obtain equation (3.22)

9

/JOKrYnf e RT

ot PCq o'nt ey PCq

Multiplying equation (3.19) by pC , We obtain equation (3.23)

9

2 E,
Ol PPl | _ ? : PPLZ | | Ho 4K Yn, g
ot ey on ey ACq

17

Q(M}D & 9AQ +u ) @ +a,) B

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)



Adding equation (3.20) to equation (3.23), we have equation (3.24)

Q(MX +,L10T+¢(Qr+'ug)Y + P Z]:

otl ¢ C C

g 9 ( g ) (3.24)
2 +
O [ pRetto Mg PO ti)y ok,
on Cq Ay Cq G
+
LetD =2 and | Reto x +yOT+¢(Qr )l LY
g Cg Cg Cg
Then equation (3.24) yield equation (3.25)
2
W _pov (3.25)
ot on
With the initial and boundary conditions as equation (3.26)
w(1,0)= A(l—%} B, w(0t)=A, y(Lt)=B (3.26)

Where;

g Cg CQ

2 +
A= [¢Qeﬂo X, +,U0RT0 +¢(Qr Hq )YO +¢:U0 ZOJ
C

B =14,

From equation (3.25) and equation (3.26) , we obtain equation (3.27)  to equation

(3.39):

18



Then
1(1,0)=0
#0,t)=A
u(Lt)=B
Also

Let w(m,t)=ul,t)+ u(n.t)

Therefore equation (3.27) becomes

we seek a solution of the form

u(n,t)ziun(t)sin nTﬁn,

n=1

Where

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)



2 (L . Nz
b, :EL f(x)sin Tndn

Here, a =0, f(,t)=0, f(17)= A{l—%}+ B,k =D

Then

_ 2t A1 in 7
bn—LIO (A{l Lj+Bjsm Lndn

Integrating equation (3.34), we obtain equation (3.36)

But F(7,t)=0=F,(t)=0

Then

Therefore

2
nz

u(p,t)= g%((—n” ~(a+B)(1 -1 T sin T
Thus

wnt)=A +%(B A+ A (1 - (a+B)(-1y —1))e_D[nLﬂj2tsin ”T”n

n-1 N7T

This led us to the theorem 3.1 and its proof.

20
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(3.36)
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(3.38)
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3.3.1 Existence and uniqueness of Solution

A . : :
Theorem 3.1: let D=—— and T, = constant. Then there exists a unique solution of
PLq

equation (3.10) to equation (3.13) satisfy Equation (3.14) and equation (3.15).

Proof:

+
Let D= A and T, = constant and y = {M X + 1, T + ¢(Qr Hy )Y + Pt zJ
<, C C c

g g g

Then, equation (3.10) to equation (3.13) reduces to equation (3.40) to (3.41)

%w D 22_7;/? (3.40)
w(n,0)= A@—%} B, w(0,t)=A, w(Lt)=B (3.41)

Using eigenfunction expansion technique, we obtain the solution of equation (3.40) and

equation (3.41) as equation (3.42) to (3.46).

2
nr

wnt)=A +%(B ~A)+S = (1 - (A+B)(-1) -1))9*'3[?) 'sin ”T”n (3.42)

n-1 N7T

Then, we have

()= A&+%(B—A1)+g%((‘l)n‘(A+B)((—1)"—1))eD(nf)ztsinn{n

(3.43)

_(meﬂo X+¢(QI’+'u9)Y+¢IUO ZJ\]
C

g9 Cg CQ

21



s (mﬂ(a—méi((—l)“—(ms (-1 e

E(Q,Ci_yg)(”‘i +IB-A)+ ié((—l)“ ~(A+B)(-1y —1))e*D(T) 'sin ”T”n (3.45)

Z(n.t)=

;—;(A +%(B A+ Z%((—Q” —(A+B)(-1y —1))e‘D(T) ‘sin ”T”n (3.46)

_{ﬂOT+¢Qe:uo X +¢(Qr +IUO)YJ}

Cy

Hence, there exist unique solutions of equation (3.10) to equation (3.13). This

completes the proof.

We shall return to our original equations, that’s equation (3.1) to equation (3.6)
satisfying equation (3.14) and equation (3.15) and consider an alternative method for

the existence of unique solution of the problem.

Here, the dependence of thermal conductivity and diffusion coefficient on the
temperature is taken into account by the mathematical expression giving by equation

(3.47) and equation (3.48):

22



A= [l] (3.47)

D =D, (—J (3.48)

Where A4, is the initial thermal conductivity, D, is the initial diffusion coefficient, and

T, is the initial temperature of the medium.

Substituting equation (3.44), equation (3.45), equation (3.46) and equation (3.47) into
equation (3.5) and equation (3.6), equation (3.10) to equation (3.13), we have equation

(3.49) to equation (3.53)

Ot )= 2T % 7(g-
o 2010221 an}QrKrnf[M% A+ E-a)
2 n n *Dnizt -
3 2 (ap - (av )y - E s 2y ||
- oA — (3.49)
(#OT_'_we:uO x+¢:u() ZJ
Cg Cg
Pan - 2(22)_
kn,(ﬁe ( j XJ
K _yp, O[T X Pam 75
¢pﬁ—¢/i)o 577[1—0 677]+kn'(pRTe [ ) Xj (3.50)
Ny O[T % 18-
dp =90y an(To aﬂ} uoKrn{ng (ML(B A+
i%((—l)" ~(A+B)(1 -1 sin - (35)
n=1 e,ﬁ
IuoT_'_me/uO X +¢/”0 ZJ
Cg Cg

23



Z_4p O[T Z % 1(g_
¢pa_¢/D0 an(-l-o ]+ﬂgKrnf[¢Qr+lug (A1+L(B Ai)+

2
nrz

22 (o~ (ave)-ar -1t sin T - (352)

Er

eRT
T+¢%“°X+¢”° zj

(3.53)

3.3.2 Non - dimensionalization

Here we shall non-dimensionalized equation (3.49) to equation (3.53) using the

following dimensionless variables as shown in equation (3.54)

xi=2X oy Y2 e_i(T T,)
X Y, Z, RT,
(3.54)
tl:l, nlzﬁ, nflzn_f’ nll_L’ _ﬂ
t, L N e NMres E
Then, we have equation (3.55)
X =X X' = X = X,0X*
Y =Y ! = oY =Y,oY*
z=2z,2" = 0Z =2,0Z"
t =t t = ot =t,ot!
n=Ln' = on =Lon' (3.55)
T =&T,9+T, = T = £T,09
N, =N;Nt = on, =n,.on;
n, =n,nN, = on =n,on/

24



Now,

_E & _E

E
RT = RT, @ RT A RT,
e erhefe

& Ef1 1
=@ RL@R(T T

E E(T-T,
=@ RL @R| TT

E E [ £
:e RTo eRT0 To(1+e9)

E E, 0

e7R71r' :e RT, e1+56 (356)
Also

ToTo_y

Q1 1 QT T Qe Ty=To—Tof Qe Ty—To—£Ty0 Q| €Ty | T
e R\T T, =e RUT,T =@ R\ T, (T00+Tp) =@ R\ T,To(1+e8) =@ R| ToTy| 1+ed

:ef%ﬂ%J = ef"{%}

That is

e*%[%*%] by (3.57)
Where;

SEN

Substituting equation (3.54), equation (3.55), equation (3.56) and equation (3.57) into

equation (3.49), that is

25



£CET, 00 Ay O [&l0+T, €T, 00
L on'

T L7 (g _
To L 6U1J+Qrkrnfresnf(¢( ] g)(Ai-’_ (B A1)+

Q +u

9 9

. o 2 ) Er 0
3B, e‘D[T) " sin “T” Ln' _(ﬂoTo(l-i- £0)+ —¢QEé’°X° X*+ @ Zlm e R g -

That is

50 ﬂoto a ( ae J tOQr krnfres _Er( Cg 1
— = —| 1+ &6 + R | —— (A +(B— +
ot pc L’ ont ( )6771 £C,ET, € #Q, + 1y )(Al (B=A)

Dty 2 21

. 0
>Be ¢ sinnay' _{/uoTo(l-i- £0)+ RettoXo 1, ¢’sz° Zl]Dnlf e —
n=1

Cq g

tOQe I(nlres X 0 I:)atm e_a{lt:;’j ] X 1

ey | RTX, L+e6

Dropping prime, we have equation (3.58)

8&_0 - %a%((lw@)%j”(aim +(B- A)n+§81 g """ sin nzry -

9 () (3.58)
(b,(L1+£6)+a,X +b,Z))n, g —af &, el+g<9 —~
Where;
ﬂ@to terkrnfres _Er Dty CQ
R Y FE TR T Y E
SRS oy, © T AT )



