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ABSTRACT 

Many physical problems are modelled as differential equations which are either ordinary 

or partial. These equations require solutions that can be obtained analytically or by the 

use of numerical methods. For differential equations of higher order, it is almost 

impossible to obtain solutions analytically, thus the necessity for numerical 

techniques/methods. This difficulty is the motivation for this study. The study focus on 

formulation and development of block unification linear multi-step method for the 

numerical solution of fluid flow equations. with application to both initial and boundary 

value problems. For this purpose, a Chebyshev polynomials valid in interval [-1,1] and 

with respect to weight function  
21

1

x
xw


  was employed as basis function for the 

development of continuous hybrid schemes in a collocation and interpolation technique. 

In order to make the continuous methods self-starting, some block methods of discrete 

hybrid form were derived. The methods were analysed using appropriate existing 

theorems to investigate their consistency, zero-stability, convergence and the 

investigation shows that the developed methods were consistent, zero-stable and hence 

convergent. These methods were of order three, four and five; with minimal error 

constants of 001389.0
2

,0006944.0
3

,001541.0
4








 p

C
p

C
p

C  respectively. The 

methods were implemented on fifteen (15) test problem from the literature to show the 

accuracy, efficiency and effectiveness of the methods. It is observed that the proposed 

methods have maximum error of 6.980 x 10-28 for the oscillatory problem from ship 

dynamics compared with maximum error of 2.846 x 10-7 obtained from Predictor-

Corrector method found in the literature. Also for the purpose of comparison, it was 

observed that the results obtained from the developed methods were validated with 

Runge- Kutta method and some results in the existing methods which shows an excellent 

agreement. 
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CHAPTER ONE 

1.0                                                  INTRODUCTION 

1.1 Background to the Study 

Higher order ordinary differential equations are used in modelling problems arising from 

many physical problems. Such problems include electronic magnetic waves, the 

deflection of a curved beam having a constant or varying cross-section, gravity driven 

flows, draining coating flows, thin film flow, the motion of rocket, etc. As such, numerical 

methods which offer faster and accurate solutions are necessary. 

Significant attention is being given to the solution of differential equations from some of 

the above physical problems and as such several methods have been developed over the 

years to solve differential equations resulting from such problems. 

This research is aimed at solving boundary layer flow that results into ordinary differential 

equations of the form shown in equation (1.1) with appropriate initial and boundary value 

conditions with 2,3,4   and also fourth order partial differential equations of the form 

of equation (1.2) 

( ) ( 1)( , , , , )y f x y y y          (1.1) 

( , , , , , )xxxx x t xx tty f x t y y y y         (1.2) 

Many numerical methods have been developed for solving third and fourth order ODEs. 

Some of these are the works of Jator et al. (2018), Ogunlaran and Oladejo, (2014), 

Mohammed and Adeniyi (2014), Adesanya et al. (2013), Tirmizi et al. (2004), Reutskiy 

et al. (2008), Li et al. (2012), Reddy (2016) and Adeyeye and Omar (2017). 
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Most common approaches for solving problems in the forms of equation (1.1) is by 

reducing them to systems of first order equations and applying any of the available 

methods to solve them. This requires more computational effort. 

The Boundary Value Method (BVM) is an application of linear multistep methods. They 

are a class of linear multistep methods with step number k whose k additional conditions 

are not only imposed at the beginning but also at the end of the integration process. This 

makes them form a discrete analog of the continuous boundary problems. The boundary 

value technique simultaneously generates approximate solution  TNxxx ,,, 21  to the 

exact solution  T

Nxyxyxy )(,),(),( 21 
 

of equations (1.1) on the entire interval of 

integration. This approach has the advantage of producing smaller global errors (at the 

end of the range of integration) than those produced by the step-by-step methods due to 

the presence of accumulated errors at each step in the step-by-step method (Jator et al., 

2018). Boundary Value Methods have been used over the years for the solution of first 

order and second order ordinary differential equations with either initial or boundary 

conditions.  The higher order equation has to go through the reduction method mentioned 

above. 

1.2 Statement of the Research Problem 

Numerical methods reduce the solutions of mathematical problems to computations that 

can be performed manually or by the use of calculating machines. The quality of a 

numerical method depends, to an extent, on the accuracy of the method. Numerical 

methods nowadays do not seek for exact answers as exact answers are almost impossible 

to obtain in practice. Instead, getting approximate solutions is the major concern and this 

is done while maintaining reasonable bounds when it comes to errors (Lambert, 1973). 
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Taylor’s series has been found to require the evaluation of higher order derivatives 

frequently even though it has an advantage of working well if the successive derivatives 

could be calculated easily and as well as giving a correct solution with significant digits 

of accuracy when the problem is written in variable separable form. Predictor-Corrector 

methods developed by Familua and Omole (2017) is an advantage of minimising 

truncation and round off errors because of the step by step method but were found to 

require larger storage spaces and were also found to be expensive to implement in terms 

of number of function evaluation per step. 

Linear multistep methods (LMMs) also known as discrete linear multistep methods have 

been widely used for the numerical integration of first order initial value problems (IVPs). 

They are also used for solving higher order problems by transforming the IVPs into an 

equivalent system of first order IVPs. These methods suffered the disadvantage of 

requiring additional starting values and special procedures for changing step length h. 

Continuous Linear Multistep Methods (CLMMs) are however reported to have 

advantages over the discrete methods. Some of these are: an estimation of better global 

errors, their usage to recover standard schemes, provision of a simplified form of 

coefficients for further analytical work at different points and the guarantee of easy 

approximation of solutions at all interior points of the integration interval. 

In order to improve the storage space, methods for the direct solution of the higher order 

IVPs have been proposed in Jato et al. (2018) implemented in the predictor-corrector 

mode, hybrid mode or block mode to take the advantage of generating numerical solutions 

simultaneously and overcoming the zero stability barrier.  

In light of the aforementioned problems, this research seeks to develop continuous 

modified linear multistep methods applied as Block Unification Methods (BUMs) which 
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will take care of the shortcomings of the mentioned methods while putting together the 

properties of the existing methods. 

1.3 Aim and Objectives of the Study 

1.3.1 Aim of the study 

This work is aimed at developing block unification hybrid linear multistep methods for 

fluid flow equations. 

1.3.2 Objectives of the study 

The objectives of this research are to; 

i) develop k-step continuous implicit methods with Chebyshev polynomials as 

basis functions using the interpolation and collocation approach. 

ii) analyse basic properties of the developed methods such as order and error 

constants, consistency and convergence. 

iii) test the accuracy and efficiency of the derived schemes by comparing the 

absolute error with those of recent existing methods found in the literature. 

iv) validate the results of the proposed methods. 

1.4 Justification for the Study 

Many literature propose methods for solving higher order ordinary differential equations 

that require their being reduced to systems of first order. This could require more 

computational effort than the direct methods. The problems associated with this are non-

economisation of computer time, computational burden and cost of implementation. In 

addition to these, it does not allow additional information associated with specific ODEs 

to be utilised. This research intends to propose a method that addresses some of these 

issues. 
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With the increased use of boundary value methods (note: with no off grid point) to solve 

differential equations and the successes being recorded, the research seeks to derive 

boundary value methods with off grid points to solve boundary layer flow. 

1.5 Scope and Limitation of the Study 

1.5.1 Scope of the Study 

The research develops and applies block unification linear multistep methods for third 

and fourth order boundary layer flow and partial differential equations. It makes use of 

the chebyshev polynomials as the basis functions used in deriving the continuous linear 

multistep methods that are applied as boundary value methods. The collocation and 

interpolation approaches are applied in the derivation process. It takes into consideration 

boundary flow problems of third and fourth order ordinary differential equations and 

fourth order partial differential equations. The derived schemes include an off-grid point. 

1.5.2 Limitation of the Study 

The research does not consider the solution of other higher order ordinary differential 

equations (fifth order ODEs and above). As a result, boundary layer flow problems 

resulting from such differential equations were not considered. It applies the block 

unification method with one -off- grid point  
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1.6 Significance of the Study 

Time consumption, large storage spaces, etc. are associated with numerical methods that 

have been developed over the years. The method of implementation of some these 

methods have led to some of the problems mentioned. This research will come up with a 

new numerical method implemented as block unification methods that directly solve 

higher order ordinary differential equations without the need of reducing them to systems 

of first order problem which is less time consuming to implement. The derived method 

can be applied to a partial differential equation of fourth order converted to ordinary 

differential equation. 

1.7.  Definition of Terms 

Initial Value Problems: An nth order scalar initial value problem in ordinary differential 

equations consists of two parts; an ordinary differential equation which can be written in 

the form 

(n) (n 1)( , , , , )y f x y y y   

And the initial conditions 

( 1)

0 1 1( ) , ( ) , , ( )n

ny a y a y a  


    

where f is continuous in some open set ( , )a b  in the ( , )x y  plane, , , , 0,1, ,ia b i n   

are real constants. The order of an ODE is the highest order derivative in the differential 

equation. 

Boundary Value Problem: A boundary value problem is a problem, usually an ordinary 

differential equation or a partial differential equation, which has values assigned on the 

physical boundary of the domain in which the problem is specified. For example, 
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( )n
n

n

u
u f

x


 


 in   

1(0, )u x u  on   

2(0, )
u

x u
x





 on   

where   is the domain and   is its boundary. 

Collocation: This is a projection approach for solving differential equations in which the 

approximate solution is determined from the condition that the equation be satisfied at 

some chosen points. The points at which the differential equation is satisfied are called 

the collocation points. 

Interpolation: This is the approach where a trial solution of an equation is evaluated as 

some selected points. These selected points are called interpolation points. 

Step-size: Given the sequence of points  ix  in the interval  ,I a b  defined by 

0 1 1N Na x x x x b       such that 
1, 0,1,2, ,i ih x x i N   . The parameter h is 

called the mesh size or step size while N is called the number of subintervals. 

k-step Method: The most general k-step method takes the form 

0 0

k k

i n i i n i

i i

y h f  

 

   

Where (x ) y(x ), ( , ) f(x , ( ))n i n i n n i n i n i n ny y ih f f x y ih y x ih            and is of 

implicit type unless 0k  , where it becomes explicit. The coefficients have been 

normalised so that the coefficient of 
n ky 

 is 1;k   is the order of the differential 

equation. 
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Chebyshev Polynomial of the First Kind: Chebyshev polynomial defined by ( )nT x  of 

the first kind defined on the interval [-1,1] is given by 

1( ) cos( cos ), 0nT x n x n   

and satisfies the recurrence relation 

0 1 1 1( ) 1; ( ) ; ( ) 2 ( ) ( ); 1n n nT x T x x T x xT x T x n       

In particular, ( )nT x  is indeed an algebraic polynomial of degree n with leading coefficient 

12n
. 
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CHAPTER TWO 

2.0                                             LITERATURE REVIEW 

2.1 Review of Existing Methods 

Linear multistep methods (LMMs) are very popular for solving first order initial value 

problems and also higher order problems which are usually first reduced to systems of 

first order equations before the application of the LMMs. Many other numerical methods 

have been developed for solving ODEs. 

Researchers like Lambert, (1973), Lie and Norselt, (1989), and Onumaniyi et al. (1994) 

have discussed the solution of ODEs in which Lie and Norselt, (1989) and Onumaniyi et 

al. (1994) made the traditional LMMs continuous through the idea of multistep 

collocation. The continuous linear multistep methods (CLMMs) just like the constant 

coefficients linear multistep methods were usually applied to initial value problems as a 

single formula. This application required the use of known critical points which were 

obtained by applying a certain kind of formulae known as predictors. The application of 

the predictor-corrector method requires more human effort and takes long computer time 

as it requires special technique to supply starting values. 

A method known as hybrid was then developed. Hybrid methods came as a result of the 

desire to increase the order of a linear multistep method without increasing its step 

number and also without reducing its stability interval. This method retained the 

characteristics of linear multistep methods and has the property of utilising data at other 

points other than the step point jhxx njn  . The method is useful in reducing the step 

number of a method while it remains zero stable. 
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The block method was proposed by researchers and the first of them was Milne who said 

they could only be used as a means of obtaining starting values for predictor-corrector 

methods. Later, the method proposed by Milne were developed to algorithms that were 

suitable for general use. This developed block method by Milne had been exploited by 

researchers both in its explicit and implicit form. The block method generates 

approximations simultaneously at different grid points within the interval of integration. 

The number of points is dependent on the structure of the block method (Mehrkanoon et 

al., 2009). This method, compared to linear multistep methods and Runge-Kutta methods, 

is less expensive in terms of the number of function evaluations. 

Block methods also permit easy change of step length. It has a feature of all discrete 

schemes being of the same order as the schemes get generated from a single continuous 

formula. 

Researchers have applied the above methods to solving ODEs. Some of such researchers 

are Ogunlaran and Oladejo, (2014) who gave an approximate solution method for third-

order multi-point BVPs, Mohammed and Adeniyi, (2014) who derived a three step 

implicit hybrid linear multistep method, Adesanya et al. (2013) developed a new hybrid 

block method for the solution of third order IVPs. A second-order method developed for 

the numerical solution of a non-linear, third-order, boundary value problem was given by 

Tirmizi et al. (2004). Jator (2008) derived a continuous linear multistep method which 

was used to generate multiple finite difference methods assembled in a single block 

matrix equation that was used to solve third order boundary value problems. An Accurate 

Five Off-Step Points Implicit Block Method for Direct Solution of Fourth Order 

Differential Equations was developed by Duromola (2016). Yap and Ismail (2015) 

derived a Block Hybrid Collocation Method with Application to Fourth Order 

Differential Equations. They used collocation and interpolation technique on basic 
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polynomials to derive the main and additional methods that were combined and used as 

a block collocation method. Mohammed (2010) developed a six-step block method for 

the solution of fourth order ordinary differential equations using interpolation and 

collocation methods in the method derivation process. 

The difference methods have also been applied to the solutions of ODEs by researchers. 

It involves the generation of methods by defining finite nodes within the interval in which 

the solution is required using uniform step length h and defining approximations after 

denoting approximations at the defined nodes. Some researchers that have exploited these 

methods are Pandey (2017) and Jator (2008). According to Pandey (2017), other 

researchers have also exploited methods like the Quantic Splines, Non Polynomial Spline, 

Quintic Splines, Collocation Quantic Splines, B-Splines and all with the application of 

Finite Difference Methods. Jator (2007) applied a family of Backward Differentiation 

Formulas (BDFs) to solve stiff second order initial value problems in ODE which was 

achieved by using the collocation and interpolation methods to develop Multiple Finite 

Difference Methods applied as BDFs. Noor and Al-Said (2002) developed a general finite 

difference method to solve a system of third order boundary value problems. Kasi-

Viswanadham and Ballem (2015) also used the finite difference method involving 

Galerkin method and quartic B-splines as basis functions. Salama and Mansour (2005) 

presented a finite difference method, using four grid points, to solve third order boundary 

value problems. Jator (2009) presented Multiple Finite Difference Methods obtained from 

a linear multistep method of step 4, these were used to solve third order boundary value 

problems directly. 

Legendre polynomials were used by Hossain and Islam (2014) as basis functions to 

extend a Galerkin method to solve fourth order BVPs. Massoun and Benzine (2018) 
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applied homotopy analysis method to solve fourth order initial value problems by 

reducing them to an equivalent system of first order ordinary differential equations. 

Other works by researchers involving ODEs are the Direct Integrators for the General 

Third Order Ordinary Differential Equation with an Application to Korteweg de-Vries 

(Jator et al., 2018), Approximate Solution Method for Third-Order Multi-Point Boundary 

Value Problems (Ogunlaran and Oladejo, 2014). Mohammed et al. (2019c) solved third 

order boundary value problems in ordinary differential equations by using direct 

integrators of modified multistep method. Mohammed and Adeniyi (2014) derived a 

three-step implicit hybrid linear multistep method for the solution of third order ordinary 

differential equations. Mohammed et al. (2018) derived a three step continuous hybrid 

linear multistep method which was applied to solve third order ODEs. Adesanya et al. 

