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 MAT 212 Study Guide 

Introduction 

MAT212 Linear Algebra I is a one-semester 3-credit unit 200 level course 

designed to teach the university mathematics student the basics of the subject of 

linear algebra. The prerequisites for this course are MAT 111, MAT 112 and MAT 

113.  

The course consists of 3 modules and 14 study units of basic knowledge of Linear 

Algebra. The units are Vector space over the real field, Subspace, Linear 

combination and spanning sets, Linear dependence and independence, Bases and 

dimension, Introduction to matrices, Matrix representation, Types of matrices, 

Operations on matrices, Determinants, Introduction to linear transformation, 

Matrix transformations, Kernels and images of a linear transformation, Nullity and 

rank. 

Recommended Study Time 

This course is a 3-credit unit course having 14 study units. You are therefore 

enjoined to spend at least 2 hours in studying the content of each study unit. 

What You Are About to Learn in This Course 

The overall aim of this course, MAT 212 is to introduce you to the study of Linear 

Algebra. At the end of this course you will: 

i. Define vector space 

ii. Define matrix 

iii. Know the areas of application of matrix formulation 

iv. Solve problems using determinant 

v. Explain the meaning of kernel and range of a linear transformation 

vi. Determine the nullity and rank of a given linear transformation 

Course Aims 

This course aims to introduce students to Linear Algebra. It is expected that the 

knowledge will enable the reader to effectively use the knowledge of Linear 

Algebra in his/her profession.  
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Course Learning Outcome 

The main Learning Outcome of this course is to give you a good foundation in Linear 

Algebra. The course has two goals: to teach the fundamental concepts and 

techniques of matrix algebra and abstract vector spaces, and to teach the 

techniques associated with understanding the definitions and theorems forming a 

coherent area of mathematics. So there is an emphasis on worked examples of 

nontrivial size and on proving theorems carefully. 

Therefore, at the end of this course you should be able to: - 

i. Define vector space 

ii. Show that a given set of vectors spans a given vector space 

iii. Define Linear Dependence and Independence 

iv. Define matrix; 

v. Know the areas of application of matrix formulation 

vi. Solve problems using determinant 

vii. Know the definition of determinants 

viii. Find the inverse of a given linear transformation, or show that it does not 

exist 

ix. Explain the meaning of kernel and range of a linear transformation; 

x. List the properties of kernel and range of a linear transformation 

xi. Determine the nullity and rank of a given linear transformation 

Working Through This Course Material. 

The course is written in Units. Each unit should take you 3 hours to work through. 

The course consists of 14 units of 4 modules: 

Module 1 -Units 1 - 5  

Module 2-Units 1- 5  

Module 3-Units 1- 4  

Course Materials 

The major components of the course are: 

1. Course Guide 

2. Study Units 

3. Text Books 

4. Assignment File 
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5. Presentation Schedule 

Study Units 

There are 14 units in this course as follows: - 

MODULE ONE 

UNIT 1: Vector Space over the Real Field 

UNIT 2: Subspace 

UNIT 3: Linear Combination and Spanning Sets 

UNIT 4: Linear Dependence and Independence 

UNIT 5: Bases and Dimension 

MODULE TWO 

UNIT 1: Introduction to Matrices 

UNIT 2: Matrix Representation 

UNIT 3: Types of Matrices 

UNIT 4: Operations on Matrices 

UNIT 5: Determinants 

MODULE THREE 

UNIT 1: Introduction to Linear Transformation 

UNIT 2: Matrix Transformations 

UNIT 3: Kernels and Images of a Linear Transformation 

UNIT 4: Nullity and Rank 

References/Further Reading and Other Resources 

You have the References/Further Reading used for each unit as 7.0 of the unit. 

Generally, they are 

listed together here below: 

1. Brookes, Mike (2005), The Matrix Reference Manual, London: Imperial 

College. 

2. Carl, Meyer (2000): Matrix analysis and Linear Algebra. Siam publishing 

Company. 

3. Hazewinkel, Michiel, (2001), "Determinant", Encyclopedia of Mathematics, 

Springer, ISBN978-1-55608-010-4. 

4. Nicholson, W. K (1995): Linear Algebra with Applications. P. W. S Publishing 

company.  
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5. Odili,G. A. (2000): Algebra for Colleges and Universities: An Integral 

Approach. Anachuna Educational Books. ISBN978-2897-37-x. Robert, A. 

Beezer (2006): A First Course in Linear Algebra. http://linear.ups.edu/. 

Assignment File 

You will find all details of the work you must submit to your tutor, for scoring, 

in this file. 

