

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA,

NIGERIA

CENTRE FOR OPEN DISTANCE AND e-LEARNING
(CODeL)

SYSTEM ANALYSIS AND DESIGN

(CIT 316)

COURSE DEVELOPMENT TEAM

CIT 316

SYSTEM ANALYSIS AND DESIGN

Programme Coordinator

Mrs. O. A. Abisoye

Computer Science Department

Federal University of Technology, Minna, Nigeria.

Instructional Designers

Dr. Gambari, Amosa Isiaka

Mr. Falode, Oluwole Caleb

Centre for Open Distance and e-Learning,

Federal University of Technology, Minna, Nigeria.

Editor

Chinenye Priscilla Uzochukwu

Centre for Open Distance and e-Learning,

Federal University of Technology, Minna, Nigeria.

Director

Prof. J. O. Odigure

Centre for Open Distance and e-Learning,

Federal University of Technology, Minna, Nigeria

INTRODUCTION

CPT316: System Analysis and Design is a 3 credit unit course for students studying

towards acquiring a Bachelor of Science in Computer Science and other related

disciplines. The course is divided into 4 modules and 10 study units. This course guide

will look briefly into the concept of System Analysis and Design. Then, the course

will make an in-depth review of system development life cycle. The course goes

further to deal with system development methodologies, models, techniques and tools.

This course also introduces such other knowledge that will enable the reader have

proper understanding of how to build a successful system.

The course guide therefore gives you an overview of what the course; CPT316 is all

about, the textbooks and other materials to be referenced, what you expect to know in

each unit, and how to work through the course material.

What you will learn in this Course

This study guide intends to provide several fundamental concepts and practical

techniques that can improve the probability of success in any information technology

(IT) project.

A survey conducted by Standish Group in 2004 found that just 28% of IT projects

succeed today. Outright failures—IT projects cancelled before completion—occur in

18% of all IT projects. Unfortunately, many of the systems that are not abandoned are

delivered to the users significantly late, cost far more than planned, and have fewer

features than originally planned.

Most of us would like to think that these problems only occur to “other” people or

“other” organizations, but they happen in most companies. Significant IT project

failure have occurred many times; even Microsoft has a history of failures and

overdue project (e.g., Windows 1.0, Windows 95).

The overall aim of this course, CPT316 is to introduce you to basic concepts of

System Analysis and Design so as to enable you to understand the basic system

development methodologies, models, tools and techniques that can improve the

probability of success in any IT project.

This course also look at project management and unified process, requirement

discipline and detailed requirement modeling of a system development, design

activities in software environment, use case realization, system access and

implementation.

Course Aim

This course aims to introduce students to the basics, concepts and features of system

analysis and design. It is believed the knowledge will enable the reader understand

and appreciate decision processes when it comes to building a system.

It will help the reader to understand what methodology to select, what model to use,

what tools will be suitable for what type of project in question. Readers will now

know that building a project requires detailed requirement discipline and modeling,

has design tasks and activities to be followed and implementation phase requirements

some definite steps.

Course Objectives

It is important to note that each unit has specific objectives. Students should study

them carefully before proceeding to subsequent units. Therefore, it may be useful to

refer to these objectives in the course of your study of the unit to assess your

progress. You should always look at the unit objectives after completing a unit. In this

way, you can be sure that you have done what is required of you by the end of the

unit.

However, below are overall objectives of this course. On completing this course, you

should be able to:

1. Define System and Information System (IS)

2. Define System Development

3. Know the two major components of system development

4. Know the basic four phase of a system development life cycle

5. Know a system analyst

6. Roles of a System Analyst

7. Qualities of a System Analyst

8. Understand several different categories of system development

methodologies and how to choose among them.

9. Understand the three fundamental system development models

10. Know the tools and techniques used in system development

11. Define a Project

12. Understand Information Technology Projects

13. Know Attributes of a Project

14. Know how to manage a project

15. Understand Project Management Triple Constraints

16. Define Unified Process

17. Know the six basic principles of Unified Process

18. Understand RUP discipline in relation to Analyst role

19. Understand Rational Unified Process Life Cycle

20. Define requirement and understand different kinds of requirements

21. Understanding requirement management

22. Know the purpose for requirement discipline

23. Differentiate Requirement Modeling from Requirement Analysis

24. Know the general overview of Requirement Modeling

25. Discover association between requirements

26. Know various tasks and activities carried out during design phase
27. Understand the design phase overview

28. Know issues to be considered during design

29. Understand the ability to review activities that took place in design

phase

30. Know the meaning of use-case

31. Know the six basic first principles of use case

32. Understand use case realization.

33. Understand System Implementation

34. Know list of processes and deliverables in system implementation

35. Measure success of system access and implementation

Working through this Course

To complete this course, you are required to study all the units, the recommended text

books, and other relevant materials. Each unit contains some self assessment exercises

and tutor marked assignments, and at some point in this course, you are required to

submit the tutor marked assignments. There is also a final examination at the end of

this course. Stated below are the components of this course and what you have to do.

Course Materials

The major components of the course are:

1. Course Guide

2. Study Units

3. Text Books

4. Assignment File

5. Presentation Schedule

Study Units

There are 10 study units and 4 modules in this course. They are:

MODULE 1

UNIT 1 SYSTEM DEVELOPMENT

UNIT 2 THE SYSTEM ANALYST

MODULE 2

UNIT 1 SYSTEM METHODOLOGIES

UNIT 2 SYSTEM MODELS, TOOLS AND TECHNIQUES

MODULE 3

UNIT 1 PROJECT MANAGEMENT

UNIT 2 RELATION UNIFIED PROCESS

UNIT 3 REQUIREMENT DISCIPLINE AND DETAILED REQUIREMENT

MODELING

MODULE 4

UNIT 1 DESIGN ACTIVITES AND ENVIRONMENT

UNIT 2 USE CASE REALIZATION

UNIT 3 SYSTEM ACCESS AND IMPLEMENTATION

Recommended Texts
Recommended text that will be of enormous benefit to you learning this course include:

Frederick P. (1986) “No Silver Bullet—Essence and Accident in Software

Engineering,” Proceedings of the IFIP Tenth World Computing Conference, edited by

H.-J. Kugler (1986): 1069–76.

Edward Yourdon (1989), Modern Structured Analysis, Englewood Cliffs, NJ:

Yourdon Press. (for information on classic modern process-centered methodology)

James Martin (1989), Information Engineering, volumes 1–3, Englewood Clifs, NJ:

Prentice Hall. (for information on data-centered methodology)

Steve McConnell (1996), Rapid Development, Redmond, WA: Microsoft Press. (A

good reference for comparing systems development methodologies and One of the

best RAD books)

Barry Boehm (1988), “A Spiral Model of Software Development and Enhancement,”

Computer, 21(5):61–72. (for throwaway prototyping methodology and spiral model)

John Wiley & Sons (2002) eXtreme Programming in Action: Practical Experiences

from Real World Projects, New York.

The internet resource links below will be of enormous benefit to you in learning this course:
http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf

http://en.wikipedia.org/wiki/Systems_analyst

http://www2.accaglobal.com/pdfs/studentaccountant/bakehouse0506.pdf

http://xa.yimg.com/kq/groups/22830576/1266190173/name/ISCA_Chap2_May-11.pdf

http://en.wikipedia.org/wiki/Unified_Process

http://old.nios.ac.in/cca/cca1.pdf

http://www.asapm.org/asapmag/articles/A7_AboutRUP.pdf

http://www.augsburg.edu/ppages/~schwalbe/C6919_ch01.pdf

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/in_req.htm

http://www.computer.org/comp/proceedings/re/2002/1465/00/14650006.pdf

http://www.erts2012.org/Site/0P2RUC89/TA-1.pdf

http://www.justice.gov/jmd/irm/lifecycle/ch7.htm

http://www.liteea.com/slgcp/governance/sdlc/slm7.pdf

http://epf.eclipse.org/wikis/openup/practice.tech.use_case_driven_dev.base/guidances/guidelines/uc_r

ealizations_448DDA77.html

http://www.outsideininc.com/wp-content/uploads/2012/02/Use-Case-2_0_Feb14_2012.pdf

http://www.its.ny.gov/pmmp/guidebook2/SystemImplement.pdf

http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf
http://www2.accaglobal.com/pdfs/studentaccountant/bakehouse0506.pdf
http://xa.yimg.com/kq/groups/22830576/1266190173/name/ISCA_Chap2_May-11.pdf
http://en.wikipedia.org/wiki/Unified_Process
http://old.nios.ac.in/cca/cca1.pdf
http://www.asapm.org/asapmag/articles/A7_AboutRUP.pdf
http://www.augsburg.edu/ppages/~schwalbe/C6919_ch01.pdf
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/in_req.htm
http://www.computer.org/comp/proceedings/re/2002/1465/00/14650006.pdf
http://www.erts2012.org/Site/0P2RUC89/TA-1.pdf
http://www.justice.gov/jmd/irm/lifecycle/ch7.htm
http://www.liteea.com/slgcp/governance/sdlc/slm7.pdf
http://epf.eclipse.org/wikis/openup/practice.tech.use_case_driven_dev.base/guidances/guidelines/uc_realizations_448DDA77.html
http://epf.eclipse.org/wikis/openup/practice.tech.use_case_driven_dev.base/guidances/guidelines/uc_realizations_448DDA77.html
http://www.outsideininc.com/wp-content/uploads/2012/02/Use-Case-2_0_Feb14_2012.pdf
http://www.its.ny.gov/pmmp/guidebook2/SystemImplement.pdf

Assignment File

The assignment file will be given to you in due course. In this file, you will find all the

details of the work you must submit to your tutor for marking. The marks you obtain

for these assignments will count towards the final mark for the course. Altogether,

there are tutor marked assignments for this course.

Presentation Schedule

The presentation schedule included in this course guide provides you with important

dates for completion of each tutor marked assignment. You should therefore

endeavour to meet the deadlines.

Assessment

There are two aspects to the assessment of this course. First, there are tutor marked

assignments; and second, the written examination. Therefore, you are expected to take

note of the facts, information and problem solving gathered during the course. The

tutor marked assignments must be submitted to your tutor for formal assessment, in

accordance to the deadline given. The work submitted will count for 40% of your total

course mark.

At the end of the course, you will need to sit for a final written examination. This

examination will account for 60% of your total score.

Tutor Marked Assignments (TMAs)

There are TMAs in this course. You need to submit all the TMAs. The best 5 will

therefore be counted. When you have completed each assignment, send them to your

tutor as soon as possible and make certain that it gets to your tutor on or before the

stipulated deadline. If for any reason you cannot complete your assignment on time,

contact your tutor before the assignment is due to discuss the possibility of extension.

Extension will not be granted after the deadline, unless on extraordinary cases.

Final Examination and Grading
The final examination for CPT 316 will be of last for a period of 2½ hours and have a

value of 60% of the total course grade. The examination will consist of questions

which reflect the self assessment exercise and tutor marked assignments that you have

previously encountered. Furthermore, all areas of the course will be examined. It

would be better to use the time between finishing the last unit and sitting for the

examination, to revise the entire course. You might find it useful to review your

TMAs and comment on them before the examination. The final examination covers

information from all parts of the course.

The following are practical strategies for working through this course

1. Read the course guide thoroughly

2. Organize a study schedule. Refer to the course overview for more details. Note

the time you are expected to spend on each unit and how the assignment relates

to the units. Important details, e.g. details of your tutorials and the date of the

first day of the semester are available. You need to gather together all these

information in one place such as a diary, a wall chart calendar or an organizer.

Whatever method you choose, you should decide on and write in your own

dates for working on each unit.

3. Once you have created your own study schedule, do everything you can to stick

to it. The major reason that students fail is that they get behind with their

course works. If you get into difficulties with your schedule, please let your

tutor know before it is too late for help.

4. Turn to Unit 1 and read the introduction and the objectives for the unit.

5. Assemble the study materials. Information about what you need for a unit is

given in the table of content at the beginning of each unit. You will almost

always need both the study unit you are working on and one of the materials

recommended for further readings, on your desk at the same time.

6. Work through the unit, the content of the unit itself has been arranged to

provide a sequence for you to follow. As you work through the unit, you will

be encouraged to read from your set books

7. Keep in mind that you will learn a lot by doing all your assignments carefully.

They have been designed to help you meet the objectives of the course and will

help you pass the examination.

8. Review the objectives of each study unit to confirm that you have achieved

them. If you are not certain about any of the objectives, review the study

material and consult your tutor.

9. When you are confident that you have achieved a unit’s objectives, you can

start on the next unit. Proceed unit by unit through the course and try to pace

your study so that you can keep yourself on schedule.

10. When you have submitted an assignment to your tutor for marking, do not wait

for its return before starting on the next unit. Keep to your schedule. When the

assignment is returned, pay particular attention to your tutor’s comments, both

on the tutor marked assignment form and also written on the assignment.

Consult you tutor as soon as possible if you have any questions or problems.

11. After completing the last unit, review the course and prepare yourself for the

final examination. Check that you have achieved the unit objectives (listed at

the beginning of each unit) and the course objectives (listed in this course

guide).

Tutors and Tutorials
There are 8 hours of tutorial provided in support of this course. You will be notified of

the dates, time and location together with the name and phone number of your tutor as

soon as you are allocated a tutorial group. Your tutor will mark and comment on your

assignments, keep a close watch on your progress and on any difficulties you might

encounter and provide assistance to you during the course. You must mail your tutor

marked assignment to your tutor well before the due date. At least two working days

are required for this purpose. They will be marked by your tutor and returned to you

as soon as possible.

Do not hesitate to contact your tutor by telephone, e-mail or discussion board if you

need help. The following might be circumstances in which you would find help

necessary: contact your tutor if:

• You do not understand any part of the study units or the assigned readings.

• You have difficulty with the self test or exercise.

• You have questions or problems with an assignment, with your tutor’s comments on

an assignment or with the grading of an assignment.

You should endeavour to attend the tutorials. This is the only opportunity to have face

to face contact with your tutor and ask questions which are answered instantly. You

can raise any problem encountered in the course of your study. To gain the maximum

benefit from the course tutorials, have some questions handy before attending them.

You will learn a lot from participating actively in discussions.

GOODLUCK!

UNIT 1: SYSTEM DEVELOPMENT

Content

1.0 Introduction

2.0 Objectives

3.0 Main Body

3.1 Definitions

3.2 What is System Development

3.3 System Development Team

3.4 System Development Life Cycle

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 References

1.0 Introduction

Systems are created to solve problems. One can think of the systems approach

as an organized way of dealing with a problem. In this dynamic world, the

subject System Analysis and Design (SAD), mainly deals with software

development activities. This unit introduces the systems development life

cycle, the fundamental four phase model (planning, analysis, design, and

implementation) that is common to all information system development

projects.

2.0 Objectives

 After studying this unit, you should be able to:

36. Define System and Information System (IS)

37. Define System Development

38. Know the two major components of system development

39. Know the basic four phase of a system development life cycle

3.0 Main Body

3.1 Definitions

System:- A system is a collection of elements or components that are organized

for a common purpose. It can also be seen as a set of interacting or

interdependent components forming an integrated whole or a set of elements

(often called 'components') and relationships which are different from

relationships of the set or its elements to other elements or sets.

Basically there are three major components in every system, namely input,

processing and output.

Input Output
Processing

http://en.wikipedia.org/wiki/Element_%28mathematics%29
http://en.wikipedia.org/wiki/Mathematical_relationship

Information System:- An information system (IS) is any combination of

information technology and people's activities that support operations,

management and decision making. In a very broad sense, the term information

system is frequently used to refer to the interaction between people, processes,

data and technology. In this sense, the term is used to refer not only to the

information and communication technology (ICT) that an organization uses,

but also to the way in which people interact with this technology in support of

business processes.

3.2 What is System Development

System development is the process of examining a business situation to

improve it through better procedures and methods. System development has

two major components – system analysis and system design.

System analysis – is the process of gathering and interpreting facts, diagnosing

problems, and using the information to recommend improvements to the

system. Systems Analysis is a development phases in a project that primarily

focus on the business problems, i.e., WHAT the system must do in terms of

Data, Processes, and Interfaces, independent of any technology that can or will

be used to implement a solution to that problem.