(2013) developed a new hybrid block method for the solution of general third order initial 

value problems of ordinary differential equations. A second-order method is developed 

for the numerical solution of a non-linear, third-order, boundary value problem (see 

Tirmizi et al., 2004). Reutskiy et al. (2008) studied two-dimensional heat conduction 

problems and they used Chebyshev polynomials and trigonometric basis functions to 

approximate their equations for each time step. Li et al. (2012) presented an algorithm 

for directly solving third order mixed boundary value problems based on the reproducing 

kernel. Reddy (2016) used quantic B-splines as basis function and septic B-splines as 

weight function to derive a method through a Petrov-Galerkin method to solve fourth 

order ordinary differential equations. Adeyeye and Omar (2017) directly solved non-

linear fourth order boundary value problems using a numerical approach that is (m+1)th 

step block method which was developed through a modified Taylor series approach with 

m being the order of the considered differential equation. 
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Fourth order ordinary differential equations also receive attention from researchers. A 

number of researchers have delved into the derivation of methods for the solution of these 

kinds of ODEs either directly or by reduction. Hussain et al. (2016) directly solved fourth 

order initial value problems. The constructed methods were a three stage fourth order 

Runge-Kutta method and a three stage fifth order method which they termed as RKFD 

using rooted trees. Results were compared with existing Runge Kutta Nystrom Method 

and Runge Kutta method. Kuboye et al. (2020) derived hybrid numerical algorithms that 

were implemented in block form to solve fourth order initial value problems directly. This 

they achieved using power series as basis function in the derivation of the method and 

also the interpolation and collocation methods. Also, Ogunlaran and Kehinde (2022) used 

the Hermite polynomials as basis function to derive a 4-step block method to solve fourth 

order IVPs. An implementation of a five-step numerical integrator in continuous block 

method can be found in Adesanya et al. (2012). The method was used to solve fourth 

order initial value problems. The method has the advantage of evaluation at all selected 

points within the interval of integration. Singh and Singh (2019) considered initial value 

problems of the fourth order in their work. Laplace Transform Method (LTM) was 

applied to the problems to derive the solutions to them. These solutions were compared 

with those from Adomian Decomposition Method and also the exact solutions in which 

the solutions from Laplace Transform Method were found to give more accurate and 

efficient solutions fared better. A direct solution of fourth order ODEs using a one-step 

hybrid block method can be found in Omar and Abdelrahim (2016). The one-step hybrid 

block method has three off step points. This direct application of the method reduced 

computational work.  

Ndanusa et al. (2020) applied the Numerov Method to solve fourth order initial and 

boundary value problems by transforming the fourth order problem into a couple of 
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second order equations. This is possible because of the missing first derivative term in 

the problem. Negligible errors were gotten after a comparison of the approximate 

solutions and the exact solutions. A use of quantic B-splines and a combination of singular 

value decomposition technique and least square approximation is found in Mushtt et al. 

(2020). This was applied to solve fourth order boundary value problem. Results were 

compared with those from exact solution and found out those from extended B-splines 

fared well.  

 A modified single-step method is proposed by Mohammed et al. (2022a) to integrate 

nonlinear dynamical systems resulting to ordinary differential equations. The higher order 

A-stable methods were obtained by imposing some special sets of off-grid points in the 

formulation process of the algorithms. Mohammed et al. (2022b) derived a two-step 

method for solving non-linear dynamical problems employing Bhaskara points as off grid 

points. Modebei et al. (2020b) derived a linear multistep hybrid block method with four 

off grid points to directly approximate the solution of fourth order linear and non-linear 

boundary value problems. The method was shown to be flexible and also can be used on 

fourth order differential equations with either Dirichlet or Neumann Boundary conditions. 

Filobello-Nino et al. (2014) directly solved equation from squeezing flow between two 

infinite parallel plates slowly approaching each other using a method derived by 

combining the standard homotopy perturbation method and laplace transform. Hemeda 

et al. (2017) solved a fractional form of unsteady squeeze flow through porous medium 

analytically by applying the Adomian Decomposition Method and The Picard Method. 

The Adomian Decomposition method was directly used to solve the fourth order 

boundary value problem from Beam-Column Theory by Kelesoglu (2014). Results from 

this that converge rapidly to the analytical solution can be found without changing the 

nature of the physical phenomena. The deflection of beam determined by the Euler 
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Bernoullli’s equation was considered in Adak and Mandal (2021). The fourth order 

differential equation with specific boundary conditions (Neumann condition) was solved 

using the Finite Difference Method. Results showed that a reduction in mesh size helps 

the Finite Difference Method have better accuracy. Abolarin et al. (2020) developed a 

numerical method that solved second, third and fourth order ordinary differential 

equations. The schemes for the method were derived using the power series and the 

method was a two-step method with two off grid points. The methods were only applied 

to initial value problems. Results show that the method is effective in solving the second, 

third and fourth order ordinary differential equations. 

Mustapha and Salau (2021) compared the Adomian Decomposition Method (ADM) and 

Homotopy Perturbation Method (HPM) against Finite Difference Method (FDM). This 

can be found in their paper titled Comparative Solution of Heat Transfer Analysis for 

Squeezing Flow Between Parallel Disks. The ADM was found to be more efficient and 

reliable than HPM though it requires more tedious computational effort. Atabo and Adee 

(2021) used interpolation and collocation to develop a 15-step block method with uniform 

higher order 16 to directly solve fourth order ordinary differential equations. Adegboye 

et al (2020) modified the fifth Runge-Kutta method for first order ODEs to directly 

integrate fourth order ODEs. The method was found to require less work as against the 

classical Runge-Kutta method. 

2.2 Partial Differential Equations 

Partial differential equations have been solved numerically over the years by the use of 

several methods that have been available. Higher order PDEs with Dirichlet or Neumann 

boundary conditions that arise in engineering and sciences have been solved using a wide 

range of numerical methods. For example, an approximate equation for a long and slender 
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beam called the Euler-Bernoulli equation has its solution as a traverse displacement of 

the beam from an initially horizontal position. The fourth order parabolic PDE from this 

has been solved using the sextic spline method by Rashidinia and Mohammadi (2010). 

Mittal and Jain (2011) described a typical fourth order parabolic PDE as shown 

( , )tt xxxxy y G x t           (2.1) 

Problems that described the nonlinear wave phenomena were solved using the method of 

line in Saucez et al. (2014). The ‘good’ Boussinesq equation, described in Shokri and 

Dehghan (2010), is an example of such problem. The described equation is given as 

2

tt xx xxxx xxy y qy y            (2.2) 

Subject to appropriate boundary conditions where 1q  or -1. Quintic B-splines for its 

numerical solution and B-splines methods with redefined basis functions can be found in 

Siddiqi and Arshed (2014) and Mittal and Jain (2011).  

2.3 Collocation Method 

Over the years, various researchers considered collocation methods as ways of generating 

numerical solutions to ordinary differential equations.  

A collocation method is a method for the numerical solution of ordinary differential 

equations, partial differential equations and integral equations. The idea is to choose a 

finite-dimensional space of candidate solutions usually polynomials up to a certain 

degree, called trial functions or basis functions, and a number of points in the domain 

(called collocation points), and to determine that solution which satisfies the given 

equation at the collocation points.  

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Integral_equation
https://en.wikipedia.org/wiki/Polynomial
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In 1965, Lanczos introduced the standard collocation method with some selected points 

for the solution of ODEs. In recent times, researchers have employed the methods. Some 

of them are: Jator and Li, (2009) and Biala and Jator, (2017). Other examples could be 

seen in the works of Omar and Abdelrahim, (2016), Mohammed et. al. (2019a), 

Mohammed et. al. (2019b), Mohammed et. al. (2021), Ogunlaran and Oukouomi (2016) 

and Yap and Ismail (2015). 

2.4 Boundary Value Methods 

A boundary value method (BVM) is a technique of applying linear multistep methods. In 

their paper, Brugano and Trigante (1998) described the BVM as a third-way between 

Linear Multistep and Runge Kutta and also suggested a block version of it. Jator and Li, 

(2009) applied the BVM technique in which a main method is obtained (i.e. a linear 

multistep method) and other supporting methods. The main method is then used together 

with the initial method at n = 0 and also the final method. This they did by applying a 

combination of compact difference schemes and boundary value methods (Compact 

Boundary Value Method) to solve the two-dimensional Schrödinger Problem. Biala et al. 

(2017) and Jator et al. (2018) applied the technique to the direct solution of second order 

and third order boundary value problems respectively. More can be found in the works of 

Biala and Jator, (2015) and Biala and Jator, (2017). 

2.5 Boundary Layer Flow 

Boundary layer in fluid mechanics is the thin layer of a flowing gas or liquid in contact 

with a surface such as that of an airplane wing or of the inside of a pipe. The fluid in the 

boundary layer is subjected to shearing forces. A range of velocities exists across the 

boundary layer from maximum to zero, provided the fluid is in contact with the surface. 

https://www.britannica.com/science/fluid-mechanics
https://www.britannica.com/science/fluid-physics
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The flow in such boundary layers is generally laminar at the leading or upstream portion 

and turbulent in the trailing or downstream portion. 

Researchers have developed methods for solving the Blasius equation numerically. 

Bougoffa and Wazwaz (2015) considered the nonlinear Blasius equation with initial 

boundary conditions. They used a direct method to obtain the exact solution. An 

approximate analytical solution which contained an auxiliary parameter was also 

obtained. The parameter makes it convenient for finding analytical solutions. An 

association of the solution of the Blasius equation with different boundary conditions with 

practical problems for a flat plate continuously shrinking with a constant velocity into a 

slot in a stationary fluid with mass transfer at the plate was given by Fang et al. (2008). 

For certain mass suction values, numerical results showed more than two solutions.  

Researchers have written on numerical and analytical methods to solve problems related 

to fluid flow. Ran et al. (2009) reduced the governing equations of an axisymmetric 

Newtonian fluid squeezed between two parallel plates to a nonlinear differential equation 

and applied an explicit series solution through the homotopy analysis method to solve the 

equation analytically giving rise to a solution in series form. Inc and Akgul (2014) 

compared results obtained from solving the reduced fourth order nonlinear boundary 

value problem from a steady axisymmetric MHD flow of two-dimensional 

incompressible fluid by applying the reproducing kernel Hilbert space method (RKHSM) 

with results from Runge-Kutta method (RK-4) and optimal homotopy. The heat transfer 

analysis for Casson fluid (non-Newtonian) between parallel circular plates was 

considered by Khan et al. (2016). Conservation laws along with viable similarities 

transformations were used in obtaining the non-linear ordinary differential equations 

governing the flow. Analytical solution was obtained through the Homotopy Perturbation 

Method. RK-4 coupled with shooting method were used in obtaining the numerical 

https://www.britannica.com/science/laminar-flow
https://www.britannica.com/science/turbulent-flow
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solution. Numerical values for skin friction coefficient and Nusselt number were 

tabulated. 

The Blasius equation is an equation that is derived from the description of stationary and 

incompressible flow in two dimensions, forming the boundary layer on a semi-infinite 

plate parallel to the flow. This is a non-linear third order differential equation. 

Considering the Navier Stokes differential equations 

2 2

2 2

2 2

2 2

0

1

1

yx

x x x x
x y

y y y y

x y

UU

x y

U U U UP
U U v

x y p x x y

U U U UP
U U v

x y p y x y

 
  

 


    
      

     
                  

     (2.3) 

Along with the boundary conditions 

 No-slip condition at the surface: 
x yU U at 0y   

 Uniform flow at infinity 
x yU U when y  

The equation above along with the boundary condition expresses a laminar boundary 

layer over a flat plate from which the Prandtl’s equation can be deduced as 

2

2

0

0

yx

x x x
x y

UU

x y

U U U
U U v

x y y

P

y

 
 

 

   

 
  

 




        (2.4) 

Introducing and substituting the stream function   defined by 
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x

y

U
y

U
x


 


  

 

          (2.3) 

Implies 

2 2 3

2 3
v

y x y x y y

       
 

     
        (2.5) 

With the boundary conditions which are now 

 For any x  at 0y  , we have 0   and 0
y





 

 When , xy U
y


 


 

A dimensionless variable and its function are introduced: 

U
y

vx
    and . ( )vU x f  

       (2.6)
 

The transformations above lead to the Blasius equation 

1
0

2
f f f   

         (2.7)
 

With the boundary conditions as 

{
𝑓 = 𝑓′ = 0 𝑎𝑡 𝜂 = 0

𝑓′ → 1 𝑎𝑠 𝜂 → ∞
         (2.8) 

According to Das and Mohammed (2016) an unsteady two dimensional squeezing flow 

of an incompressible viscous electrically conducting fluid between the infinite parallel 

plate were investigated. The coordinate system is chosen such that 𝑥 - axis is along the 
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plate and 𝑦 - axis normal to the plate. The two plates are placed at y= ±h(t) where 

h(t)=H(1-αt)1/2
 and α is a characteristic parameter having dimensions of time inverse. The 

two plates are squeezed with a velocity v(t)= dh/dt until they touch. A uniform magnetic 

field of strength (t) = B0(1-αt)-1/2
  is applied perpendicular to the plate, and the electric 

field is taken as zero. The magnetic Reynolds number is assumed to be small so that the 

induced magnetic field can be neglected. The fluid considered is a gray, absorbing 

emitting radiation but non-scattering medium and the Rosseland approximation is used 

to describe the radiative heat flux in the energy equation. The fluid structure is everywhere 

in local thermodynamic equilibrium. The plate is maintained at a constant temperature.  

Also, it is assumed that there exists a homogeneous first order chemical reaction with 

time dependent reaction rate K1(t)=k1(1-αt)-1
   between the diffusing species and the fluid.  

Here the symmetric nature of the flow is adopted.  

Under the stated assumptions, the governing conservation equations of mass, momentum, 

energy and mass transfer at unsteady state can be expressed as 

                            (2.9) 

                                                (2.10) 

      (2.11)  

     (2.12)
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     (2.13) 

where u and v are velocity components along x and y-axis respectively,  is the density 

of the fluid,  is the kinematic viscosity,  is the specific heat at constant pressure p, 

 is the thermal conductivity of the medium, T is the temperature of the fluid, C is the 

concentration of the solute,  is the molecular diffusivity. Following the Rosseland 

approximation with the radiative heat flux  is modeled as, 

                                                                   (2.14) 

where  is the Stefan-Boltzmann constant and  is the mean absorption coefficient. 

Assuming that the differences in temperature within the flow are such that  can be 

expressed as a linear combination of the temperature, we expand  in Taylor's series 

about  and neglecting higher order terms, we get 

                                              (2.15) 

Thus, we have 

               (2.16) 

Therefore, Eq. (2.12) reduces to 

           (2.17) 
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The appropriate initial and boundary conditions for the problem are  

                                             (2.18) 

Using the following dimensionless quantities 

                                (2.19) 

into Eqs. (2.10) and (2.11) and then eliminating the pressure gradient from the resulting 

equations, one may finally obtain 

                                                            (2.20) 

Now Eqs. (2.17) and (2.13) take the following forms: 

                                            (2.21) 

                                                                                   (2.22) 

with the associated boundary conditions 

           (2.23)                           

2.6 Method of Lines 

To apply Block Unification Methods or Boundary Value Methods to Partial Differential 

Equations, these PDEs need to be converted to system of Ordinary Differential Equations 
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using method of Lines. These PDEs have to be well posed as an initial value problem 

(Cauchy) in at least one dimension ruling out purely elliptic equations like Laplace’s 

equation but leaving a large class of evolution equations that can be solved quite 

efficiently. The method of lines converts the PDEs into ODEs by replacing the derivatives 

with their finite, difference approximations (Vigo-Aguiar and Ramos, 2007). The process 

of converting (1.2) into a system of ODEs will be demonstrated following Biala et al. 

(2017). For real numbers 
1 2 3 4, , , ,L L L L  solution ( , )y x t  of (1.2) where ( , )x t  is in the 

rectangle    1 2 3 4, ,L L L L , the t variable is discretised with mesh spacing 

4 3 2 1
3 1, t , 0,1, , , , , 0,1, , Nm n

L L L L
t L m t m M x x L n x n

M N

 
             with 

the vector 1,1 1,2 2,1 1, 1, y , , , y
T

n my y y  
     and 1,1 1,2 2,1 1, 1, , , ,

T

n mG G G G G  
     where 

( , )m my y x t  and ( , )m mG G x t . 