The marks you obtained for these assignments will count towards the final mark you 

obtain for this course. Further information on assignment will be found in the 

Assignment file. There are assignments on each Unit in the Course. 

Presentation Schedule 

The presentation schedule included in this course guide provides you with 

important dates for completion of each Tutor Marked Assignment (TMA). You are 

required to submit all materials for your Tutor-Marked Assignment (TMA)s as at 

when due. 

Exercises and Solutions 

You are advised to attempt each exercise before turning to the solutions, as these 

exercises are meant to serve as self-assessment questions. 

Assessment 

There are two aspects to the assessment of this course. First, there are Tutor 

Marked Assignment (TMA)s; and second, the written examination. Therefore, you 

are expected to take note of the facts, information and problem solving gathered 

during the course. The Tutor Marked Assignment (TMA)s must be submitted to 

your tutor for formal assessment, in accordance to the deadline given. The work 

submitted will count for 40% of your total course mark. 

At the end of the course, you will need to sit for a final written examination. This 

examination will account for 60% of your total score.  You will be required to 

submit some assignments by uploading them to MAT 212 page on the u-learn 

portal. 
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Tutor-Marked Assignment (TMA)s (TMA) 

There are two aspects to the assessment of the course. First is the Tutor-Marked 

Assignment (TMA). Second, there is a written examination. You are to use the 

information and the exercises in the course to solve the Tutor Marked Assignment 

(TMA). 

Final Examination and Grading  

The final examination for MAT 212 will be of three hours duration and have a 

value of 50% of the total course grade. The examination will consist of questions 

which reflect the self-assessment questions and Tutor Marked Assignment (TMA)s 

that you have previously encountered. Furthermore, All areas of the course will 

be assessed, so revise the entire course before the examinations. You might find 

it useful to review your TMAs and comment on them before the examination. The 

final examination covers information from all parts of the course. 

Practical Strategies for Working Through This Course 

1.  Read this course guide carefully. 

2.  Decide when it is convenient for you to study, the time you are expected, to 

spend on each Unit, and submission dates for assignments. 

3.  Keep your chosen schedule time to avoid lagging behind in your studies. 

4.  Work through your units in a hierarchical order, as one Unit will lead to the 

next, for you to understand the whole concepts in the course. 

5.  Do and submit all assignments well before the prescribed deadline. 

6.  Commence the study of the next Unit as soon as you have finished the one 

before it. Endeavor to keep strictly to your schedule 

7.  On completing the course Units, review the course; check the Learning 

Outcome of the course guide, to prepare you for the final examinations. 

Tutors and Tutorials 

There are 20 hours of tutorials (10 x 2-hour session) provided in support of this 

course. You will be notified of the dates, times and location of these tutorials, 

together with the name and phone number of your tutor, as soon as you are 

allocated a tutorial group. Your tutor will mark and comment on your assignments, 

keep a close watch on your progress and on any difficulties you might encounter 

and provide assistance to you during the course. 
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You must mail your Tutor-Marked Assignment (TMA) to your tutor well before the 

due date (at least two working days). They will be marked by your tutor and returned 

to you as soon as possible. Do not hesitate to contact your tutor by telephone, e-

mail, or discussion board if you need help. 

The following might be circumstances in which you would find help necessary. 

Contact your tutor if: 

• You do not understand any part of the study Units or the assigned readings. 

• You have difficulty with the exercises or examples. 

• You have a question or problem with an assignment, with your tutor's 

comment on an assignment or with the grading of an assignment. 

• You should try as much as possible to attend the tutorials. This is the only 

chance to have a one on one encounter with your tutor and to ask questions 

which will be answered instantly. 

• You can raise any problem encountered in the course of your study. 

To gain the maximum benefit from course tutorials, prepare a question list before 

attending them. You will learn a lot from actively participating in discussions. 

GOODLUCK! 
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1.0 Introduction 

Linear algebra is the study of two fundamental objects, vector spaces and linear 

transformations. In this unit you will learn about vector space and subspace, which 

will lead to an extra increment of abstraction. The power of mathematics is often 

derived from generalizing many different situations into one abstract formulation, 

and that is exactly what we will be doing right now. 

2.0 Learning Outcome 

At the end of this unit, you should be able to  

1. Define vector space. 

2. Show if a given set forms a vector space with respect to the two defined 

binary operations or not. 

3.0 Learning Content 

3.1 Definition of Vector Space 

Suppose that V is a set upon which we have defined two operations: (1) vector 

addition, which combines two elements of V and (2) scalar multiplication, 

which combines a complex number with an element of V. Then V, along with the 

two operations, is a vector space if the following ten properties hold. 

1.  AC Additive Closure 

  If u, v  V , then u + v  V . 