System analysis helps

- Study current operations and problems, information flow

- Assess future needs, changes required

- Analyze suitable alternatives

System design – is the process of planning a new business system or one to

replace/complement existing one. Systems Design: development phases focus

on the technical construction and implementation of the system (HOW

technology will be used in the system.)

3.3 System Development Team

People responsible for systems development usually in large systems include:

- Top management level steering committee – group of key information system

service users that acts as a review body, decides project’s worth, its aims,

satisfy information requirements of managers and users.

- Project management team – computer professionals and key users.

- System analyst – people who determine user requirements, design the system

and assist in development and implementation activities.

http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Information_and_communication_technology

- System designers – people who take lead role during design, development and

implementation stages.

3.4 System Development Life Cycle

The systems development life cycle (SDLC) is the process of understanding

how an information system (IS) can support business needs, designing the

system, building it, and delivering it to users.

Building a system can be compared with building a house. First, the house (or

the information system) starts with a basic idea. Second, this idea is

transformed into a simple drawing that is shown to the customer and refined

(often through several drawings, each improving on the other) until the

customer agrees that the picture depicts what he or she wants. Third, a set of

blueprints is designed that presents much more detailed information about the

house (e.g., the type of water faucets, where the telephone jacks will be

placed). Finally, the house is built following the blueprints—and often with

some changes and decisions made by the customer as the house is erected.

The SDLC has a similar set of four fundamental phases: planning, analysis,

design, and implementation (Figure 1.1). Different projects may emphasize

different parts of the SDLC or approach the SDLC phases in different ways,

but all projects have elements of these four phases. Each phase is itself

composed of a series of steps, which rely on techniques that produce

deliverables (specific documents and files that provide understanding about the

project).

Figure 1.1: System Development Life Cycle Phases

(Source:- http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf)

For example, when you apply for admission to a university, there are several

phases that all students go through: information gathering, applying, and

accepting. Each of these phases has steps: information gathering includes steps

like searching for schools, requesting information, and reading brochures.

Students then use techniques (e.g., Internet searching) that can be applied to

steps (e.g., requesting information) to create deliverables (e.g., evaluations of

different aspects of universities).

Figure 1.1 suggests that the SDLC phases and steps proceed in a logical path

from start to finish. In some projects, this is true, but in many projects, the

project teams move through the steps consecutively, incrementally, iteratively,

or in other patterns. This section describe at a very high level the phases, steps,

and some of the techniques that are used to accomplish the steps.

For now, there are two important points to understand about the SDLC. First,

you should get a general sense of the phases and steps that IS projects move

through and some of the techniques that produce certain deliverables. Second,

it is important to understand that the SDLC is a process of gradual refinement.

The deliverables produced in the analysis phase provide a general idea of the

shape of the new system. These deliverables are used as input to the design

phase, which then refines them to produce a set of deliverables that describes in

much more detailed terms exactly how the system will be built. These

deliverables in turn are used in the implementation phase to produce the actual

system.

Planning

The planning phase is the fundamental process of understanding why an

information system should be built and determining how the project team will

go about building it. It has two steps:

1. Project Initiation:- During project initiation, the system’s business value to the

organization is identified—how will it lower costs or increase revenues? Most

ideas for new systems come from outside the IS area (from the marketing

department, accounting department, etc.) in the form of a system request. A

system request presents a brief summary of a business need, and it explains

how a system that supports the need will create business value. The IS

department works together with the person or department that generated the

request (called the project sponsor) to conduct a feasibility analysis. The

feasibility analysis examines key aspects of the proposed project:

a. The technical feasibility (Can we build it?)

b. The economic feasibility (Will it provide business value?)

c. The organizational feasibility (If we build it, will it be used?)

The system request and feasibility analysis are presented to an information

systems approval committee (sometimes called a steering committee), which

decides whether the project should be undertaken.

2. Project Management:- Once the project is approved, it enters project

management. During project management, the project manager creates a work

plan, staffs the projects, and puts techniques in place to help the project team

control and direct the project through the entire SDLC. The deliverable for

project management is a project plan that describes how the project team will

go about developing the system.

Analysis

The analysis phase answers the questions of who will use the system, what the

system will do, and where and when it will be used. See Figure 1. During this

phase, the project team investigates any current system(s), identifies

improvement opportunities, and develops a concept for the new system. This

phase has three steps:

1. An analysis strategy is developed to guide the project team’s efforts. Such a

strategy usually includes an analysis of the current system (called the as-is

system) and its problems, and then ways to design a new system (called the to-

be system).

2. The next step is requirements gathering (e.g., through interviews or

questionnaires). The analysis of this information—in conjunction with input

from the project sponsor and many other people—leads to the development of a

concept for a new system. The system concept is then used as a basis to

develop a set of business analysis models that describes how the business will

operate if the new system were developed. The set of models typically includes

models that represent the data and processes necessary to support the

underlying business process.

3. The analyses, system concept, and models are combined into a document called

the system proposal, which is presented to the project sponsor and other key

decision makers (e.g., members of the approval committee) that decide whether

the project should continue to move forward.

Design

The design phase decides how the system will operate, in terms of the

hardware, software, and network infrastructure; the user interface, forms, and

reports that will be used; and the specific programs, databases, and files that

will be needed. Although most of the strategic decisions about the system were

made in the development of the system concept during the analysis phase, the

steps in the design phase determine exactly how the system will operate. The

design phase has four steps:

1. The design strategy must be developed. This clarifies whether the system will

be developed by the company’s own programmers, whether it will be

outsourced to another firm (usually a consulting firm), or whether the company

will buy an existing software package.

2. This leads to the development of the basic architecture design for the system

that describes the hardware, software, and network infrastructure that will be

used. In most cases, the system will add or change the infrastructure that

already exists in the organization. The interface design specifies how the users

will move through the system (e.g., navigation methods such as menus and on-

screen buttons) and the forms and reports that the system will use.

3. The database and file specifications are developed. These define exactly what

data will be stored and where they will be stored.

4. The analyst team develops the program design, which defines the programs that

need to be written and exactly what each program will do.

This collection of deliverables (architecture design, interface design, database

and file specifications, and program design) is the system specification that is

handed to the programming team for implementation. At the end of the design

phase, the feasibility analysis and project plan are reexamined and revised, and

another decision is made by the project sponsor and approval committee about

whether to terminate the project or continue. See Figure 1.

Implementation

The final phase in the SDLC is the implementation phase, during which the

system is actually built (or purchased, in the case of a packaged software

design). This is the phase that usually gets the most attention, because for most

systems it is the longest and most expensive single part of the development

process. This phase has three steps:

1. System construction is the first step. The system is built and tested to ensure it

performs as designed. Since the cost of bugs can be immense, testing is one of

the most critical steps in implementation. Most organizations spend more time

and attention on testing than on writing the programs in the first place.

2. The system is installed. Installation is the process by which the old system is

turned off and the new one is turned on. It may include a direct cutover

approach (in which the new system immediately replaces the old system), a

parallel conversion approach (in which both the old and new systems are

operated for a month or two until it is clear that there are no bugs in the new

system), or a phased conversion strategy (in which the new system is installed

in one part of the organization as an initial trial and then gradually installed in

others). One of the most important aspects of conversion is the development of

a training plan to teach users how to use the new system and help manage the

changes cause by the new system.

3. The analyst team establishes a support plan for the system. This plan usually

includes a formal or informal post-implementation review, as well as a

systematic way for identifying major and minor changes needed for the system.

4.0 Conclusion

In this unit, we look at an overview of the concept of system analysis and

design, system development team. The course unit dealt with the fundamental

four phase of system development life cycle.

5.0 Summary

All system development projects follow essentially the same fundamental

process called the system development life cycle (SDLC). The SDLC starts

with a planning phase in which the project team identifies the business value of

the system, conducts a feasibility analysis, and plans the project. The second

phase is the analysis phase, in which the team develops an analysis strategy,

gathers information, and builds a set of analysis models. In the next phase, the

design phase, the team develops the physical design, architecture design,

interface design, data base and file specifications, and program design. In the

final phase, implementation, the system is built, installed, and maintained.

 Self Assessment (A False Start)

An estate group in the Federal Government co-sponsored a data warehouse

with the IT department. A formal proposal was written by IT in which costs

were estimated at N100,000, the project duration was estimated to be eight

months, and the responsibility for funding was defined as the business unit’s.

The IT department proceeded with the project before hearing whether the

proposal was ever accepted. The project actually lasted two years because

requirements gathering took nine months instead of one and a half, the planned

user base grew from 200 to 2,500, and the approval process to buy technology

for the project took a year. Three weeks prior to technical delivery, the IT

Director canceled the project. This failed endeavor cost the organization N2.5

million.

Question:- Why did this system fail? Why would a company spend money and

time on a project and then cancel it? What could have been done to prevent

this?

6.0 Tutor Marked Assignment

1. Define a system. Explain the components of a system.

2. Describe the principal steps in the analysis phase. What are the major

deliverables?

7.0 References
http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf

http://xa.yimg.com/kq/groups/22830576/1266190173/name/ISCA_Chap2_May-11.pdf

http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf
http://xa.yimg.com/kq/groups/22830576/1266190173/name/ISCA_Chap2_May-11.pdf

UNIT 2: THE SYSTEM ANALYST

Content

1.0 Introduction

2.0 Objectives

3.0 Main Body

3.1 System Analyst

3.2 Roles of a System Analyst

3.3 Qualities of a System Analyst

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 References

1.0 Introduction

The key person in any system development is the systems analyst. The system

analyst analyzes business situation, identifies opportunities for improvements,

and designs an information system to implement them. Being a systems analyst

is one of the most interesting, exciting, and challenging jobs around. As a

systems analyst, you will work with a variety of people and learn how they

conduct business. Specifically, you will work with a team of systems analysts,

programmers, and others on a common mission. You will feel the satisfaction

of seeing systems that you designed and developed, make a significant business

impact, while knowing that your unique skills helped make that happen.

It is important to remember that the primary objective of the systems analyst is

not to create a wonderful system. The primary goal is to create value for the

organization, which for most companies means increasing profits (government

agencies and not-for-profit organizations measure value differently). Many

failed systems were abandoned because the analysts tried to build a wonderful

system without clearly understanding how the system would support the

organization’s goals, current business processes, and other information systems

to provide value.

This unit looked at who a system analyst is and the role they played in the

development of a new system.

2.0 Objectives

Students at the end of this course should be able to:

1. Know a system analyst

2. Roles of a System Analyst

3. Qualities of a System Analyst

3.0 Main Body

3.1 The System Analyst

A system analyst researches problems, plans solutions, recommends software

and systems, and coordinates development to meet business or other

requirements. They will be familiar with a variety of programming languages,

operating systems, and computer hardware platforms. Because they often write

user requests into technical specifications, the systems analysts are the liaisons

between vendors and information technology professionals. They may be

responsible for developing cost analysis, design considerations, and implication

time-lines.

A system analyst may:

• Plan a system flow from the ground up.

• Interact with customers to learn and document requirements that are

then used to produce business requirements documents.

• Write technical requirements from a critical phase.

• Interact with designers to understand software limitations.

• Help programmers during system development, ex: provide use cases,

flowcharts or even Database design.

• Perform system testing.

• Deploy the completed system.

• Document requirements or contribute to user manuals.

• Whenever a development process is conducted, the system analyst is

responsible for designing components and providing that information to

the developer.

3.2 Roles of a System Analyst

The systems analyst systematically assesses how users interact with technology

and businesses function by examining the inputting and processing of data and

the outputting of information with the intent of improving organizational

processes. Many improvements involve better support of users’ work tasks and

business functions through the use of computerized information systems. This

definition emphasizes a systematic, methodical approach to analyzing—and

potentially improving—what is occurring in the specific context experienced

by users and created by a business.

The analyst plays many roles, sometimes balancing several at the same time.

The three primary roles of the systems analyst are consultant, supporting

expert, and agent of change.

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Business
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Liaison_job
http://en.wikipedia.org/wiki/Vendor
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Flowcharts
http://en.wikipedia.org/wiki/Database_design

Systems Analyst as Consultant

The systems analyst frequently acts as a systems consultant to humans and their

businesses and, thus, may be hired specifically to address information systems

issues within a business. Such hiring can be an advantage because outside

consultants can bring with them a fresh perspective that other people in an

organization do not possess. It also means that outside analysts are at a

disadvantage because the true organizational culture can never be known to an

outsider.

As an outside consultant, you will rely heavily on the systematic methods

discussed throughout this course guide to analyze and design appropriate

information systems for users working in a particular business. In addition, you

will rely on information systems users to help you understand the

organizational culture from others’ viewpoints.

Systems Analyst as Supporting Expert

Another role a system analyst may be required to play is that of supporting

expert within a business for which you are regularly employed in some systems

capacity. In this role, the analyst draws on professional expertise concerning

computer hardware and software and their uses in the business. This work is

often not a full-blown systems project, but rather it entails a small modification

or decision affecting a single department.

As the support expert, you are not managing the project; you are merely

serving as a resource for those who are. If you are a systems analyst employed

by a manufacturing or service organization, many of your daily activities may

be encompassed by this role.

Systems Analyst as Agent Of Change

The most comprehensive and responsible role that the systems analyst takes on

is that of an agent of change, whether internal or external to the business. As an

analyst, you are an agent of change whenever you perform any of the activities

in the systems development life cycle and are present and interacting with users

and the business for an extended period (from two weeks to more than a year).

An agent of change can be defined as a person who serves as a catalyst for

change, develops a plan for change, and works with others in facilitating that

change. Your presence in the business changes it. As a systems analyst, you

must recognize this fact and use it as a starting point for your analysis. Hence,

you must interact with users and management (if they are not one and the

same) from the very beginning of your project. Without their help you cannot

understand what they need to support their work in the organization, and real

change cannot take place.

If change (that is, improvements to the business that can be realized through

information systems) seems warranted after analysis, the next step is to develop

a plan for change along with the people who must enact the change. Once a

consensus is reached on the change that is to be made, you must constantly

interact with those who are changing.

As a systems analyst acting as an agent of change, you advocate a particular

avenue of change involving the use of information systems. You also teach

users the process of change, because changes in the information system do not

occur independently but cause changes in the rest of the organization as well.

3.3 Qualities of a Systems Analyst

From the foregoing descriptions of the roles the systems analyst plays, it is easy

to see that the successful systems analyst must possess a wide range of

qualities. Many different kinds of people are systems analysts, so any

description is destined to fall short in some way. There are some qualities,

however, that most systems analysts seem to display.

A problem solver:- A system analyst is a person who views the analysis of

problems as a challenge and who enjoys devising workable solutions. When

necessary, the analyst must be able to systematically tackle the situation at

hand through skillful application of tools, techniques, and experience.

A communicator:- System analyst must be capable of relating meaningfully to

other people over extended periods of time. Systems analysts need to be able to

understand humans’ needs in interacting with technology, and they need

enough computer experience to program, to understand the capabilities of

computers, to glean information requirements from users, and to communicate

what is needed to programmers.

Possession of strong personal and professional ethics:- System analysts need to

posses strong personal and professional ethics to help them shape their client

relationships.

Technical skills- System analyst must be creative, have questioning attitude and

inquiring mind. System analyst must have knowledge of the basics of the

computer and business function he/she wants to develop.

4.0 Conclusion

This unit explains who a system analyst is, the role they played in system

development and qualities a system analyst must possess.

5.0 Summary

A System Analyst needs variety of skills. As organizational change agents, all

analysts need to have general skills, such as technical, business, analytical,

interpersonal, management, and ethical. An analyst must possess various skills

to effectively carry out this job. Specifically they may be divided into 2

categories: interpersonal and technical skills. Interpersonal skills deal with

relationships and the interface of the analyst with people in business. It also

include following: communication, understanding (identifying problems),

teaching (educating people various prorammes), selling (ideas and promoting

innovations). Technical skills include: creativity, problem solving, project

management, dynamic interface, questioning attitude and inquiring mind,

knowledge of the basics of the computer and business function.