2.6.1 Central difference approximations 

The best two-point formulae involving abscissae that are chosen symmetrically on both 

sides of x on the real line is applied when a function ( )u x can be evaluated at values to 

the left and right of x . 

Theorem 2.1 Centred Formula of Order 2( )O h . Assume that 3[ , ]u C a b  and that 

, , [ , ],x h x x h a b   then 

1 1( )
2

n nu u
u x

h

 
           (2.24) 

Furthermore, there exists a number ( ) [ , ]x a b    such that 
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Where 

2
2( )

( , ) ( )
6

h u
T u h O h


    

The term ( , )T u h  is called the truncation error, 
1 1( ), ( )n n n nu u x h u u x h      

By similar derivation of (2.24), ( )u x has the formula 
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For a PDE where 
, ( , )n m n mu u un x t  , the central difference method by discretising the 

space variable t becomes 
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The formulae (2.25) and (2.26) are called semi-discretisation of the dependent variable 

u . 

Using the central difference approximation (2.26) 
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Then (1.2) has the following semi-discretised form 
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       (2.27) 

which can be written in the form 

( ) ( , )ivy f x y           (2.28) 
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Subject to the appropriate initial and boundary conditions, where ( , )f x y Ay g  and A

is an ( 1) ( 1)M M    matrix arising from the semi discretised system (2.28). 
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CHAPTER THREE 

3.0                                         MATERIALS AND METHOD 

3.1 Materials 

3.1.1. System Requirements 

MAPLE15 software or above on a system with a RAM of a minimum of 512mb space, 

1GHZ Processor, a hard disk space of 512MB with basic input and output devices (eg, 

Mouse, keyboard, etc.) and uninterrupted power supply. 

3.1.2 Chebyshev orthogonal polynomial basis function 

Two functions are said to be orthogonal to one another if their inner product is zero ,hence 

a family of functions forms an orthogonal system on an interval (a,b) with weight function 

)(x if for any two distinct members of the family the following holds 

 

b

a

dxxxx 0)()()( 2121         (3.1) 

The special orthogonal polynomial known as Chebyshev polynomial )(1 x  over the 

interval (1,1) was adopted with respect to the weight function 
21

1
)(

x
x


  as 





n

i

in

i xCx
0

1 )(          (3.2) 

The first seven Chebyshev polynomials of the first kind are as follows 
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       (3.3) 

The recursive formula is 

)()(2)( 11 xTxxTxT nnn          (3.4) 

3.2 Methods 

In this section, the construction of the continuous linear multistep methods via the 

interpolation and collocation approach is discussed, which will be used to produce several 

discrete schemes for solving equations (1.1) and (1.2). 

Algorithm 1: 

Step 1: Construct the continuous linear multistep method (CLMM) with continuous 

coefficients as: 

0 0

( ) ( ) y ( ) ( )
v k

i n i j n j w n w

i j

U x x h x f x f    
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 
      (3.5) 

Where 
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v  
for

for

odd

even

k

k
 

( ), (x), (x)i j wx   are continuous coefficients and v is chosen to be half the step number 

so that each formula is derived from equation (3.5) satisfies the root condition. 
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Step 2: Obtain the main and additional methods by evaluating equation (3.5) in step 1 at 

jnx  where 1(1)2 , 1(1)j v j v v   for equation (3.5) to obtain the formulas of the 

following forms: 

1

0

v k

n j i n i i n i w n w

i i o

y y h f h f   


   

 

          (3.6) 

Step 3: Obtain the first derivative for 2, 3k   , first and second derivative formulas 

for 3, 3k    and the first, second and third derivatives for 4, 4k    from equation 

(3.5), which are used to generate additional methods by evaluating ( )U x ,  ( )U x and 

( )U x , and ( )U x , ( )U x and ( )U x of (3.5) at kjx jn )1(0,   as given with m being the 

derivative 

( ) ( ) ( ) ( )

( )
0 0

1
( ) (x) y ( ) ( ) ,

v k
m m m m

i n i i n i w n wm
i i

U x h x f h x f
h

     

 

 
   

 
    (3.7) 

by imposing that 

( ) ( ) ( ) ( )

0( ) , ( )m m m m

NU a y U b y  for equation (3.5) 

Step 4: Combine the schemes obtained in steps 2 and 3 above for equation (3.5) to form 

a system of equations with form equivalent to BAx   where 

T

NMMMMx ),,,,( 1210  
and 

0 0 1 2 3( , , , )TM y y y y , 
1 0 1 2 3( , , , )TM y y y y    , 

2 0 1 2 3( , , , ),M y y y y     

Step 5: Adopt matrix inversion algorithm to the system of equations in step 4 to obtain 

the values of the unknowns in the expected block method. 
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Theorem 3.1 Let ( ), 0(1)( )jT x j k    be the Chebyshev Polynomial used as basis 

function where  is the number of required step and W a vector given by 

T

knnvnvnn fffyyyW ),...,,,,,( 11  . Consider the matrix V defined as 

0 1

10 1 1 1

( )( ) ( )

0 1

( ) ( ) ( )

0 1 1 1 1

( ) ( ) ( )

0 1

( )( ) ( )

( )( ) ( )

( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )

k nn n

k n vn v n v

mm m
k nn n

m m m

n n k n

m m m

n k n k k n

T xT x T x

T xT x T x

T xT x T xV

T x T x T x

T x T x T x









 



     



   

   

 
 
 
 
 

  
 
 
 
 
 

     (3.8)  

 and obtained by replacing the jth column of V by the vector W and let equation (3.5) 

satisfy 

jnjn yxU  )( z and vvvj ,1,2,0   

( )( )m

n j n jU x f   kj )1(0  

( )( )m

n j n jU x f   kj )1(0        (3.9) 

then the continuous representation, equation (3.5) is equivalent to 

0

det( )
( ) ( )

det( )

k
j

j

j

V
U x T x

V





         (3.10)  

respectively 

Proof: The basis function for equation (3.5) is taken as 
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1,

0

1.

0

( ) ( ),

( ) ( ),

k

j i j i

i

k

j i j i

i

x T x

h x h T x




 

 

 


















 





   

0, 1(1)

0(1)

j v v

j k

 


   (3.11) 

where 1, 1,,i j i jh    are coefficients to be determined. 

Inserting equation (3.11) into equation (3.5) gives 

1, 1, 1 1 1,0

0 0 0

1, 1,

0 0 1

( ) ( ) ( ) ( )

( ) ( ) ,

k k k

i v i n v i v i n v i i n

i i i

k kk

i j i n j i w i n w

j i i

U x T x y T x y T x y

h T x f h T x f

  

 
 

  

 

  

      

  

 

   

  

    



  

 
   

Simplified to 

1, 1, 1 1 1,0 1, 1,

0 0

( ) ( ),
k k

i v n v i v n v i n i j n j i w n w i

i j

U x y y y h f h f T x


     


          

 

 
      

 
   

expressed in the form 

0

( ) ( )
k

i i

i

U x T x







     (3.12) 

Imposing conditions in equation (3.9) on equation (3.12) a system of (k+ ) [where 

4,5,6  respectively for 2,3,4  ] equations respectively are obtained which could be 

expressed in the form WVH   where 

0 1 2( , , , , )T

kH       are vectors of (k+ ) undetermined coefficients. 

The elements of H are found using the Cramer’s rule 

det( )
, 0(1)( )

det( )

j

i

V
j k

V
            (3.13) 
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where jV  is obtained by replacing the jth  column of V by W. Using the newly found 

elements of H, equation (3.12) is re-written as 

0

det( )
( ) ( )

det( )

k
j

i

i

V
U x T x

V





          (3.14) 

 

3.3 Specification of Methods 

3.3.1 Development of block unification method for 3, 3k    

To derive an implicit three step method with one off-grid point, the following 

specifications were considered r = 3, s= 5, k = 3, v =
3

7
, to give the continuous form as: 

][)( 33

3

7

3

722110

3

22110 


  n
n

nnnnnn fffffhyyyxy   (3.15) 

Where the 
i ’s and 

i ’s are continuous coefficients expressed as functions of x and h as 

follows 

 

1

2 2

0 2 2

2

1 2 2

2

2 2 2

7 6 5 2 4 3 3 4 2 5 6

0 4

7 6 5 2

1 4 1 3 1 2 1

4 2 4

1 2 1 2 1

2 2

1 1 1 2 1

4 2 4

1 1
192 2800 16800 53200 94080 87136 32064 70560 10500 105

564480

1 192 2464 11872

107520

h t t

h h h

t t

h h h

t t

h h h

t t h t h t h t h t h th a b c
h

t t h t h











 
  


   


  

         

  
 

4 3 2 5 6

4

7 6 5 2 4 3 2 5 6

2 4

7 6 5 2 4 3 2 5 6

7 4

3

7

3

23520 50848 36928 7420 105

1 192 2128 8288 11760 11872 6464 5180 105

26880

27 64 672 2464 3360 3360 1856 1540 35

250880

1 192

161280

t h t h th b c

h

t t h t h t h t h th b c

h

t t h t h t h t h th b c

h

x







   

      


      
 




6 5 2 4 3 2 5 6

4

1792 6048 7480 7616 4224 3780 105t h t h t h t h th b c

h























      
  (3.16) 

where  
nt x x  , 4 4 4

na th h x h x   , 2 2 2

nb th h x h x   and 
nc t x x    
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Evaluating equation (3.15) at points 
3

73 ,


 
n

n xxxx  gives 

3

3

3

7

3

2

3

1

33

213
40

1

560

81

20

13

80

37

140

1
33 


  n

n
nnnnnnn fhfhfhfhfhyyyy

  (3.17) 

3 3 3 3

7 1 2 1 2 7

3 3

3

3

2 7 14 137 2911 139 1067

9 9 9 76545 29160 1215 22680

169

43740

n n n n n n
n n

n

y y y y h f h f h f h f

h f

   
 



       

 (3.18) 

For )3)(3(0  Nn
 

The first derivative formulae are: 

3 3 3 3 3

1 2 1 2 7 3

3

3 1 167 577 101 783 11
2

2 2 2940 1680 420 3920 420
n n n n n n n n

n
hy y y y h f h f h f h f h f    



         

 (3.19) 

3

3

3

7

3

2

3

1

33

21
336

1

1568

27

105

1

1120

173

1470

11

2

1

2

1



 

n
n

nnnnnn fhfhfhfhfhyyyh

    (3.20)

 

3

3

3

7

3

2

3

1

33

212
140

1

3920

351

140

27

1680

367

2940

13

2

3
2

2

1



 

n
n

nnnnnnn fhfhfhfhfhyyyyh

 (3.21)

 

3

3

3

7

3

2

3

1

33

21

3

7

244944

3865

211680

38813

51030

25679

816480

310459

107163

680

6

11

3

8

6

5












n

n
nnnnnn

n

fh

fhfhfhfhyyyyh

 

(3.22)

 

3

3

3

7

3

2

3

1

33

213
560

39

1568

27

84

89

3360

2393

980

9

2

5
4

2

3



 

n
n

nnnnnnn fhfhfhfhfhyyyyh

 (3.23)

 

for )3)(3(0  Nn  

And the second derivative formulae are: 

2 3 3 3 3 3

1 2 1 2 7 3

3

389 227 53 81 17
2

1260 240 60 112 180
n n n n n n n n

n
h y y y y h f h f h f h f h f    



        

  (3.24) 
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2 3 3 3 3 3

1 1 2 1 2 7 3

3

53 1 11 27 1
2

2520 12 40 140 45
n n n n n n n n

n
h y y y y h f h f h f h f h f     



        

  (3.25)

 

2 3 3 3 3 3

2 1 2 1 2 7 3

3

1 39 49 27 1
2

180 80 60 80 36
n n n n n n n n

n
h y y y y h f h f h f h f h f     



        

 

 (3.26)

 

2 3 3 3 3 3

7 1 2 1 2 7 3

3 3

407 29 641 71 29
2

68040 60 648 420 1215
n n n n n n n

n n
h y y y y h f h f h f h f h f    

 

        

 (3.27)

 

2 3 3 3 3 3

3 1 2 1 2 7 3

3

1 31 79 81 11
2

540 60 120 140 45
n n n n n n n n

n
h y y y y h f h f h f h f h f     



        

 (3.28)

 

for )3)(3(0  Nn  

Remark 3.3.1. The equations (3.17) to (3.28) together form the Block Unification Method 

(BUM) used to solve equation (1.1). 

3.3.2 Development of block unification method for 3, 2k    

To derive the accompanying implicit three step method for second order ordinary 

differential equations with one off-grid point, the following specifications were 

considered, r = 2, s= 5, k = 3, v =
3

7
, to give the continuous form as:  

2

1 1 2 2 0 1 1 2 2 7 7 3 3

3 3

s( ) [ ]n n n n n n
n

x s s h m m m m m          


         (3.29) 

Where the 
i ’s and 

i ’s are continuous coefficients expressed as functions of x and h as 

follows 
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1

2

6 5 4 2 3 3 2 4 5 6

0 4

6 5 4 2 3 3 5 6

1 4

6 5 4 2 3 3 5

2

2

1

1 48 600 3000 7600 10080 6464 1536 5700 375

20160

1 24 264 1060 1680 2532 1672 1260 165

1920

1 456 1480 1680 672 6

960

t

h

t

h

t t h t h t h t h th h a b

h

t t h t h t h th h a b

h

t t h t h t h th











  

 

       


      
 

    


6

4

6 5 4 2 3 3 5 6

7 4

3

6 5 4 2 3 3 5 6

3 4

4 1260 285

27 8 72 220 240 108 24 180 45

4480

1 6 48 135 140 65 18 105 30

720

h a b

h

t t h t h t h th h a b

h

t t h t h t h th h a b

h

















 


      

  

      

 


 (3.30) 

where  
nt x x  , 3 3 3

na th h x h x    and 
nb th hx hx    

Evaluating equation (3.29) at points 3 7

3

, ,n n
n

x x x x x x


    gives 

2 2 2 2 2

7 1 2 1 2 7 3

3 3

1 4 313 1093 1817 527 317

3 3 153090 29160 7290 7560 43740
n n n n n n

n n
s s s h m h m h m h m h m    

 
         (3.31) 

2 2 2 2 2

3 1 2 1 2 7 3

3

1 29 41 81 7
2

140 240 60 560 120
n n n n n n n

n
s s s h m h m h m h m h m     


       

  (3.32) 

2 2 2 2 2

1 2 1 2 7 3

3

8 209 1 81 1
2

105 240 15 560 40
n n n n n n n

n
s s s h m h m h m h m h m    


      

  (3.33)

  

For )3)(3(0  Nn
 

The first derivative formulae are: 

2 2 2 2 2

1 2 1 2 7 3

3

101 211 7 729 13

315 160 10 1120 144
n n n n n n n

n
hs s s h m h m h m h m h m    



        

 (3.34) 

2 2 2 2 2

1 1 2 1 2 7 3

3

23 139 11 297 19

2520 480 24 1120 720
n n n n n n n

n
hs s s h m h m h m h m h m     



        

 (3.35)
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2 2 2 2 2

2 1 2 1 2 7 3

3

2 11 19 297 17

315 96 30 1120 720
n n n n n n n

n
hs s s h m h m h m h m h m     



        

 (3.36)

 

2 2 2 2 2

7 1 2 1 2 7 3

3 3

403 53 2611 65 383

68040 480 3240 672 19440
n n n n n n

n n
hs s s h m h m h m h m h m    

 

           

(3.37)

 

2 2 2 2 2

3 1 2 1 2 7 3

3

5 23 19 729 173

504 10 40 1120 720
n n n n n n n

n
hs s s h m h m h m h m h m     



        

  (3.38)

 

for )3)(3(0  Nn  

Remark 3.3.2. The equations (3.31) to (3.38) together form the Block Unification Method 

(BUM) used to solve equation (1.1). 