— ¢Qeéloxo , b2 — ¢%ZO o= tOQeanresXO 33 Patm

= T1 a ’ ’ e ———
by =Ty, 2 C, T, RTX,

g

Substituting equation (3.54), equation (3.55), equation (3.56) and equation (3.57) into

equation (3.50), that is

1 1 b-6
¢?(0 a(;[(l - ¢lC|I_:)0 68 1 (STOG +TO )XO %1 + knIresnl1 # e_a[@) o Xoxl
0 n o pR(gTO +To )

That is

- on' ) ¢p | RTX, 140

b-6
1 1 75{?)
aa)t(l _ tOll_zo aal ((1 g@)ax J_l_toknlres nl Patm e Lt Xl
n

Dropping prime, we have equation (3.59)

—a( b—0j
1+&0
R _p, 2 (1+50)2 |+ an|a, 27 _x (3.59)
ot on on 1+ 60
Where;
D1 — t0 [2)0 , = tOknlres 1 a3 — Patm
L ¢p PRT X,

Substituting equation (3.55), equation (3.56), equation (3.57) and equation (3.58) into

equation (3.52), that is

¢pl, OY' ¢, 0 N 1 C L'
to 8t1 - L anl((‘c"T09+T0)YO anlj ﬂOkrnfresnf{Qf(Qr-l—,ug)(Al—i_ L (B A1)+
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nz . 4 Er 0
2B e‘D[TJ “sin nT” L' _(,UOTO(1+ £0)+ —¢Qe(':u oXo w1y —¢'Lé°Z° ZlJD @ R @l

n=1 g g

That is

ot L2 on

oYt t,D, o (( avlj to 4K N o Nt Er( c
- 1+ 66) T |- 2200 et o, (A +(B-A)7 +
€@ + 1)

Cg 9

= Dty 2 21 p
E Bl e "t sin n7z771 _(:uoTo(l‘i' 59)_'_ ¢Qe/u0x0 X!t ¢/Lé)zo ZlD]nﬁ em
-1

Dropping prime, we have equation (3.60)

oY 0 oY X _pnr .
= Dla—((lwe)a—}y(ai(a +(B= A+ Big " sinnm -
i g = (3.60)
4
(b,(1+e0)+a,X +b,2))n, @i
Where;
1 r
Dl — t0[2)0 , y= tOluOkrnfresnf e RETO , a, = Cg ’ b1 :,UOTO, az _ ¢Qe,u0XO ,
L oY, ¢(Qr +,uo) Cq
b, = 1L, _
2 Cg

Substituting equation (3.54), equation (3.55), equation (3.56) and equation (3.57) into

equation (3.52), that is

¢, 620 ¢D, ? oz . C, Ly
= T,0+T,)Z2, — |+ u,K.Nn...N 7—) +——(B-A )+
to atl L 6771 (g 0 0) 0 8771 :ug r'fres' ' f ¢ Qr +,Ug Ai L ( Ai)

g 9

nz )2 1 Er o
3B e-DH & sin“T” Ln* —[,UOTO(1+ ge)+—¢Qeé‘°X° Xt +—¢‘(‘:°Z° leBeRT"eM”

28



That is

1 1\ toukn.nt Er
%fl _ tOli:z)o aal ((1-0—80) oz J"‘ oo R M e Mg
n

[ S (A+(B-A)+
o) e, AQ, + 10 7

Dty 2 21 4
ZB e " sin n;znl—(uoTo(1+ge)+ ¢Qe:°x° x1+¢‘é°z° zlmnlf i

g9 g

Dropping prime, we have equation (3.61)

oz 0 oz 2 Pt
o Dla—((1+g¢9)a—]+yl(a1(Al+(B—A1)77+ZBle " Sin N —
n n n=1 (3.61)
0
(b1(1+ 56?)+ a, X +bZZ)))nf QL
Where;
t,D, u.kng o _Er C Q.1
D:OO, 7/_09 es RT, | — 9 ’ I/JT, a = e/0 ,
172 1 3P, e a ¢(Qr +ﬂ0) b, olo 2 c,
b _ L,
2 ¢

Substituting equation (3.54), equation (3.55), equation (3.56) and equation (3.57) into

equation (3.53), that is

1
nfres anf
t, ot

:/Jfkrnfresnf( )(A_L"'(B At +ZBle ( )tot1 . nTﬁLnl_

¢(Qr

Er ]
e Rt o

g9 g

That is

29



042 2:1

on; tou k RETrnl( % (A+(B-A) 1+i|3 it
—1 =luk @ Runy| ———— —A)n g =
ar TSR v ) &€

4
[uoTo(1+ge)+ ¢Qeé‘°X° X'+ W(‘:OZO zlmew

g g

Dropping prime, we have equation (3.62)

on,
F:72r,f(611(A1+(E3—A1)77+
w 9 (3.62)
Y Big " sinnan - (b, 1+ £6)+a,X +b,2)))gi
n=1
Where;
tD . 5 LONT
D _ D, | :t k - :—g’ = T ] a :M,
ooz Vo =loti K € Ry & ¢(Qr +,Uo) e 2 "
ey
c

9

Substituting equation (3.54), equation (3.55), equation (3.56) and equation (3.57) into

equation (3.6), that is

Moo O gy P 0 x
to 8t1 nlresnl(pR(gTo +-|-O)e Lt 0

That is

ont P efa[l%)

CL R — - X!
ot PRT X, 1+e6

Dropping prime, we have equation (3.63)
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P ‘a[ﬂj

1+&0
M| Fam € _ (3.63)
at RT,X, 1+&6

P

atm

Where; y, =t,kX,, ag:pRTX
0“0

Substituting equation (3.55), equation (3.56), equation (3.57) and equation (3.58) into

equation (3.15), that is

2
T:BLL@—QJ+R
ELU L

That is

1

JW+R=5R@—£3J+R:39=@—¢)

Dropping prime, we have equation (3.64)

0(r,0)=1-7 (3.64)
Also
n

X=X/|1-2L

( Lj
That is

1

weonfi-fE) = xier)

Dropping prime, we have equation (3.65)
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Also
U
Y =y,[1-1
( Lj
That is
1
Yovlzv{ - "[7 ] = Y'=(1-7")

Dropping prime, we have equation (3.66)

Y(1,0)=1-7
Also
n

z=71-1

( L)
That is

1

zozlzzo(l— "fj = Z'=0-7")

Dropping prime, we have equation (3.67)
Z(n,0)=1-7
Also

nf :nfres

32
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That is

1 1
nfresnf :nfres = nf :1

Dropping prime, we have equation (3.68)

n, =1 (3.68)

r-]I = nIres

That is

1_ _
r]Iresnl _nlres = nI _1

Dropping prime, we have equation (3.69)

n =1 (3.69)

Substituting Equation (3.55), equation (3.56), equation (3.57) and equation (3.58) into

equation (3.15), that is

T, =T
That is
T,-T
(9T06?+T0|L’71:0 =T, = 6?|771:O = 1g_|_ 0
0

Dropping prime, we have equation (3.70)

6(0,t) = bs (3.70)

33



Where; b, = I ;_TO
€ly

And
T, =T,

That is

T O+Ty| . =T, = 0

Dropping prime, we have equation (3.71)
6(Lt)=0 (3.71)
Also

Y| =Y,

n=0 inj
That is

1 . 1
ian I_’71=0_Yinj = Y

=1

7=0

Dropping prime, we have equation (3.72)
Y(0,t)=1 (3.72)
And

Y|, =0

n=L

That is

34



Dropping prime, we have equation (3.73)
Y(Lt)=0

Also

That is

=0

7'=0

X X . =0 = X!

Lnt=0

Dropping prime, we have equation (3.74)
X(0,t)=0

And

=0

7=l

X, X* =0 = X!

Lpt=L

Dropping prime, we have equation (3.75)
X(Lt)=0

also

35
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|77:0
That is

=0

2,2 =0 = 7Y,
=0

Li7'=0

Dropping prime, we have equation (3.76)
Z(0,t)=0 (3.76)
And

z| =0

n=L
That is

=0

22!, =0 = 7Y, =
7=

Lit=L

Dropping prime, we have equation (3.77)
Z@L,t)=0 @.77)

Therefore, the dimensionless equations together with initial and boundary conditions are

giving as equation (3.78) to equation (3.84):

86’ . E % _ 0 7Pemnz”2t . B
FRkrr ((1+ 8«9)877}5(31(& +(B A_L)MHZ:;Ble sin nzzy

, _a[%) (3.78)
(b0 £6)+a,X +b,2))n, @i o 8, &% -
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e_a[lt:j) ]

oX 0 oX
E = Dl %((14' ge)aj'i' aln, 3.3 m —X (379)
oY 0 oY d P n2z% .
—=D,—| 1+&0)— |- +(B- +)> Be ™ sinnzp-

%D (( ) anJ (e (A +(B-A)p Z;, e n 050)
(b,(1+ £6)+ a,X +b,Z))n, pia

oz o oz 2 e ~

5 Dla((pr 89)%j+}/1(a1(ﬁ&+(5—ﬁ~1)77+§816 sin nzn )
(b,(1+ £6)+ a,X +b,Z))n, gis

on;

W:%nf (al(Al +(B_A1)77+

" , (3.82)
> B e " sinnay - (b L+ £60)+a,X +b,2)))gra

n=1

0 e,a(lb;;j

o _ o

ot 73N, | ag Tr 20 X (3.83)
0(n,0)=1-n, 6(0,t)=b,, 6Lt)=0

X(n,0)=1-n, X(O,t)=0, X(@Lt)=0

Y(,0)=1-n, Y(@O¢1t)=1 Y@Lt)=0 (3.84)
Z(n0)=1-n, Z(0,t)=0, Z{Lt)=0 '
n, =1

n =1

3.3.3 Properties of Solution

To examine the properties of solution, we consider the following asymptotic expansion

of temperature of & and concentrations X,Y,Z,n, and n, in g, as shown in equation

(3.85) .
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Let

0=0,+¢e06 +..