 Self Assessment Test

Think about your ideal system analyst position. Write a newspaper advert to

hire someone for that position. What requirements would the job have? What

skills and experience would be required? How would applicants demonstrate

that they have the appropriate skills and experience?

6.0 Tutor Marked Assignment

 1. Outline ten qualities of a good System Analyst

2. Briefly outline the responsibilities of other analysts in a system

development team (infrastructure analysts, business analysts, change

management analysts)

7.0 References

 http://en.wikipedia.org/wiki/Systems_analyst

http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf

http://wiki.answers.com/Q/What_qualities_do_you_need_to_become_a_systems_analyst

http://www.prenhall.com/behindthebook/0132240858/pdf/Kendall_Feature1_Why_We_W

rote_This_Book.pdf

http://en.wikipedia.org/wiki/Systems_analyst
http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf
http://wiki.answers.com/Q/What_qualities_do_you_need_to_become_a_systems_analyst
http://www.prenhall.com/behindthebook/0132240858/pdf/Kendall_Feature1_Why_We_Wrote_This_Book.pdf
http://www.prenhall.com/behindthebook/0132240858/pdf/Kendall_Feature1_Why_We_Wrote_This_Book.pdf

UNIT 3: SYSTEM DEVELOPMENT METHODOLOGIES

Content

1.0 Introduction

2.0 Objectives

3.0 Main Body

3.1 System Development Methodologies

3.2 Selecting appropriate System Development Methodology

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 References

1.0 Introduction

A methodology is a formalized approach to implementing the SDLC (i.e., it is a

list of steps and deliverables). There are many different systems development

methodologies and each one is unique because of its emphasis on processes

versus data and the order and focus it places on each SDLC phase. Some

methodologies are formal standards used by government agencies, while others

have been developed by consulting firms to sell to clients. Many organizations

have their own internal methodologies that have been refined over the years,

and they explain exactly how each phase of the SDLC is to be performed in

that company.

All system development methodologies lead to a representation of the system

concept in terms of processes and data; however, they vary in terms of whether

the methodology places primary emphasis on business processes or on the data

that supports the business.

Process-centered methodologies focus first on defining the activities associated

with the system, i.e., the processes. Process-centered methodologies utilize

process models as the core of the system concept. Analysts concentrate initially

on representing the system concept as a set of processes with information

flowing into and out of the processes.

Data-centered methodologies focus first on defining the contents of the data

storage containers and how the contents are organized. Data-centered

methodologies utilize data models as the core of the system concept.

Object-oriented methodologies attempt to balance the focus between processes

and data. Object-oriented methodologies utilize the Unified Modeling

Language (UML) to describe the system concept as a collection of objects

incorporating both data and processes.

Another important factor in categorizing methodologies is the sequencing of

the SDLC phases and the amount of time and effort devoted to each. In the

early days of computing, the need for formal and well-planned life cycle

methodologies was not well understood. Programmers tend to move directly

from a very simple planning phase right into the construction step of the

implementation phase; in other words, they moved directly from a very fuzzy,

not-well-thought-out system request into writing code.

This is the same approach that you may sometimes use when writing programs

for a programming class. It can work for small programs that require only one

programmer, but if the requirements are complex or unclear, you may miss

important aspects of the problem and have to start all over again, throwing

away part of the program (and the time and effort spent writing it). This

approach also makes teamwork difficult because members have little idea

about what needs to be accomplished and how to work together to produce a

final product.

This unit examines several commonly used system development

methodologies, tools and techniques that differ in their focus and approach to

each of the system development phase.

2.0 Objectives

At the end of this unit, students should be able to understand several different

categories of system development methodologies and how to choose among

them.

3.0 Main Body

3.1 System Development Methodologies

There are three major categories of systems development methodologies that

have evolved over time: Structured Design, Rapid Application Development

(RAD), and Agile Development. Each category represents a collection of

methodologies that attempts to improve on previous practice, and varies in

terms of the progression through the SDLC phases and the emphasis placed on

each phase.

Structured Design

The first category of systems development methodologies is called structured

design. These methodologies became dominant in the 1980s, replacing the

previous ad hoc and undisciplined approach. Structured design methodologies

adopt a formal step-by-step approach to the SDLC that moves logically from

one phase to the next.

Structured design also introduced the use of formal modeling or diagramming

techniques to describe a system’s basic business processes and the data that

support them. Traditional structured design uses one set of diagrams to

represent the processes (process models) and a separate set of diagrams to

represent data (data models). Because two sets of models are used, the systems

analyst must decide which set to develop first and use as the core of the

system—process models or data models. Since each type of model is important

to the system, there is much debate over whether to emphasize processes before

data or vice versa. Numerous process-centered and data-centered

methodologies follow the basic approach of the two structured design

categories outlined next.

Waterfall Development The original structured design methodology (that is still

used today) is waterfall development. With waterfall development-based

methodologies, the analysts and users proceed sequentially from one phase to

the next (see Figure 3.1). The key deliverables for each phase are typically

voluminous (often hundreds of pages in length) and are presented to the project

sponsor for approval as the project moves from phase to phase. Once the

sponsor approves the work that was conducted for a phase, the phase ends and

the next one begins. This methodology is called waterfall development because

it moves forward from phase to phase in the same manner as a waterfall.

Although it is possible to go backward in the SDLC (e.g., from design back to

analysis), it is extremely difficult (imagine yourself as a salmon trying to swim

upstream in a waterfall as shown in Figure 3.1).

Figure 3.1: Waterfall Development based methodology

(Source:- http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf)

The two key advantages of waterfall development-based methodologies are

that system requirements are identified long before programming begins and

that changes to the requirements are minimized as the project proceeds. The

two key disadvantages are that the design must be completely specified before

programming begins and that a long time elapses between the completion of

http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf

the system proposal in the analysis phase and the delivery of the system

(usually many months or years).

The deliverables are often a poor communication mechanism, so important

requirements can be overlooked in the documentation. Users rarely are

prepared for their introduction to the new system, which occurs long after the

initial idea for the system was introduced. If the project team misses important

requirements, expensive post-implementation programming may be needed

(imagine yourself trying to design a car on paper; how likely would you be to

remember to include interior lights that come on when the doors open or to

specify the right number of valves on the engine?).

Today’s dynamic business world often imposes rapid environmental change on

businesses. A system that meets existing environmental conditions during the

analysis phase may need considerable rework to match the environment when

it is implemented. This rework requires going back to the initial phase and

making needed changes through each of the subsequent phases in turn.

Parallel Development The parallel development-based methodologies attempt

to address the long time interval between the analysis phase and the delivery of

the system. Instead of doing the design and implementation in sequence, a

general design for the whole system is performed, then the project is divided

into a series of distinct subprojects that can be designed and implemented in

parallel. Once all subprojects are complete, there is a final integration of the

separate pieces, and the system is delivered (Figure 3.2).

Figure 3.2: A Parallel Development-based methodology

(Source:- http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf)

http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf

The primary advantage of these methodologies is that the schedule time

required to deliver a system is shortened; thus, there is less chance of changes

in the business environment causing rework. The approach still suffers from

problems caused by lengthy deliverables. It also adds a new problem:

sometimes the subprojects are not completely independent; design decisions

made in one subproject may affect another, and the end of the project may

involve significant integration challenges.

Rapid Application Development (RAD)

The second system development methodology category includes rapid

application development (RAD)-based methodologies. These are a newer class

of system development methodologies that emerged in the 1990s in response to

both structured design methodology weaknesses. RAD-based methodologies

adjust the SDLC phases to get some part of the system developed quickly and

into the hands of the users. In this way, the users can better understand the

system and suggest revisions that bring the system close to what is needed.

There are process-centered, data-centered, and object-oriented methodologies

that follow the basic approaches of the three RAD categories described in this

study guide.

Most RAD-based methodologies recommend that analysts use special

techniques and computer tools to speed up the analysis, design, and

implementation phases, such as CASE (computer-aided software engineering)

tools, JAD (joint application design), fourth-generation/visual programming

languages that simplify and speed up programming (e.g., Visual Basic.NET),

and code generators that automatically produce programs from design

specifications. It is the combination of the changed SDLC phases and the use of

these tools and techniques that improves the speed and quality of systems

development.

One possible subtle problem with RAD-based methodologies, however, is

managing user expectations. As systems are developed more rapidly and users

gain a better understanding of information technology, user expectations may

dramatically increase and system requirements expand during the project. This

was less of a problem with structured design methodologies where the system

requirements, once determined, were allowed only minimal change.

Phased Development The phased development-based methodologies break the

overall system into a series of versions that are developed sequentially. The

analysis phase identifies the overall system concept, and the project team,

users, and system sponsor then categorize the requirements into a series of

versions. The most important and fundamental requirements are bundled into

the first version of the system. The analysis phase then leads into design and

implementation, but only with the set of requirements identified for version 1

(see Figure 3.3).

Figure 3.3: A Phased Development-based methodology

(Source:- http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf)

Once version 1 is implemented, work begins on version 2. Additional analysis

is performed on the basis of the previously identified requirements and

combined with new ideas and issues that arose from users’ experience with

version 1. Version 2 then is designed and implemented, and work immediately

begins on the next version. This process continues until the system is complete

or is no longer in use.

Phased development-based methodologies have the advantage of quickly

getting a useful system into the hands of the users. Although it does not

perform all the functions the users need at first, it begins to provide business

value sooner than if the system were delivered only after all requirements are

completed, as is the case with the waterfall or parallel methodologies.

Likewise, because users begin to work with the system sooner, they are more

likely to identify important additional requirements sooner than with structured

design situations.

The major drawback to phased development is that users begin to work with

systems that are intentionally incomplete. It is critical to identify the most

important and useful features and include them in the first version while

managing users’ expectations along the way.

http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf

Prototyping The prototyping-based methodologies perform the analysis,

design, and implementation phases concurrently, and all three phases are

performed repeatedly in a cycle until the system is completed. With these

methodologies, a basic analysis and design are performed, and work

immediately begins on a system prototype, a “quick-and-dirty” program that

provides a minimal amount of features. The first prototype is usually the first

part of the system that the user will use. This is shown to the users and the

project sponsor, who provide reaction and comments. This feedback is used to

reanalyze, redesign, and re-implement a second prototype that provides a few

more features. This process continues in a cycle until the analysts, users, and

sponsor agree that the prototype provides enough functionality to be installed

and used in the organization. After the prototype (now called the “system”) is

installed, refinement occurs until it is accepted as the new system (see Figure

3.4).

Figure 3.4: A Prototyping-based methodology

(Source:- http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf)

The key advantage of a prototyping-based methodology is that it very quickly

provides a system for the users to interact with, even if it is not initially ready

for widespread organizational use. Prototyping reassures the users that the

project team is working on the system (there are no long time intervals in

which the users perceive little progress), and the approach helps to more

quickly refine real requirements. Rather than attempting to understand system

specification materials, the users can interact with the prototype to better

understand what it can and cannot do.

The major problem with prototyping is that its fast-paced system releases

challenge attempts to conduct careful, methodical analysis. Often the prototype

undergoes such significant changes that many initial design decisions prove to

be poor ones. This can cause problems in the development of complex systems

because fundamental issues and problems are not recognized until well into the

development process. Imagine building a car and discovering late in the

prototyping process that you have to take the whole engine out to change the

http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf

oil (because no one thought about the need to change the oil until after the car

had been driven 10,000 miles).

Throwaway Prototyping Throwaway prototyping-based methodologies are

similar to the prototyping-based methodologies in that they include the

development of prototypes; however, throwaway prototypes are done at a

different point in the SDLC. These prototypes are used for a very different

purpose than ones previously discussed, and they have a very different

appearance (see Figure 3.5).

Figure 3.5: A Throwaway Prototyping-based methodology

(Source:- http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf)

The throwaway prototyping-based methodologies have a relatively thorough

analysis phase that is used to gather information and to develop ideas for the

system concept. Many of the features suggested by the users may not be well

understood, however, and there may be challenging technical issues to be

solved. Each of these issues is examined by analyzing, designing, and building

a design prototype.

A design prototype is not a working system; it is a product that represents a

part of the system that needs additional refinement, and it contains only enough

detail to enable users to understand the issues under consideration. For

example, suppose users are not completely clear on how an order entry system

should work. The analyst team might build a series of HTML pages viewed

using a Web browser to help the users visualize such a system. In this case, a

series of mock-up screens appear to be a system, but they really do nothing. Or,

suppose that the project team needs to develop a sophisticated graphics

program in Java. The team could write a portion of the program with artificial

data to ensure that they could create a full-blown program successfully.

http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf

A system that is developed using this type of methodology probably uses

several design prototypes during the analysis and design phases. Each of the

prototypes is used to minimize the risk associated with the system by

confirming that important issues are understood before the real system is built.

Once the issues are resolved, the project moves into design and

implementation. At this point, the design prototypes are thrown away, which is

an important difference between this approach and prototyping, in which the

prototypes evolve into the final system.

Throwaway prototyping-based methodologies balance the benefits of well

thought- out analysis and design phases with the advantages of using

prototypes to refine key issues before a system is built. It may take longer to

deliver the final system as compared with prototyping-based methodologies

(because the prototypes do not become the final system), but the approach

usually produces more stable and reliable systems.

Agile Development

A third category of systems development methodologies is still emerging

today: Agile Development. These programming-centric methodologies have

few rules and practices, all of which are fairly easy to follow. They focus on

streamlining the SDLC by eliminating much of the modeling and

documentation overhead and the time spent on those tasks. Instead, projects

emphasize simple, iterative application development. Examples of Agile

Development methodologies include extreme programming, Dynamic Systems

Development Method (DSDM).

Extreme Programming Extreme programming (XP) is founded on four core

values: communication, simplicity, feedback, and courage. These four values

provide a foundation XP developers use to create any system. First, the

developers must provide rapid feedback to the end users on a continuous basis.

Second, XP requires developers to follow the KISS (Keep It Simple, Stupid)

principle. Third, developers must make incremental changes to grow the

system and they must embrace change, not merely accept it. Fourth, developers

must have a quality first mentality. XP also supports team members in

developing their own skills. Three of the key principles that XP uses to create

successful systems are continuous testing, simple coding performed by pairs of

developers, and close interactions with end users to build systems very quickly.

After a superficial planning process, project teams perform analysis, design,

and implementation phases iteratively (see Figure 3.6).

Figure 3.6: An Extreme Programming-based methodology

(Source:- http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf)

Testing and efficient coding practices are core to XP. In fact, each day code is

tested and placed into an integrative testing environment. If bugs exist, the code

is backed out until it is completely free of errors. XP relies heavily on

refactoring, which is a disciplined way to restructure code to keep it simple. An

XP project begins with user stories that describe what the system needs to do.

Then, programmers code in small, simple modules and test to meet those

needs.

Users are required to be available to clear up questions and issues as they arise.

Standards are very important to minimize confusion, so XP teams use a

common set of names, descriptions, and coding practices. XP projects deliver

results sooner than even the RAD approaches, and they rarely get bogged down

in gathering requirements for the system.

For small projects with highly motivated, cohesive, stable, and experienced

teams, XP should work just fine. However, if the project is not small or the

teams aren’t jelled12 then the likelihood of a successful XP project is reduced.

Consequently, the use of XP in combination with outside contractors produces

a highly questionable outcome, since the outside contractors may never “jell”

with insiders. XP requires a great deal of discipline to prevent projects from

becoming unfocused and chaotic. Furthermore, it is only recommended for

small groups of developers (not more than ten), and it is not advised for

mission-critical applications. Since little analysis and design documentation is

produced with XP there is only code documentation; therefore, maintenance of

large systems developed using XP may be impossible. Also, since mission-

critical business information systems tend to exist for a long time, the utility of

XP as a business information system development methodology is in doubt.

Finally, the methodology requires considerable on-site user input, something

that is frequently difficult to obtain.

http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf

3.2 Selecting the Appropriate Development Methodology

Since there are many methodologies, the first challenge faced by analysts is to

select which methodology to use. Choosing a methodology is not simple,

because no one methodology is always best (if it were, we’d simply use it

everywhere!).