3.3.3 Development of block unification method 4, 4k    

To derive an implicit four step method with one off grid point, the following 

specifications were considered 
10

4, 6, 4,
3

r s k v    , to give the continuous form as: 

4

0 1 1 2 2 3 3 0 1 1 2 2 3 3 10 10 4 4

3 3

u( ) n n n n n n n n nx u u u u h b b b b b b               

 
          

 

(3.39) 

Evaluating equation (3.39) at the points 4 10

3

,n
n

x x x x


  gives 

4 4 4

4 1 2 3 1 2

4 4 4

3 10 4

3

982 81623 593479
4 6 4

150885 603540 804720

31 7533 23299

86220 53648 1207080

n n n n n n n n

n n
n

u u u u u h b h b h b

h b h b h b

     

 


        

 

 (3.40) 

4 4

10 1 2 3 1

3

4 4 4 4

2 3 10 4

3

14 20 35 140 2909857 29269579

81 27 27 81 14253733840 1018240956

254898661 14801 2814473 45580303

2375895564 1018240956 293320440 28510746768

n n n n n n
n

n n n
n

u u u u u h b h b

h b h b h b h b

   


  


       

  

 (3.41) 

For 0(4)(N 4)n    

The first derivative formulae are: 
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4 4 4

1 2 3 1 2

4 4 4

3 10 4

3

11 3 1 237971 431323 202709
3

6 2 3 24141600 2414160 3218880

11 1539 1313

344880 766400 2414160

n n n n n n n n

n n
n

hu u u u u h b h b h b

h b h b h b

    

 


         

 

 (3.42) 

4 4 4

1 1 2 3 1 2

4 4 4

3 10 4

3

1 1 1 2269889 45643 966517

3 2 6 2027894400 905310 27038592

181 185733 57817

3621240 75107200 81115776

n n n n n n n n

n n
n

hu u u u u h b h b h b

h b h b h b

     

 


         

 

 (3.43) 

4 4 4

2 1 2 3 1 2

4 4 4

3 10 4

3

1 1 1 1548223 1772147 346681

6 2 3 1013947200 50697360 6759648

377 9747 130261

7242480 4694200 202789440

n n n n n n n n

n n
n

hu u u u u h b h b h b

h b h b h b

     

 


        

 

 (3.44) 

4 4 4

3 1 2 3 1 2

4 4 4

3 10 4

3

1 3 11 759043 516401 8232487
3

3 2 6 675964800 8449560 45064320

13 648567 180161

603540 75107200 135192960

n n n n n n n n

n n
n

hu u u u u h b h b h b

h b h b h b

     

 


        

  

 

4 4

10 1 2 3 1

3

4 4 4 4

2 3 10 4

3

13 29 23 473404049 195652973
3

18 6 9 246389169600 1759922640

3973831609 245647 2749694 472713611

8212972320 1759922640 47528775 49277833920

n n n n n n
n

n n n
n

hu u u u u h b h b

h b h b h b h b

   


  


        

  

 (3.45) 

4 4 4

4 1 2 3 1 2

4 4 4

3 10 4

3

11 19 13 10072369 10605461 101084371
7

6 2 3 506973600 50697360 67596480

7237 15198111 2273267

7242480 37553600 50697360

n n n n n n n n

n n
n

hu u u u u h b h b h b

h b h b h b

     

 


        

  

 (3.46) 

for 0(4)( 4)n N   

The second derivative formulae are: 

2 4 4 4

1 2 3 1 2

4 4 4

3 10 4

3

16103449 34275233 2696563
2 5 4

202789440 50697360 16899120

3733 351 231683

7242480 107296 202789440

n n n n n n n n

n n
n

h u u u u u h b h b h b

h b h b h b

    

 


        

 

 (3.47) 

2 4 4 4 4

1 1 2 1 2 3

4 4

10 4

3

1158673 1966163 398119 11
2

405578880 25348680 135192960 452655

297 11561

15021440 405578880

n n n n n n n n

n
n

h u u u u h b h b h b h b

h b h b

     




        



 (3.48) 

2 4 4 4 4

2 1 2 3 1 2 3

4 4

10 4

3

67 139549 5292653 53
2

3168585 50697360 67596480 7242480

4293 55409

1502144 101394720

n n n n n n n n

n
n

h u u u u h b h b h b h b

h b h b

      




       

 

 (3.49) 
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2 4 4 4

3 1 2 3 1 2

4 4 4

3 10 4

3

192239 1908581 13531829
4 5 2

57939840 12674340 19313280

113 1139157 111769

517320 15021440 8277120

n n n n n n n n

n n
n

h u u u u u h b h b h b

h b h b h b

     

 


         

 

 (3.50) 

2 4 4

10 1 2 3 1

3

4 4 4 4

2 3 10 4

3

4 7 379421111 1819245629
5 6

3 3 24638916960 12319458480

18241613111 1353949 9599899 114919289

16425944640 1759922640 40557888 3079864620

n n n n n n
n

n n n
n

h u u u u u h b h b

h b h b h b h b

   


  


        

  

 (3.51) 

2 4 4 4

4 1 2 3 1 2

4 4 4

3 10 4

3

7343143 1130099 64469357
2 7 8 3

202789440 7242480 33798240

12289 323217 1705189

7242480 375536 40557888

n n n n n n n n

n n
n

h u u u u u h b h b h b

h b h b h b

     

 


         

 

 

           (3.52) 

for 0(4)( 4)n N   

The third derivative formulae are: 

3 4 4 4

1 2 3 1 2

4 4 4

3 10 4

3

47872339 18007093 519415
3 3

135192960 16899120 9012864

4919 533331 1455383

2414160 15021440 135192960

n n n n n n n n

n n
n

h u u u u u h b h b h b

h b h b h b

    

 


        

 

 (3.53) 

3 4 4 4

1 1 2 3 1 2

4 4 4

3 10 4

3

3341887 4745537 3926283
3 3

135192960 16899120 15021440

1493 381807 990179

2414160 15021440 135192960

n n n n n n n n

n n
n

h u u u u u h b h b h b

h b h b h b

     

 


         

 

 (3.54) 

3 4 4 4

2 1 2 3 1 2

4 4 4

3 10 4

3

239451 1435033 12884237
3 3

15021440 5633040 45064320

89 515187 135551

160944 15021440 15021440

n n n n n n n n

n n
n

h u u u u u h b h b h b

h b h b h b

     

 


         

 

 (3.55) 

3 4 4 4

3 1 2 3 1 2

4 4 4

3 10 4

3

4181663 53539 53128063
3 3

135192960 3379824 45064320

3397 5008527 7804483

2414160 15021440 135192960

n n n n n n n n

n n
n

h u u u u u h b h b h b

h b h b h b

     

 


         

 

 (3.56) 

3 4 4 4

10 1 2 3 1 2

3

4 4 4

3 10 4

3

1280470423 87243599 2747786155
3 3

32851889280 4106486160 2190125952

1044683 86821621 2610001931

586640880 13192960 32851889280

n n n n n n n
n

n n
n

h u u u u u h b h b h b

h b h b h b

    


 


        

  

 (3.57) 
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3 4 4 4

4 1 2 3 1 2

4 4 4

3 10 4

3

3004333 866251 16965903
3 3

135192960 16899120 15021440

2249 16884909 4703339

2414160 15021440 27038592

n n n n n n n n

n n
n

h u u u u u h b h b h b

h b h b h b

     

 


         

 

 (3.58) 

for 0(4)( 4)n N   

Remark 3.3.1. The equations (3.40) to (3.58) together form the Block Unification Method 

(BUM) used to solve equations (1.1) and (1.2). 

3.4 Analysis of the Methods 

The properties to be analysed for the derived methods are the order and error constant, 

the local truncation errors and the consistency of the methods. 

3.4.1 Order and error constants 

The linear difference operator L associated with the continuous implicit k step method 

developed, with  as the step number, is defined as: 

         
0

k k

n j j n j v n vj
j k j

x y x h x f x h f x 



    

  

    and   (3.59) 

With 

       ( ) ( )

0

( ); ( ) ( )
k k

m m

j j v

j k j

L y x h x y x jh h x y x jh h y x vh 



  
  

 
      

 
    (3.60) 

Where y(x) is an arbitrary test function that is continuously differentiable in the interval 

[a,b].  

The Taylors series expansion about the point x gives  

  )(...)('')(')();( 2

210 xyhCxyhCxhyCxyChxyL pp

p    (3.61) 
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The difference operator L and the associated continuous implicit hybrid k step methods 

are of order p 
0 1 2 1... ... 0p pC C C C C         and 0pC   . The term 0p kC   is 

called the error constant. 

Definition 3.4.1. The equations from (3.17) to (3.28), (3.31) to (3.38) and (3.40) to (3.58) 

form a block of order p if 
0 1 2 1... ... 0p pC C C C C         and 0pC    in which  

  1( ); ( ) ( )p p p

pL y x h C h y x O h    

In this case, 
pC  is a vector of error constants 

Definition 3.4.2. The equation (3.59) is said to be consistent if the order p > 1. 

Theorem 3.4.1. (Henrichi (1962)) The implicit method of equation (3.59) is said to be 

consistent if it satisfies the following conditions: 

1. 0
k

j

j o




  

2. (1) (1) 0    and 

3. ( ) ! (1)    

where   is the order of the differential equation. 

  



41 
 

Table 3.1: Order and Error Constants for 3k  and 3   

Formulae 3pC 
 Formulae 3pC 

 

3n 
 

1

1440
  - - 

7

3
n



 89

787320
  - - 

n   
139

60480
 n   

169

20160
  

1n 
  

1

3024
  1n 

  
19

12096
 

2n 
  

11

60480
  2n 

  
59

60480
  

7

3
n




  337

688905
  7

3
n




  2551

2939328
  

3n 
  

43

30240
  3n 

  
43

20160
  

 

Where the formulae ( )m

n j 
 represent each LMM ( ) 7

, 0,1,2; 0,...,3,
3

m

n jy m j   . From the 

definition of error constant given, it follows that all formulae are of order 5p  . 
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Table 3.2: Order and Error Constants for 3k  and 2   

Formulae 2pC 
 Formulae 2pC 

 

3n 
 

1

720
  1n 

  
43

30240
 

7

3
n



 281

787320
  2n 

  
17

15120
  

n  
1

360
 7

3
n




  7471

7348320
  

n   
43

5040
  3n 

  
23

10080
  

 

Where the formulae ( )m

n j 
 represent each LMM ( ) 7

, 0,1; 0,...,3,
3

m

n jy m j   . From the 

definition of error constant given, it follows that all formulae are of order 4p  . 
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Table 3.3: Order and Error Constants for 4k  and 4   

Formulae 4pC 
 Formulae 4pC 

 Formulae 4pC 
 

4n 
 

31

20118
 - - - - 

10

3
n



 74005

1187947782
 - - - - 

n   
11

80472
  n   

3733

1689912
 n   

4919

563304
  

1n 
  

181

844956
  1n 

  
22

211239
  1n 

  
1493

563304
 

2n 
  

377

1689912
 2n 

  
53

1689912
  2n 

  
445

187768
  

3n 
  

13

140826
  3n 

  
113

120708
 3n 

  
3397

563304
 

10

3
n




  245647

410648616
 10

3
n




  1353949

410648616
 10

3
n




  1044683

136882872
 

4n 
  

7237

1689912
 4n 

  
12289

1689912
 4n 

  
2249

563304
 

 

Where the formulae ( )m

n j 
 represent each LMM 

( ) 10
, 0,...,3; 0,...,4,

3

m

n jy m j   . From the 

definition of error constant given, it follows that all formulae are of order 3p  . 

3.4.2 Consistency of the main method 

The first and second characteristic polynomials of equation (3.17) are 

3 2( ) 3 3 1z z z z      

And 

7

3 23
1

14 81 364 259 4
560

z z z z
 

     
 

 

By Definition 3.4.2 and Theorem 3.4.1, the equation (3.17) is consistent since it satisfies 

the following: 

1. The order is p = 5 > 1; 
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2. 0 1 2 30,( 1, 3, 3, 1)
k

j

j o

    


        

3. (1) 0   

2(1) 3 6 3z z     

(1) 0   

Therefore, (1) (1) 0    

4. (1) 6; (1) 1     

Therefore, (1) 3! (1)    

The first and second characteristic polynomials of equation (3.31) are 

3 2( ) 2z z z z     

And 

7

3 23
1

98 243 1148 203 12
1680

z z z z
 

     
 

 

By Definition 3.4.2 and Theorem 3.4.1, the formula of equation (3.31) is consistent since 

it satisfies the following: 

1. The order is p = 4 > 1; 

2. 0 1 2 30,( 0, 1, 2, 1)
k

j

j o

    


       

3. (1) 0   

2(1) 3 4 1z z     

(1) 0   

Therefore, (1) (1) 0    

4. (1) 6; (1) 1     

Therefore, (1) 3! (1)    

The first and second characteristic polynomials of equation (3.40) are 
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4 3 2( ) 4 6 4 1z z z z z       

And 

10

4 3 23
1

46598 338985 868 1780437 326492 15712
2414160

z z z z z
 

       
 

 

By Definition 3.4.2 and Theorem 3.4.1, the formula of equation (3.40) is consistent since 

it satisfies the following: 

1. The order is p = 3 > 1; 

2. 0 1 2 3 40,( 1, 4, 6, 4, 1)
k

j

j o

     


         

3. (1) 0   

3 2(1) 4 12 12 4z z z      

(1) 0   

Therefore, (1) (1) 0    

4. ( ) (1) 24; (1) 1iv    

Therefore, ( ) (1) 4! (1)iv   
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3.5 Convergence of the Methods 

Theorem 3.5.1. Let ),,( iii yyy  be an approximation to the solution vector 

( 1)( ( ), ( ), , ( ))s

i i iy x y x y x for the system of equation (1.1). If 
iii yxye  )( ,

iii yxye  )( ,…, ( 1) ( 1)( )s s

i i ie y x y   , where the exact solution given by the vector 

( 1)( ( ), ( ), , ( ))sy x y x y x is several times differentiable and if YYE  , then the 

BUMs in equations (3.17) to (3.28), (3.31) to (3.38) and (3.40) to (3.58) are said to be 

convergent of orders 5, 4 and 3 respectively which implies that  

5( )E O h , 4( )E O h  and 3( )E O h  respectively where k is the step number. 

3.5.1 Proof of convergence for 3k   

In order to show the block unification method equations (3.17) to (3.28) converges, they 

are compactly written as 

 3 ( ) ( ) 0EY h GF Y C L h     

where E is a 3 3N N  defined by 



















333231

232221

131211

EEE

EEE

EEE

E  where 
ijE are NN  matrices given as 
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11

1
2 0 0 0 0 0 0

2

2 1 0 0 0 0 0 0

7 14
1 0 0 0 0 0

9 9

3 3 0 1 0 0 0 0

0 0

3 1
0 0 0 2 0 0

2 2

0 0 0 1 1 2 0 0

2 7 14
0 0 0 1 0

9 9 9

0 0 0 1 3 3 0 1

E

 
 
 

 
 

 
 
 
 

  
 

 
 
  
 
  
 
   

     (3.62) 

21

1
0 0 0 0

2

3
2 0 0 0

2

8 11
0 0 0

3 6

5
4 0 0 0

2

1 1
0 0 0

2 2

1 3
0 0 2

2 2

5 8 11
0 0

6 3 6

3 5
0 0 4

2 2

E

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

  
 
 

  
         (3.63) 
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31

2 1 0 0 0

2 1 0 0 0

2 1 0 0 0

2 1 0 0 0

0 0 1 2 1

0 0 1 2 1

0 0 1 2 1

0 0 1 2 1

E

 
 

 
 
 

 
 
 

  
  
 

  
 

  

       (3.64) 

12E , 
13E , 

23E , 
32E , are NN  null matrices and 

22E , 
33E  are NN   identity matrices. 