2.  SC Scalar Closure 

  If k K and u  V , then ku  V. 

3.  C Commutativity 

   If u, v  V , then u + v = v + u. 

4. AA Additive Associativity 

  If u, v, w  V , then u + (v + w) = (u + v) + w. 

5.  Z Zero Vector 

There is a vector, 0, called the zero vector, such that u + 0 = u for all u  V  
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6.  AI Additive Inverses 

  If u  V , then there exists a vector −u  V so that u + (−u) = 0. 

7.  SMA Scalar Multiplication Associativity 

If a, b  K and u  V , then a(bu) = (ab)u. 

8.  DVA Distributivity across Vector Addition 

If a  K and u, v  V , then a(u + v) = au + av. 

9.  DSA Distributivity across Scalar Addition 

If a, b  K and u  V , then (a + b)u = au + bu. 

10.  O One 

If u  V , then 1u = u. 

The objects in V are called vectors, no matter what else they might really be, 

simply by virtue of being elements of a vector space. 

3.2 Examples of vector Space 

Example 1 

The vector space of polynomials, Pn. 

Set: Pn, the set of all polynomials of degree n or less in the variable x with 

coefficients 

from K. 

Equality: 

a0+a1x+a2x2+…+anxn = b0+b1x+b2x2+· · ·+bnxn if and only if ai = bi for 0   i   n 

Vector Addition: 

(a0+a1x+a2x2+· · ·+anxn) + (b0+b1x+b2x2+· · ·+bnxn) = 

(a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + · · · + (an + bn)xn 

Scalar Multiplication: 

k(a0+a1x+a2x2+· · ·+anxn) = (ka0) + (ka1)x + (ka2)x2 + · · · + (kan)xn 

This set, with these operations, will fulfil the ten properties, though we will not 

work all the details here. However, we will make a few comments and prove some 
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of the properties. First, the zero vector (Property Z]) is what you might expect, 

and you can check that it has the required property. 

0 = 0 + 0x + 0x2 + · · · + 0xn 

The additive inverse (Property AI) is also no surprise, though consider how we 

have chosen to write it. 

−(a0+a1x+a2x2+· · ·+anxn) = (−a0) + (−a1)x + (−a2)x2 + · · · + (−an)xn 

Now let’s prove the associativity of vector addition (Property AA). This is a bit 

tedious, though necessary. Throughout, the plus sign (“+”) does triple-duty. You 

might ask yourself what each plus sign represents as you work through this proof. 

u+(v + w) 

=(a0+a1x+a2x2+· · ·+anxn)+((b0+b1x+b2x2+…+bnxn)+(c0 + c1x + c2x2+…+ cnxn)) 

= (a0 + a1x + · · · + anxn) + ((b0 + c0) + (b1 + c1)x + · · · + (bn + cn)xn) 

= (a0 + (b0 + c0)) + (a1 + (b1 + c1))x + · · · + (an + (bn + cn))xn 

= ((a0 + b0) + c0) + ((a1 + b1) + c1)x + · · · + ((an + bn) + cn)xn 

= ((a0 + b0) + (a1 + b1)x + · · · + (an + bn)xn) + (c0 + c1x + · · · + cnxn) 

= ((a0 + b1x + · · · + anxn) + (b0 + b1x + · · · + bnxn)) + (c0 + c1x + · · · + cnxn) 

= (u + v) + w 

Notice how it is the application of the associativity of the (old) addition of complex 

numbers in the middle of this chain of equalities that makes the whole proof 

happen. 

The remainder is successive applications of our (new) definition of vector 

(polynomial) addition. Proving the remainder of the ten properties is similar in 

style and tedium. You might try proving the commutativity of vector addition 

(Property C), or one of the distributive properties (Property DVA], Property DSA). 

Example 2 

The crazy vector space 

Set: C = {(x1, x2) | x1, x2  C}. 

Vector Addition: (x1, x2) + (y1, y2) = (x1 + y1 + 1, x2 + y2 + 1). 

Scalar Multiplication: a(x1, x2) = (ax1 + a − 1, ax2 + a − 1). 
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Now, the first thing I hear you say is “You can’t do that!” And my response is, “Oh 

yes, I can!” I am free to define my set and my operations any way I please. They 

may not look natural, or even useful, but we will now verify that they provide us 

with another example of a vector space. And that is enough. If you are 

adventurous, you might try first checking some of the properties yourself. What 

is the zero vector? Additive inverses? Can you prove associativity? Ready, here 

we go. 