X=X, +eX, +...

Y=Y, +e&Y, +...

L=Ly+&l, +.. (3.85)
Ny =N +eng +...

n =n,+en, +..

Then, we have equation (3.86)

,a(bij 1 _ab  ag

= 1+e0 ) X = I+ X @Ql+ed X

1+¢60 € 1+¢6 € € 1+¢c6
=(L+e0)" x1-20+...

1+¢&6

=1-¢(6, +£6,)~1-¢6),

e% - (elieJa = (eg" +e0,@" + )a = (eae" +eap "0, + )

ab

@ i@ =—ab(l+£0)" ~ —ab(l-£6,)

Now,
_(ﬂj——ab(l—ge \e™* + g™ 6, +..J1-26,)
l+e0 /e © BT
NS
e1+[1+zj:(1_590)(_61139600_azbg@e”uabgeo e +abs0,0,e +..)  (3.86)
&
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Substituting equation (3.85) and equation (3.86) into equation (3.78) to (3.81), we have

equation (3.87) to equation (3.90)

2 (0 +60)= 41+ 50, +20) 2 (6 +86’1)+/?1€(i(00 +sel)j "
ot on on

S(a,(A+(B-A)+> B ™ sinnay (3.87)

— (b, (L+£(6, +£6,))+8,(X, + X, ) +b,(Z, +gzl))))(nf0 +‘c'nf1xe90 +&6; e%---)
—a(ng + anll)(ag(— abp™ —a’hsh, @ +abs6, ™" + ...Xl— £6,)—(X, + gXl))

0
a(xo +5X1)=
2

D, (L+&(6, Jngel))aa?(x0 + X, )+ Dlg(a% 4, +g91)%(x0 +gx1)j+ (3.88)

a,(n, + ,sn,l)(a3 (— abp™ —a’bed, @ + abed, @™ + ...Xl— £0,)—(X, + gXl))

0
a(Yo +5Y1)=

2

0 0 0
0,200, +58) -2+ 20+ Dlg(a_n 0-0) 2.0+ ng)J _

(3.89)
y(ay (A +(B-A)+Y B g™ sinna -
n=1

(b, 1+ £(6, +£6,))+ 2, (X +6X, ) +b,(Zo + 2, ) jo + 0y, N +26,6" )
0
a(zo +‘921)=

2 d d
D,(L+£(6, +£6,)——(Z, +Z,)+ D.e| — (6, +£6,)—(Z, +&Z,) |+

on on on (3.90)

7/1(al(Al + (B — A.'I.)n + Z Bl e—F’eng;;Ztsin nﬂ"] _
n=1

(b, 1+ £(6, +£6,))+ 2, (X +6X, ) +b,(Zo + Z,))njo + 0y, o™ +26,8" )

Collecting like power of g%and &' in equation (3.87) to equation (3.90), we have

equation (3.91) to equation (3.100):
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2 2 2 2
Z:g +6(ay(A + (B~ A1+ B e_Pemn "sinnzn
n=1

_(bl + azxo + bzzo)))nfo e€° _Omlo(_ abas eaeo - xo)

(3.91)

oX 0°X aty
# = Dlﬁzoﬂxlnlo(— aba, @ b XO) (3.92)

2
oY =D1%—
on

oYy
ot

B (3.93)
y(al(Al +(B - A1)77 +ZBl e_Pemn “sin n”n_(b1 +a,X, +bzzo)))nfo et90

n=1

2
ot on

(3.94)
71(31('0‘1 +(B - AL)U"'ZBl eipemn . tSin n7z'77_(b1 +a2Xo +bzzo)))nfo eao
n=1

00(77’0):1_77’ 6,0t)=b;, 6@Lt)=0
Xo(m0)=1-n, X,0t)=0, X,@Lt)=0
Y,(n7,0)=1-n, Y,(0,t)=1 Y,(4t)=0
Z,(n0)=1-n, Z,00t)=0, Z,Lt)=0
ng, =1

(3.95)

N =1

00 0%0) 00, Y’ y
E = /11‘90 8_7720 + %(8_7;} - (bﬂo +a, Xl + bzzl)))(nflxg1 ea )_

1
(3.96)
oz(nll)<2aba36?O e —a%ad, @ - Xl)
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2
2 0°6, D (% %L} e nll(Zabasao e " a’ha,0, ezeo - Xl)} (3.97)

Pi_p P,
ot ton? on

oY, 0%, a6, oY, \

=D o D{ 87; a;j—(bﬁo+a2X1+b221)))(nflxeleg )} (3.98)
oz %z 06, 67 !

El =D,6, 87720 " D{ 67; a;j-(bﬂo +a,X, +bzzl)))(nfl)(91 e” )} (3.99)

6,n0)=1-n, 6,0 =h, 6,Lt)=0
X,(n0)=1-n, X,0,t)=0, X,@t)=0
Y, (7,0 =1-7, Y,(0t)=1 Y, (Lt)=0
Z,(n0)=1-n Z,0)=0, Z(Lt)=0
ng, =1

n, =1

(3.100)

This question of existence and uniqueness of solutions to these equations has been
addressed by Ayeni (1978) who consider a similar set of equations and showed among
other results that existence and uniqueness are somewhat well known. In his work, he

studied the following system of parabolic equation (3.101)

=Ag+ f(xt,4,uv) xeR", t>0

_Au+g(x,t,¢u v) xeR"t>0
(3.101)

=AV+ f(X,t,4uv) xeR"t>0

szeI% 92|®9.e|&
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#(x0)= fo(x)
u(x,0)=go(x)
v(x,0) = hy(x)

x=(xl,x2,x3,...,xn)

(8.2): fo(x)9(x) and () are bounded for X €R"-Each has at most countable

number of discontinuities.

(S.2): F.9. N gatisfies the uniform Lipschitz condition

|(0(X,t,¢1,U1,V1)—¢(X,t,¢2,UZ,VZ) < Mq¢1 _¢2|+|u1 —U2|+|V1 _V2|)! (X1t)EG
Where,
G={xt):xeR",0<t<7}

Our proof of existence of unique solution of the system of parabolic equation (3.91) to

equation (3.95) will be analogous to his proof.

Theorem 3.2: There exists a unique solution 8, (1,t), X,(m,t), Y, (77,t),and Z,(n,t) of

equation (3.91), equation (3.92), equation (3.93) and equation (3.94) which satisfy

equation (3.95).

In the proof we shall need the following Lemma:
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Lemma 3.3 ( Ayeni (1978))

Let (f, g, h, Jo) and (f g h j ) satisfy (S.1) and (S.2) respectively. Then there

exists a solution of equation (3.91), equation (3.92), equation (3.93) and equation (3.94).
Proof of Lemma: see Ayeni (1978)
Proof of theorem 3.2

We rewrite equation (3.91), equation (3.92), equation (3.93) and equation (3.94) as

equation (3.102) to equation (3.105)

2
ﬁatﬁzglz%n(n,t, Oy, X0 Yo, Z,) 7R, t>0 (3.102)
n
2
ag(to :Dl‘;—xzug(n, t 6, X0, Yy, Z,) 7R, t>0 (3.103)
n
2
%:Dl%+h(q,t, 0, X0 Yyr Z,)  meR", t>0 (3.104)
2
aﬁzt_ole(ZnZZO"'j(’L t, 0, Xo'Yo'Zo) neR", t>0 (3.105)
Where;

f(771 t1 00’ XO! YOi ZO): é{aﬂ'(Al +(B_ Al)n+ZBl e_Pengﬂ-ZtSin n7Z'77—(b1 +3.2X0 +b220)))nf0 eeo -
n=1L

anm(_abas eago_xo)-
9(77, t, 6y, X, Yo, Zo):aznm(_ aba, ea% - Xo)-

(7, t, 6y, Xo, Yy, Zo) = —y(al(Al +(B=A)+> B e ™ sinnmy— (b, +a,X, +b,Z,)no 0"

n=1
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7,1, 0, X0, Yo, Z4)= y{al(Al +(B- Al)17+231 e " sinnan — (b, +a,X, +5,Z, )N 0"
Ignoring the second term at the right hand side,n_the fundamental solution of equation

equation (3.91), equation (3.92), equation (3.93) and equation (3.94) are (see Toki and

Tokis (2007)).