Similarly, another matrix G which is a NN 33   matrix defined as 



















333231

232221

131211

GGG

GGG

GGG

G  

Where 
ijG  are NN   matrices given as 

11

577 101 783 11
0 0 0 0

1680 420 3920 420

227 53 81 17
0 0 0 0

240 60 112 180

2911 139 1067 169
0 0 0 0

29160 1215 22680 43740

37 13 81 1
0 0 0 0

80 20 560 40

167 577 101 783 11
0

2940 1680 420 3920 420

389 227 53 81 17
0

1260 240 60 112 180

G

 

 







 

  

137 2911 139 1067 169
0

76545 29160 1215 22680 43740

1 37 13 81 1
0

140 80 20 560 40

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

           (3.65) 
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21

173 1 27 1
0 0 0 0

1120 105 1568 336

367 27 351 1
0 0 0 0

1680 140 3920 140

310459 25679 38813 3865
0 0 0 0

816480 51030 211680 244944

2393 89 27 39
0 0 0 0

3360 84 1568 560

11 173 1 27 1
0 0 0

1470 1120 105 1568 336

13 367 27
0 0 0

2940 1680

G

 









  

351 1

140 3920 140

680 310459 25679 38813 3865
0 0 0

107163 816480 51030 211680 244944

9 2393 89 27 39
0 0 0

980 3360 84 1568 560

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 (3.66) 

31

1 11 27 1
0 0 0 0

12 40 140 45

39 49 27 1
0 0 0 0

80 60 140 36

29 641 71 29
0 0 0 0

60 648 420 1215

31 79 81 11
0 0 0 0

60 120 140 45

53 1 11 27 1
0 0 0

2520 12 40 140 45

1 39 49 27 1
0 0 0

180 80 60 140 36

407 29 641 71 29
0 0 0

68040 60 648 420 1215

1
0 0 0

54

G

 









 





31 79 81 11

0 60 120 140 45

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     (3.67) 

12G , 
13G , 

22G ,
23G , 

32G , 
33G  are NN  null matrices 

Similarly, we establish the convergence of equations (3.31) to (3.38) which are compactly 

written as 

 2 ( ) ( ) 0EY h GF Y C L h     

where E is a 2 2N N  defined by 



50 
 

11 12

21 22

E E
E

E E

 
  
 

 where 
ijE are NN  matrices given as 

11

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

4
1 0 0 0 0 0 0

3

2 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 1 2 1 0 0 0

1 4
0 0 0 1 0 0

3 3

0 0 0 0 1 2 0 1

E

 
 
 
 
 
 
 

 
 
 
 

 
 

 
 
  

      (3.68) 

21

1 0 0

1 0 0

1 0 0

1 0 0

1 1

1 1

1 1

1 1

E

 
 
 
 
 
 
 
 

 
 
 

 
 

 

         (3.69) 

12E  is an NN  null matrix and 
22E  is an NN   identity matrix. Similarly, another 

matrix G which is a 2 2N N  matrix defined as 

11 12

21 22

G G
G

G G

 
  
 

 

Where 
ijG  are NN   matrices given as 
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11

211 7 729 13
0 0 0 0

160 10 1120 144

209 1 81 1
0 0 0 0

240 15 560 40

1093 1817 527 317
0 0 0 0

29160 7290 7560 43740

29 41 81 7
0 0 0 0

240 60 560 120

101 211 7 729 13
0

315 160 10 1120 144

8 209 1 81 7
0

105 240 15 560 120

313 1093
0

153090 29

G

 

 





  




1817 527 317

160 7290 7560 43740

1 29 41 81 1
0

140 240 60 560 120

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 (3.70) 

21

139 11 297 19
0 0 0 0

480 24 1120 720

11 19 297 17
0 0 0 0

96 30 1120 720

53 2611 65 383
0 0 0 0

480 3240 672 19440

23 19 729 173
0 0 0 0

10 40 1120 720

23 139 11 297 19
0 0 0

2520 480 24 1120 720

2 11 19 297 17
0 0 0

315 96 30 1120 720

403
0 0 0

G

   







  

 


53 2611 65 383

68040 480 3240 672 19440

5 23 19 729 173
0 0 0

504 10 40 1120 720

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  (3.71) 

12G  and 
22G  are NN  null matrices 

3.5.2 Proof of convergence for 4k   

In order to show the block unification method equations (3.40) to (3.58) converges, they 

are compactly written as 

 4 ( ) ( ) 0EY h GF Y C L h     
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where E is a 4 4N N  defined by 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

E E E E

E E E E
E

E E E E

E E E E

 
 
 
 
 
 

 where 
ijE are NN  matrices given as 

11

3 1
3 0 0 0 0 0 0 0 0

2 3

5 4 1 0 0 0 0 0 0 0 0

3 3 1 0 0 0 0 0 0 0 0

20 35 140
1 0 0 0 0 0 0 0

27 27 81

4 6 4 0 1 0 0 0 0 0 0

11 3 1
0 0 0 3 0 0 0 0

6 2 3

0 0 0 2 5 4 1 0 0 0 0

0 0 0 1 3 3 1 0 0 0 0

14 20 3 140
0 0 0 1 0 0 0

81 27 27 81

0 0 0 1 4 6 4 0 1 0 0

0

11 3
0 0 0 0 0 0 3 0 0

6 2

0 0

E

 



 

 

 

 

 

 


 

 



0 0 0 0 2 5 4 0 0

0 0 0 0 0 0 1 3 1 0 0

14 20 140
0 0 0 0 0 0 1 0

81 27 80

0 0 0 0 0 0 1 4 4 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

  
 

  
 
   

  (3.72) 
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21

1 1
1 0 0 0 0 0

2 6

1 1
1 0 0 0 0 0

2 3

3 11
3 0 0 0 0 0

2 6

29 23
3 0 0 0 0 0

6 9

19 13
7 0 0 0 0 0

2 3

1 1 1
0 0 1 0 0

3 2 6

1 1 1
0 0 1 0 0

6 2 3

1 3 11
0 0 3 0 0

3 2 6

13 29 23
0 0 3 0 0

18 6 9

11 19 13
0 0 7 0 0

6 2 3

1 1 1
0 0 0 0 1

3 2 6

1 1 1
0 0 0 0 1

6 2 3

1 3 1
0 0 0 0 3

3 2

E



 

 

 

 



  

 


 

 



  

 
1

6

13 29 23
0 0 0 0 3

18 6 9

11 19 13
0 0 0 0 7

6 2 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

  
 

   (3.73) 
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31

2 1 0 0 0 0 0 0

1 2 1 0 0 0 0 0

4 5 2 0 0 0 0 0

7
5 6 0 0 0 0 0

3

7 8 3 0 0 0 0 0

0 0 1 2 1 0 0 0

0 0 0 1 2 1 0 0

0 0 1 4 5 2 0 0

4 7
0 0 5 6 0 0

3 3

0 0 2 7 8 3 0 0

0 0 0 0 1 2 1 0

0 0 0 0 0 1 2 1

0 0 0 0 1 4 5 2

4 7
0 0 0 0 5 6

3 3

0 0 0 0 2 7 8 3

E



 

 

  

 

  


 
  


   



 


 

 

 

 

 





















 
 
 
 
 
 
 
 
 



   (3.74) 

 

41

3 3 1 0 0 0 0 0

3 3 1 0 0 0 0 0

3 3 1 0 0 0 0 0

3 3 1 0 0 0 0 0

3 3 1 0 0 0 0 0

0 0 1 3 3 1 0 0

0 0 1 3 3 1 0 0

0 0 1 3 3 1 0 0

0 0 1 3 3 1 0 0

0 0 1 3 3 1 0 0

0 0 0 0 1 3 3 1

0 0 0 0 1 3 3 1

0 0 0 0 1 3 3 1

0 0 0 0 1 3 3 1

0 0 0 0 1 3 3 1

E

 

 
 

 
 


 
  


 
 

 

  


  


 
  


 

 
























 
 


    (3.75) 

 



55 
 

12E , 
13E , 

14E , 
23E , 

24E , 
32E , 

34E ,
42E , 

43E  are NN  null matrices and 
22E , 

33E , 
44E   are 

NN   identity matrices. Similarly, another matrix G which is a 4 4N N matrix defined 

as 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

G G G G

G G G G
G

G G G G

G G G G

 
 
 
 
 
 

 where 
ijG are NN  matrices given as 
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11

431323 202709 11 1539 13130
0 0 0 0 0 0

2414160 3218880 344880 766400 2414160

34275233 2696563 3733 351 231683
0 0 0 0 0 0

50697360 16899120 7242480 107296 202789440

18007093 519415 4919 533331

16899120 9012864 2414160 150214

G

  

 

  



1455383
0 0 0 0 0 0

40 135192960

29269579 254898661 14801 2814473 45580303
0 0 0 0 0 0

1018240956 2375895564 1018240956 293320440 28510746768

81623 593479 31 7533 23299
0 0 0 0 0 0

603540 804720 86220 53648 1207080

237971
0 0 0

24141600

 

 

 
431323 202709 11 1539 1313

0 0
2414160 3218880 344880 766400 2414160

16103449 3475233 2696563 3733 351 231683
0 0 0 0 0

202789440 50697360 16899120 7242480 107296 202789440

47872339 18007093 519415
0 0 0

135192960 16899120 90128

 

 

  
4919 533331 1455383

0 0
64 2414160 15021440 135192960

2909857 29269579 254898661 14801 2814473 45580303
0 0 0 0 0

14253733840 1018240956 2375895564 1018240956 293320440 28510746768

982 81623 593479 31
0 0 0

150885 603540 804720 86



 


7533 23299

0 0
220 53648 1207080

237971 431323 202709 11 1539 1313
0 0 0 0 0

24141600 2414160 3218880 344880 766400 2414160

16103449 34275233 26965633 3733 351 231683
0 0 0 0 0

202789440 50697360 16899120 7242480 107296 202



   

 
789440

47872339 18007093 519415 4919 533331 1455383
0 0 0 0 0

135192960 16899120 9012864 2414160 15021440 135192960

2909857 29269579 254898661 14801 2814473 455
0 0 0 0 0

14253733840 1018240956 2375895564 1018240956 293320440

   

 
80303

28510746768

982 81623 593479 31 7533 23299
0 0 0 0 0

150885 603540 804720 86220 53648 1207080

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

                  (3.76) 
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12

45643 966517 181 185733 57817
0 0 0 0 0 0

905310 27038592 3621240 75107200 81115776

1772147 346681 377 9747 130261
0 0 0 0 0 0

50697360 6759648 7242480 4694200 202789440

516401 8232487 13 648567

8449560 45064320 603540 75107200

G



   





180161
0 0 0 0 0 0

135192960

195652973 3973831609 245647 2749694 472713611
0 0 0 0 0 0

1759922640 8212972320 1759922640 47528775 49277833920

10605461 101084371 7237 15198111 2273267
0 0

50697360 67596480 7242480 37553600 50697360

 

  0 0 0 0

2269889 45643 966517 181 185733 57817
0 0 0 0 0

2027894400 905310 27038592 3621240 75107200 81115776

1548223 1772147 346681 377 9747 130261
0 0 0 0 0

1013947200 50697360 6759648 7242480 4694200 202789440

759043
0 0 0

6759648

 

   


516401 8232487 13 648567 180161

0 0
00 8449560 45064320 603540 75107200 135192960

473404049 195652973 3973831609 245647 2749694 472713611
0 0 0 0 0

246389169600 1759922640 8212972320 1759922640 47528775 49277833920

1007236
0 0 0



 

9 10605461 101084371 7237 15198111 2273267
0 0

506973600 50697360 67596480 7242480 37553600 50697360

2269889 45643 966517 181 185733 57817
0 0 0 0 0

2027894400 905310 27038592 3621240 75107200 81115776

1548223
0 0 0 0 0

101

 

 

1772147 346681 377 9747 130261

3947200 50697360 6759648 7242480 4694200 202789440

759043 516401 8232487 13 648567 180161
0 0 0 0 0

675964800 8449560 45064320 603540 75107200 135192960

473404049 195652973
0 0 0 0 0

246389169600 1

   

 

3973831609 245647 2749694 472713611

759922640 8212972320 1759922640 47528775 49277833920

10072369 10605461 101084371 7237 15198111 2273267
0 0 0 0 0

506973600 50697360 67596480 7242480 37553600 50697360



















 

 




















 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                  (3.77) 
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31

1966163 398119 11 297 11561
0 0 0 0 0 0

25348680 135192960 452655 15021440 405578880

139549 5292653 53 4293 55409
0 0 0 0 0 0

50697360 67596480 7242480 1502144 101394720

1908581 13531829 113 1139157

12674340 19313280 517320 15

G

  

  





111769
0 0 0 0 0 0

021440 8277120

1819245629 18241613111 1353949 9599899 114919289
0 0 0 0 0 0

12319458480 16425944640 1759922640 40557888 3079864620

1130099 64469357 12289 323217 1705189

7242480 33798240 7242480 375536 4055788



 

  0 0 0 0 0 0
8

1158673 1966163 398119 11 297 11561
0 0 0 0 0

405578880 25348680 135192960 452655 15021440 405578880

67 139549 5292653 53 4293 55409
0 0 0 0 0

3168585 50697360 67596480 7242480 1502144 101394720

192239 19085
0 0 0

57939840

   

  

81 13531829 113 1139157 111769
0 0

12674340 19313280 517320 15021440 8277120

379421111 1819245629 18241613111 1353949 9599899 114919289
0 0 0 0 0

24638916960 12319458480 16425944640 1759922640 40557888 3079864620

7343143
0 0 0

 

 

1130099 64469357 12289 323217 1705189
0 0

202789440 7242480 33798240 7242480 375536 40557888

1158673 1966163 398119 11 297 11561
0 0 0 0 0

405578880 25348680 135192960 452655 15021440 405578880

67 139549
0 0 0 0 0

3168585

 

   


5292653 53 4293 55409

50697360 67596480 7242480 1502144 101394720

192239 1908581 13531829 113 1139157 111769
0 0 0 0 0

57939840 12674340 19313280 517320 15021440 8277120

379421111 1819245629 1824
0 0 0 0 0

24638916960 12319458480

 

 

1613111 1353949 9599899 114919289

16425944640 1759922640 40557888 3079864620

7343143 1130099 64469357 12289 323217 1705189
0 0 0 0 0

202789440 7242480 33798240 7242480 375536 40557888





































 

 
















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
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
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
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 
 
 
 
 
 
 
 



 

                  (3.78) 
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41

4745537 3926283 1493 381807 990179
0 0 0 0 0 0

16899120 15021440 2414160 15021440 135192960

1435033 12884237 89 515187 135551
0 0 0 0 0 0

5633040 45064320 160944 15021440 15021440

53539 53128063 3397 5

3379824 45064320 2414160

G

   







008527 7804483
0 0 0 0 0 0

15021440 135192960

87243599 2747786155 1044683 86821621 2610001931
0 0 0 0 0 0

4106486160 2190125952 586640880 13192960 32851889280

866251 16965903 2249 16884909 470

16899120 15021440 2414160 15021440



  


3339

0 0 0 0 0 0
27038592

3341887 4745537 3926283 1493 381807 990179
0 0 0 0 0

135192960 16899120 15021440 2414160 15021440 135192960

239451 1435033 12884237 89 515187 135551
0 0 0

15021440 5633040 45064320 160944 15021440 15021440

   

  0 0

4181663 53539 53128063 3397 5008527 7804483
0 0 0 0 0

135192960 3379824 45064320 2414160 15021440 135192960

1280470423 87243599 2747786155 1044683 86821621 261000
0 0 0

32851889280 4106486160 2190125952 586640880 13192960

 

  
1931

0 0
32851889280

3004333 866251 16965903 2249 16884909 4703339
0 0 0 0 0

135192960 16899120 15021440 2414160 15021440 27038592

3341887 4745537 3926283 1493 381807
0 0 0 0 0

135192960 16899120 15021440 2414160 15021440



   
990179

135192960

239451 1435033 12884237 89 515187 135551
0 0 0 0 0

15021440 5633040 45064320 160944 15021440 15021440

4181663 53539 53128063 3397 5008527 7804483
0 0 0 0 0

135192960 3379824 45064320 2414160 15021440 135192960

0 0 0

 

 

1280470423 87243599 2747786155 1044683 86821621 2610001931
0 0

32851889280 4106486160 2190125952 586640880 13192960 32851889280

3004333 866251 16965903 2249 16884909 47
0 0 0 0 0

135192960 16899120 15021440 2414160 15021440

  


03339

27038592

 
 
 
 
 
 
 
 
 
 
 
 
 
 
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 
 
 
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 
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                 (3.79)
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Where all other matrices are null matrices and then the following vectors are defined with 

s being the order of the differential equation the method is applied to 

(s) ( ) (s) ( )

1 1 1( , , , , , , , , , )s s T

n n k n n k n n kY y y hy hy h y h y     
   

( 1) ( 1)

1 1 1( ( ), , ( ), ( ), , ( ), , ( ), , ( ))s s T

n n k n n k n n kY y x y x hy x hy x h y x h y x 

     
     

( 1) ( 1)

1 2 1 1( , , , , , , , , , )s s T

n n v n n k n n kF f f hf hf h f h f 

     
     

( 1) ( 1)

1 1 1( ) ( , , , , , , , , , )s s T

N N NL h l l l l l l    

Tkk

kkk

vv

yfh

yfhyfhyfhfh

fhfhfhyfhyhfhyhfhC

)0,0,

,,0,0,,,0,,0,

,,,,,,,,(

0

)(

00

3)(

0

0

)1(

00

3)1(

00

)(

00

3)(

00

)1(

00

3)1(

00

3)(

0

0

3)1(

00

3)2(

00

3)1(

000

3)0(

000

3)0(

000

3)0(

0

















 

 

With )(hL representing the local truncation error vector at the point 
nx of the methods in 

equations (3.17) to (3.28), (3.31) to (3.38) and (3.40) to (3.58). 