Many organizations have standards and policies to guide the choice of

methodology. You will find that organizations range from having one

“approved” methodology to having several methodology options to having no

formal policies at all. Table 3.1 summarizes some important methodology

selection criteria. One important item not discussed in this figure is the degree

of experience of the analyst team. Many of the RAD methodologies require the

use of new tools and techniques that have a significant learning curve. Often

these tools and techniques increase the complexity of the project and require

extra time for learning. Once they are adopted and the team becomes

experienced, the tools and techniques can significantly increase the speed in

which the methodology can deliver a final system.

Table 3.1: Criteria for selecting a methodology

4.0 Conclusion

This unit dealt with system development methodologies and how and when to

choose an appropriate methodology when developing a system.

5.0 Summary

System development methodologies are formalized approaches to

implementing an SDLC. System development methodologies have evolved

over several decades. Structured design methodologies, such as waterfall and

parallel development, move logically from one phase to the next and are more

focused on system processes (process-centric) or on system data (data-centric).

They produce a solid, wellthought-out system but can overlook requirements

because users must specify them early in the design process before seeing the

actual system. RAD-based methodologies attempt to speed up development and

make it easier for users to specify requirements by having parts of the system

developed sooner either by producing different versions (phased development)

or by using prototypes (prototyping, throwaway prototyping). RAD-based

methodologies still tend to be either process-centric or data-centric. Agile

development methodologies focus on streamlining the SDLC by eliminating

many of the tasks and time associated with requirements definition and

documentation. The choice of a methodology is influenced by several factors:

clarity of the user requirements; familiarity with the base technology; system

complexity; need for system reliability; time pressures; and need to see

progress on the time schedule.

 Self Assessment Test

The basic methodologies discussed in this unit can be combined and integrated

to form new hybrid methodologies. Suppose you were to combine throwaway

prototyping with the use of parallel development. What would the methodology

look like? Draw a picture (similar to Figure 3.5). How would this new

methodology compare to the others?

6.0 Tutor Marked Assignment

1. What are the key factors in selecting a methodology?

2. Compare and contrast process-centered methodologies, data-centered

methodologies, and object-oriented methodologies.

7.0 References
 http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf

 http://en.wikipedia.org/wiki/Systems_analyst

http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf
http://en.wikipedia.org/wiki/Systems_analyst

UNIT 4: SYSTEM DEVELOPMENT MODELS, TOOLS AND TECHNIQUES

Content

1.0 Introduction

2.0 Objectives

3.0 Main Body

 3.1 The System Development Models

 3.2 System Development Tools and Techniques

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Reference

1.0 Introduction

 Despite the fact that ‘software crisis’ has been recognized for nearly 40 years,

much software development can still be characterized as a chaotic cycle of

‘code and fix’. This can work fairly well when the system is small and business

requirements are well understood. However, as the system grows, adding or

changing functionality becomes difficult, bugs become harder to identify and

fix, and schedules become more and more difficult to manage.

This unit looked at three fundamental system development models and tools

and techniques that may be used to produce systems that simple and easy to

maintain.

2.0 Objectives

 At the end of this unit, students should be able to:

1. Understand the three fundamental system development models

2. Know the tools and techniques used in system development

3.0 Main Body

3.1 System Development Models

Systems development methodologies impose a disciplined process upon

software systems development, with the aim of making it more predictable and

more efficient. They do this by structuring the development process into

phases, stages and deliverables, with a strong emphasis on the planning and

control of the various development activities. While there are many and various

methodologies available, the underlying approach taken is normally based on

one of a small number of development models.

The Waterfall Lifecycle Model

The Lifecycle Model is the traditional approach to systems development, with

each stage of the lifecycle defined by the products or ‘deliverables’ produced

when the stage is completed. The methods and techniques that are

recommended – dataflow diagrams, entity models, state transition diagrams –

all form part of an overall system development process. This is managed by

setting stages in the project for the completion of particular diagrams, for the

development of software systems, or for the installation of items of hardware.

This process has become known as the ‘Waterfall Model’. Different exponents

of this approach employ different names for each stage but all state that a

project consists of a series of stages which create forward momentum, and

which make it difficult to iterate any particular stage or, indeed, to abort a

project which has become unfeasible. The traditional Waterfall Model assumes

that IT strategy has been formulated and that the lifecycle provides a series of

stages which control and manage a specific project. Typical stages in a

waterfall lifecycle include: initial study, feasibility, investigation, business

requirements definition, systems design, system specification, development,

testing, implementation and review.

Starting with the initial study, the business analyst might work in conjunction

with company management to select those projects which could deliver the

most business benefits for the company. Feasibility will be established,

sometimes using investment appraisal techniques, and a detailed analysis of the

existing system will be conducted. As a result of this investigation, business

requirements will be defined and a new system will be designed and specified

for programmers to develop and test. Implementation will take place using the

appropriate method of cutover, and the process will end with a review, which

might itself be the catalyst to further projects. The waterfall approach has been

defined as suitable for use when:

a. requirements are well known in advance

b. there are no high risk, unresolved cost implications

c. the nature of the requirements will not change significantly

d. the requirements match the key stakeholders’ expectations

e. the hardware and software is well known

f. there is enough time to proceed sequentially.

If these conditions are not met, then a more evolutionary approach is called for

to mitigate the risks in the project.

The Spiral Model

The forward momentum created in the Waterfall Model can cause significant

problems. To overcome these, Boehm (2000) developed a model that adopted an

evolutionary approach towards the development of information systems. The

Spiral Model (see Figure 2.7) is a procedure, rather than a lifecycle, because it

introduces activities that are concerned with process rather than product.

Figure 4.1: The Spiral Model

(Source:- http://xa.yimg.com/kq/groups/22830576/1266190173/name/ISCA_Chap2_May-11.pdf)

Two major features of the model are its use of risk analysis and the

evolutionary nature of process. This evolutionary development is enabled by

prioritizing requirements, following an initial analysis, in order to identify

those features with the highest priority for the initial iteration. On completion

of each iteration, user feedback indicates and prioritizes the next set of features.

This enables the development team to make refinements and add more detail to

each subsequent iteration.

It is the feedback and continual refinement that places this model apart from

the purely incremental approach. Boehm’s Spiral Model incorporates the best

features of both the classic lifecycle and the prototyping approaches, by

prefacing each iteration with an analysis of risk. It is an appropriate technique

when developing information systems where requirements are not clear, and

where a waterfall lifecycle would be inappropriate – for example, in a new

development where users and IT professionals are lacking in experience. In the

Spiral Model, activities are often repeated in order to clarify issues or to

provide a more complete definition of user requirements. The development

http://xa.yimg.com/kq/groups/22830576/1266190173/name/ISCA_Chap2_May-11.pdf

process begins at the centre of the spiral even though, at this stage, the

requirements are not fully defined. System requirements are refined with each

cycle that is performed.

The model is divided into four quadrants. Starting from the top left, each cycle

will initially identify and determine objectives, alternatives, and constraints. In

the second quadrant, alternatives are evaluated and risks are analysed. In the

third quadrant, the prototype is developed. Each cycle then completes in the

fourth quadrant by planning for the next cycle of the spiral.

As the project progresses, the development team moves up the spiral. The first

cycle results in the development of a product specification. Subsequent passes

around the spiral might be used to develop a prototype, and then progressively

more sophisticated versions of the software. Each pass through the planning

region results in adjustments to the project plan. The key to the model is that

software evolves as the process progresses – the developer and the customer

better understand and react to risks at each evolutionary level. At each level,

risk analysis is performed using:

a. risk identification – project, technical and business risks

b. risk projection – an estimation of the risks likely to occur and of their

subsequent consequences

c. risk assessment – the prioritizing of risks, and the development of control

mechanisms to eliminate/reduce the occurrence of the risk

d. risk management and monitoring – to produce risk management and

monitoring procedures.

Prototyping is used as a risk reduction mechanism. The developer can produce

a prototype in each cycle of the development using the Spiral Model to define a

framework for user/developer communication. Software systems projects differ

from other types of development project in that the technology used is

developing extremely rapidly. This has a number of implications:

a. Customers are often unfamiliar with the latest IT developments, and so may be

unable to judge whether developers are overselling a particular technology or

product, or exaggerating the ease with which it can be delivered.

b. Technological advances can make projects obsolete before they have been

completed.

c. There is a tendency, on the part of developers, to desire cutting-edge bespoke

solutions, which carry greater risk, rather than use tested, commercial ‘off-the-

shelf’ products.

The Agile Model

A recent survey by the British Computer Society (BCS) found that poor

management of project requirements and scope were the most common causes

of project failure. But for systems development projects, user requirements are

often not clear at the start, for a number of reasons:

- users may be unsure of what they want

- it may be difficult to identify their tacit knowledge about day-to-day processes

- they may not have been consulted sufficiently

- user requirements may be misunderstood

- departmental and strategic requirements may be poorly defined

- external factors can cause requirements to change a ‘simple’ change to

requirements may require a fundamental redesign of the system, with large

time and cost implications.

According to the BCS study, three-quarters of IT project managers reported

that, in their experience, no project had ever been delivered to the initial

specifications. The most frequent criticism of the Waterfall and (to a lesser

extent) the Spiral Models is that they are overly bureaucratic. There are so

many things to do (that are not directly productive) in order to follow the

methodology that the pace and direction of development is slow, inflexible, and

difficult to change. As a reaction to these criticisms, a new approach has

appeared during the past 10 years. For a while, methodologies based on this

approach were known as ‘lightweight’, but now the generally accepted term is

‘agile’. These new methods attempt a useful compromise between ‘no’ and ‘too

much’ discipline, providing just enough to gain a useful payoff. The Agile

Alliance was formed in 2000 with a manifesto for software development. This

claims that the Alliance is ‘uncovering better ways of developing software by

doing it and helping others to do it’, and values: individuals and interactions

over processes and tools; working software over comprehensive

documentation; customer collaboration over contract negotiation; responding to

change over following a plan.

Agile proposes 12 principles, some of which are hardly unique to the Agile

approach, but an important feature is that it welcomes change and this

differentiates it from Waterfall and Spiral Model developments. Agile is based

on an analysis of software development practices that help companies build

high quality products, and as a result, can often deliver working software in

weeks rather than months. Using verbal rather than written communication,

Agile is proving attractive to companies with a high degree of stakeholder

agreement and that can communicate easily.

Agile methods are adaptive rather than predictive. Traditional methods attempt

to plan the development process in great detail over a long period of time. This

approach works well until things change, and so the temptation is to resist

change. Agile methods, however, positively welcome change and constantly

adapt plans, processes, workgroups and methods to respond to changed

circumstances, new insights, or better understanding.

Agile methods are people-oriented rather than process-oriented. The goal of

traditional development methods is to define a process that will work well

whoever happens to be using it. Agile methods assert that no process will ever

make up for a lack of skill in the development team, so the primary role of any

process is to support the development team in its work.

A variety of methods are available under the general heading of Agile. Varying

in formality and scope they range from SCRUM (at the most ‘lightweight’),

through Crystal Orange and XP, to DSDM (as a RAD-like ‘heavyweight’

method). All are based on the frequent release of working systems to the user,

and, unlike more traditional methods, all place the commitment to be on-time

and on-budget above prescribed systems functionality.

3.2 System Development Tools and Techniques

System development tools and techniques help end users and system analysts

to improve current IS and to develop new ones. It helps to:

- conceptualize, clarify, document and communicate the activities and recourses

involved in the organization of IS.

- Analyze business operations, decision making and information processing

activities.

- Propose and design new or improved IS to solve business problems or pursue

business opportunities.

The major tools used for system development can be grouped into four

categories based on the systems features each document has.

1. User Interface Tools:- help design interface between end users and the

computer system.

a. Layout forms and screens – are used to construct the formats and

contents of input/output media and responses.

b. Dialogue flow diagrams – analyze the flow of dialogues on screens

generated by alternative user responses.

2. Data attributes and relationships tools:- define, catalogue and design data

resources.

a. Data Dictionary – catalogue the description of the attributes

(characteristics) of all data elements and their relationships to each other

as well as to external systems.

b. Entity-relationship diagrams – help document the number and type of

relationship among the entities in a system.

c. File layout forms – help document the type, size and names of the data

elements in a system.

d. Grid chart – help identify the use of each type of data element in

input/output or storage media of a system.

3. System components and flows Tools:- help document the data flow among the

major resources and activities of an IS.

a. System component matrix – provides a matrix framework to document

the resources, activities and information output.

b. System flow charts – show the flow of data media as they are processed

by the hardware devices and manual activities.

c. Data flow diagram – uses symbols to show the data flow among external

entities (such as people or organizations, etc), processing activities and

data storage elements.

4. Detailed system process tools:- help programmers develop detailed procedures

and processes required in the design of a computer program.

a. Decision trees and decision tables – use a network or tabular form to

document the complex conditional logic involved in choosing among

the information processing alternatives in a system.

b. Structure charts – document the purpose, structure and hierarchical

relationships of the modules in a program.

Description of some of the major tools

Flowcharts – a graphic technique used by analyst to represent IPO of a

business in a pictorial form. It represents an algorithm or process showing the

steps as boxes of various kinds, and their order by connecting these with

arrows. It is used in analyzing, designing, documenting or managing a process

or program in various fields.

Symbols used in flowchart

Types of flowcharts

Are divided into four major categories

1. Document flowchart, showing a document flow through systems

2. Data flowchart – data flow in a system

3. System flowchart – controls at a physical or resource level

4. Program flowchart – controls in a program within a system

Advantages of Flowchart

1. Communication of system logic

2. Effective analysis

3. Proper documentation

4. Efficient coding – acts as a guide or blueprint during system analysis, program

development phase

5. Proper debugging

6. Efficient program maintenance

Limitations of Flowcharts

1. Complex logic – makes flowchart complex and clumsy

2. Alterations and modifications requires complete re-drawing

3. Reproduction – flowchart symbols cannot be types, reproduction of flowchart

becomes a problem

4. Flow lost amidst technical details.

Data Flow Diagram (DFD):- uses simple symbols to illustrate the flow of data

among external entities such as, people or organizations. Processes activities and

data storage elements.

DFD has four basic elements: data sources and destination, data flows,

transformation processes and data stores. Data are processed by combining four

symbols as shown in Table 4.1.

Table 4.1: DFD Symbols

Decision Tree (Tree Diagram):- support tool that uses a tree-like graph or

model of decisions and their possible consequences, including chance event

outcomes, resource costs and utility. Mostly used in operation research,

specifically in decision analysis, to help identify a strategy most likely to reach

a goal and to calculate conditional probabilities.

Decision Table:- a table which may accompany a flowchart, defining possible

contingencies in a program or appropriate course of action for each

contingency.

Decision table is important because branches of flowchart multiply at each

diamond (comparison symbol) and may easily run into hundred for larger

systems. Programmers are liable to miss some of the branches in flowchart if

there is no decision table.

Case Tools:- CASE (Computer-Aided-Software Engineering) means,

automation of anything that humans do to develop systems and support

virtually all phases of traditional system development process. DFD and system

flowcharts that users review are commonly generated by system developers

using the on-screen drawing modules found in CASE software packages. Ideal

CASE system has integrated set of tools and features to perform all aspects in

the life cycle.

Some of the features that various CASE products posses are repository/data

dictionary; computer aided diagramming tools; word processing; screen and

report generator; prototyping; project management; code generation and

reserve engineering.

Data Dictionary:- computer file containing descriptive information about data

items in the files of a business information system. Each computer record of a

data dictionary contains information about a single data item used in a business

information system. This information may include the identity of the;

1. Codes: length, type (alphabet, numeric), range (0 – 99)

2. Source: name of source document used to create the data item

3. Files: names of the files storing the data item

4. Programs: names of programs that modify the data item

5. Access rights: names of programs or users permitted to access/process the data

item

6. Access denials: names of programs or users not permitted to access/process the

data item

Data dictionary is updated when data items, data fields or programs are

introduced/deleted.