_n
44t

Fipt)=—21
(n.1) L

.
4Dt

clr)-—" e
2Dl7z'%t% €

77 —
J(nt)=———p 4Dt
1) 2D17z%t%e

Clearly,

f(’7, t, 6,, Xy, Yo, Zo): 5[a1[A1 +(B - Al)’7+iBl e_PemHZHZtSin nzn — (b, +2,X, +bzzo)))r‘fo ego -
n=1

O‘nm(_abaa eago_xo)’ 9(77! t, 6y, Xo, Yo, Zo):aznlo(_ aba, eag0 - Xo)v

h(77a t, ‘90’ XO’ Y01 Zo): _7(al[Al +(B - Al)’7+ZBl e_PeWHZHZtSin nm_(bl + azxo + bzzo)))nfo e%
n=1

and

. - —Pan2z%t . )

1(77, t, 0y, Xq, Yo, Zo): 72(a1(A1 +(B_ A1)77+ZBle ‘sin ”ﬂﬂ—(bl +a,X, +bzzo)))nf0 e
n=1

are lipschitz continues. Hence by Lemma 3.1, the result follows. This completes the

proof.
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3.3.4 Analytical Solution

Ayeni (1982) has shown that @;%; can be approximated as 1+(e—2)49+6?2. For

convenience, we assume an approximation as giving in equation (3.106)
el ~1+(e—2)9 (3.106)

Substituting equation (3.106) into equation (3.78) to equation (3.83), we have equation

(3.107) to equation (3.114)

aat_e = %((ﬂ ge)gj +8(ay(A +(B— A+ 2 Bg " sinnzy -
(b,(1+£0)+a,X +0,Z))hn, 1+ (e-2)9)- (3.107)

on, (a,(1— 0)a(l+ (e — 2)9) - ab(l—£6))- X)

%0, L[ 1ro0) 2 |1 a,0-coRlL+ o2 ablt-20)-X) (3209
ot on on

oY _ i ﬁ B 3 > —P,n?7% . _

i D, o ((1+59)577j y(a.(A +(B A&)’?"‘;Ble sinnzn (3.109)
(b,(1+£0)+a,X +b,Z))hn, ([1+(e-2)9)

oz i % B - “Pn?r?t - 3

57D [(1+ge)anj+n(ai(& +(B A1)T7+§E316 sinnzi (3.110)
(b,(1+£6)+a,X +b,Z))n, (1 +(e—2)9)

anf > -P,.n%7% .

— =7 @A+ B-A+ 2 B e sinny - (3.111)
(b,(1+£6)+a,X +b,2)))1+(e—2)9)

% =—y,n(a,(1-s6)a(l+ (e —2)0)—ab(l-£0))- X) (3.112)
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Let O<e<<l andy=me, y,=me, §=m,e,

7/2 :m3817/3 :m48)a:m58
Such that

0=6,+¢e6 +hot

X =X, +&X, +hot
Y =Y, +¢&Y, +hot
Z=27,+¢& +hot
Ny =n¢ +eng +hot

n, =n,, +en, +hot

Where h.o.t read Higher Order Terms

(3.113)

(3.114)

Substituting equation (3.113) and equation (3.114) into equation (3.107) to equation

(3.112), we have equation (3.115) to (3.120)

2

o (6, +£6,)=2,(1+ (6, + <6, ))6—2(490 +6),)+ ﬂig{i (6, + 6, )J +
ot on on

m,e(a, (A +(B—A)n+ i B, e’Pem“Z”ztsin nzn —

(0,1 £(0, + £0)+ 8, (X + X, ) +b, (2, + 2,)))x

(nfo + mle1+ (e—2)6, +£6,))

- msg(nlo + mu)x

(a5 (1—2(6, + 6, )all+ (e — 2)6, + 6, )(—ab(l— (6, +£6,)) - (X, + X, ))

2

(o +0,)= Dt el +8)) 5 (o +oX,)+

| »

0 0
Dlg(a—(ﬁo +5‘91)_(X0 +‘9X1)j+a1(nlo +5n|1)
n on

(85 (L- (6, + 6, )Ja(L+ (e~ 2)0, + 6, )(-ablL-£(6, +£6,) - (X, +eX,))
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Q(YO +6Y,)=D,[1+&(6, + 591))—522 (Y, +eY, )+

ot on

Dle(i(eo +20) (Y, + eYl)J ~ma(ay (A + (B~ A +
on on

S B, @ " sinnz - (b, 1+ £(0 +£6,))+ 8, (X, + £X, )+, (Zo + Z, )%

n=1

(nfo +,sf1f1X1+(e—2)(6?O +£6,))

2
g(zO +eZ,)=D,(1+ (6, +ge>l))%(zO veZ,)+
n

Dlg(i(ﬁo + 80, )i (z, + ng)J +me(a (A +(B-A)p+
on on

iBl eipemr]z”zrsm nm7_(b1(1+ 5(90 +5‘91))+ az(xo +5X1)+b2(zo +‘9zl))))x

n=1

(nfo +5nf1x1+(e_2)(80 +£6,))

a o - n2;z2 -
a(nfo+6nf1):mS‘Snf(al(Ai+(B_A‘1)77+zBle " sin nn —
n—1

(b1(1+‘9(90 +5‘91))+ az(xo +5X1)+b2(zo +5Zl))))(1+(e_2)(90 +591))

0
a(nlo + ‘c’ﬂll): _m45(nlo + ‘C’nll)x

(81— 2(6, + 26 )la(l+ (e - 2)6, + 26 )Y~ ab1 - £(6, +£6,)))- (X, +&X,))

(3.117)

(3.118)

(3.119)

(3.120)

Collecting like power of ¢ in equations (3.115) to equation (3.120), we have equation

(3.121) to equation (3.32)

P
0, _, 70,
ot on’

Op(1.0)=1-7, 6,(0t)=b;, 6(Lt)=0
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Ko _p 8o (X, +a,a%(1+(e-2)a,))
1 o G\ e 0 (3.122)

Xo(n,0)=1—77, XO(O,'[)= 0, Xo(l’t): 0

N, . 0%,
—0=p—2
ot on (3.123)

Y,(7.0)=1-7, Y,(0,t)=1 Y,(Lt)=0

on’ (3.124)

N
o
—~
=

o
~—~

Il

[N

|
=

N
o
—
o

—
~

Il
o

N
o
=

—
~

I

o

(3.125)

ony, _0
ot (3.126)
1

2 2 2
Y AL R R
ot on on on

m2 (al(Al + (B — Al)n + i Bl e*Peng;;ZtSin nﬂ?] _
n=1

(b, +a,X, + bzzo)))(nfo)_(1+ (e-2)8, )+ m,n(a;a’b(L+(e—2)8,)+ X, )t (3.127)

6,(n0)=1-7, 6,0,t)=0 6,(Lt)=0

48



2
oX, DHaXZ Dlé)(21+ 8008X0+
ot on on on on

a1n|1<X0 +a,a%(l+(e-2)g, ))+ alnlo(agazb(—é?o)(1+ (e-2)g,)- Xl)

X,(n0)=0 X,(0,t)=0, X,(L,t)=0

2 2
%:D1908Y§+D18Y21+D 0, aY
on on on 8n

m(a, (A +(B-A)n +i|31 g i nzn—(b, +a,X, +0,Z,)))x
nf0(1+(e—2)6‘0) 7

Y,(7,0)=0, Y,(0,t)=0, Y,(L,t)=0

2 2
%:Dﬂoa z20 +Dla 221+Dlaeo oz,
on

on on on

m,(a,(A +(B—A)n+ i B,e ™" sinnzy -
(bl +a, X, + bzzo)))nfo(1+ (e - 2)90)

Z,(n0)=0 Z,0,t)=0, Z,Lt)=0

%—mz o(@(A+(B- A1)77+ZB e Pl sin nzn —
(b, +2,X, +0,Z, )L+ (e~ 2)6)

nf1(77’0): 0

oy _ _mBnIO(— a,a’b(l+(e-2)9,)- XO)

n|1(77'0) =0
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Considering equation (3.125), that is

on
5';0 =0, nfo(7710)=1

Integrating, we have
nfO( ’t) =C
Applying initial condition, we have equation (3.133)