3.5.3 General proof of theorem 3.5.1 

Consider the exact form of the systems formed from equations (3.17) to (3.28), (3.31) to 

(3.38) and (3.40) to equation (3.58) given by the general form below with s being the 

order of the differential equation to be solved 

( ) ( ) 0sEY h GF Y C L h           (3.80) 

where )(hL  is the truncation error vector obtained from the systems formed. The 

approximate form of the system is given by 

3 ( ) 0EY h GF Y C           (3.81) 

where Y  is the approximate solution of vector Y . 
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Subtracting equation (3.81) from equation (3.80) and letting 

1 1 1( , , , , , , )T

N N Ne y y e e e e e e      and using the mean value theorem, we have the 

error system 

(E )e ( )sh GB L h           (3.82) 

where B  is the Jacobian matrix and its entries ,a,b 1,2,3,abB   are defined as 

(a 1) ( 1)

1 1

(b 1) ( 1)

1

(a 1) (a 1)

(b 1) (b 1)

1

a

N

ab

N N

N

f f

y f

B

f f

f f

 

 

 

 

  
 
  

 
 
  

   

        (3.83) 

Using equation (3.82), we let 

1 1 1S (E ) ( )s sh GB E I h E GB       

1 1 1 1 1 2SE ( ) ( ) ( )s s sI h E GB I I h E GB I h E GB             

The above is an infinite series which converges at 1 1sh E GB  . We claim that E is 

invertible if and only if E11 is invertible. Since E11 is a block diagonal matrix with 

elements in its main diagonal as non-zero (note: Eii, with i = 2(1)s are all identity 

matrices), then it is invertible. Therefore, S is monotone for any sufficiently small h and 

thus singular if 

1 1
s

E
h GB

   

From (3.81) and )(hL  

1(E ) ( )se h GB L h   
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( )e SL h  

( )e SL h  

 1( ) ( )s k sO h O h    

 1( )kO h   

Which show that the methods are convergent and the global errors are of order 1( )kO h    
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CHAPTER FOUR 

4.0       RESULTS AND DISCUSSION 

4.1 Method Implementation 

The blocks for 3   are implemented as follows while noting that a block of step k 

makes use of each of the methods in the block in steps of k i.e. n = 0, k, …, N-k. This 

approach has an advantage of generating approximate solutions simultaneously to the 

exact solution on the entire interval of integration. 

The steps are: 

Step 1: Combine the derived blocks to obtain Y1 for n = 0 on the interval [yn, yn+k] and 

also S1 for n = 0 on the same interval, Y2 and S2 for n = 1 on the interval [yn+k, yn+2k], Y3 

and S3 for n = 2 on the interval [yn+2k, yn+3k] and so on 

Step 2: A unified block of system of kN equations in kN unknowns which can be solved 

easily is formed from the union of the equations derived in step 1. 

Step 3: The values of the solution(s), the first and second derivatives, are generated by 

the sequence        , , ,n n n ny s y s   and  ny  0,...,n N respectively which are the 

solutions from Step 2. 

In order to apply the BUM to the PDEs, the equivalent form of the derived BUM from 

(3.40) to (3.58) for the direct numerical integration of (1.2) is given as 

4 4 4

, 4 , , 1 , 2 , 3 , , 1 , 2

4 4 4

, 3 10 , 4
,

3

982 81623 593479
4 6 4

150885 603540 804720

31 7533 23299

86220 53648 1207080

i n i n i n i n i n i n i n i n

i n i n
i n

u u u u u h b h b h b

h b h b h b

     

 


        

 
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4 4

10 , , 1 , 2 , 3 , , 1
,

3

4 4 4

, 2 , 3 10
,

3

14 20 35 140 2909857 29269579

81 27 27 81 14253733840 1018240956

254898661 14801 2814473 45580303

2375895564 1018240956 293320440 28510746

i n i n i n i n i n i n
i n

i n i n
i n

u u u u u h b h b

h b h b h b

   


 


       

   4

, 4
768

i nh b 

 

4 4 4

, , , 1 , 2 , 3 , , 1 , 2

4 4 4

, 3 10 , 4
,

3

11 3 1 237971 431323 202709
3

6 2 3 24141600 2414160 3218880

11 1539 1313

344880 766400 2414160

i n i n i n i n i n i n i n i n

i n i n
i n

hu u u u u h b h b h b

h b h b h b

    

 


         

 

 

4 4

, 1 , , 1 , 2 , 3 , , 1

4 4 4 4

, 2 , 3 10 , 4
,

3

1 1 1 2269889 45643

3 2 6 2027894400 905310

966517 181 185733 57817

27038592 3621240 75107200 81115776

i n i n i n i n i n i n i n

i n i n i n
i n

hu u u u u h b h b

h b h b h b h b

    

  


        

  

 

4 4

, 2 , , 1 , 2 , 3 , , 1

4 4 4 4

, 2 , 3 10 , 4
,

3

1 1 1 1548223 1772147

6 2 3 1013947200 50697360

346681 377 9747 130261

6759648 7242480 4694200 202789440

i n i n i n i n i n i n i n

i n i n i n
i n

hu u u u u h b h b

h b h b h b h b

    

  


       

  

 

4 4 4

, 3 , , 1 , 2 , 3 , , 1 , 2

4 4 4

, 3 10 , 4
,

3

1 3 11 759043 516401 8232487
3

3 2 6 675964800 8449560 45064320

13 648567 180161

603540 75107200 135192960

i n i n i n i n i n i n i n i n

i n i n
i n

hu u u u u h b h b h b

h b h b h b

     

 


        

  

 

4 4

10 , , 1 , 2 i, 3 i, , 1
,

3

4 4 4

, 2 , 3 10
,

3

13 29 23 473404049 195652973
3

18 6 9 246389169600 1759922640

3973831609 245647 2749694 472713611

8212972320 1759922640 47528775 492778

i n i n i n n n i n
i n

i n i n
i n

hu u u u u h b h b

h b h b h b

   


 


        

   4

4,
33920

n mh b 

 

4 4 4

, 4 , , 1 , 2 , 3 , , 1 , 2

4 4 4

, 3 10 , 4
,

3

11 19 13 10072369 10605461 101084371
7

6 2 3 506973600 50697360 67596480

7237 15198111 2273267

7242480 37553600 50697360

i n i n i n i n i n i n i n i n

i n i n
i n

hu u u u u h b h b h b

h b h b h b

     

 


        

  

 

2 4 4

, , , 1 , 2 , 3 , , 1

4 4 4 4

, 2 , 3 10 , 4
,

3

16103449 34275233
2 5 4

202789440 50697360

2696563 3733 351 231683

16899120 7242480 107296 202789440

i n i n i n i n i n i n i n

i n i n i n
i n

h u u u u u h b h b

h b h b h b h b

   

  


       

  
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2 4 4 4

, 1 , , 1 , 2 , , 1 , 2

4 4 4

, 3 10 , 4
,

3

1158673 1966163 398119
2

405578880 25348680 135192960

11 297 11561

452655 15021440 405578880

i n i n i n i n i n i n i n

i n i n
i n

h u u u u h b h b h b

h b h b h b

    

 


       

 

 

2 4 4 4

, 2 , 1 , 2 , 3 , , 1 , 2

4 4 4

, 3 10 , 4
,

3

67 139549 5292653
2

3168585 50697360 67596480

53 4293 55409

7242480 1502144 101394720

i n i n i n i n i n i n i n

i n i n
i n

h u u u u h b h b h b

h b h b h b

     

 


       

 

 

2 4 4 4

, 3 , , 1 , 2 , 3 , , 1 , 2

4 4 4

, 3 10 , 4
,

3

192239 1908581 13531829
4 5 2

57939840 12674340 19313280

113 1139157 111769

517320 15021440 8277120

i n i n i n i n i n i n i n i n

i n i n
i n

h u u u u u h b h b h b

h b h b h b

     

 


         

 

 

2 4 4

10 , , 1 , 2 , 3 , , 1
,

3

4 4 4

, 2 , 3 10
,

3

4 7 379421111 1819245629
5 6

3 3 24638916960 12319458480

18241613111 1353949 9599899 114919289

16425944640 1759922640 40557888 30798

i n i n i n i n i n i n
i n

i n i n
i n

h u u u u u h b h b

h b h b h b

   


 


        

   4

, 4
64620

i nh b 

 

2 4 4 4

, 4 , , 1 , 2 , 3 , , 1 , 2

4 4 4

, 3 10 , 4
,

3

7343143 1130099 64469357
2 7 8 3

202789440 7242480 33798240

12289 323217 1705189

7242480 375536 40557888

i n i n i n i n i n i n i n i n

i n i n
i n

h u u u u u h b h b h b

h b h b h b

     

 


         

 

 

3 4 4 4

, , i, 1 , 2 , 3 , , 1 , 2

4 4 4

, 3 10 , 4
,

3

47872339 18007093 519415
3 3

135192960 16899120 9012864

4919 533331 1455383

2414160 15021440 135192960

i n i n n i n i n i n i n i n

i n i n
i n

h u u u u u h b h b h b

h b h b h b

    

 


         

 

 

3 4 4 4

, 1 , , 1 , 2 , 3 , , 1 , 2

4 4 4

, 3 10 , 4
,

3

3341887 4745537 3926283
3 3

135192960 16899120 15021440

1493 381807 990179

2414160 15021440 135192960

i n i n i n i n i n i n i n i n

i n i n
i n

h u u u u u h b h b h b

h b h b h b

     

 


         

 

 

3 4 4 4

, 2 , , 1 , 2 , 3 , , 1 , 2

4 4 4

, 3 10 , 4
,

3

239451 1435033 12884237
3 3

15021440 5633040 45064320

89 515187 135551

160944 15021440 15021440

i n i n i n i n i n i n i n i n

i n i n
i n

h u u u u u h b h b h b

h b h b h b

     

 


         

 
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3 4 4 4

, 3 , , 1 , 2 , 3 , , 1 , 2

4 4 4

, 3 10 , 4
,

3

4181663 53539 53128063
3 3

135192960 3379824 45064320

3397 5008527 7804483

2414160 15021440 135192960

i n i n i n i n i n i n i n i n

i n i n
i n

h u u u u u h b h b h b

h b h b h b

     

 


         

 

 

3 4 4

10 , , 1 , 2 , 3 , , 1
,

3

4 4 4

, 2 , 3 10
,

3

1280470423 87243599
3 3

32851889280 4106486160

2747786155 1044683 86821621 2610001931

2190125952 586640880 13192960 32851889280

i n i n i n i n i n i n
i n

i n i n
i n

h u u u u u h b h b

h b h b h b

   


 


        

   4

, 4i nh b 

 

3 4 4 4

, 4 , , 1 , 2 , 3 , , 1 , 2

4 4 4

, 3 10 , 4
,

3

3004333 866251 16965903
3 3

135192960 16899120 15021440

2249 16884909 4703339

2414160 15021440 27038592

i n i n i n i n i n i n i n i n

i n i n
i n

h u u u u u h b h b h b

h b h b h b

     

 


         

 

 

4.2 Numerical Examples  

In this section, seven numerical examples are considered. The examples were solved 

using the third order and second order CLMMs of step 3 derived in this research and also 

the fourth order CLMMs of step 4. Some of these examples were solved using the Runge 

Kutta Method. Comparisons are made between the proposed methods and the Runge 

Kutta by obtaining the results and by obtaining errors ( )n nE Maximum y x y  in the 

interval of integration when comparing with the work in Jator et al., (2018). It should be 

noted that the number of function evaluations (NFEs) involved in implementing the 

CLMMs is N ×k in the entire range of integration. Other examples considered include 

Blasius equation, Sakiadis equation, Falkner-Skan equation and Squeezing flow equation.  

Remark 4.2.1. The BUM from equations (3.17) to (3.28) will be referred to as BUM3, the 

BUM from equations (3.31) to (3.38) will be referred to as BUM2 and the BUM from 

equations (3.40) to (3.58) will be referred to as BUM4 in this section. 

Problem 1: Consider the third order boundary value problem (Jator et al., 2018) 

3 2( ) ( ) ( 2 5 3) ,0 1xy x xy x x x x e x         
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(0) (1) 0, (0) 1y y y    

Exact: 
2( ) ( ) xy x x x e   

Problem 2: Blasius Equation 

02  yyy  

1)(,0)0(,0)0(  yyy  

Problem 3: Sakiadis flow 

02  yyy  

0)(,1)0(,0)0(  yyy  

Problem 4: Falkner-Skan Equation 

  2

0( ) ( ) ( ) 1 0y y y y            

(0) 0, (0) 0, lim ( ) 1y y y





     

Problem 5: Stagnation Point Flow under the influence of MHD 

2 1 ( 1) 0y y yy M y          

0s ys y s Ms       

(0) , (0) , ( ) 1y k y y      

(0) 1, ( ) 0s s    

Problem 6: MHD Stagnation Point Flow and Heat Transfer due to Nanofluid 

2 2( ) 0y yy y M A y A          
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2Pr Pr Pr 0s ys Nbh s Nts         

0
Nt

h Lefh s
Nb

      

With boundary conditions 

(0) 0, (0) 1, (0) 1, (0) 1y y s h     

( ) , ( ) 0, ( ) 0y A s h        

Problem 7: MHD Stagnation Point Flow through a Porous Stretching/Shrinking Sheet 

[ ] 1 0,y y M K y M K yy            

2 2[2 ( 1) ]Pr 0s y s EcM y Ecy ys           

(0) , (0) 0, ( ) 1y y y       

(0) 1, ( ) 0s s    

Problem 8: Squeezing Flow 

2( 3 ) 0ivu s u u u u uu M u             

u(0) 0,u (0) 0, (1) 1,u (1) 0u      
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Problem 9: Consider the oscillatory problem arising from ship dynamics 

3 (2 cos ) 0;ivu u u t      

u(0) 1,u (0) 0,u (0) 0,u (0) 0       

Where 0  for existence of the exact solution 

 u( ) 2cos cos 2t t t   

Problem 10: Consider the non-linear problem 

2 2( ) 4 (1 4 );iv tu u uu t e t t        

u(0) 1,u (0) 1,u (0) 3,u (0) 1       

Exact solution 2( ) t tu t e   

Problem 11: Consider the non-linear two-point BVP  

 
2 2( ) u ( ) sin( ) sin ( ), [0,1]ivu x x x x x   

 

u(0) 0,u (0) 1,u(1) sin(1),u (1) cos(1)      

with exact solution ( ) sinu x x  

Problem 12: Consider the linear BVP 

( ) u (x) u(x) e ( 3), [0,1]iv xu x x x      

(0) (0) 0, (1) 3, (1)u u u u e       

with exact solution ( ) (1 ) xu x x e   

Problem 13: Consider the “good” Boussinesq equation 
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2 ,0 1, 0tt xx xx xxxxu u u u x t       

with appropriate boundary conditions 

u(0, ) 0,u(1, ) 0

(0, ) 0,u (1, ) 0, 0xx xx

t t

u t t t

  


   
 

The exact solution for this problem is 

2

0

1
u( , ) sec ( )

6 2

A
x t A h x ct v b

   
            

 

Here c is the velocity, A is amplitude of the pulse, b is an arbitrary parameter and v0 is 

the initial position. Using the same theoretical parameters as in (Mohanty and Kaur, 2016) 

A = 0.369, b = −1/2 and c = 0.868 

Upon semi discretisation of the time variable, we obtain 

4 2 2 2

1 1

2 4 2 2

2
,0 1, 1, , 1

( )

m m m m m m
m

u u u d u d u d u
g x m M

t dx dx dx

  
       

  

where , , 0,1, , , , ( ) ( , )m m mt t m M u u x u x t   ,  1( ), , ( )
T

mg g x g x and

( , ) 0m mg g x t  , which is expressed in the form 

( ) ( , , , , )ivu f x u u u u Au g      

A is an 1 1M M    matrix and 0mg  . 