Property AC, Property SC: The result of each operation is a pair of complex 

numbers, so these two closure propertiess are fulfilled 

Property C: 

   u + v = (x1, x2) + (y1, y2) = (x1 + y1 + 1, x2 + y2 + 1) 

= (y1 + x1 + 1, y2 + x2 + 1) = (y1, y2) + (x1, x2) 

= v + u 

Property AA: 

u + (v + w) = (x1, x2) + (y1, y2) + (z1, z2)) 

= (x1, x2) + (y1 + z1 + 1, y2 + z2 + 1) 

= (x1 + (y1 + z1 + 1) + 1, x2 + (y2 + z2 + 1) + 1) 

= (x1 + y1 + z1 + 2, x2 + y2 + z2 + 2) 

= ((x1 + y1 + 1) + z1 + 1, (x2 + y2 + 1) + z2 + 1) 

= (x1 + y1 + 1, x2 + y2 + 1) + (z1, z2) 

= ((x1, x2) + (y1, y2)) + (z1, z2) 

= (u + v) + w 

Property Z: The zero vector is . . . 0 = (−1, −1). Now I hear you say, “No, no, 

that can’t be, it must be (0, 0)!” Indulge me for a moment and let us check my 

proposal. 

u + 0 = (x1, x2) + (−1, −1) = (x1 + (−1) + 1, x2 + (−1) + 1) = (x1, x2) = u 

Feeling better? Or worse? 

Property AI: For each vector, u, we must locate an additive inverse, −u. Here it 

is, −(x1, x2) = (−x1 −2, −x2 −2). As odd as it may look, I hope you are withholding 

judgment. Check: 
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u+(−u) = (x1, x2)+(−x1−2, −x2−2) = (x1+(−x1−2)+1, −x2+(x2−2)+1) = (−1, 

−1) = 0 

Property SMA: 

a(bu) = a(b(x1, x2)) 

= a(bx1 + b − 1, bx2 + b − 1)) 

= (a(bx1 + b − 1) +a − 1, a(bx2 + b − 1) +a − 1)) 

= ((abx1 + ab − a) + a − 1, (abx2 +ab −a) + a − 1)) 

= (abx1 + ab − 1, abx2 + ab − 1)) 

= (ab)(x1, x2) 

= (ab)u 

Property DVA If you have hung on so far, here’s where it gets even wilder. In the 

next two properties we mix and mash the two operations. 

a(u + v) = a((x1, x2) + (y1, y2)) 

= a(x1 + y1 + 1, x2 + y2 + 1) 

= (a(x1 + y1 + 1) + a − 1, a(x2 + y2 + 1) + a − 1) 

= (ax1 + ay1 + a + a − 1, ax2 + ay2 + a + a− 1) 

= (ax1 + a − 1 + ay1 + a − 1 + 1, ax2 + a − 1 + ay2 + a − 1 + 1) 

= ((ax1 + a − 1) + (ay1 + a − 1) + 1, (ax2 + a − 1) + (ay2 + a − 1) + 1) 

= (ax1 + a − 1, ax2 + a − 1) + (ay1 + a − 1, ay2 + a − 1) 

= a(x1, x2) + a(y1, y2) 

= au + av 

Property DSA: 

(a+b)u = (a+b)(x1, x2) 

= ((a + b)x1 + (a + b) − 1, (a+ b)x2 + (a+ b) − 1) 

= (ax1 +bx1 + a + b − 1, ax2 + bx2 + a + b − 1) 

= (ax1 + a − 1 + bx1 + b − 1 + 1, ax2 + a − 1 + bx2 + b − 1 + 1) 

= ((ax1 + a − 1) + (bx1 + b − 1) + 1, (ax2 + a − 1) + (bx2 + b − 1) + 1) 

= (ax1 + a − 1, ax2 + a − 1) + (bx1 + b − 1, bx2 + b − 1) 

= a(x1, x2) + b(x1, x2) 

= au + bu 

Property O: After all that, this one is easy, but no less pleasing. 

1u = 1(x1, x2) = (x1 + 1 − 1, x2 + 1 − 1) = (x1, x2) = u 
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That’s it, C is a vector space, as crazy as that may seem. 

Notice that in the case of the zero vector and additive inverses, we only had to 

propose possibilities and then verify that they were the correct choices. You might 

try to discover how you would arrive at these choices, though you should 

understand why the process of discovering them is not a necessary component of 

the proof itself. 

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

4.0 Conclusion  

You have learnt in this unit the concept of vector spaces; effort was also made to 

explain the properties of vector space. 

5.0 Summary 

For a set V upon which two binary operations (vector addition and scalar 

multiplication) were defined to be called a vector space, the following ten 

properties must hold.  

If u, v,w  V , and a, b  K then  

1. u + v  V . 