No(n0)=c=1=c=1
nfo(7710):1

Considering equation (3.126), that is

on
ﬁ =0, nuo(ﬂ,0)=1

Integrating, we have

n(17,t)=c

Applying initial condition, we have equation (3.134)
no(m0)=c=1=c=1

n,o(n,O) =1

Considering equation (3.121), that is
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o0, _, 7
ot _ﬂlanz
90(77’0):1_771 Ho(o,t):bs, 90(1’0:0

Solving equation (3.121), we have equation (3.135) to equation (3.147)

Let
wn,t)=D; +7(0-b)

That is,

7, t) =by(L-n)° (3.135)

Then

Let

Go(17,t)=s(17,t)+ 1) (3.136)

Differentiating equation (3.136) with respect to t, we have

0
_l__
ot

0S 0s
=—+0=—
ot ot

a6,

s
o at

Differentiating equation (3.136) with respect to7, we have
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06y _ 35, op _ b,
on oOn 0On

Differentiating equation (3.136) twice with respect to t, we have

0’6, 0&°s 0°u 0% 0°s
=z T =52 t0=-—
on® on° on° on on

Therefore equation (3.136) becomes

u(7,0)=1-7, u(0,t)=0, u(L,t)=0
We assume the solution of the form

00

Zun sin —x

n=

Where,
u,(t)= ;e[“[LJZ](”)Fn (r)dr+ bne“’k(nTﬂ)zt
F )= 2 [ 1 (ct)sin oy

:—I sm —xdx
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Comparing equation (3.137) and equation (3.138)
u=s, x=7, k=4, a=0, f(xt)=0, f(x)=1-7,L=1

Then
1 .
b, =2 jo (1—7)sin nzdn (3.143)
Integrating Equation (3.143), we obtain (3.144)
That is,
= Zjlsinn d —2_[1 sin nznd
Sinnzndn —2)n 7

2 S R
=——Cosnx +— Cosnﬂﬂd
Nz 7 . n;zIO 77]

1
— 2[— A cosnzn
nz

0

1

2 2o o

0

b, == (3.144)

But f(7,t)=0 =F,=0

Then

s, = —e‘*{ L JZ‘ (3.145)
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Therefore

s(r,t)= iieﬂ[%ﬁ] 'sinnzn (3.146)
n=1 nz
Thus
0,(n.t)=b,(1— 1)+ inie‘“””)“sin nan (3.147)
n=1 N7T

Considering equation (3.122), that is

2
X, _ %_aln,o(xo +aa’b(L+(e-2)g,))

Xo(7,0)=1-n, X,(0,t)=0, X,(Lt)=0

Substituting equation (3.147) into (3.121), we have

X,

=
0% X, &2 (v

D, —2 —ayny| X, +a,8°h| 1+(e-2)p +Z—e L) 'sinnan (3.148)
on n N7

Xo(7710):1_77’ Xo(o’t):O’ XO(]" ):0

Comparing equation (3.138) and equation (3.148)

That is,

f (1, ):—p(1+p sze sin nmyj
Where;
p = a,a,a’h, p, =by(e—2) p, = i(e -2), q=An*z?
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b, = ZE(l—n)sin nzndn _2

Nz (3.149)

F,(t)=-2 pJ'O(LL pL—7)+ i P, "sin nmyjsin nzn
n=1

=-2 pj:(l— p,)sin nzdn + 2pplj:nsin nzndn —

X gt . ) (3.150)
2p> . p, e Lsm nznsin nzndn
n=1

Integrating equation (3.150), we have equation (3.151)

_2pi+p) pL+p,) cosnzn

Nz

1
+2 ppl(—icosnm;
0 nz

1
1 = q 1
+—|cosnzndn |+2 =
. nﬂ'L UJ p; pze X2

14 nrx

F, (=22 R (ay —1)—2pp{(_1)nj+ pflj p.e”

2p n 2pp, N —qt
P 1 _ =rFF
Pl -SR03 pe
FO)=p+> e (3.151)
n=1
Where;

Then

t |y +Dy(nz P ft— - —qt 2 g +Dy (n7
XOH(t)=foe( oueF )[p3+2p4eqjdr+—e( o0 ) (3.152)

n=1 nz

55



—U t 1T S t i 2 —U
-p qt(paj.oeq dr+). p4j.oe(q q)tdr}t—e -
n=1

Nz

Integrate equation (3.152) with respect to r . We have equation (3.153)

=&(1—e°“t)+i( - )(eqt—e‘“)+%e‘“

O 10 —Q
et S e
Xon(t)=ps + P ™ + 2 ple-e®) (3.153)
Where;

Ps 2 psj P4 —Git 2_2
p — , p = ——— p = y q =, + Dn T
5 ql 6 (nﬂ' q]_ 7 )e 1 1 1

Therefore, we have equation (3.154)

o0

X,(m,t)= Z[ Ps+Ps@ T+ P (e*q‘ - eqlt))sin nzn (3.154)
n=1

n=1
considering equation (3.122), that is
Ny _ D, 0%,

ot on’
Y,(7,0)=1-7, Y,(0,t)=1 Y,(1t)=0

Solving equation (3.122), we have equation (3.155) to equation (3.147)

Let
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plnt)=QL-n)° (3.155)

Let

Yo(17,8) = ali,t)+ (7, t) (3.156)
Differentiating equation (3.156) with respect to t, we have

%:a_ﬂ+§:0+§:§
o ot ot o ot

Differentiating equation (3.156) with respect to7, we have

No _Op, 05 _

- -1
on 0on On

Differentiating equation (3.156) twice with respect to t, we have

oY, u

623_0 o’s _ 0%s
on® on’

+—==0+—==—
8772 8772 8772

Therefore equation (3.156) becomes
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oS
=2 =D ==
ot ton?

s(7,0)=1-7, s(0,t)=0, s(Lt)=0

Comparing equation (1.157) and (1.138)

u=s, x=n, k=D, =0, f(x,t)=0, f(x)=1-7,L=1

Then

b, = 2Jj(1—77)sin nzndn

Integrating, we obtain equation (3.156)

But f(7,t)=0 =F,=0

Then

2 —Dl(n—”jzt
S =— L
" n7Z'e
Therefore

s(,t)= iie"q(nsztsin nzn

1 N7T

Thus

00

2 - 1n71'2 -
Yo(n,t)=(1—n)+Z@e o Msinny
n=1

Considering equation (3.123), that is
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9z, _ 5 0°Z,
ot ' on?
Z,n.0)=1-7n, Z,(0,t)=0, Z,(Lt)=0
Comparing equation (1.123) and (1.138)
u=2Z,x=n,k=D,, =0, f(x,t)=0, f(x)=1-7,L=1
Then
b, = 2j01(1—;7)sin nandn (3.163)

Integrating, we obtain equation (3.164)

b, == (3.164)

But f(7,t)=0 =F,=0

Then
2 @{”—”jzt
7 = L 3.165
On nr e ( )
Therefore
Z,(n.t)= zie*m“”)z‘sin nzn (3.166)

n1 N7T

Considering equation (3.132), that is
on
# = —m3n|0<— aa’b(l+(e—2)8,)- XO)

n|1(77'0): 0

Substituting equations (3.134), (3.147) and equation (3.154) into (3.132), we have
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? - e e a)
%: msz(p5 +pse Y p7(e "o qlt)jsm nzn +
= n=1
pa[l"‘ p1(1_77)+z P, e_thin nm?j
1

(3.167)

Integrating equation (3.167) with respect to t, we have

p —qt e‘Qlt
n,(7,0)= mgz[p\gt——6 Zp{ ]}sin nzn +
1

=] q a

ps(t+ p,(L-7)- z P, g "sin nm7J+c

(3.168)

Apply 1,(72,0)=0 =c=0

Therefore , we have equation (3.169)

o —(yt —qt
n,(7,0)= 3Z[p5t pﬁ Zp{e—%nsin nzn +
Ds((1+ p.(L-7)k —i—ze_qtsin nm;j +C
1

(3.169)

Where;
Ps = M,;a,a°b
Considering equation (3.131), that is

on 20 _p. n2z% .