Self Assessment Test

Suppose you are an analyst for the MX Company, a large consulting firm with

offices around the world. The company wants to build a new knowledge

management system that can identify and track the expertise of individual

consultants anywhere in the world on the basis of their education and the

various consulting projects on which they have worked. Assume that this is a

new idea that has never before been attempted in MX or elsewhere. MX has an

international network, but the offices in each country may use somewhat

different hardware and software. MX management wants the system up and

running within a year. What model would you recommend MX Company to

use? Why?

4.0 Conclusion

This unit dealt looked at three fundamental system development models, tools

and techniques involved in building a new system.

5.0 Summary

While there are many and various methodologies available, the underlying

approach taken is normally based on one of a small number of development

models. There are three fundamental system development models – Waterfall

Model, Spiral Model and Agile Model. The Lifecycle Model is the traditional

approach to systems development, with each stage of the lifecycle defined by

the products or ‘deliverables’ produced when the stage is completed. The

forward momentum created in the Waterfall Model can cause significant

problems. To overcome these, Boehm (2000) developed a model that adopted

an evolutionary approach towards the development of information systems -

the Spiral Model. Two major features of the model are its use of risk analysis

and the evolutionary nature of process. Agile model proposes 12 principles,

some of which are hardly unique to the Agile approach, but an important

feature is that it welcomes change and this differentiates it from Waterfall and

Spiral Model developments. Agile is based on an analysis of software

development practices that help companies build high quality products, and as

a result, can often deliver working software in weeks rather than months.

System development tools and techniques help end users and system analysts

to improve current IS and to develop new ones. It helps to conceptualize,

clarify, document and communicate the activities and recourses involved in the

organization of IS; analyze business operations, decision making and

information processing activities; propose and design new or improved IS to

solve business problems or pursue business opportunities.

6.0 Tutor Marked Assignment

1. With the help of a diagram, explain waterfall life cycle model

2. List the advantages and limitations of Spiral Model

7.0 References
http://xa.yimg.com/kq/groups/22830576/1266190173/name/ISCA_Chap2_May-11.pdf

http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf

http://www2.accaglobal.com/pdfs/studentaccountant/bakehouse0506.pdf

Boehm B, Spiral Development: Experience, Principles, and Refinements,

Spiral Development Workshop (ed) Hansen W, 2000.

http://xa.yimg.com/kq/groups/22830576/1266190173/name/ISCA_Chap2_May-11.pdf
http://www.wiley.com/college/dennis/0471073229/pdf/ch01.pdf
http://www2.accaglobal.com/pdfs/studentaccountant/bakehouse0506.pdf

UNIT 5: PROJECT MANAGEMENT

Content

1.0 Introduction

2.0 Objectives

3.0 Main Body

3.1 Project Management Definition

3.2 Project Management Process Group

3.3 Project Management Triangle

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 References

1.0 Introduction

Many people and organizations today have a new—or renewed—interest in

project management. Until the 1980s, project management primarily focused

on providing schedule and resource data to top management in the military,

computer, and construction industries. Today’s project management involves

much more, and people in every industry and every country manage projects.

New technologies have become a significant factor in many businesses.

Computer hardware, software, networks, and the use of interdisciplinary and

global work teams have radically changed the work environment. Today’s

companies, governments, and nonprofit organizations are recognizing that to be

successful, they need to be conversant with and use modern project

management techniques. Individuals are realizing that to remain competitive in

the workplace, they must develop skills to become good project team members

and project managers. They also realize that many of the concepts of project

management will help them in their everyday lives as they work with people

and technology on a day-to-day basis.

This unit will look at meaning of project, some common IT projects, project

attributes, triple constraints of a project and the meaning of project

management.

2.0 Objectives

At the end of this unit, students should be able to

1. Define a Project

2. Understand Information Technology Projects

3. Know Attributes of a Project

4. Know how to manage a project

5. Understand Project Management Triple Constraints

3.0 Main Body

3.1 What is a Project

A project is “a temporary endeavor undertaken to create a unique product,

service, or result.” Projects are different from operations in that they end when

their objectives have been reached or the project has been terminated.

3.2 Information Technology Projects

Projects can be large or small and involve one person or thousands of people.

They can be done in one day or take years to complete. Information technology

projects involve using hardware, software, and/or networks to create a product,

service, or result.

Examples of information technology projects include the following:

* A small software development team adds a new feature to an internal

software application for the finance department

* A college campus upgrades its technology infrastructure to provide

wireless Internet access across the whole campus

* A cross-functional taskforce in a company decides what Voice-over-

Internet-Protocol (VoIP) system to purchase and how it will be

implemented.

* A company develops a new system to increase sales force productivity

and customer relationship management.

* A television network implements a system to allow viewers to vote for

contestants and provide other feedback on programs.

* The automobile industry develops a Web site to streamline procurement

* A government group develops a system to track child immunizations

3.3 Attributes of a Project

Projects come in all shapes and sizes. The following attributes help to define

a project further:

* A project has a unique purpose. Every project should have a well-defined

objective. The unique purpose of a project would be to create a collaborative

report with ideas from people throughout the company. The results would

provide the basis for further discussions and projects.

* A project is temporary. A project has a definite beginning and a definite end.

* A project is developed using progressive elaboration. Projects are often defined

broadly when they begin, and as time passes, the specific details of the project

become clearer. Therefore, projects should be developed in increments. A

project team should develop initial plans and then update them with more detail

based on new information. For example, suppose a few people submitted ideas

for the information technology collaboration project, but they did not clearly

address how the ideas would support the business strategy of improving

operations. The project team might decide to prepare a questionnaire for people

to fill in as they submit their ideas to improve the quality of the inputs.

* A project requires resources, often from various areas. Resources include

people, hardware, software, and other assets. Many projects cross departmental

or other boundaries to achieve their unique purposes. For the information

technology collaboration project, people from information technology,

marketing, sales, distribution, and other areas of the company would need to

work together to develop ideas. The company might also hire outside

consultants to provide input. Once the project team has selected key projects

for implementation, they will probably require additional resources. And to

meet new project objectives, people from other companies—product suppliers

and consulting companies—may be added. Resources, however, are limited

and must be used effectively to meet project and other corporate goals.

* A project should have a primary customer or sponsor. Most projects have

many interested parties or stakeholders, but someone must take the primary

role of sponsorship. The project sponsor usually provides the direction and

funding for the project. Once further information technology projects are

selected, however, the sponsors for those projects would be senior managers in

charge of the main parts of the company affected by the projects.

* A project involves uncertainty. Because every project is unique, it is sometimes

difficult to define its objectives clearly, estimate how long it will take to

complete, or determine how much it will cost. External factors also cause

uncertainty, such as a supplier going out of business or a project team member

needing unplanned time off. This uncertainty is one of the main reasons project

management is so challenging, especially on projects involving new

technologies.

3.4 What is Project Management

Project management is “the application of knowledge, skills, tools and

techniques to project activities to meet project requirements.” Project managers

must not only strive to meet specific scope, time, cost, and quality goals of

projects, they must also facilitate the entire process to meet the needs and

expectations of the people involved in or affected by project activities.

3.5 Project Management Triple Constraint

Every project is constrained in different ways by its scope, time, and cost goals.

These limitations are sometimes referred to in project management as the triple

constraint. To create a successful project, a project manager must consider

scope, time, and cost and balance these three often-competing goals. He or she

must consider the following:

• Scope: What work will be done as part of the project? What unique

product, service, or result does the customer or sponsor expect from the

project? How will the scope be verified?

• Time: How long should it take to complete the project? What is the

project’s schedule? How will the team track actual schedule

performance? Who can approve changes to the schedule?

• Cost: What should it cost to complete the project? What is the project’s

budget? How will costs be tracked? Who can authorize changes to the

budget?

4.0 Conclusion

This unit make an elaborate view of the meaning of project, its attributes and

project management triple constraints.

5.0 Summary

There is a new or renewed interest in project management today as the number

of projects continues to grow and their complexity continues to increase. The

success rate of information technology projects has more than doubled since

1995, but still only about a third are successful in meeting scope, time, and cost

goals. Using a more disciplined approach to managing projects can help

projects and organizations succeed.

A project is a temporary endeavor undertaken to create a unique product,

service, or result. An information technology project involves the use of

hardware, software, and/or networks. Projects are unique, temporary, and

developed incrementally; they require resources, have a sponsor, and involve

uncertainty. The triple constraint of project management refers to managing the

scope, time, and cost dimensions of a project. Project management is the

application of knowledge, skills, tools, and techniques to project activities to

meet project requirements.

6.0 Tutor Marked Assignment

 1. What does it take to deliver a successful project.

 2. With the aid of diagram, explain project management triangle

7.0 References

http://old.nios.ac.in/cca/cca1.pdf

http://www.augsburg.edu/ppages/~schwalbe/ipm3ch1.pdf

http://old.nios.ac.in/cca/cca1.pdf
http://www.augsburg.edu/ppages/~schwalbe/ipm3ch1.pdf

UNIT 6: UNIFIED PROCESS

Content

1.0 Introduction

2.0 Objectives

3.0 Main Body

3.1 Unified Process

3.2 Principles of a Unified Process

3.3 Life Cycle of Unified Process

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 References

1.0 Introduction

Rational Unified Process (Unified Process) is a disciplined software

development methodology that targets producing high quality software

deliverables. The Rational unified process encourages systematic development

while classifying tasks, assigning tasks and responsibilities within a

development organization.

The course guide will then look at how to build your project using Rational

Unified Process (RUP).

2.0 Objectives

Students at the end of this unit, should be able to

1. Define Unified Process

2. Know the six basic principles of Unified Process

3. Understand RUP discipline in relation to Analyst role

4. Understand Rational Unified Process Life Cycle

3.0 Main Body

3.1 What is Unified Process

The Unified Software Development Process or Unified Process is a popular

iterative and incremental software development process framework. The best-

known and extensively documented refinement of the Unified Process is the

Rational Unified Process (RUP).

Unified Process is not simply a process, but rather an extensible framework

which should be customized for specific organizations or projects. The

Rational Unified Process is, similarly, a customizable framework. As a result it

is often impossible to say whether a refinement of the process was derived

from UP or from RUP, and so the names tend to be used interchangeably.

http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process

3.2 Principles of Rational Unified Process

The Rational Unified Process provides six guidelines to implement successful

projects. The six basic principles are outlined in figure 6.1. The Rational

Unified Process (RUP) supports an iterative approach to development that

helps identify risk proactively, reduces re-factoring cost, and builds models

with an easy exit strategy. Rational Unified Process recommends using use

cases and scenarios to capture functional requirements. The Rational Unified

Process supports component-based software development. Components are

non-trivial modules, subsystems that fulfill a clear function. The Rational

Unified Process provides a systematic approach to defining an architecture

using new and existing components.

Figure 6.1: Principles of Rational Unified Process

RUP encourages visual software models to depict architectures and component.

Frequent verification of quality should be reviewed with respect to the

requirements based on reliability, functionality, application performance and

system performance. Control changes to software are recommended by the

process. The process describes how to control, track and monitor changes to

enable iterative development. Project size must be optimal and must be decided

based on the requirement. Process must be introduced slowly in initial part of

the project and it must be implemented intensely at later parts of the project.

Periodic reviews in RUP helps to identify risk proactively and continuously

improve the process. Appropriation of process strength is dependent on project

size, distributed teams, complexity, stakeholders and other dependent factors.

More formal control is required when a project meets the following criteria:

• Project members are distributed in different places

• User community is large and distributed.

• Project is Large or Very Large.

• Many stakeholders.

Defining and understanding business needs is an important aspect of

implementing RUP. Key business players must identify the business needs, and

try to prioritize business and stakeholder needs.

3.2 RUP Disciplines

Rational Unified Process places structure around the activities performed and

the resulting artifacts, also known as deliverables. Related to the analyst's role,

RUP includes the following disciplines:

Business modeling: Provides guidance for the analyst on how to understand

and visually depict a business.

Requirements: Involves finding, maintaining and managing requirements for

the business application. The business models developed in the business

modeling discipline are a key input to these activities.

Analysis and design: Transforms the requirements into a design of the system-

to-be and adapts that design to match the implementation environment,

designing it for performance. The analyst can discover flaws in design. Change

requests are generated and applied. Business entities in the business modeling

discipline are also an input to identifying analysis and design solutions.

Implementation: Defines the organization of code, implements classes and

objects, tests the resulting implementation elements, and integrates them into

an executable system. This discipline includes developer testing - that is,

testing done by developers to verify that each developed element behaves as

intended. This behavior derives ultimately, although often indirectly, from

requirements captured by the analyst.

Test: Validates the system against (amongst other things) the requirements,

ensuring that the system works properly. Requirements artifacts provided by

the analyst are the basis for the definition of the evaluation activities.

Deployment: Describes the activities associated with ensuring that the software

product and related materials are available for end users. The analyst produces

the software requirements specification, which is one of the key inputs to

development end user support and training materials.

Configuration and change management: Supports the analyst with the process

of change, ensuring that changes are effectively documented and accepted

during the lifecycle of the project. This also allows the analyst and those in

other roles to do impact analysis.

http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci1243658,00.html

Project management: Plans the project and each iteration and phase of the

project. The requirements artifacts, particularly the requirements management

plan, are important inputs to the planning activities. The driving forces behind

the assessment and management activities are the requirements.

Environment: Develops and maintains the supporting artifacts that the analyst

uses during requirements management and modeling.

3.3 RUP Life Cycle

RUP consists of four sequential processes or phases during design and

development of a business solution. The four sequential processes includes:

Inception, Elaboration, Construction and Transition. These phases are iterative

in nature and yield products in each field. Iterations are between two weeks to

six months. The RUP lifecycle is illustrated in figure 6.2.

Figure 6.2: RUP Life Cycle

Inception Phase

Inception is the smallest phase in the project, and ideally it should be quite

short. If the Inception Phase is long then it may be an indication of excessive

up-front specification, which is contrary to the spirit of the Unified Process.

The following are typical goals for the Inception phase.

• Establish a justification or business case for the project

• Establish the project scope and boundary conditions

• Outline the use cases and key requirements that will drive the design

tradeoffs

• Outline one or more candidate architectures

• Identify risks

• Prepare a preliminary project schedule and cost estimate

Elaboration Phase

During the Elaboration phase, the project team is expected to capture a healthy

majority of the system requirements. However, the primary goals of

Elaboration are to address known risk factors and to establish and validate the

system architecture. Common processes undertaken in this phase include the

http://en.wikipedia.org/wiki/Business_case
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Risk#Economic_risk

creation of use case diagrams, conceptual diagrams (class diagrams with only

basic notation) and package diagrams (architectural diagrams).

The architecture is validated primarily through the implementation of an

Executable Architecture Baseline. This is a partial implementation of the

system which includes the core, most architecturally significant, components. It

is built in a series of small, timeboxed iterations. By the end of the Elaboration

phase, the system architecture must have stabilized and the executable

architecture baseline must demonstrate that the architecture will support the

key system functionality and exhibit the right behavior in terms of

performance, scalability and cost.

The final Elaboration phase deliverable is a plan (including cost and schedule

estimates) for the Construction phase. At this point the plan should be accurate

and credible, since it should be based on the Elaboration phase experience and

since significant risk factors should have been addressed during the Elaboration

phase.

Construction Phase

Construction is the largest phase in the project (see Figure 12 & 13). In this

phase, the remainder of the system is built on the foundation laid in

Elaboration. System features are implemented in a series of short, timeboxed

iterations. Each iteration results in an executable release of the software. It is

customary to write full text use cases during the construction phase and each

one becomes the start of a new iteration. Common UML (Unified Modelling

Language) diagrams used during this phase include Activity, Sequence,

Collaboration, State (Transition) and Interaction Overview diagrams.

Transition Phase

The final project phase is Transition. In this phase the system is deployed to the

target users. Feedback received from an initial release (or initial releases) may

result in further refinements to be incorporated over the course of several

Transition phase iterations. The Transition phase also includes system

conversions and user training.

4.0 Conclusion

This unit explained the meaning of unified process, six principles of Rational

Unified Process, RUP disciplines and RUP Life Cycle.