2. ku  V. 

3. u + v = v + u. 

4. u + (v + w) = (u + v) + w. 

5. There is a vector, 0, called the zero vector, such that u + 0 = u for all u  

V . 

6. There exists a vector −u  V so that u + (−u) = 0. 

7. a(bu) = (ab)u. 

8. a(u + v) = au + av. 

9. (a + b)u = au + bu. 
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10. 1u = u. 

6.0 Tutor Marked Assignment (TMA) 

Prove each of the ten properties of Definition of Vector Space for each of the 

following examples of a vector space: 

1. The vector space of infinite sequences 

Set: C  = {(c0, c1, c2, c3, . . .) / ci C, i  N}. 

2. The vector space of functions 

Set: F = {f / f : C→  C}. 

3. The singleton vector space 

Set: Z = {z}. 

7.0 References/Further Reading 

Odili,G. A. (2000): Algebra for Colleges and Universities: An Integral Approach. 

Anachuna Educational Books. ISBN978-2897-37-x. 

Robert, A. Beezer (2006): A First Course in Linear Algebra. http://linear.ups.edu/. 
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5.0 Summary 

6.0 Tutor-Marked Assignment (TMA) 

7.0 References/Further Reading 
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1.0 Introduction 

Certain applications involve the use of subsets of vector spaces which are vector 

space also. It will be convenient to have a name for such a subset. In this unit you 

will learn about subspace of a vector space. 

2.0 Learning Outcome 

At the end of this unit you should be able to 

1. Define subspace 

2. Show that a given set is a subspace of a vector space or not. 

3.0 Subspace 

3.1 Definition Subspace 

Suppose that V and W are two vector spaces that have identical definitions of 

vector addition and scalar multiplication, and that W is a subset of V , W   V . 

Then W is a subspace of V.  

Let’s look at an example of a vector space inside another vector space. 

3.2 Examples of Subspace 

Example 1 

A subspace of C3 

We know that C3 is a vector space. Consider the subset, 

   


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

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xxx

x

x

x

W  

It is clear that W   C3, since the objects in W are column vectors of size 3. But 

is W a vector space? Does it satisfy the ten properties of Definition VS when we 

use the same operations? That is the main question.  
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Suppose 
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y are vectors from W. Then we know that these 

vectors cannot be totally arbitrary, they must have gained membership in W by 

virtue of meeting the membership test. For example, we know that x must satisfy 

2x1−5x2+7x3 = 0 while y must satisfy 2y1−5y2+7y3 = 0. 

Our first property (Property AC) asks the question, is x + y  W? When our set 

of vectors was C3, this was an easy question to answer. Now it is not so obvious. 

Notice first that 
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and we can test this vector for membership in W as follows, 

2(x1 + y1) − 5(x2 + y2) + 7(x3 + y3) = 2x1 + 2y1 − 5x2 − 5y2 + 7x3 + 7y3 

= (2x1 − 5x2 + 7x3) + (2y1 − 5y2 + 7y3) 

= 0 + 0      x  W, y W 

= 0 

and by this computation we see that x + y W. One property down, nine to go. 

If k is a scalar and x  W, is it always true that kx  W? This is what we need to 

establish Property SC. Again, the answer is not as obvious as it was when our set 

of vectors was all of C3. Let’s see. 

     

















=

















=

3

2

1

3

2

1

kx

kx

kx

x

x

x

kkx  

and we can test this vector for membership in W with 

2(kx1) − 5(kx2) + 7(kx3) = k (2x1 − 5x2 + 7x3) 

   = k0     x  W 

   = 0 

and we see that indeed kx  W. Always. 
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If W has a zero vector, it will be unique. The zero vector for C3 should also perform 

the required duties when added to elements of W. So the likely candidate for a 

zero vector in W is the same zero vector that we know C3 has.  

You can check that 

















=

0

0

0

0  is a zero vector in W too (Property Z). 

With a zero vector, we can now ask about additive inverses (Property AI). As you 

might suspect, the natural candidate for an additive inverse in W is the same as 

the additive inverse from C3. However, we must insure that these additive inverses 

actually are elements of W. Given x  W, is −x  W? 

    

















−

−

−

=−

3

2

1

x

x

x

x  

and we can test this vector for membership in W with 

2(−x1) − 5(−x2) + 7(−x3) = −(2x1 − 5x2 + 7x3) 

    = −0     x  W 

    = 0 

and we now believe that −x  W. 

Is the vector addition in W commutative (Property C)? Is x + y = y + x? Of 

course! Nothing about restricting the scope of our set of vectors will prevent the 

operation from still being commutative. Indeed, the remaining five properties are 

unaffected by the transition to a smaller set of vectors, and so remain true. That 

was convenient. 