= mnio(@(A + (B A+ B e sinnm -
n=1

(bl + azxo + bzzo)))(1+ (e B 2)90)

nfl(ﬂ,0)= 0
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Substituting equation (3.133), equation (3.147), equation (3.154), equation (3.166) into

equation (3.131)

ong,
7 = p9(1+ p, (1~ Z p, @ "sin nmyj+ p10[1+ p, (1~ Z p, @ "sin nm]Jm
Py Z p, @ “sinnzp+p, (1 Z p, @ “sin n;zmzz b, e % sin’ nmyj—

Py ZefqatSi” nzn+p, (1—77)2 & “sin n7m+ZZ b, e " sin? nm]j—
1 1 1 1

Z[ps +Pg e-qlt+i p7(e-qt_e—q1t)JSin nzn+ pl( )[ Ps + Pg e +Z p7( a qn)jx

n=1

Pis (3.170)

sin nﬂ?]-l—zz pz(p5 e Sm nzn + P e ~(g+aut sin nﬂ_n_l_z D, (e—ZQI_e‘(Q+Q1)t)J
n=1

Integrating equation (3.170) with respect to t yields equation (3.171)

n,(n,t)= pg(t+ p,(L—n)t - Z P e "sin nmyj+ pm((1+ p, (1 Z P2 g "sin nm;}y

n= o = do nl n1 J + q1

pn(—i 1 e “sinnznp—p,(1—- 77)2 e “sinnzny— ZZ P e "*sin? nmyj—

pl{—ile “sinnzn—p,A— 77)2 e “'sin nm7+zz Pz (q”3)tsin2 n;mJ—

n= s 1 Oy nlnlq+q1

i[ pst +%e_qll + i P7 [_;e_ql + 1e_qlt]JSin nzn +

3.171
P13 pl(l—ﬂ)[pst qi 3 +Zp7( 1 e "+ 1e%Dsinnm7+ ( )

q

—Ps e sinnzy - @ )e(q“‘l)tsinnmy+

S50, :
i Z p7( )ei(wl)t —f37 tjsil’l nrn

(q+a, 2q

I
N

Where; Py = mznfoai(A_b1)1 Pro = mznfoai(B - Ai)’ Py =M,n;oa B,

2m2nf0a1b2

2 2 2 2
P = N v Pz =M, q, =P,N7°, 0= Dln T
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Now, differentiating equation (3.147), we have equation (3.172)

06, M- 0’0 _ & “at
0 h+Y2 cosnzn, =—> 2nrx sinnsx
on ’ ; € " on’® nZ:: € 7
(Zej ZZb e cosn7m+224e "cos? nzn

n

n=1 n=1 (3172)

2 0
6, (2—0;0 = (bs(l—n)+ Zie_qtsin nm]j(—ZZnﬂe_qtsin nm]j
n na N7 ]

00 00

:—ZZbe smnmy+22be nsinnzn — Zi4e 'sin?nzn

n= n=1 n=1

Then equation (3.172) becomes
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1

+ Pu[i e “sinnzn+ p, (1~ n)z g "sin n7m+zz P, e o) g 2 n;m)

n n=1 n=1

— plz(ie “sinnzn+ p,A— n)ze “sin nmy+zz P, e 6 i 2 nm;)

n=! n=1 n=1

Z[p5+pee +Zp7(e ) )jsinnmﬁ

n=1

— Py| Pi(1- 77)( ps+ D5+ Z p, (e’qt - eqlt)jsin N+
n=1

ii P, [ps e 'sinnzmy + s @ kg nmy+i D, (ezm_e(mql)t)j
n=1

n=1 n=1

+ m42[ Ps + Ps efqlt +Z 0, (efqt_e*q )jsm nzn - p8(1+ p,(L- Z ne "sin nm]]
n=1

n=1

(3.173)

6,(n,t)=0, 6,(0,t)=0, 6,(Lt)=0
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Comparing equation (3.136) and equation (3.172), we have equation (3.174)

f(77)=0=b, =0 and

L [@naay+ pop)e ™ - pubie ¥+ PLpie  + PPsPist+ PP P

f(m.t)= © o - sinnzn—
Zl +> pp, pls(e g ““)
n=1
>3 42,6~ (pup e - pup, e )+Zl PePr P 2 1
n=1 n=1 (e—th _e—(q+q1)t)
(2nzA, — p, Py — PeP,)e " — Pu+ p)e ™ + - p)e ™ + Pspis
+PoPiz@ T+ P pls(e"“ - e"”)+ PPsPis+ PiPsPis@ ™+ PoPsPis@
) n=1 n=1
» B B sinnzn+
n=1 +Z P Py pls(e qt_e ) Z P2 Ps p13e () —m,Ps —M, P @ -
n=1
Z m4 p7 (eiqt - eiqlt)
n=1
(b2 + pyL+ p.)+ Pyl p,))-Y 20,4, @ *cosnan +(polL+ py)~ Py — PiPs 7
n=1
(3.174)

~ PP+ ) A g " cos’

n=l n=1

Then
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- (2nzib, + pop,)e " - pupie ® + pope T+ j
f,(t)=2 B © B B nsinnznsinnzndn —
| PPs P+ PiPs P D PP; pls(e @ ‘“) ’

n=1

(2nzAb; — PPy — PsP2)e " - pul+ py)e ™ + pp-p)e ™

+ Ps P13z + Ps P13 eiq1t + Z P7 P13 (eiqt - eiqlt)"‘ P1Ps Py +
n=1

1
= o w ) sin® nzndn
2| PiPsPis @ ‘“‘+Z p.P; pls(e "-e “1‘)+Z P,PsPie "+ !

n=.

szpeplse (g )t —m, Py —M, P @ Zm4p7( -at q1t)

2 & 4%6 (pllpZe el —Pub2€ ol >+Z P2 P7 Pis >

_22 Z ) Ism nzndn

n1 n-l (efzqt_ ef(qﬂh)t)

1 - 1
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o0 o0 1

2> > 4ne™ Ism N7z €08’ Nz +2( Py (L+ Py) = Py Py — plps)jnsm nzndn -

n=1 n=1

2p1plof7728in nzpdn
0

Integrating equation (3.175) with respect to7, we have equation (3.176)
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n=1

= plpﬁpme‘q“+2p1p7p13(e“‘ qﬁ) szpspme +

z P2Ps Pz € Sk m,Ps =M, Ps € Z m, p7( - qlt) (3.176)
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i i i 42, e (pll P.e PP € )+ E (2 3(— 1)n +( 1)3n)
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1M10 n37Z'3
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t
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¢ (t):z ¢ 0 t 0 o 0 t t X
n-1 - . B ) ) .
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0 0 n=1 0 0

t t .
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2
3 nz Nz
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t t . t t
PoPsg " 6" dr+ P ™[ AT+ Y pypy e““[ [dz-[g""d r] "
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(g- qs)dT-l'

t

t t
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t
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0 t t
> m,p, em[J.dr - J.e(wfd Tj
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(a-t)ey -

1 _12” 0 o _t 2 1_ _13”
Zstﬂae Idrx Em) #2240 [drox ﬂ) + 2oL+ py)- Py - pipy )
= 0

—-qt T 2(—1)n
q qd
e !e x=

Integrating equation (3.177) with respect tor , we have equation (3.178)
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| Rabaae p(;’ Pafi—g )+ —z;rfsl 5 - e““)+§ PPy pl{t e" 2 0 - e"“)j
f-n?z2+ (1))
2n° 7
(2n7Aub; — PPy — PoP2 e ™ - _péa(:sl) e -e ) —pza(:fl)(e_%t ¢ ")
PsPis; _ ,at), PsP -Gt - 1 ot -t
ol b B o g h o mfte e )
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n=1 (q - ql
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ey (e—th_e—qt) (pn P, (e a+a, ) e—qt) P12 P2 (e G+ )t e_qt)J+

53 9, s
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n= 1
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Therefore, we have equation (3.179)

00

0,(n,t)= 0, (t)sinnzy
= (3.179)

67

(3.178)



Differentiating equation (3.15), we have Equation (3.180)

aaino - in”( Ps + Ps e_q1t + i P7 (e_qt _e_qlt)jCOSI‘Vny
n=1 n=1
2 © 00
85 Xzo = —anﬂz[ Ps + Ps eﬂlt +>.p, (eiqt - eqlt)JSin nzn
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0% X © 2 ..
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on on et L .
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Then equation (3.128) becomes
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(3.181)

Comparing equation (3.138) and equation (3.181), we have equation (3.182) to equation

(3.186):

f(7)=0  =b, =0and
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(0 Pg Do (L4 P X+ Py Py Port + D7 Py Part — Pyrbs — 2, Porb b7+ (D7 g Pt + P Porbs 172
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Integrating equation (3.184) with respect toz , we have equation (3.185)
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Differentiating equation (3.162) with respect to7, we have equations (3.18) and (3.188)
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Comparing equation (3.138) and (3.189)
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Integrating with respect tor, we have
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Integrating equation (3.192) with respect tor , we have equation (3.193)
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Therefore, we obtain equation (3.194)
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Differentiating equation (3.162) with respect to7, we have equation (3.195)
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Integrating equation (3.198) with respect to7, to obtain equation (3.199)

$ (D120, i Pas)e ™ + PoPes @ "= PiPuuPs € M = (PuPa + PiPePs )|y o gy
T ppapile ) s’
n=1

2 “ : “
(p25(1+ pl)M—D12b3nﬂje (PP + PaPr)e " Pl p )™
+ D5 Pou (L )+ Pg P L+ P )@ ™ + Pou 1+ p, )Z p7(e““—e"‘“)

" z PP e v +Z P2 P24 Ps +z P2 P24 Pg e + 2 (2_3(_1)n +(_1)3n)
+2 —=
; N qlt) P2Pas “(a+at |3
ZZ P, P2 P, @ ——-Dile
n=1 n l

3 0,m,g V). S5y g 2007) gy 22l nie )

pl 21
) nz n’z®

2(; L a(plir p)s pual p) EECY (8159
T nrz

nz

[BEN

+2(_ PP + p21(1+ pl)_ Py pzs)

84



Then

t t t
(Dl 2b;nz — p, pzs)eiqatj.df + Py P2 eiqStJ.e(qrq)r dz — P, P2 Ps eiq3t J.e(qrql)rdz' ) s on
0 0 0 1-n“z° + (— 1)

2n?r?