4.0 Summary

Rational Unified Process can be adopted as a whole or in parts. RUP has been

successfully implemented across many organizations and it is well supported

by Rational tools. RUP can be tailored to make the process agile. RUP's

process-based approach helps to develop a robust system

http://en.wikipedia.org/wiki/Use_case_diagram
http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Package_diagram
http://en.wikipedia.org/w/index.php?title=Executable_Architecture_Baseline&action=edit&redlink=1

6.0 Tutor Marked Assignment

 1. What are the characteristics of Rational Unified Process known to you.

 2. Does RUP contribute major significance in Project Management? How?

7.0 References

http://www.asapm.org/asapmag/articles/A7_AboutRUP.pdf

http://www.augsburg.edu/ppages/~schwalbe/C6919_ch01.pdf

http://en.wikipedia.org/wiki/Unified_Process

http://www.asapm.org/asapmag/articles/A7_AboutRUP.pdf
http://www.augsburg.edu/ppages/~schwalbe/C6919_ch01.pdf
http://en.wikipedia.org/wiki/Unified_Process

UNIT 7: REQUIREMENT DISCIPLINE AND DETAILED REQUIREMENT

MODELLING

Content

1.0 Introduction

2.0 Objectives

3.0 Main Body

3.1 What is Requirement

3.2 The Purpose of Requirement Discipline

3.3 Requirement Management

3.4 Requirement Modeling Vs Requirement Analysis

3.5 Overview of Requirement Modeling

3.6 Discovering Requirement Associations

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 References

1.0 Introduction

With no end in sight, system complexity continues to increase, worsening the

challenges that have already plagued systems designers for years. Incomplete

or volatile requirements, poorly specified and managed interfaces, integration

testing finding problems at the very last stages of a program, development and

analysis in disconnected domains, multi-domain expertise in short supply, and

coordinating work and status across multilevel supply chains – these are all

problems commonly discussed among systems developers. Modern software

development processes, like the Rational Unified Process, prescribe iterative

approach to software development. One of the fundamental assumptions of an

iterative process is that system requirements don’t have to be completely

understood to commence development. At first glance the assumption that one

can start developing a system without completely understanding its

requirements seems paradoxical. However, upon closer inspection, it is the

understanding of these requirements, the associated development risks, and the

system architecture that drive the early iterations of system development.

In the scope of systems and software engineering, requirement modeling is

increasingly recognized as a separate activity. Its importance grows with the

size and complexity of the intended system. To carry out requirement

modeling, a number of different approaches have been developed, many of

which are supported by dedicated CASE tools (to name but a few, Caliber RM,

Rational Requisite Pro, Catalyze, etc.). This unit outlines the meaning of

requirement, requirement management and purpose for requirement discipline.

The unit also differentiate requirement modeling from requirement analysis,

dealt with requirement modeling approach as well as requirement

decomposition.

2.0 Objectives

 At the end of this unit, students should be able to

1. Define requirement and understand different kinds of requirements

2. Understanding requirement management

3. Know the purpose for requirement discipline

4. Differentiate Requirement Modeling from Requirement Analysis

5. Know the general overview of Requirement Modeling

6. Discover association between requirements

3.0 Main Body

3.1 What is Requirement

A requirement is defined as "a condition or capability to which a system must

conform". There are many different kinds of requirements. One way of

categorizing them is described as the FURPS + model, using the acronym

FURPS to describe the major categories of requirements with subcategories as

shown below.

• Functionality

• Usability

• Reliability

• Performance

• Supportability

The "+" in FURPS+ reminds you to include such requirements as:

• design constraints

• implementation requirements

• interface requirements

• physical requirements.

3.2 Requirement Management

Requirements management is a systematic approach to finding, documenting,

organizing and tracking the changing requirements of a system.

A formal definition of requirements management is that it is a systematic

approach to:

• eliciting, organizing, and documenting the requirements of the system, and

• establishing and maintaining agreement between the customer and the project

team on the changing requirements of the system.

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_req.htm#Functionality
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_req.htm#Usability
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_req.htm#Reliability
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_req.htm#Performance
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_req.htm#Supportability
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_req.htm#Design%20Requirement
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_req.htm#Implementation%20Requirement
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_req.htm#Interface%20Requirement
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_req.htm#Physical%20Requirement
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_reqty.htm

Keys to effective requirements management include maintaining a clear

statement of the requirements, along with applicable attributes for each

requirement type and traceability to other requirements and other project

artifacts.

Collecting requirements may sound like a rather straightforward task. In real

projects, however, you will run into difficulties because:

• Requirements are not always obvious, and can come from many sources.

• Requirements are not always easy to express clearly in words.

• There are many different types of requirements at different levels of detail.

• The number of requirements can become unmanageable if not controlled.

• Requirements are related to one another and also to other deliverables of the

software engineering process.

• Requirements have unique properties or property values. For example, they are

neither equally important nor equally easy to meet.

• There are many interested parties, which means requirements need to be

managed by cross-functional groups of people.

• Requirements change.

So, what skills do you need to develop in your organization to help you manage

these difficulties? The following skills are important to master:

• Problem analysis

• Understanding stakeholder needs

• Defining the system

• Managing scope of the project

• Refining the system definition

• Managing changing requirements

Problem Analysis

Problem analysis is done to understand problems, initial stakeholder needs, and

propose high-level solutions. It is an act of reasoning and analysis to find "the

problem behind the problem". During problem analysis, agreement is gained on

the real problem(s), and who the stakeholders are. Also, you define what from a

business perspective are the boundaries of the solution, as well as business

constraints on the solution. You should also have analyzed the business case

for the project so that there is a good understanding of what return is expected

on the investment made in the system being built.

Understanding Stakeholder Needs

Requirements come from many sources, examples would be customers,

partners, end users, and domain experts. You need to know how to best

determine what the sources should be, get access to those sources, and also

how to best elicit information from them. The individuals who provide the

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_req.htm
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/artifact/ar_rattr.htm
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_reqty.htm
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_trace.htm
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_rm.htm#Problem%20Analysis
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_rm.htm#Understanding%20Stakeholder%20Needs
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_rm.htm#Defining%20the%20System
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_rm.htm#Managing%20the%20Scope%20of%20the%20Project
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_rm.htm#Refining%20the%20System%20Definition
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_rm.htm#Managing%20Changing%20Requirements

primary sources for this information are referred to as stakeholders in the

project. If you’re developing an information system to be used internally within

your company, you may include people with end user experience and business

domain expertise in your development team. Very often you will start the

discussions at a business model level rather than a system level. If you’re

developing a product to be sold to a market place, you may make extensive use

of your marketing people to better understand the needs of customers in that

market.

Elicitation activities may occur using techniques such as interviews,

brainstorming, conceptual prototyping, questionnaires, and competitive

analysis. The result of the elicitation would be a list of requests or needs that

are described textually and graphically, and that have been given priority

relative one another.

Defining the System

To define the system means to translate and organize the understanding of

stakeholder needs into a meaningful description of the system to be built. Early

in system definition, decisions are made on what constitutes a requirement,

documentation format, language formality, degree of requirements specificity

(how many and in what detail), request priority and estimated effort (two very

different valuations usually assigned by different people in separate exercises),

technical and management risks, and initial scope. Part of this activity may

include early prototypes and design models directly related to the most

important stakeholder requests. The outcome of system definition is a

description of the system that is both natural language and graphical.

Managing the Scope of the Project

To efficiently run a project, you need to carefully prioritize the requirements,

based on input from all stakeholders, and manage its scope. Too many projects

suffer from developers working on so called "Easter eggs" (features the

developer finds interesting and challenging), rather than early focusing on tasks

that mitigate a risk in the project or stabilize the architecture of the application.

To make sure that you resolve or mitigate risks in a project as early as possible,

you should develop your system incrementally, carefully choosing

requirements to for each increment that mitigates known risks in the project. To

do so, you need to negotiate the scope (of each iteration) with the stakeholders

of the project. This typically requires good skills in managing expectations of

the output from the project in its different phases. You also need to have

control of the sources of requirements, of how the deliverables of the project

look, as well as the development process itself.

Refining the System Definition

The detailed definition of the system needs to be presented in such a way that

your stakeholders can understand, agree to, and sign off on them. It needs to

cover not only functionality, but also compliance with any legal or regulatory

requirements, usability, reliability, performance, supportability, and

maintainability. An error often committed is to believe that what you feel is

complex to build needs to have a complex definition. This leads to difficulties

in explaining the purpose of the project and the system. People may be

impressed, but they will not give good input since they don’t understand. You

should put lots effort in understanding the audience for the documents you are

producing to describe the system. You may often see a need to produce

different kinds of description for different audiences.

We have seen that the use-case methodology, often in combination with simple

visual prototypes, is a very efficient way of communicating the purpose of the

system and defining the details of the system. Use cases help put requirements

into a context, they tell a story of how the system will be used.

Another component of the detailed definition of the system is to state how the

system should be tested. Test plans and definitions of what tests to perform

tells us what system capabilities will be verified.

Managing Changing Requirements

No matter how careful you are about defining your requirements, there will

always be things that change. What makes changing requirements complex to

manage is not only that a changed requirement means that more or less time

has to be spent on implementing a particular new feature, but also that a change

to one requirement may have an impact on other requirements. You need to

make sure that you give your requirements a structure that is resilient to

changes, and that you use traceability links to represent dependencies between

requirements and other artifacts of the development lifecycle. Managing

change include activities like establishing a baseline, determining which

dependencies are important to trace, establishing traceability between related

items, and change control.

3.3 Purpose for Requirement Discipline

The purpose of the Requirements discipline is:

• To establish and maintain agreement with the customers and other stakeholders

on what the system should do.

• To provide system developers with a better understanding of the system

requirements.

• To define the boundaries of (delimit) the system.

• To provide a basis for planning the technical contents of iterations.

• To provide a basis for estimating cost and time to develop the system.

• To define a user-interface for the system, focusing on the needs and goals of

the users.

To achieve these goals, it is important, first of all, to understand the definition

and scope of the problem which we are trying to solve with this system. The

Business Rules, Business Use-Case Model and Business Object Model

developed during Business Modeling will serve as valuable input to this

effort. Stakeholders are identified and Stakeholder Requests are elicited,

gathered and analyzed.

3.4 Requirement Modeling Vs Requirement Analysis

The term "requirement analysis" is often used in the systems and software

engineering to refer to a process of building up a specification of the system to

be built.

Typically, this term refers to a process of building such specification of the

system that:

1. Satisfies the customer's demands with respect to the system in question.

2. Provides sufficient information to build the system.

The requirement analysis often employs formal or semi-formal modeling

techniques and notations, such as business process modeling, use case

modeling, class or data modeling, etc. This, generally, means that the results of

requirement analysis are not directly presentable to a customer, who is usually

an expert in his domain area but has little understanding of these notations.

The term "requirement modeling" is somewhat similar – it refers to a process of

building up a specification of the system which has the same two properties as

listed above, but, in addition, is centered about the third, most important

property:

3. The resulting specification must be understood in the same manner by

both customer (who wants the system to be built and pays for the

development) and developer (who is responsible for actually building

it).

The approach described here makes a clear distinction between requirement

modeling and requirement analysis:

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/artifact/ar_brules.htm
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/artifact/ar_bucm.htm
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/artifact/ar_bom.htm
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/ovu_busm.htm
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workers/wk_sthld.htm
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/artifact/ar_stnds.htm

• Requirement modeling results in a requirement specification, the main

purpose of which is to allow the customer and the developer to agree on

what is being developed.

• The main goal of analysis (specifically, requirement analysis) is to

provide a formal or semi-formal description of the system being built (in

general, the main goal of analysis is to provide a formal or semi-formal

description of the problem to be solved, while design provides a formal

or semi-formal description of the intended solution).

3.5 Overview of Requirement Modeling

The general process flow of the requirement modeling is shown on the Figure

7.1. This represents the general case; depending on the specifics of a system

being developed, some activities may become trivial or may be bypassed

altogether.

Event External

event

Process

break
Process

Composite process

Prepare requirements baseline for an increment

Synchronization of
requirement specifications

with glossary

Creating secondary
classifications of

requirements

Creation of
requirements

baseline

Synchronization of
requirement specifications

with glossary

Creating secondary
classifications of

requirements

Creation of
requirements

baseline

Preparation for
requirement
gathering

Gathering raw
requirements

Initial requirement
classification

Requirement
decomposition

Discovering
requirement
associations

Discovering
glossary terms

Structuring the
glossary

Normalizing the
glossary

Request additional
input from customer

Customer initiates
the project

Insufficient
information

Additional
information available

Requirements
baseline ready

Wait for
clarification

Figure 1: The requirement modeling process

Individual elements of the requirement modeling process are examined in more

detail below.

Figure 7.1: Requirement Modeling Process

Participants

In the scope of this course guide, several different parties (also known as actors

or roles) are involved into the requirement modeling:

1. Customer – wants the system in question to be developed and pays for

the development.

2. Developer – a person or a team who will do the actual development and

deliver the system to the customer.

3. Requirement modeler – a person or a team who facilitates the

communication between the customer and the developer. An important

part of this communication is constituted by requirement specification.

Of course, in real projects the same person can play more than one of the above

roles. This, however, does not affect the general requirement modeling process.

Initiating requirement modeling

The process of requirement gathering is always initiated by the customer. The

customer's decision "it's time to start building a solution" is usually

accompanied by some initial information about what the customer wants. Of

course, this information rarely provides enough to build the system in question.

Usually the customer will later volunteer more demands (or change existing

ones) and provide clarifications to the gray areas when a developer needs it.

The preparation for requirement gathering largely depends on what tools are

being used for requirement modeling. The most important part of this

preparation is capturing and categorizing all information provided by the

customer in its raw form - this is what requirement modeling will work with.

In the scope of our approach we use the term project document library to refer

to a collection of raw information provided by the customer for the specific

project. The individual documents in this library are project visions, relevant

standards, customer interview logs, etc. The main idea here is that a project

document library will contain all raw information relevant for the project and

nothing else.

Gathering raw requirements

A single requirement is, basically, a constraint on the system being developed.

Each of these constraints typically addresses a single specific aspect of the

system and can be positive ("the system must do X"), negative ("the system

must not do X") or some shade in between ("It would be nice for the system to

do X, but we can live without it just as well").

The process of gathering raw requirements basically involves going through the

project document library, finding such constraints and creating a separate

requirement for each constraint found. At this point we don't care about things

like classifying these requirements or whether they conflict with each other. All

we need to do is to collect the requirements and tag each one with the

importance / urgency (Must, Should, Could, Must not, etc.).

As the requirement modeling diagram (Figure 4.1) suggests, the process of

gathering raw requirements is not usually performed in one go. Each time

customer provides more information (either voluntary or answering a request

from a requirement modeler or developer) this new information must be

scanned for additional requirements.

Initial classification of requirements

Once requirements are identified, it's a good idea to classify them. This breaks

up a large set of requirements into logically related subsets (requirement

classes), which greatly simplifies working with requirements. Note, that

requirement classification is usually not visible to the customer, but is

introduced to make life easier for the developer.

How to classify requirement is largely project- and developer- specific. The

traditional separation of requirements into functional and non-functional is well

known and can be further refined if necessary. For example, non-functional

requirements may be further subdivided into requirements dealing with

performance, requirements dealing with security, etc. It is also often beneficial

to have several independent classifications of the same set of requirements,

thus providing different views of the same requirement set for different

purposes.

3.6 Discovering Requirement Associations

Requirements are not independent of each other. It is up to the requirement

modeler to decide what associations between requirements are relevant and

shall be tracked. Specific examples of such associations include:

• Requirement dependency: if a requirement A depends upon the

requirement B, then it is impossible to implement A without

implementing B first. The information about requirement dependency is

important for both change impact analysis and deciding what

requirements to include in a specific requirement baseline.

• Requirement conflict: it is not uncommon for the customer to make

contradictory demands, especially when these demands come from more

than one source. When these demands become requirements, it is

essential that the information about their incompatibility be captured.