So W satisfies all ten properties, hence W is therefore a vector space, and thus 

earns the title of being a subspace of C3. 

Self-Assessment Exercise(s) 
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Self-Assessment Answer 

 

3.2 Testing Subspaces 

In the last example, we proceeded through all ten of the vector space properties 

before believing that a subset was a subspace. But six of the properties were easy 

to prove, and we can lean on some of the properties of the vector space (the 

superset) to make the other four easier. Here is a theorem that will make it easier 

to test if a subset is a vector space. A shortcut if there ever was one. 

Theorem 1 

Testing Subsets for Subspaces 

Suppose that V is a vector space and W is a subset of V , W   V . Endow W with 

the same operations as V . Then W is a subspace if and only if three conditions 

are met  

1. W is non-empty, W  . 

2. If x  W and y  W, then x + y  W. 

3. If k  C and x W, then k x  W.  

Proof () We have the hypothesis that W is a subspace, so by Definition of 

vector space we know that W contains a zero vector. This is enough to show that 

W  . Also, since W is a vector space it satisfies the additive and scalar 

multiplication closure properties, and so exactly meets the second and third 

conditions. If that was easy, then the other direction might require a bit more 

work. 

() We have three properties for our hypothesis, and from this we should 

conclude that W has the ten defining properties of a vector space. The second and 

third conditions of our hypothesis are exactly Property AC  and Property SC. Our 

hypothesis that V is a vector space implies that Property C, Property AA, Property 

SMA, Property DVA, Property DSA and Property O all hold. They continue to be 



15 

 

true for vectors from W since passing to a subset, and keeping the operation the 

same, leaves their statements unchanged. Eight down, two to go.  

Suppose x  W. Then by the third part of our hypothesis (scalar closure), we 

know that (−1)x  W. But (−1)x = −x, so together these statements show us 

that −x  W. −x is the additive inverse of x in V , but will continue in this role 

when viewed as element of the subset W. So every element of W has an additive 

inverse that is an element of W and Property AI is completed. Just one property 

left.  

While we have implicitly discussed the zero vector in the previous paragraph, we 

need to be certain that the zero vector (of V ) really lives in W. Since W is non-

empty, we can choose some vector z  W. Then by the argument in the previous 

paragraph, we know −z  W. Now by Property AI for V and then by the second 

part of our hypothesis (additive closure) we see that 0 = z + (−z)  W 

So W contain the zero vector from V . Since this vector performs the required 

duties of a zero vector in V , it will continue in that role as an element of W. This 

gives us, Property Z, the final property of the ten required.  

Three conditions, plus being a subset of a known vector space, gets us all ten 

properties. Fabulous!  

This theorem can be paraphrased by saying that a subspace is “a non-empty 

subset (of a vector space) that is closed under vector addition and scalar 

multiplication.” 

Example 2 

A subspace of P4 

P4 is the vector space of polynomials with degree at most 4. Define a subset W 

as  

W = {p(x) | p  P4, p(2) = 0} 

so W is the collection of those polynomials (with degree 4 or less) whose graphs 

cross the x-axis at x = 2. Whenever we encounter a new set it is a good idea to 

gain a better understanding of the set by finding a few elements in the set, and a 

few outside it. For example x2 − x − 2  W, while x4 + x3 − 7 W. 

Is W nonempty? Yes, x − 2  W. 
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Additive closure? Suppose p  W and q  W. Is p + q  W? p and q are not 

totally arbitrary, we know that p(2) = 0 and q(2) = 0. Then we can check p+q for 

membership in W, 

(p + q)(2) = p(2) + q(2)   Addition in P4 

    = 0 + 0    p  W, q  W 

    = 0 

so we see that p + q qualifies for membership in W. 

Scalar multiplication closure? Suppose that k C and p  W. Then we know that 

p(2) = 0. Testing _p for membership, 

(kp)(2) = kp(2)    Scalar multiplication in P4 

= k0     p  W 

= 0  

so kp  W. 

We have shown that W meets the three conditions of Theorem TSS and so 

qualifies as a subspace of P4. Notice that by Definition of Subspaces we now know 

that W is also a vector space. So all the properties of a vector space apply in full. 

Much of the power of Theorem TSS is that we can easily establish new vector 

spaces if we can locate them as subsets of other vector spaces. 

It can be as instructive to consider some subsets that are not subspaces. Since 

Theorem TSS is an equivalence. We can be assured that a subset is not a 

subspace if it violates one of the three conditions, and in any example of interest 

this will not be the “non-empty” condition. However, since a subspace has to be a 

vector space in its own right, we can also search for a violation of any one of the 

ten defining properties in Definition of Vector Space or any inherent property of a 

vector space, Notice also that a violation need only be for a specific vector or pair 

of vectors. 