Problem 14: Consider the following homogenous fourth-order parabolic equation 

0,0 1, 0tt xxxxu u x t      

subject to the initial condition 
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2u( ,0) sin ,u ( ,0) sintx x x x      

and with the appropriate boundary conditions 

u(0, ) 0,u(1, ) 0,

(0, ) 0,u (1, ) 0xx xx

t t

u t t

  


  
 

The exact solution for this problem is 

2

u( , ) sintx t e x   

Upon semi discretisation of the time variable, we obtain 

4

1 1

2 4

2
,0 1, 1, , 1

( )

m m m m
m

u u u d u
g x m M

t dx

  
     

  

Where 

 4 3 3 1( ) / M, , 0,1, , , ( ), , ( ) , ( ) ( , )
T

m M m mt L L t L m t m M u u x u x u x u x t          

g
and mg  are as expressed in problem 13, which is expressed in the form 

( ) ( , , , , )ivu f x u u u u Au g      

A is as expressed in problem 14 and 0mg   

Problem 15: Consider the fourth order parabolic equation with constant coefficient 

4( 1)sin cos ,0 1, 0tt xxxxu u x t x t        

subject to the initial conditions 

u( ,0) sin ,u (x,0) 0tx x   

and with the boundary conditions 
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u(0, ) (1, ) (0, ) (1, ) 0xx xxt u t u t u t     

with the exact solution 

u( , ) sin cosx t x t  

Upon semi discretisation of the time variable, we obtain 

4

1 1

2 4

2
,0 1, 1, , 1

( )

m m m m
m

u u u d u
g x m M

t dx

  
     

  

Where 

 4 3 3 1( ) / M, , 0,1, , , ( ), , ( ) , ( ) ( , )
T

m M m mt L L t L m t m M u u x u x u x u x t          

g
as expressed in problem 13 and  4( ) ( , ) 1 sin cosm m mg x g x t x t    , which is 

expressed in the form 

( ) ( , , , , )ivu f x u u u u Au g      

A is as expressed in problem 14 and g is a vector of constants. 
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Table 4.1: Comparison of the Errors from BUM3, Jator et al. (2018) and ETRs (in 

Jator et al. (2018)) for Problem 1. 

N BUM3 CPU Jator et al. 

(2018) 

CPU ETRs  

6 8.33E-07 0.240 1.525E-05 0.288 1.089E-02 

12 2.06E-08 0.253 9.257E-07 0.257 7.666E-05 

24 7.0E-10 0.261 5.873E-08 0.263 5.108E-06 

48 6.52E-11 0.328 3.683E-09 0.344 3.300E-07 

96 4.31E-12 0.354 2.305E-10 0.359 2.098E-08 

192 2.13E-13 0.416 1.428E-11 0.438 1.323E-09 

 

The Maximum of the absolute errors were obtained in the entire interval of integration. 

Tables 4.1 shows the comparison between the ETRs, Jator et. al (2018) and BUM3. It is 

observed that the BUM3 performs better than the ETRs and Jator et. al (2018) respectively 

in terms of accuracy as well as CPU time. Hence, the BUM3 are quite accurate and 

efficient.
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Table 4.2: Comparison of the Solutions from BUM3 and Runge-Kutta Method for Problem 2 

 BUM3 Runge-Kutta 

x N )0(y   )( xy  )( 
 xy  )0(y   )( xy  )( 

 xy  N 

1.0 9 1.021157329 0.5063049940 0.9381906626 1.021157016 0.506305291 0.93810698 27 

2.0 17 0.5442717691 1.051664551 0.3810337080 0.5442717609 1.051664633 0.381033607 51 

3.0 25 0.4045496973 1.679698960 0.1689551177 0.4045497078 1.6796990467 0.168955073 75 

4.0 33 0.3527462516 2.432249676 0.06202511200 0.3527462779 2.432249926 0.0620251103 99 

5.0 41 0.33256595103 3.3170985421 0.0155692563 0.3325659529 3.3170985488 0.0155692560 123 

 

Table 4.2 shows the validity of the propose method (BUM3) and classical R-K method for problem 2. It is observed that with small values of N, 

the propose methods shows an excellent agreement with R-K method. 
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Table 4.3: Comparison of the Solutions from BUM3 and Runge-Kutta Method for Problem 3. 

 BUM3 Runge-Kutta 

x N )0(y   )( xy  )( 
 xy  )0(y   )( xy  )( 

 xy  N 

1.0 9 -1.062106604 0.4858145149 -0.9021137979 -1.0621056881 0.4858148417 -0.9021137490 27 

2.0 17 -0.6214631716 0.8954882570 -0.3357451645 -0.6214629182 0.895488335 -0.3357452060 51 

3.0 25 -0.5078781704 1.190534705 -0.1428727781 -0.5078780256 1.190534757 -0.1428727865 75 

4.0 33 -0.4687973723 1.377935656 -0.06161582430 -0.4687972558 1.3779357168 -0.0616581740 99 

5.0 41 -0.4539702818 1.487355776 -0.02661787579 -0.4539701772 1.487355831 -0.0266178690 123 

 

Table 4.3 shows the validity of the propose method (BUM3) and classical R-K method for problem 3. It is observed that with small values of N, 

the propose methods shows an excellent agreement with R-K method
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Table 4.4: Comparison of the Solutions from BUM3 and Runge-Kutta Method for 

Problem 4. 

 BUM3 Runge-Kutta Method 

x N )( 
 xy  )( xy  N )( 

 xy  )( xy  

0.1 9 0.5223955323 0.6065298823 27 0.522394253 0.606530550 

0.2 17 0.03825982349 1.510386946 51 0.0382595394 1.510388234 

0.3 25 0.0014085063 2.502848721 75 0.0014082032 2.502849911 

0.4 33 0.0000245898 3.502571462 99 0.0000245779 3.502571249 

Table 4.4 shows the validity of the proposed method (BUM3) and classical R-K method 

for problem 4. It is observed that with small values of N (number of function 

evaluations), the proposed method shows an excellent agreement with R-K method   
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Table 4.5: Numerical Comparison for the Stretching Case ( 0)   with the Existing 

Results for Problem 5 

0  (0)y  (0)y  (0)s  (0)s  

 Bhatti et al. (2018) BUM2 Bhatti et al. (2018) BUM2 

0 1.23258765 1.232583905 0.81130132 0.8113170417 

0.1 1.14656100 1.146557577 0.863451660 0.8634652926 

0.2 1.051129994 1.051127244 0.91330283 0.9133157941 

0.3 0.94681611 0.9468142651 0.96111587 0.30112933847 

0.5 0.71329495 0.7132950814 1.05145843 1.051476251 

1 0 0 1.25331413 1.253359472 

2 -1.88730667 -1.887402684 1.58956678 1.589740624 

3 -10.26474931 -10.26844767 2.33809899 2.3399380450 

 

Table 4.5 show the numerical comparison for Hartmann number (M) and 

suction/injection parameter (k) for different values of stretching parameter (α > 0). From 

the table, it is observed that when M = 0 and k = 0, the propose method (BUM3) and 

(BUM2) are in good agreement with Successive linearization method applied by Bhatti 

et al. (2018).  
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Table 4.6: Numerical comparison for the Shrinking Case ( 0)   with the Existing 

Results for Problem 5 

0  y (0)  y (0)  (0)s  (0)s  

 Bhatti et al. 

(2018) 

BUM2 Bhatti et al. 

(2018) 

BUM2 

-0.25 1.40224081 1.402238699 0.66857275 0.6686022783 

-0.5 1.49566976 1.495675888 0.50144758 0.5015139670 

-0.75 1.48929824 1.489330566 0.29376251 0.2939313809 

-1.0 1.32881688 1.328961913 0 0 

-1.15 1.08223117 1.082786939 -0.29799548 -0.2961961037 

-1.2465 0.58428167 0.6173065669 -0.94776590 -0.8869752488 

-1.2474 * 0.5741833003 * -0.9561670930 

 

Note: * implies no given solution for the given value of  . 

Table 4.6 show the numerical comparison for Hartmann number (M) and 

suction/injection parameter (k) for different values of stretching parameter (α<0). From 

the table, it is observed that when M = 0 and k = 0, the propose method (BUM3) and 

(BUM2) are in good agreement with Successive linearization method applied by Bhatti 

et al. (2018).  
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Table 4.7: Comparison of Values of (0)y with Ibrahim et al. (2013) when M=0 for 

Problem 6 

A BUM3 Ibrahim et al. (2013) 

0.01 1.001814580 0.9980 

0.1 0.9707740182 0.9694 

0.2 0.9185865930 0.9181 

0.5 0.6672900043 0.6673 

2.0 -2.017484069 -2.0175 

3.0 -4.728934014 -4.7292 

 

In order to assess the accuracy of the present method (BUM3), a comparison with 

previously reported data available in the literature has been made. It is clear from Table 

4.7 that the numerical values of the skin friction coefficient (0)y  in this paper for 

different values of A, when M = 0 are in excellent agreement with the result published in 

Ibrahim et. al (2013). A comparison of the results with literature values shown in Table 

4.7 shows excellent agreement and therefore it is confident that the proposed method is 

highly accurate  
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Table 4.8: Comparison of Results for Local Nusselt Number with Ibrahim et al. 

(2013) for Problem 6 

Pr A BUM2 Ibrahim et al. 

(2013) 

1 0.1 0.6121655816 0.6022 

 0.2 0.6306184745 0.6245 

 0.5 0.6936280163 0.6924 

1.5 0.1 0.7785162969 0.7768 

 0.2 0.7981803167 0.7971 

 0.5 0.8650307873 0.8648 

 

To further validate the proposed method (BUM2), comparison of local Nusselt number 

(0)s   for different values of velocity ratio parameter A and Prandtl number Pr by 

ignoring the effects of M, Nb and Nt parameters has been shown in Table 4.8, which is 

also in excellent agreement with Ibrahim et. al (2013). A comparison of the results with 

literature values shown in Table 4.7 shows excellent agreement and therefore it is 

confident that the proposed method is highly accurate  
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Table 4.9: Numerical comparison with Ali Abbas et al. (2019) with Different values 

of (0)y for Shrinking Case ( 0  ) for Problem 7 

 BUM2 Ali Abbas et al. (2019) 

  0, 0M K   0, 0M K   

-0.25 1.4022 1.4023 

-0.50 1.4957 1.4957 

-1.0 1.3289 1.3289 

-1.10 1.1870 1.1868 

-1.15 1.0828 1.0823 

-1.18 1.0013 1.0004 

-1.20 0.9337 0.9324 

 

Numerical comparability has been brought through Table 4.9 with the existing literature 

of Ali Abbas et al. (2019) by taking M 0,K =0 for shrinking case (  0). It is found 

that the current methos (BUMs) are in excellent agreement with the existing literature 

which assures the validity of the present flow problem. 
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Table 4.10: Effects of S on Skin Friction for Problem 8 

 BUM4 Mustapfa et al. 

(2012) 

Das and Mohammed 

(2016) 

S    

-1 2.170092 2.170090 2.170091 

-0.5 2.614038 2.614038 2.614038 

0.01 3.007134 3.007134 3.007134 

0.5 3.336449 3.336449 3.336449 

2 4.167389 4.167389 4.167389 

 

In order to ascertain the accuracy of the numerical results of (BUM4) of problem 8 with 

the absence of a magnetic field, the comparison was made with the data of Mustafa et al. 

(2012) and Das and Mohammed (2016). The  y 1 values were calculated for various 

S values. Excellent agreement was found between the results, as shown in Table 4.10. 

Thus, the use of the present numerical code for the current model was justified. 

  

 1f   1f   1f 
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Table 4.11: Comparison of Errors from for Problem 9 (h = 0.003125) 

t Error in BUM4 Error in Familua 

and Omole 

(2017) [Block 

Mode] 

Error in Familua 

and Omole 

(2017) [P-C 

Mode] 

Error in 

Ukpebor et al. 

(2020) 

0.003125 6.98010-28 6.686 x 10-13 5.686 x 10-10 1.90010-19 

0.006250 1.11910-26 1.458 x 10-11 1.768 x 10-10 2.30010-19 

0.009375 4.34210-26 1.083 x 10-10 5.910 x 10-09 8.60010-19 

0.001250 1.15910-25 3.918 x 10-10 5.768 x 10-09 1.38010-18 

0.015625 2.48110-22 1.025 x 10-09 1.100 x 10-08 3.53010-18 

0.018750 3.81810-21 2.217 x 10-09 6.899 x 10-08 5.31010-18 

0.021875 1.51610-20 4.226 x 10-09 4.636 x 10-08 8.88010-18 

0.025000 3.95010-20 7.358 x 10-09 5.788 x 10-07 3.92210-17 

0.028125 8.45910-20 1.197 x 10-08 2.246 x 10-07 5.84610-17 

0.031250 1.63210-20 1.846 x 10-08 2.846 x 10-07 8.47710-17 

 

Table 4.11 shows the comparison of absolute errors between between BUM4, Familua 

and Omole (2017) and Ukpebor et al. (2020). It is shown that the newly block method 

gives a better approximation to the application problem in the dynamics of ship 
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Table 4.12: Comparison of Errors for Problem 10 

t BUM4 Error in Familua 

and Omole (2017) 

Error in Kuboye 

et al. (2020)  

0.003125 1.40210-14 1.149 x 10-12 1.78810-10 

0.006250 2.14010-13 1.885 x 10-11 1.13410-08 

0.009375 8.42410-13 9.780 x 10-11 1.19610-07 

0.012500 2.17910-12 3.166 x 10-10 6.40110-07 

0.015625 4.62210-12 7.909 x 10-10 2.34910-06 

0.018750 8.70010-12 1.676 x 10-09 6.57310-06 

0.021875 1.50010-11 3.169 x 10-09 1.61010-05 

0.025000 2.41410-11 5.512 x 10-09 3.50110-05 

0.028125 3.68510-11 8.995 x 10-09 6.98510-05 

0.031250 5.40110-11 1.396 x 10-08 1.24510-04 

 

From the Table 4.12, the BUM4s reveal that the method is superior in terms of accuracy 

when compared with other existing methods in the literature. 
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Table 4.13: Error of methods for Problem 11 

x Error in BUM4 Error in Noor and 

Mohyud-Din (2007) 

0.0 0.0 0.0 

0.1 9.25 x 10-10 7.78 x 10-8 

0.2 3.01 x 10-9 2.72 x 10-7 

0.3 5.25 x 10-9 5.24 x 10-7 

0.4 6.82 x 10-9 7.77 x10-7 

0.5 7.31 x 10-9 9.71 x 10-7 

0.6 6.68 x 10-9 1.05 x 10-6 

0.7 5.14 x 10-9 9.63 x 10-7 

0.8 2.99 x 10-9 6.84 x 10-7 

0.9 9.48 x 10-10 2.71 x 10-7 

1.0 0.0 0.0 

 

Table 4.13 shows the comparison of the exact solution and the numerical solutions 

obtained using BUM for Problem 12 with N=10, at the points x = 0(0.1)1.0. it is observed 

that the BUM4 methods is perform better than the method found in Noor and Mohyud-

Din (2007). 
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Table 4.14: Error of methods for Problem 12 

x Error in BUM4 Error in Noor 

and Mohyud-Din 

(2007) 

Error in 

Costabile and 

Napoli (2015) 

m = 5 

Error in 

Costabile and 

Napoli (2015) 

m = 12 

0.1 9.33 x 10-14 2.00 x 10-10 6.33 x 10-9 1.97 x 10-13 

0.2 3.09 x 10-14 7.00 x 10-10 7.50 x 10-9 1.56 x 10-13 

0.3 5.53 x 10-14 1.35 x 10-9 3.12 x 10-10 1.83 x 10-13 

0.4 7.42 x 10-14  2.00 x 10-9 3.91 x 10-9 2.06 x 10-13 

0.5 8.21 x 10-14 2.51 x 10-9 9.89 x 10-10 2.02 x 10-13 

0.6 7.76 x 10-14 2.72 x 10-9 1.75 x 10-9 2.25 x 10-13 

0.7 6.22 x 10-14 2.21 x 10-9 2.91 x 10-9 2.04 x 10-13 

0.8 3.82 x 10-14 1.80 x 10-9 1.01 x 10-8 1.98 x 10-13 

0.9 1.27 x 10-14 7.25 x 10-10 7.80 x 10-9 2.18 x 10-13 

1.0 0.0 0.0 0.0 0.0 

 

Table 4.14 shows the comparison of the exact solution and the numerical solutions 

obtained using BUM at the points x = 0(0.1)1.0 for Problem 13. Table 4.8 show the errors 

obtained in Problem 4 with Er = |yapp − yex|, for h = 0.1, as compared with methods in 

Costabile and Napoli (2015) and Noor & MohyudDin (2007). This shows the superiority 

of the BVM developed over the methods in the citedis a comparison of errors from 

BUM4, Noor and Mohyud-Din (2007) and Constabile and Napoli (2015). 
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Table 4.15: Maximum Error for Problem 13 

Time Parameter BUM4 CPU (s.) Mohanty and 

Kaur (2016) 

Modebei et 

al. (2020a) 

t = 0.5 
ℎ =

1

40
 

1.6741(-12) 0.59 7.8998(-07) 1.7274(-10) 

t = 1.0 
ℎ =

1

60
 

1.6842(-14) 1.88 7.5071(-09) 1.7531(-12) 

t = 1.5 
ℎ =

1

80
 

3.2191(-16) 2.11 5.7588(-11) 2.2691(-14) 

t = 2.0 
ℎ =

1

100
 

2.7605(-18) 3.48 2.9068(-13) 1.6471(-16) 

 

Table 4.15 for different values of t and h, shows the maximum absolute errors obtained, 

in comparison with the Modebei et al. (2020a) and the method in Mohanty & Kaur (2016). 