2,0-3

n=1

t - ¢ )
~(PiPze + PiP2iPs)e ™ [€% dr =3 PP @™ U e dr— [ er
0 n=1 0 5

t
qatje(qrq)fdf"‘ p22(1+ pl)x

0

t
[pzs(l"‘ p1 D12b3n”)eqatjdr+(p2 P2 + P2 pzs)e7
e

e(

—0gt

t
wr dz + ps p24(1+ p1 e J.e dz + ps p24(1+ pl)eiqgtje(qaiql)rdf"' p24(1+ pl)X

0
P, e*%t [J.e (as—q)r dr— J.e (9s—a )z dT]

O t—

0

>

n=1

Zplpzze qgtj.e(qs e dT"'sz P2 Ps @ - J.eqs dT"’Z P2 P24 Ps e

4 q”drj+

TE (1_(_1)3n )

(-3-1" +(-1")

nrx

2
3

—ZD 2b3eq“jdr

w

t
—2p, Py e%t'[eqaf drx
0

—2+2(-1)" —=n?z%(-1)" gt a4 2(=1)"
( * ( 21371'3 7[( ) +2(_ p1p20+p21(1+ pl)_ plpza)em"-eq dT(n”)"'
0
—Qgt f Q37 1 - (_ 1)”
2(p20(1+ p1)+ p23(1+ pl))e J.e dr Nz (3.200)
0

Integrating equation (3.200) with respect tor , we have equations (3.201) and (3.202):
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CHAPTER FOUR

4.0 RESULTS AND DISCUSSIONt

The systems of equations describing filtration combustion with temperature dependent
thermal conductivity and diffusion coefficients in wet porous medium is solved
analytically using parameter expanding method and eigenfunctions expansion

technique. Analytical solution given by equations (3.122)-(3.133) are computed for the

following parameters values of A4, =04, D;=0.3, =04, p,,=1 using computer

symbolic algebraic package MAPLE 17.

Where,

A, = scaled thermal conductivity

D, = species diffusion coefficient

0 = Frank-kamenesskii parameter

P.,, = peclet mass number
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The results obtained from the method are shown in Figure 4.1 to 4.32.

Figure 4.1: shows the effect of scaled thermal conductivity A, on the temperature. It is
observed that the temperature increases and later decreases along distancern, but

decreases with increase in scaled thermal conductivity.
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Figure 4.1: Relation between temperature 6(r,t) and distance 7 at various values of

scaled thermal conductivity 4, .

Figure 4.2: shows the effect of scaled thermal conductivity A, on the temperature. It is

observed that the temperature decreases with time t, and decreases with increase in

scaled thermal conductivity.
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Figure 4.2: Temperature 6(1,t) —time t relationships at various values of scaled thermal

conductivity 4, .

Figure 4.3: shows the graph of temperature 0(77,t) against distance n and time t for

different values of scaled thermal conduct4, It is observed that the temperature

increases and later decreases along distance with increase in time, but decreases with

increase in scaled thermal conduct A,

Figure 4.3: Relation among temperature «9(77,t), time t and distance 7 at various values

of scaled thermal conduct 4,
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Figure 4.4: shows the effect of scaled thermal conductivity A, on the vapour molar

fraction in the gas phase. It is observed that the vapour molar fraction in the gas phase

increases and later decreases along distancer, but increases with increase in scaled

thermal conductivity.

Figure 4.4: Relation between vapour molar fraction in the gas phase X(n,t) and distance

n at various values of scaled thermal conductivity 4, .

Figure 4.5: shows the effect of scaled thermal conductivity A, on the vapour molar

fraction in the gas phase. It is observed that the vapour molar fraction in the gas phase

decreases with time t, but increases with increase in scaled thermal conductivity.
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Figure 4.5: vapour molar fraction in the gas phase X(n,t) — time t relationships at

various values of scaled thermal conductivity 4, .

Figure 4.6: shows the graph of vapour molar fraction in the gas phase X (17,t) against

distance 7 and time t for different values of scaled thermal conduct 4, It is observed

that the vapour molar fraction in the gas phase increases and later decreases along the

distance with increase in time, but increases with increase in scaled thermal conduct 4,

X(M.1) oa-
0.2

0.

Figure 4.6: Relation among vapour molar fraction in the gas phase X(n,t), time tand

distance 7 at various values of scaled thermal conduct 4,
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Figure 4.7: shows the effect of scaled thermal conductivity 4, on the molar concentration
of solid fuel. It is observed that the molar concentration of solid fuel decreases and later

increases along distance 77, but increases with increase in scaled thermal conductivity 4;
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Figure 4.7: Relation between molar concentration of solid fuel n, (77,t) and distance 7

at various values of scaled thermal conductivity 4, .

Figure 4.8: shows the effect of scaled thermal conductivity 4, on the molar concentration
of solid fuel. It is observed that the molar concentration of solid fuel increases with time

t, but increases with increase in scaled thermal conductivity 4, .

92



1008
].00(7—'-
1 Uﬂll—:
1002

A
U“)‘)N:
().')')(r—“
10,9944

U)

n,An.t)

Figure 4.8: molar concentration of solid fuel n, (,t) — time t relationships at various

values of scaled thermal conductivity 4, .

Figure 4.9: shows the graph of molar concentration of solid fueln, (;7,t) against
distance » and time t for different values of scaled thermal conduct 4, It is observed

that the molar concentration of solid fuel increases along the distance with increase in

time, but increases with increase in scaled thermal conduct 4,
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Figure 4.9: Relation among molar concentration of solid fueln, (,t), time t and

distance 7 at various values of scaled thermal conductivity 4, .
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Figure 4.10: shows the effect of species diffusion coefficient D, on the temperature. It is
observed that the temperature increases and later decreases along distancer, but

decreases with increase in species diffusion coefficient D, .

Figure 4.10: Relation between temperature 6(7,t) and distance # at various values of

species diffusion coefficient D, .

Figure 4.11: shows the effect of species diffusion coefficient D, on the temperature. It
is observed that the temperature decreases with time t, but decreases with increase in

species diffusion coefficient D, .
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Figure 4.11: Temperature H(U,t) —time t relationships at various values of species

diffusion coefficient D, .

Figure 4.12: shows the effect of species diffusion coefficient D, on the vapour molar

fraction in the gas phase. It is observed that the vapour molar fraction in the gas phase

increases and later decreases along distancer, but decreases with increase in species

diffusion coefficient D, .
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Figure 4.12: Relation between vapour molar fraction in the gas phase X(n,t) and

distance 7 at various values of species diffusion coefficient D, .
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Figure 4.13: shows the effect of species diffusion coefficient D, on the vapour molar
fraction in the gas phase. It is observed that the vapour molar fraction in the gas phase

decreases with time t, but decreases with increase in species diffusion coefficient D,

x(m. 1)
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Figure 4.13: vapour molar fraction in the gas phase X (77,t) — time t relationships at

various values of species diffusion coefficient D, .

Figure 4.14: shows the graph of vapour molar fraction in the gas phase X (7,t) against

distance 7 and time t for different values of species diffusion coefficientD, It is

observed that the vapour molar fraction in the gas phase increases and later decreases

along the distance with increase in time, but decreases with increase in species diffusion

coefficient D,
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Figure 4.14: Relation among vapour molar fraction in the gas phase X(n,t), time and

distance 7 at various values of species diffusion coefficient D, .

Figure 4.15: shows the effect of species diffusion coefficient D, on the molar fraction of
oxygen. It is observed that the molar fraction of oxygen increases and later decreases

along distance 7, but decreases with increase in species diffusion coefficient D, .
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Figure 4.15: Relation between molar fraction of oxygen Y(,t) and distance 7 at

various values of species diffusion coefficient D, .
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Figure 4.16: shows the effect of species diffusion coefficient D, on the molar fraction of

oxygen. It is observed that the molar fraction of oxygen decreases with time t, but

decreases with increase in species diffusion coefficient D, .
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Figure 4.16: molar fraction of oxygen Y(n,t) — time t relationships at various values of

species diffusion coefficient D, .