Conflicting requirements can never be implemented in the same system

and, as a result, always require clarification from the customer.

• Requirement equivalence: two equivalent requirements describe the

same constraint on the system in different terms. Clearly, only one of

these should be retained so, again, a clarification from the customer is

needed.

• Requirement correlation: it is often the case that a number of

requirements must be treated as a group, i.e. if one of these requirements

makes it into the release, then the entire group must do the same. For

example, when a composite requirement is split into simple

requirements, the resulting simple requirements are correlated, because,

to the customer, they are still one requirement (the original composite

one; decomposition is just a way to make life easier for the developer).

4.0 Conclusion

Something has got to change. It is becoming too costly and risky to develop

complex, multi-discipline systems using processes of the past. Working

sequentially and in isolation, waiting for late stage testing to validate/verify the

product, and relying on static documents to drive the process are outdated

methods that are yielding late, costly, and malfunctioning systems. This unit

uncover the meaning of system development requirements and it various kinds,

the purpose for requirement discipline, requirement management, difference

between requirement modeling and requirement analysis and how to discover

requirement associations.

5.0 Summary

A requirement is a condition or capability to which a system must conform.

There are many different kinds of requirements. One way of categorizing them

is described as the FURPS + model. Requirements management is a systematic

approach to finding, documenting, organizing and tracking the changing

requirements of a system. Skills needed to develop to help manage requirement

difficulties include problem analysis, understanding stakeholder needs,

defining the system, managing scope of the project, refining the system

definition and managing changing requirements. One of the purpose of

requirements discipline is to establish and maintain agreement with the

customers and other stakeholders on what the system should do.

6.0 Tutor Marked Assignment

 1. Explain five purpose for requirement discipline.

 2. With the aid of a well labeled diagram, explain requirement modeling.

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_rm.htm#Problem%20Analysis
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_rm.htm#Understanding%20Stakeholder%20Needs
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_rm.htm#Defining%20the%20System
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_rm.htm#Managing%20the%20Scope%20of%20the%20Project
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_rm.htm#Refining%20the%20System%20Definition
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_rm.htm#Refining%20the%20System%20Definition
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/co_rm.htm#Managing%20Changing%20Requirements

7.0 References

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/req
uirem/in_req.htm

http://www.computer.org/comp/proceedings/re/2002/1465/00/146500
06.pdf

http://www.erts2012.org/Site/0P2RUC89/TA-1.pdf

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/in_req.htm
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/requirem/in_req.htm
http://www.computer.org/comp/proceedings/re/2002/1465/00/14650006.pdf
http://www.computer.org/comp/proceedings/re/2002/1465/00/14650006.pdf
http://www.erts2012.org/Site/0P2RUC89/TA-1.pdf

UNIT 8: DESIGN ACTIVITIES AND ENVIRONMENTS

Content

1.0 Introduction

2.0 Objectives

3.0 Main Body

 3.1 Tasks and Activities in Design Phase

 3.2 Design phase overview

 3.3 Design phase issues for consideration

 3.4 Design phase review activities

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 References

1.0 Introduction

The objective of the design phase in system development is to transform the

detailed, defined requirements into complete, detailed specifications for the

system to guide the work of the development phase. The decisions made in this

phase address, in detail, how the system will meet the defined functional,

physical, interface, and data requirements. Design Phase activities may be

conducted in an iterative fashion, producing first a general system design that

emphasizes the functional features of the system, then a more detailed system

design that expands the general design by providing all the technical detail.

This unit discuss the tasks and activities that are performed during the design

phase and an overview of the design phase environment.

2.0 Objectives

 Students at the end of this unit should be able to:

 1. Know various tasks and activities carried out during design phase

 2. Understand the design phase overview

 3. Know issues to be considered during design

4. Understand the ability to review activities that took place in design

phase

3.0 Main Body

3.1 Tasks and Activities in Design Phase

The following tasks are performed during the Design Phase. The tasks and

activities actually performed depend on the nature of the project.

Establish the Application Environment

Identify/specify the target, the development and the design and testing

environment. How and where will the application reside. Describe the

architecture where this application will be developed and tested and who is

responsible for this activity.

Design the Application

In the system design, first the general system characteristics are defined. The

data storage and access for the database layer need to be designed. The user

interface at the desktop layer needs to be designed. The business rules layer or

the application logic needs to be designed.

Establish a top-level architecture of the system and document it. The

architecture shall identify items of hardware, software, and manual-operations.

All the system requirements should be allocated among the hardware

configuration items, software configuration items, and manual operations.

Transform the requirements for the software item into an architecture that

describes its top-level structure and identifies the software components. Ensure

that all the requirements for the software item are allocated to its software

components and further refined to facilitate detailed design. Develop and

document a top-level design for the interfaces external to the software item and

between the software components of the software item.

Develop Maintenance Manual

Develop the maintenance manual to ensure continued operation of the system

once it is completed.

Develop Operations Manual

Develop the Operations Manual for mainframe systems/applications and the

System Administration Manual for client/server systems/applications.

Conduct Preliminary Design Review

This is an ongoing interim review of the system design as it evolves through

the Design Phase. This review determines whether the initial design concept is

consistent with the overall architecture and satisfies the functional, security,

and technical requirements in the Functional Requirements Document.

Design Human Performance Support (Training)

Identify the users and how they will be trained on the new system. Be sure to

address the users with disabilities so as to ensure equal access to all individuals.

Design Conversion/Migration/Transition Strategies

If current information needs to be converted/migrated/transitioned to the new

system, plans need to be designed for those purposes, especially if converting

means re-engineering existing processes.

Conduct a Security Risk Assessment

Conduct a security risk assessment by addressing the following components:

assets, threats, vulnerabilities, likelihood, consequences and safeguards. The

risk assessment evaluates compliance with baseline security requirements,

identifies threats and vulnerabilities, and assesses alternatives for mitigating or

accepting residual risks.

Conduct Critical Design Review

The Project Manager and System Proponent conduct the critical design review

and approve/disapprove the project into the Development Phase. This review is

conducted at the end of the Design Phase and verifies that the final system

design adequately addresses all functional, security, and technical requirements

and is consistent with the overall architecture.

Revise Previous Documentation

Review documents from the previous phases and assess the need to revise them

during the Design Phase. The updates should by signed off by the Project

Manager.

3.2 Design Phase Overview

Figure 8.1: Design Phase Overview

The design environment has the project team who typically performs the key

activities identified in Figure 8.1. Each activity is subsequently decomposed

into the main tasks that the project team should execute to ensure that it

successfully and efficiently accomplishes the activity. The activities and tasks

are listed in the recommended order of completion; however, the actual order

will depend on the particular project.

3.3 Design Phase issues for consideration

Project Decision Issues

The decisions of this phase re-examine in greater detail many of the parameters

addressed in previous phases. The design prepared in this phase will be the

basis for the activities of the Development Phase. The overall objective is to

establish a complete design for the system. The pre-requisites for this phase are

the Project Plan, Functional Requirements Document, and Test Plan. A number

of project approach, project execution, and project continuation decisions are

made in this phase.

Project approach decisions include

• Identifying existing or COTS components that can be used, or economically

modified, to satisfy validated functional requirements.

• Using appropriate prototyping to refine requirements and enhance user and

developer understanding and interpretation of requirements.

• Selecting specific methodologies and tools to be used in the later life cycle

phases, especially the Development and Implementation Phases.

• Determining how user support will be provided, how the remaining life cycle

phases will be integrated, and newly identified risks and issues handled.

Project execution decisions include

• Modifications that must be made to the initial information system need

• Modifications that will be made to current procedures

• Modifications that will be made to current systems/databases or to other

systems/databases under development

• How conversion of existing data will occur

Project continuation decisions include

• The continued need of the information system to exist

• The continued development activities based on the needs addressed by the

design

• Availability of sufficient funding and other required resources for the

remainder of the systems life cycle

The system user community shall be included in the Design Phase actions as

needed. It is also in the Design Phase that new or further requirements might be

discovered that are necessary to accommodate individuals with disabilities.

Security Issues

The developer shall obtain the requirements from the System Security Plan and

allocate them to the specific modules within the design for enforcement

purposes. For example, if a requirement exists to audit a specific set of user

actions, the developer may have to add a work flow module into the design to

accomplish the auditing.

Detailed security requirements provide users and administrators with

instructions on how to operate and maintain the system securely. They should

address all applicable computer and telecommunications security requirements,

including: system access controls; marking, handling, and disposing of

magnetic media and hard copies; computer room access; account creation,

access, protection, and capabilities; operational procedures; audit trail

requirements; configuration management; processing area security; employee

check-out; and emergency procedures. Security operating procedures may be

created as separate documents or added as sections or appendices to the User

and Operations Manuals. This activity should be conducted during the Design

Phase.

3.4 Design Phase Review Activity

Upon completion of all design phase tasks and receipt of resources for the next

phase, the Project Manager, together with the project team should prepare and

present a project status review for the decision maker and project stakeholders.

The review should address: (1) Design Phase activities status, (2) planning

status for all subsequent life cycle phases (with significant detail on the next

phase, to include the status of pending contract actions), (3) resource

availability status, and (4) acquisition risk assessments of subsequent life cycle

phases given the planned acquisition strategy.

4.0 Conclusion

This unit looked into the tasks and activities involved in design phase of a

system development life cycle. An overview of the design phase environment

and issues to be considered during the design phase was dealt with. Once the

design phase is completed, there is a need to review all activities carried out

before moving to the development phase, this was discussed in the last topic of

this unit.

5.0 Summary

During the design phase activities, the project team transforms the baselined

requirements into a detailed system design. At the conclusion of the design

phase, the project team should have a design that is aligned with the

architecture standards, accommodates the estimated system workload to ensure

that sufficient system resources are available before the system is deployed,

and can be supported within the existing infrastructure environment. Any

subsequent changes to the approved system design during the development of

the system or when the system is operational first must be approved by

Technical Architecture and Integration before the project team may make any

system changes implementing the proposed design changes.

Upon completion of all design phase tasks and receipt of resources for the next

phase, the Project Manager, together with the project team should prepare and

present a project status review for the decision maker and project stakeholders.

6.0 Tutor Marked Assignment

1. Explain five security requirements that are needed to be addressed

during the design phase of a system development.

2. What do we mean by establishing application environment in the design

phase of a system development.

7.0 References

http://www.justice.gov/jmd/irm/lifecycle/ch7.htm

http://www.liteea.com/slgcp/governance/sdlc/slm7.pdf

http://www.justice.gov/jmd/irm/lifecycle/ch7.htm
http://www.liteea.com/slgcp/governance/sdlc/slm7.pdf

UNIT 9: USE CASE REALIZATION

Content

1.0 Introduction

2.0 Objectives

3.0 Main Body

 3.1 Definition of Use Case

 3.2 First Principles of Use Case

 3.3 Use Case Realization

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

8.0 References

1.0 Introduction

Use cases make it clear what a system is going to do and, by intentional

omission, what it is not going to do. They enable the effective envisioning,

scope management and incremental development of systems of any type and

any size. They have been used to drive the development of software systems.

Over the years they have become the foundation for many different methods

and an integral part of the Unified Modeling Language. They are used in many

different contexts and environments, and by many different types of team. For

example use cases can be beneficial for both small agile development teams

producing user-intensive applications and large projects producing complex

systems of interconnected systems, such as enterprise systems, product lines,

and systems in the cloud.

This unit looked at the meaning of use case, six basic principles at the heart of

successful application of use cases and how they can be used to introduce the

concept of use-case modeling and use-case driven development. It also dealt

with use case realization.

2.0 Objectives

 Students at the end of this unit should be able to:

 1. Know the meaning of use-case

 2. Know the six basic first principles of use case

3. Understand use case realization.

3.0 Main Body

3.1 What is Use-Case

A use case is all the ways of using a system to achieve a particular goal for a

particular user. Taken together the set of all the use cases gives you all of the

useful ways to use the system, and illustrates the value that it will provide.

Use-case approach has a much broader scope than just requirements capture.

They can and should be used to drive the development, which means that the

supports the analysis, design, planning, estimation, tracking and testing of

systems. It does not prescribe how you should plan or manage your

development work, or how you should design, develop or test your system. It

does however provide a structure for the successful adoption of your selected

management and development practices.

A use case analysis is the most common technique used to identify the

requirements of a system (normally associated with software/process design)

and the information used to both define processes used and classes (which are a

collection of actors and processes) which will be used both in the use case

diagram and the overall use case in the development or redesign of a software

system or program. The use case analysis is the foundation upon which the

system will be built.

3.2 First Principles of Use Cases

There are six basic principles at the heart of any successful application of use

cases:

1. Keep it simple by telling stories

2. Understand the big picture

3. Focus on value

4. Build the system in slices

5. Deliver the system in increments

6. Adapt to meet the team’s needs

Principle 1: Keep it simple by telling stories

Storytelling is how cultures survive and progress; it is the simplest and most

effective way to pass knowledge from one person to another. It is the best way

to communicate what a system should do, and to get everybody working on the

system to focus on the same goals.

The use cases capture the goals of the system. To understand a use case we tell

stories. The stories cover how to successfully achieve the goal, and how to

handle any problem that may occur on the way. Use cases provide a way to

identify and capture all the different but related stories in a simple but

comprehensive way. This enables the system’s requirements to be easily

captured, shared and understood. As a use case is focused on the achievement

of a particular goal, it provides a focus for the storytelling. Rather than trying to

describe the system in one go we can approach it use case by use case. The

results of the storytelling are captured and presented as part of the use-case

narrative that accompanies each use case.

When using storytelling as a technique to communicate requirements it is

essential to make sure that the stories are captured in a way that makes them

actionable and testable. A set of test cases accompanies each use-case narrative

to complete the use case’s description. The test cases are the most important

part of a use case’s description, more important even than the use-case

http://en.wikipedia.org/wiki/Use_case_diagram
http://en.wikipedia.org/wiki/Use_case_diagram
http://en.wikipedia.org/wiki/Use_case

narrative. This is because they make the stories real, and their use can

unambiguously demonstrate that the system is doing what it is supposed to do.

It is the test cases that define what it means to successfully implement the use

case.

Principle 2: Understand the big picture

Whether the system you are developing is large or small, whether it is a

software system, a hardware system or a new business, it is essential that you

understand the big picture. Without an understanding of the system as a whole

you will find it impossible to make the correct decisions about what to include

in the system, what to leave out of it, what it will cost, and what benefit it will

provide. This doesn’t mean capturing all the requirements up front. You just

need to create something that sums up the desired system and lets you

understand scope and progress at a system level.

A use-case diagram is a simple way of presenting an overview of a system’s

requirements. Figure 9.1 shows the use-case diagram for a simple telephone

system. From this picture you can see all the ways the system can be used, who

starts the interaction, and any other parties involved. For example a Calling

Subscriber can place a local call or a long-distance call to any of the system’s

Callable Subscribers. You can also see that the users don’t have to be people

but can also be other systems, and in some cases both (for example the role of

the Callable Subscriber might be played by an answering machine and not a

person).

Figure 9.1: Use-Case Diagram for a simple Telephone System

A use-case diagram is a view into a use-case model. Use-case models

acknowledge the fact that systems support many different goals from many

different stakeholders. In a use-case model the stakeholders that use the system

and contribute to the completion of the goals are modeled as actors, and the

ways that the system will be used to achieve these goals are modeled as use

cases. In this way the use-case model provides the context for the system’s

requirements to be discovered, shared and understood. It also provides an

easily accessible big picture of all the things the system will do. In a use-case

diagram, such as Figure 9.1, the actors are shown as stick-men and the use

cases as ellipses. The arrowheads indicate the initiator of the interaction (an

Actor or the System) allowing you to clearly see who starts the use case.

A use-case model is a model of all the useful ways to use a system. It allows

you to very quickly scope the system – what is included and what is not – and

give the team a comprehensive picture of what the system will do. It lets you

do this without getting bogged down in the details of the requirements or the

internals of the system. With a little experience it is very easy to produce use-

case models for even the most complex systems, creating an easily accessible

big picture that makes the scope and goals of the system visible to everyone

involved.