This shows the superiority of the BUM4 over both methods. 
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Figure 4.1: Surface plot for the Numerical Solution for Problem 13 

Figure 4.1 shows the graphical representation with surface plot for the numerical solution 

(shaded region) for Problem 13. 
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Figure 4.2: Surface plot for the Exact Solution for Problem 13 

Figure 4.2 shows the graphical representation with surface plot for the exact solution 

(shaded region) for Problem 13. 
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Figure 4.3: Surface plot for the Residual for Problem 13 

Figure 4.3 shows the graphical representation with surface plot for the residual or error 

(shaded region) for Problem 13. 
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Figure 4.4: Global Error Plot for Problem 13 

Figure 4.4 shows the cumulative error caused by many iterations for problem at discrete 

time steps which is equally spaced for problem 13. 
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Table 4.16: Numerical Results with t = 0 for Problem 14 

x Exact Approximate Error in BUM4 

0.1 0.3090169944 0.3090169936 1.49941 x 10-7 

0.2 0.5877852524 0.5877849672 2.85204 x 10-7 

0.3 0.8090169944 0.5877848598 3.9255 x 10-7 

0.4 0.9510565165 0.9510560550 4.6147 x 10-7 

0.5 1.0000000000 0.9999995148 4.85219 x 10-7 

0.6 0.9510565163 0.9510560548 4.6147 x 10-7 

0.7 0.8090169941 0.8090166016 3.9255 x 10-7 

0.8 0.5877852522 0.5877849670 2.85204 x 10-7 

0.9 0.3090169936 0.3090168437 1.49941 x 10-7 

1.0 1.8892 x 10-16 1.8892 x 10-16 0 

 

Table 4.16 shows the comparison of the exact solution, the numerical solutions obtained 

using BUM4 and the absolute error at the points x = 0((0.1)1 for Problem 14 
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Figure 4.5: Surface Plot for the Approximate Solution of Problem 14 

Figure 4.5 shows the graphical representation with surface plot for the approximate 

solution (shaded region) for Problem 14.  
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Figure 4.6: Surface Plot for the Exact Solution of Problem 14 

Figure 4.6 shows the graphical representation with surface plot for the exact solution 

(shaded region) for Problem 14. 
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Figure 4.7: Surface Plot for the Error of Problem 14 

Figure 4.7 shows the graphical representation with surface plot for error (shaded region) 

for Problem 14. 
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Figure 4.8: Global Error Plot for Problem 14 

Figure 4.8 shows the cumulative error caused by many iterations for problem at discrete 

time steps which is equally spaced for problem 14. 
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Table 4.17 Numerical Results with t = 0 for Problem 15 

x Exact Approximate Error in 

BUM4 

0.1 0.3090169944 0.3090168478 1.49941 x 10-14 

0.2 0.587785252292473 0.587785252292347 1.26232 x 10-13 

0.3 0.809016994374947 0.809016994374773 1.74416 x 10-13 

0.4 0.951056516295154 0.951056516294949 2.04947 x 10-13 

0.5 1.000000000000000 0.999999999999785 2.15272 x 10-13 

0.6 0.951056516295155 0.951056516294949 2.06168 x 10-13 

0.7 0.809016994374951 0.809016994374775 1.75637 x 10-13 

0.8 0.587785252292477 0.587785252292350 1.27121 x 10-13 

0.9 0.309016994374951 0.309016994374883 6.83897 x 10-14 

1.0 1.22465 x 10-16 1.22465 x 10-16 0 

Table 4.17 shows the comparison of the exact solution, the numerical solutions obtained 

using BUM4 and the absolute error at the points x = 0((0.1)1 for Problem 15. 
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Table 4.18: Maximum Error for Problem 15 

 

Table 4.18 at different values of k and points of x, shows the maximum absolute errors 

obtained, in comparison with the BUM4 and the method in Rashidinia and Mohammadi, 

(2010) and Modebei et al. (2020a). This shows the superiority of the BUM4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method k x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5 

BUM4 10 6.92E-14  1.23E-13 1.77E-13 2.04E-13 2.16E-13 

16 9.10E-14 1.62E-13 2.36E-13 2.68E-13 2.85E-13 

Rashidinia and 

Mohammadi (2010) 

10 2.91E-6 1.73E-6 1.60E-6 2.23E-6 2.60E-7 

16 4.47E-7 2.66E-7 1.37E-7 1.55E-7 1.57E-7 

Modebei et al. 

(2020a) 

10 4.88E-10 8.56E-10 1.28E-9 1.39E-9 1.58E-9 

16 8.28E-10 1.50E-9 2.17E-9 2.43E-9 2.48E-9 
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Figure 4.9: Surface Plots for the Numerical Solution of Problem 15 

Figure 4.9 shows the graphical representation with surface plot for the numerical 

solution (shaded region) for Problem 15. 

  



100 
 

 

 

 

 

 

 

 

 

Figure 4.10: Surface Plot for the Exact Solution of Problem 15 

Figure 4.10 shows the graphical representation with surface plot for the exact solution 

(shaded region) for Problem 15. 
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Figure 4.11: Surface Plot for the Error of Problem 15 

Figure 4.11 shows the graphical representation with surface plot for the error (shaded 

region) for Problem 15. 
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Figure 4.12: Global Error Plot for Problem 15 

Figure 4.12 shows the cumulative error caused by many iterations for problem at discrete 

time steps which is equally spaced for problem 15. 
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4.3 Discussion of Results 

Table 4.1 shows a comparison of the errors from Proposed Methods, Jator et al. (2018) 

and ETRs (in Jator et al. (2018)) for Problem 1. The behaviour of the proposed methods 

was compared using the results obtained from the existing method in the literature. These 

results were compared to results in Jator et al. (2018) and the Extended Trapezoidal 

Methods (ETRs). The results of BUM3 perform better than the methods of Jator et al. 

(2018) and the ETRs. 

Table 4.2 shows the validity of the propose method (BUM3) and classical R-K method 

for problem 2. It is observed that with small values of N, the propose methods shows an 

excellent agreement with R-K Method. 

Table 4.3 shows the validity of the propose method (BUM3) and classical R-K method 

for problem 3. It is observed that with small values of N, the propose methods shows an 

excellent agreement with R-K 

Table 4.4 shows the validity of the propose method (BUM3) and classical R-K method 

for problem 4. It is observed that with small values of N, the propose methods shows an 

excellent agreement with R-K method  

Tables 4.5 and 4.6 show the numerical comparison for the stretching case ( 0)  and 

the shrinking case ( 0)  with the existing results for M = k = 0 respectively for Problem 

5. Both tables show the numerical comparison for Hartmann number, M, and 

suction/injection parameter, k, for different values of stretching and shrinking parameter, 

it can be observed that when M = k = 0 for both cases of  , the results from the proposed 

method are in good agreement with those in existing literature. 
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Tables 4.7 and 4.8 show a comparison of values of (0)y  when M = 0 and local Nusselt 

number (0)s at 0, 0,Nt Nb  , for different values of Pr with those found in Ibrahim 

et al. (2013) for Problem 6. It is clear from Table 4.7 that the numerical values of the skin 

friction coefficient (0)y in this research for different values of A, when M = 0 are in 

agreement with the result published in Ibrahim et al. (2013). A further validation of the 

method used is found in table 4.8 which is a comparison of local Nusselt number (0)s

for different values of velocity ratio parameter A and Prandtl number Pr by ignoring the 

effects of M, Nb and Nt parameters. Results are in agreement with Ibrahim et al. (2013). 

Table 4.9 is for Problem 7 which is a numerical comparison with Ali Abbas et al. (2019) 

for different values of (0)y for the shrinking case ( 0 ). The table clearly shows that 

results from the proposed method are in agreement with those from Ali Abbas et al. 

(2019). 

Table 4.10 shows a comparison of the effects of various values of squeeze number, S, on 

the skin friction, local Nusselt number and local Sherwood number. Excellent agreement 

was found in the comparison. This now validates the use of BUM4. 

Table 4.11 shows a comparison of errors from BUM4, Familua and Omole (2017) and 

Ukpebor et al. (2020) with h = 0.003125. Values in the table show that the BUM4 gives 

a better approximation of the problem in Ship Dynamics. 

Table 4.12 compares the errors from BUM4, Familua and Omole (2017) and Kuboye et 

al. (2020) for Problem 10. The superiority of BUM4 in terms of accuracy is seen in the 

table. 
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Table 4.13 shows errors obtained from BUM4 and methods found in Noor and Mohyud-

Din (2007) and Constabile and Napoli (2015). The table shows that BUM4 gives a better 

approximation compared to other methods. 

Table 4.14 shows a comparison of BUM4, Noor and Mohyud-Din (2007) and Costabile 

and Napoli (2015). Even though the methods compared with seemed to have produced 

better results at several points of evaluation, it should be noticed that the method in Noor 

and Mohyud-Din (2007) and Costabile and Napoli (2015) with m = 12 used polynomials 

of degree 15 and for m = 5 a polynomial of degree 8 was used. The BUM compares 

favourably with other methods. 

The table 4.15 shows the maximum errors for h and t for the BUM and the method in 

Modebei et al. (2020). The BUM4 is seen to show a good performance for such a problem 

as Problem 13. Figures 4.1, 4.2 and 4.3 show the graphical representations of surface plots 

for numerical, exact and residual (all shaded regions) for Problem 13 and Figure 4.4 

shows the graph for computer time. 

Table 4.16 shows Problem 14’s comparison of results for exact solution, numerical 

solution obtained using BUM4 and error at points x = 0, 0.1, ... ,1.0. Figures 4.5 4.6 and 

4.7 show the graphical representation of surface plots for analytical, numerical and error 

(all shaded regions) for Problem 14. The CPU time graph is shown in figure 4.8. 

Table 4.17 shows Problem 16’s comparison of results for exact solution, numerical 

solution obtained using BUM4 and error at points x = 0, 0.1, ... ,1.0. The table 4.18 that 

follows shows maximum absolute errors obtained at different values of k and point x. The 

superiority of BUM4 is seen in the table. Figures 4.9, 4.10 and 4.11 show the graphical 

representation of surface plots for exact, numerical and error (all shaded regions) for 

Problem 15 and figure 4.2 shows the time graph for the solution of Problem 15. 
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CHAPTER FIVE 

5.0                       CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

This thesis aimed to solve boundary layer flow equations through the use of numerical 

method. These equations and higher order ordinary differential equations are a common 

occurrence in science and engineering as they model some problems arising in these 

fields. Analytical solutions to higher order differential equations are almost impossible to 

obtain and this necessitates the need for numerical methods to solve them.  

Block unification methods consisting of linear multistep methods were developed and 

applied to solve third (coupled with second) and fourth order ordinary equations. They 

were also applied to solve fourth order partial differential equations. The linear multistep 

methods that make up the block unification method are continuous linear multistep 

methods. The continuous linear multistep methods were used because they have 

advantages of better global error estimation, ease of use in recovering standard schemes 

and also have a guarantee of easy approximation of solutions at all interior points of the 

integration interval. Chebyshev polynomials with respect to weight function 

 
21

1

x
xw


  were used as basis functions in deriving the schemes. The Collocation 

and Interpolation Techniques were employed and an off grid point (hybrid point) was 

included in the derivation process of the continuous linear multistep methods in order to 

incorporate a function evaluation at the off grid point which helps in avoiding the barrier 

of not attaining higher order convergence and also taking the advantage of generating 

numerical solutions simultaneously and overcoming the zero stability barrier.  



107 
 

Analysis of basic properties such as consistency, zero-stability and convergence of the 

numerical methods was carried out with the use of existing theorems and findings showed 

that the methods are of higher order and convergent. The derived methods are self-starting 

which gave the advantage of minimising truncation and round off errors and were 

implemented as boundary value method to simultaneously produce approximations 

solution of knn yy ,  at block points knn xx , , on non-overlapping interval.   

The effectiveness of the derived methods is demonstrated by considering fifteen (15) test 

problems that include Blasius equation, Sakiadis equation, Falkner-Skan equation, 

Squeezing Flow equation, the Oscillatory problem arising from Ship Dynamics and the 

“good” Boussinesq equation. These equations come as partial differential equations but 

have been reduced to ordinary differential equations through similarity transformation 

and method of lines.  

The desirable property of a numerical solution is for it to behave like that of the exact 

solution of the problem which can be seen in the tables and figures presented. From the 

results obtained, it was observed that, in the Blasius equation, the number of function 

evaluation per step of the method was 41 while that of Runge-Kutta method was 123. The 

method gave a maximum error of 1.6741 x 10-12 for the “good” Boussinesq equation as 

against a maximum error of 1.7274 x 10-10 from the method in Modebei et al. (2020a). 

Therefore, these results and others presented show good performance of the developed 

methods in terms of efficiency and accuracy when compared with the results obtained 

using existing methods having the overall least error. Also for the purpose of comparison, 

it was observed that the results obtained from the developed methods were validated with 

some results in the existing methods which shown an excellent agreement. 
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5.2 Recommendations 

1. The proposed methods have shown better performance in terms of accuracy and 

efficiency after comparison with those in existing literature. Hence, it is suggested to 

apply them to problems from physical phenomena that lead into third and fourth order 

boundary value problems and also fourth order partial differential equations. 

2. Other orthogonal polynomials could be used as basis functions for the trial solution, 

this could lead to an improvement in solutions obtained. 

3. Methods with more than one off-grid point could be derived and applied to the 

aforementioned problems. This may lead to improved results. 

4. Higher order differential equations could be considered and the suggested method of 

solution in the research could be applied. 

5.3 Contribution to knowledge 

The following are contributions made to the body of knowledge: 

1. new classes of continuous implicit three-step methods applied as Block 

Unification Method for the direct solution of third order BVPs of ODE were 

developed.  

2. the methods minimize storage space and improves computer time by 30%. 

3. a new class of continuous implicit four step Block Unification Method for the 

solution of fourth order BVPs of ODE and IBVPs of PDE was developed. 

4. the new class methods have a wide scope of application viz-a-viz linear, nonlinear, 

singular, nonsingular, homogeneous, nonhomogeneous, constant coefficients, 

variable coefficients, oscillatory problems 
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