Example 3 

A non-subspace in C2, zero vector 

Consider the subset W below as a candidate for being a subspace of C2 
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







=−







= 1253/ 21

2

1
xx

x

x
W  

The zero vector of C2, 







=

0

0
0  will need to be the zero vector in W also. However, 

0  W since 3(0) − 5(0) = 0  12. So W has no zero vector and fails Property Z 

of Definition of Vector Space. This subspace also fails to be closed under addition 

and scalar multiplication. Can you find examples of this?  

Example 4 

A non-subspace in C2, additive closure 

Consider the subset X below as a candidate for being a subspace of C2 









=







= 0/ 21

2

1
xx

x

x
X  

You can check that 0 X, so the approach of the last example will not get us 

anywhere. 

However, notice that  

  Xx 







=

0

1
 and Xy 








=

1

0
. Yet 

  Xyx 







=








+








=+

1

1

1

0

0

1
 

So X fails the additive closure requirement of either Property AC or Theorem 

TSS, and is therefore not a subspace.  

Example 5 

A non-subspace in C2, scalar multiplication closure 

Consider the subset Y below as a candidate for being a subspace of C2 

  
















= ZxZx

x

x
Y 21

2

1
,/  
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Z is the set of integers, so we are only allowing “whole numbers” as the 

constituents of our vectors. Now, 0  Y , and additive closure also holds (can you 

prove these claims?). 

So we will have to try something different. Note that Ck =
2
1  and Y









3

2
but  

Ykx 







=








=

2

3

1

3

2

2

1
 

So Y fails the scalar multiplication closure requirement of either Property SC or 

Theorem TSS  

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

4.0 Conclusion  

You have learnt in this unit subspaces with examples and tests for subspace of a 

given vector space. 

5.0 Summary 

Suppose that V is a vector space and W is a subset of V , W   V . Endow W with 

the same operations as V . Then W is a subspace if and only if three conditions 

are met  

1. W is non-empty, W  . 

2. If x  W and y  W, then x + y  W. 

3. If k  C and x W, then k x  W.  
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6.0 Tutor Marked Assignment (TMA) 

1. What is a subspace? 

7.0 References/Further Reading 

Odili,G. A. (2000): Algebra for Colleges and Universities: An Integral Approach. 

Anachuna Educational Books. ISBN978-2897-37-x. 

Robert, A. Beezer (2006): A First Course in Linear Algebra. http://linear.ups.edu/. 
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1.0 Introduction 

In this unit you will learn that each vector space V studied here has a finite number 

of vectors that completely describes V. 

2.0 Learning Outcome 

At the end of this unit, you should be able to:  

1. Define Linear combination. 

2. Write a given vector as a linear combination of other vectors. 

3. Define Spanning sets 

4. Show that a given set of vectors spans a given vector space 

3.0 Learning Content 

3.1 Definition of Linear Combination 

Let V be a vector space over the field F and let v1, v2, ..., vn V Then if a1, a2, ..., 

an   F, the vector 

V= a1v1+ a2v2+ ...+ anvn 

is called a linear combination over F of  {v1, v2,..., vn} or simply a linear 

combination of   

{v1, v2,..., vn} 

3. 2 Examples of linear combination 

Example 1. 

Write (2, 1, 5) in E3 as a linear combination of(l, 2,1), (1,0, 2), and (1,1,0):  

Solution 

We want to find a1, a2, a3  so that 

(2, 1, 5) = a1(l, 2, 1) + a2(1, 0, 2) + a3(l, 1,0) 

or 

(2, 1, 5)'= (a1 + a2 + 03, 2a1 + a3, a1 + 2a2) 

which yields equations 
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a1+ a2 + a3 = 2 

2a1     +a3 = 1  

a1 +2a2     = 5 

Solving these equations gives 

a1 = l, a2= 2, a3 = -l, so 

(2,1,5) = (1,2,1) + 2(1,0,2) -(1,1,0) 

Example 2. 

Can (3,   -1,   4)  be   written   as   a  linear combination of (1, -1, 0), (0,1,1) and 

(3, -5, -2)?  

Solution 

We check to see whether the equation (3, -1, 4) = a1(l, -1, 0) + a2(0, 1, 1) + a3(3, 

:5, -2) has a solution. This is equivalent to  

 a1        + 3a3 = 3 

 -a1+ a2 -5a3=-1 

          a2 -2a3=4 

In reduced form this is 

















−

2

2

3

000

210

301

 

and there is no solution. Hence (3, -1, 4) cannot be written as a linear combination of 

the given vectors 

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 
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3.3 Definition of Spanning Set. 