Principle 3: Focus on value

When trying to understand how a system will be used it is always important to

focus on the value it will provide to its users and other stakeholders. Value is

only generated if the system is actually used; so it is much better to focus on

how the system will be used than on long lists of the functions or features it

will offer.

Use cases provide this focus by concentrating on how the system will be used

to achieve a specific goal for a particular user. They encompass many ways of

using the system; those that successfully achieve the goals, and those that

handle any problems that may occur. To make the value easy to quantify,

identify and deliver you need to structure the use-case narrative. To keep things

simple start with the simplest possible way to achieve the goal. Then capture

any alternative ways of achieving the goal and how to handle any problems that

might occur whilst trying to achieve the goal. This will make the relationships

between the ways of using the system clear. It will enable the most valuable

ways to be identified and progressed up front, and allow the less valuable ones

to be added later without breaking or changing what has gone before.

Figure 9.2 shows a use-case narrative structured. The simplest way of

achieving the goal is described by the basic flow. Others are presented as

alternative flows. In this way you create a set of flows that structure and

describe the stories, and help us to find the test cases that complete their

definition.

Figure 9.2: The Structure of a Use-Case Narrative

Figure 9.2 shows the narrative structure for the Withdraw Cash use case for a

cash machine. The basic flow is shown as a set of simple steps that capture the

interaction between the users and the system. The alternative flows identify any

other way of using the system to achieve the goal such as asking for a non-

standard amount, any optional facilities that may be offered to the user such as

dispensing a receipt, and any problem that could occur on the way to achieving

the goal such as the card getting stuck.

You don’t need to capture all of the flows at the same time. Whilst recording

the basic flow, it is natural to think about other ways of achieving the goal, and

what could go wrong at each step. You capture these as Alternative Flows, but

concentrate on the Basic Flow. You can then return to complete the alternative

flows later as and when they are needed.

Principle 4: Build the system in slices

Most systems require a lot of work before they are usable and ready for

operational use. They have many requirements, most of which are dependent

on other requirements being implemented before they can be fulfilled and value

delivered. It is always a mistake to try to build such a system in one go. The

system should be built in slices, each of which has clear value to the users.

This is quite simple. First, identify the most useful thing that the system has to

do and focus on that. Then take that one thing, and slice it into thinner slices.

Decide on the test cases that represent acceptance of those slices. Some of the

slices will have questions that can’t be answered. Put those aside for the

moment. Choose the most central slice that travels through the entire concept

from end to end, or as close to that as possible. Estimate it as a team (estimates

don’t have to be “right”, they’re just estimates), and start building it.

Principle 5: Deliver the system in increments

Most software systems evolve through many generations. They are not

produced in one go; they are constructed as a series of releases each building

on the one before. Even the releases themselves are often not produced in one

go, but are evolved through a series of increments. Each increment provides a

demonstrable or usable version of the system. Each increment builds on the

previous increment to add more functionality or improve the quality of what

has come before. This is the way that all systems should be produced.

The use cases themselves can also be too much to consider delivering all at

once. For example, we probably don’t need all the ways of placing a local call

in the very first increment of a telephone system. The most basic facilities may

be enough to get us up and running. The more optional or niche ways of

placing a local call such as reversing the charges or redialing the last number

called can be added in later increments. By slicing up the use cases we can

achieve the finer grained control required to maximize the value in each

release.

Figure 9.3 shows the incremental development of a release of a system. The

first increment only contains a single slice: the first slice from use case 1. The

second increment adds another slice from use case 1 and the first slice from use

case 2. Further slices are then added to create the third and fourth increments.

The fourth increment is considered complete and useful enough to be released.

Figure 9.3: Use Cases, Use-Case Slices, Increments, and Releases

Use cases are a fabulous tool for release planning. Working at the use-case

level allows whole swathes of related requirements to be deferred until the later

releases. By making decisions at the use-case level you can quickly sketch out

the big picture and use this to focus in on the areas of the system to be

addressed in the next release.

Use-case diagrams, showing which use cases are to be addressed in this release

and which are to be left until a later release, are a great tool for illustrating the

team’s goals. They clearly show the theme of each release and look great

pinned up on the walls of your war-room for everybody to see.

Use-case slices are a fabulous tool for building smaller increments on the way

to a complete release. They allow you to target independently implementable

and testable slices onto the increments ensuring that each increment is larger

than, and builds on, the one before.

Principle 6: Adapt to meet the team’s needs

There is no ‘one size fits all’ solution to the challenges of software

development; different teams and different situations require different styles

and different levels of detail. Regardless of which practices and techniques you

select, you need to make sure that they are adaptable enough to meet the

ongoing needs of the team. This applies to the practices you select to share the

requirements and drive the software development as much as any other. For

example lightweight requirements are incredibly effective when there is close

collaboration with the users, and the development team can get personal

explanations of the requirements and timely answers to any questions that arise.

If this kind of collaboration is not possible, because the users are not available,

then the requirements will require more detail and will inevitably become more

heavyweight.

There are many other circumstances where a team might need to have more

detailed requirements as an input to development. However, what’s important

is not listing all of the possible circumstances where a lightweight approach

might not be suitable but to acknowledge the fact that practices need to scale.

3.3 Use-Case Realization

A use-case realization represents how a use case will be implemented in terms

of collaborating objects. This artifact can take various forms. It can include, for

example, a textual description (a document), class diagrams of participating

classes and subsystems, and interaction diagrams (communication and

sequence diagrams) that illustrate the flow of interactions between class and

subsystem instances.

The reason for separating the use-case realization from its use case is that doing

so allows the use cases to be managed separately from their realizations. This is

particularly important for larger projects, or families of systems where the same

use cases can be designed differently in different products within the product

family. Consider the case of a family of telephone switches which have many

use cases in common, but which design and implement them differently

according to product positioning, performance and price.

For larger projects, separating the use case and its realization allows changes to

the design of the use case without affecting the baselined use case itself.

In a model, a use-case realization is represented as a UML collaboration that

groups the diagrams and other information (such as textual descriptions) that

form part of the use-case realization.

UML diagrams that support use-case realizations can be produced in an

analysis context, a design context, or both, depending on the needs of the

project. For each use case in the use-case model, there can be a use-case

realization in the analysis/design model with a realization relationship to the

use case. In UML this is shown as a dashed arrow, with an arrowhead like a

generalization relationship, indicating that a realization is a kind of inheritance,

as well as a dependency.

Figure 9.4: Relationship between Use Case Model and Use Case Realization

A use-case realization in the design can be traced to a use case in the use-case

model.

Class Diagrams Owned by a Use-Case Realization

For each use-case realization there can be one or more class diagrams depicting

its participating classes. A class and its objects often participate in several use-

case realizations. It is important while designing to coordinate all the

requirements on a class and its objects that different use-case realizations can

have. Figure 9.5 shows an analysis class diagram for the realization of the

Receive Deposit Item use case. Note the use of boundary-control-entity

stereotypes to represent analysis classes.

Figure 9.5 The use case Receive Deposit Item and its analysis-level class

diagram.

Communication and Sequence Diagrams Owned by a Use-Case

Realization

For each use-case realization there can be one or more interaction diagrams

depicting its participating objects and their interactions. There are two types of

interaction diagrams: sequence diagrams and communication diagrams. They

express similar information, but show it in different ways. Sequence diagrams

show the explicit sequence of messages and are better when it is important to

visualize the time ordering of messages, whereas communication diagrams

show the communication links between objects and are better for understanding

all of the effects on a given object and for algorithm design.

Realizing use cases through interaction diagrams helps to keep the design

simple and cohesive. Assigning responsibilities to classes on the basis of what

the use-case scenario explicitly requires encourages the design to contain the

following:

• Only the functionality actually used in support of a use case scenario,

• Functionality that can be tested through an associated test case,

• Functionality that is more easily traceable to requirements and changes,

• Explicitly declared class dependencies that are easier to manage.

These factors help improve the overall quality of the system.

4.0 Conclusion

This unit presents the essentials of use-case driven development as an

accessible and re-usable practice. It also provides an introduction to the idea of

use cases and their application. It is not a comprehensive guide to all aspects of

use cases, or a tutorial on use-case modeling. It may not be sufficient for you to

adopt the practice.

5.0 Summary

The purpose of a test case is to provide a clear definition of what it means to

complete a slice of the requirements. A test case defines a set of test inputs and

expected results for the purpose of evaluating whether or not a system works

correctly. Test cases provide the building blocks for designing and

implementing tests, provide a mechanism to complete and verify the

requirements, allow tests to be specified before implementation start and

provide a way to assess system quality.

A use-case model is a model of all of the useful ways to use a system, and the

value that they will provide. The purpose of a use-case model is to capture all

of the useful ways to use a system in an accessible format that captures a

system’s requirements and can be used to drive its development and testing. A

use-case model allows teams to agree on the required functionality and

characteristics of a system, clearly establishes the boundary and scope of the

system by providing a complete picture of its actors (being outside the system)

and use cases (being inside the system) and enables agile requirements

management.

The purpose of a use-case narrative is to tell the story of how the system and its

actors work together to achieve a particular goal. Use-case narratives outline

the stories used to explore the requirements and identify the use-case slices,

describe a sequence of actions, including variants that a system and its actors

can perform to achieve a goal, are presented as a set of flows that describe how

an actor uses a system to achieve a goal, and what the system does for the actor

to help achieve that goal, capture the requirements information needed to

support the other development activities.

The purpose of a use-case realization is to show how the system’s elements,

such as components, programs, stored procedures, configuration files and data-

base tables, collaborate together to perform a use case. Use-case realizations

identify the system elements involved in the use cases, capture the

responsibilities of the system elements when performing the use case, describe

how the system elements interact to perform the use case and translate the

business language used in the use-case narratives into the developer language

used to describe the system’s implementation.

6.0 Tutor Marked Assignment

1. Explain in detail, what you understand by use-case model and use-case

narrative.

2. Of what significance is UML in use-case realization?

7.0 References

http://epf.eclipse.org/wikis/openup/practice.tech.use_case_driven_dev.base/gui

dances/guidelines/uc_realizations_448DDA77.html

http://www.outsideininc.com/wp-content/uploads/2012/02/Use-Case

2_0_Feb14_2012.pdf

http://epf.eclipse.org/wikis/openup/practice.tech.use_case_driven_dev.base/guidances/guidelines/uc_realizations_448DDA77.html
http://epf.eclipse.org/wikis/openup/practice.tech.use_case_driven_dev.base/guidances/guidelines/uc_realizations_448DDA77.html
http://www.outsideininc.com/wp-content/uploads/2012/02/Use-Case%202_0_Feb14_2012.pdf
http://www.outsideininc.com/wp-content/uploads/2012/02/Use-Case%202_0_Feb14_2012.pdf

UNIT 10: SYSTEM ACCESS AND IMPLEMENTATION

Content

1.0 Introduction

2.0 Objectives

3.0 Main Body

 3.1 Meaning of System Implementation

 3.2 System Implementation Processes

 3.3 Measurement of System Success

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 References

1.0 Introduction

The purpose of system implementation can be summarized as making the new

system available to a prepared set of users (the deployment), and positioning

on-going support and maintenance of the system within the performing

organization (the transition). At a finer level of detail, deploying the system

consists of executing all steps necessary to educate the consumers on the use of

the new system, placing the newly developed system into production,

confirming that all data required at the start of operations is available and

accurate, and validating that business functions that interact with the system are

functioning properly. This unit discussed the system implementation phase of

system development life cycle and describe how a system can be successfully

deployed for access by the organization.

2.0 Objectives

 Students at the end of this unit, should be able to:

 1. Understand System Implementation

 2. Know list of processes and deliverables in system implementation

 3. Measure success of system access and implementation

3.0 Main Body

3.1 Meaning of System Implementation

System implementation is a realization of a technical specification of a system.

A key difference between System Implementation and all other phases of the

lifecycle is that all project activities up to this point have been performed in

safe, protected, and secure environments, where project issues that arise have

little or no impact on day-to-day business operations. Once the system goes

live, however, this is no longer the case. Any miscues at this point will almost

certainly translate into direct operational and/or financial impacts on the

Performing Organization. It is through the careful planning, execution, and

management of system implementation activities that the Project Team can

minimize the likelihood of these occurrences, and determine appropriate

contingency plans in the event of a problem.

3.2 System Implementation Processes

This phase consists of the following processes:

1. Prepare for System Implementation, where all steps needed in advance

of actually deploying the application are performed, including

preparation of both the production environment and the Consumer

communities.

2. Deploy System, where the full deployment plan, initially developed

during System Design and evolved throughout subsequent lifecycle

phases, is executed and validated.

3. Transition to Performing Organization, where responsibility for and

ownership of the application are transitioned from the Project Team to

the unit in the Performing Organization that will provide system support

and maintenance.

Table 10.1 illustrates all of the processes and deliverables of this phase in the

context of the system development lifecycle.

Table 10.1: List of Process and Deliverables

 Preparing for System Implementation

The purpose of preparing for system implementation is to take all possible

steps to ensure that the upcoming system deployment and transition occurs

smoothly, efficiently, and flawlessly.

In the implementation of any new system, it is necessary to ensure that the

consumer community is best positioned to utilize the system once deployment

efforts have been validated. Therefore, all necessary training activities must be

scheduled and coordinated. As this training is often the first exposure to the

system for many individuals, it should be conducted as professionally and

competently as possible. A positive training experience is a great first step

towards customer acceptance of the system.

Deploying the System

The purpose of the deploying system process is to perform all activities

required to successfully install the new system and make it available to the

consumers.

Deploying the system is the culmination of all prior efforts – where all of the

meetings, planning sessions, deliverable reviews, prototypes, development, and

testing pay off in the delivery of the final system. It is also the point in the

project that often requires the most coordination, due to the breadth and variety

of activities that must be performed. Depending upon the complexity of the

system being implemented, it may impact technical, operational, and cultural

aspects of the organization. A representative sample of high-level activities

might include the installation of new hardware, increased network capabilities,

deployment and configuration of the new system software, a training and

awareness campaign, activation of new job titles and responsibilities, and a

completely new operational support structure aimed at providing Consumer-

oriented assistance during the hours that the new system is available for use (to

name a few).

Transition to Performing Organization

The purpose of transition to performing organization process is to successfully

prepare the organization to assume responsibility for maintaining and

supporting the new application.

In many organizations, the team of individuals responsible for the long-term

support and maintenance of a system is different from the team initially

responsible for designing and developing the application. Often, the two teams

include a comparable set of technical skills. The responsibilities associated

with supporting an operational system, however, are different from those

associated with new development. In order to effect this shift of

responsibilities, the Project Team must provide those responsible for system

support in the organization with a combination of technical documentation,

training, and hands-on assistance to enable them to provide an acceptable level

of operational support to the consumers. This system transition is one element

(albeit a major one) of the overall Project Implementation and Transition Plan,

developed as part of the Project Management Lifecycle. The Project Manager

should review the transition plan to confirm that all defined actions have been

successfully completed.

3.3 Measurement of System Access and Implementation Success

System access and implementation serves as its own measurement of success;

indeed, a smooth implementation culminates – and validates – the entire system

development effort. Nevertheless, even before the final turnover, the Project

Manager can utilize the measurement criteria listed Table 10.2 to assess how

successfully the implementation is proceeding. More than one “No” answer

indicates a serious risk to the success of this phase – and the entire project.

Table 10.2: Measurement of System Success

4.0 Conclusion

This unit described system implementation phase of system development life

cycle. It explained list of processes and deliverables in a system

implementation and how to measure success of any new system.

5.0 Summary

Transitioning the system support responsibilities involves changing from a

system development to a system support and maintenance mode of operation,

with ownership of the new system moving from the Project Team to the

Performing Organization.

6.0 Tutor Marked Assignment

Does a system need to be perfect before deployment?

7.0 References

http://en.wikipedia.org/wiki/Implementation

http://www.its.ny.gov/pmmp/guidebook2/SystemImplement.pdf

http://en.wikipedia.org/wiki/Implementation
http://www.its.ny.gov/pmmp/guidebook2/SystemImplement.pdf