Figure 4.17: shows the graph of molar fraction of oxygenY(n,t) against distance n and

time t for different values of species diffusion coefficient D, It is observed that the

molar fraction of oxygen increases and later decreases along the distance with increase

in time, but decreases with increase in species diffusion coefficient D,
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Figure 4.17: Relation among molar fraction of oxygenY(n,t), time t and distance 7 at

various values of species diffusion coefficient D, .

Figure 4.18: shows the effect of species diffusion coefficient D, on the molar fraction of
passive gas in the gas phase. It is observed that the molar fraction of passive gas in the

gas phase increases and later decreases along distance 7, but decreases with increase in

species diffusion coefficient D, .
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Figure 4.18: Relation between molar fraction of passive gas in the gas phase Z(n,t) and

distance 7 at various values of species diffusion coefficient D, .
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Figure 4.19: shows the effect of species diffusion coefficient D, on the molar fraction of

passive gas in the gas phase. It is observed that the molar fraction of passive gas in the

gas phase decreases with time t, but decreases with increase in species diffusion

coefficient D,.
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Figure 4.19: molar fraction of passive gas in gas phase Z(n,t) —time t relationships at

various values of species diffusion coefficient D, .

Figure 4.20: shows the graph of molar fraction of passive gas in the gas phase Z(n,t)

against distance 7 and time t for different values of species diffusion coefficient D, It

is observed that the molar fraction of passive gas in the gas phase increases and later

decreases along the distance with increase in time, but decreases with increase in

species diffusion coefficient D,
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Figure 4.20: Relation among molar fraction of passive gas in the gas phase Z(n,t), time

t and distance 7 at various values of species diffusion coefficient D, .

Figure 4.21: shows the effect of species diffusion coefficient D,on the molar

concentration of solid fuel. It is observed that the molar concentration of solid fuel

decreases and later increases along distancer, but decreases with increase in species

diffusion coefficient D, .
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Figure 4.21: Relation between molar concentration of solid fuel n, (77,t) and distance 7

at various values of species diffusion coefficient D, .
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Figure 4.22: shows the effect of species diffusion coefficient D,on the molar
concentration of solid fuel. It is observed that the molar concentration of solid fuel

increases with time t, but decreases with increase in species diffusion coefficient D, .
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Figure 4.22: molar concentration of solid fuel n, (;7,t) —time t relationships at various

values of species diffusion coefficient D, .

Figure 4.23: shows the graph of molar concentration of solid fueln, (,t) against
distance 7 and time t for different values of species diffusion coefficientD, It is

observed that the molar concentration of solid fuel decreases and later increases along

the distance with increase in time, but decreases with increase in species diffusion

coefficient D,
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Figure 4.23: Relation among molar concentration of solid fueln, (,t), time t and

distance 7 at various values of species diffusion coefficient D, .

Figure 4.24: shows the effect of species diffusion coefficient D,on the molar
concentration of liquid. It is observed that the molar concentration of liquid decreases

and later increases along distancer, but increases with increase in species diffusion

coefficient D, .
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Figure 4.24: Relation between molar concentration of liquid n, (77,t) and distance 7 at

various values of species diffusion coefficient D, .
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Figure 4.25: shows the effect of species diffusion coefficientD,on the molar

concentration of liquid. It is observed that the molar concentration of liquid increases

with time t, but increases with increase in species diffusion coefficient D, .
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Figure 4.25: molar concentration of liquid n, (77,t) — time t relationships at various

values of species diffusion coefficient D, .

Figure 4.26: shows the graph of molar concentration of liquid nl( ,t) against distance n

and time t for different values of species diffusion coefficient D, It is observed that the

molar concentration of liquid decreases and later increases along the distance with

increase in time, but increases with increase in species diffusion coefficient D,

104



().9{:—:
()94—_
n.(n.2) 0.92]
0.90—
0.38:
().8(7—:

Figure 4.26: Relation among molar concentration of liquidn, (n,t), time t and distance

n at various values of species diffusion coefficient D, ..

Figure 4.27: shows the effect of Frank-kamenesskii parameter 6 on the temperature. It is

observed that the temperature increases and later decreases along distance 7, but

increases with increase in Frank-kamenesskii parametero .
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Figure 4.27: Relation between temperature 6(7,t) and distance # at various values of

Frank-kamenesskii parameter d .
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Figure 4.28: shows the effect of Frank-kamenesskii parameter 6 on the temperature. It is
observed that the temperature decreases with time t, but inecreases with increase in

Frank-kamenesskii parameter ¢ .

0 0.02 0.04 0.06 0.08 0.10

Figure 4.28: Temperature 6(r,t) —time t relationships at various values of Frank-

kamenesskii parameter o .

Figure 4.29: shows the graph of temperature 9(77,t) against distance n and time t for
different values of Frank-kamenesskii parametero It is observed that the temperature

increases and later decreases along distance with increase in time, but increases with

increase in Frank-kamenesskii parametero .
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Figure 4.29: Relation among temperature 0(77,t), time t and distance 7 at various values

of Frank-kamenesskii parameter ¢ .

Figure 4.30: shows the effect of peclet mass p,, on the molar concentration of solid fuel.
It is observed that the molar concentration of solid fuel decreases along distancer, but

increases with increase in peclet mass p,, .

we(17.2) 1004

Figure 4.30: Relation between molar concentration of solid fuel n, (,t) and distance 7

at various values of peclet mass p,,,.

107



Figure 4.31: shows the effect of peclet mass p,,, on the molar concentration of solid fuel.

It is observed that the molar concentration of solid fuel increases with time t, but

increases with increase in peclet mass p,,, .
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Figure 4.31: molar concentration of solid fuel n, (77,t) — time t relationships at various

values of peclet mass p,,,.

Figure 4.32: shows the graph of molar concentration of solid fuelnf(n,t) against

distance n and time t for different values of peclet mass p,,,.It is observed that the

molar concentration of solid fuel increases oscillate along the distance with increase in

time, but increases with increase in peclet mass p,, .
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Figure 4.32: Relation among molar concentration of solid fuel n, (n,t), time t and

distance 7 at various values of peclet mass p,, .

4.3 Comparison of Results

From the literature review, Bruining et al. (2009) in their studies, they discovered that
when the diffusion is dominant at the reaction layer, it lead the oxygen to extinction.
These agreed with Figure 4.15: shows the effect of species diffusion coefficient D, on
the molar fraction of oxygen. It is observed that the molar fraction of oxygen increases
and later decreases along distancer, but decreases with increase in species diffusion
coefficient D, and Figure 4.16: shows the effect of species diffusion coefficient D, on
the molar fraction of oxygen. It is observed that the molar fraction of oxygen decreases

with time t, but decreases with increase in species diffusion coefficient D, .

Figure 4.27: shows the effect of Frank-kamenesskii parameter 6 on the temperature. It is

observed that the temperature increases and later decreases along distance 7, but
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increases with increase in Frank-kamenesskii parameter o , Figure 4.28: shows the effect
of Frank-kamenesskii parameter ¢ on the temperature. It is observed that the temperature
decreases with time t, but inecreases with increase in Frank-kamenesskii parameter &
and Figure 4.29: shows the graph of temperature H(n,t) against distance 7 and time t

for different values of Frank-kamenesskii parametero It is observed that the

temperature increases and later decreases along distance with increase in time, but
increases with increase in Frank-kamenesskii parameter ¢ . These agreed with Olayiwola
(2015) who formulated a model for forward propagation of a combustion front through
a porous medium with reaction involving oxygen and a solid fuel and Olayiwola et al.
(2014) presented a mathematical model for forward propagation of combustion front
with Arrhenius kinetics through a porous medium with the reaction involving oxygen
and solid fuel. Both researchers observed that with the increase in Frank-kamenesskii
parameter o, solid phase temperature decreases as time increases and decreases along

the distance but increases with increase in Frank-kamenesskii parameter ¢ .
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CHAPTER FIVE

5.0 CONLUSION AND RECOMMENDATIONS

5.1 Conclusion

We have formulated and solved analytically a mathematical model of filtration
combustion with temperature dependent thermal conductivity and diffusion coefficient
in a wet porous medium. The existences of unique solution of the problem were
examined by actual solution method. The properties of solution were investigated. We
solved the model equations analytically using parameter expanding method, direct
integration and eigenfunction expansion technique. Finally, the graphical summaries of

solutions were provided.

5.2 Contribution to Knowledge

From the studies made on this research work, we achieve the following:

i.  Formulation of model of filtration combustion with temperature dependence
thermal conductivity and diffusion coefficient in a wet porous medium.
ii.  Existence and uniqueness of solution by actual solution approach.
iii.  Analytical solution by parameter expanding method and eigenfunctions
expansion method.
iv.  We provide the Graphical summaries of system responses
5.3 Recommendation
We study one-dimensional problem in the present research, interested researchers may
wish to study two-dimensional problems. Therefore, it is recommended for further

research.
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