Let S = {v1, v2, ..., vn} be a set of vectors in vector space V. The set S spans V, or 

V is spanned by S, if every vector in V is a linear combination of the vectors in S. 

3.4 Examples of Spanning Sets. 

Example 1. 

Let V  be the vector space E3. Show that {(1, 2,1), (1,0, 2), (1,1,0)} spans E3.  

Solution 

We must show that any vector (a, b, c) in E3 can be written as a linear combination 

of the three given vectors. That is, we must show that there are numbers a1, a2, a3 

so that  

(a, b, c)= a1(1, 2,1)+ a2 (1,0, 2)+ a3(1,1,0), 

regardless of what real values a, b, and c take.  

Equivalently, we have 

 a1 + a2  + a3 = a 

2a1         + a3 = b 

a1 + 2a2         = c 

which has solutions 

3

22
1

cba
a

++−
= ,  

3
2

cba
a

+−
= ,  

3

24
3

cba
a

−−
=  

Thus {(1,2, 1), (1,0,2), (1,1,0)} spans E3 

Example 2. 

Let V be P2, the vector space consisting of polynomials of degree   2 and the zero 

polynomial.  

Let v1 = t2+ 2t + 1 and v2 = t2 + 2. 

Determine whether {v1, v2} span V? 

Solution 
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Again let v = at2 + bt + c be any vector in V, where a, b, and c are any real numbers.   

We must find a1 and a2 so that  

at2 + bt + c = a1(t2+ 2t + 1) + a2(t2 + 2) 

       = (a, + a2)t2 + (2a2)t + (a, + 2a2)  

Now two polynomials agree for all values of  t only if the coefficients of respective powers 

of t agree. Thus we get the equations 

a1   +    a2   = a 

2a1 =b 

A1 + 2a2    = c 

Putting the augmented matrix into reduced row echelon form we have 

















+−

−

−

cab

ac

ca

24

2

00

10

01

 

Therefore, a solution exists only if b - 4a + 2c =0'. but this places a restriction on (a, 

b, c\ and so me very first equation cannot be solved for an arbitrary vector (a, b, c). 

Therefore {v} v2} does not span V. 

Example 3 

Let v, = t2 + 2t + 1 and v2 = t2 + 2. Describe Span S where S = {v1, v2}  

Solution 

Suppose (a,  b, c) is span S.     Then the equation  

(a, b, c) = a1(t2 +2t + 1) + a2(t2 + 2)  must be solvable.     Working as in the 

previous example, we conclude that b - 4a + 2c = 0.  Thus 









+==
24

/),,(
cb

acbaS . 

span of S is all vectors whose first component is the sum of 4
1  of second component 

and 2
1  of third component. So, for example, (5, 4, 9) span S and (5, 4, 8)  span 

S. 
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Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

 4.0 Conclusion 

At the end of this unit, you learnt how to define Linear Combination, write a given 

vector as a linear combination of other vectors, define spanning sets and how to 

show that a given set of vectors spans a given vector space. 

5.0 Summary 

Let v1, v2, ..., vn V Then if a1, a2, ..., an   F, the vector  

V= a1v1+ a2v2+ ...+ anvn is called a linear combination over F of  {v1, v2,..., vn}  

The set of vectors S = {v1, v2, ..., vn} V  spans V, or V is spanned by S, if every 

vector in V is a linear combination of the vectors in S. 

6.0 Tutor Marked Assignment (TMA) 

1. What is Linear Combination? 

 

 

7.0 References/Further Reading 

Odili,G. A. (2000): Algebra for Colleges and Universities: An Integral Approach. 

Anachuna Educational Books. ISBN978-2897-37-x. 

Robert, A. Beezer (2006): A First Course in Linear Algebra. http://linear.ups.edu/. 
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1.0 Introduction 

Suppose that v is a vector in a given vector space V and  that A is a subspace of V . 

It is natural to ask, is v an element of A? This is equivalent to: 

If A is the subspace spanned by S, then is v a linear combination of a finite subset 

of S? In order to develop methods to answer such a question, we need the concept 

of linear dependence. 

2.0 Learning Outcome 

At the end of this unit, you should be able to  

1. Define Linear Dependence and Independence 

2. Determine whether vector space is linearly independent or not. 

3.0 Learning Content 

3.1 Definition of Linear Dependence and Independence 

Let {v1, ..., vn} be a nonempty set of (distinct) vectors of the vector space V. We say that 

{v1, ..., vn} is a linearly dependent set if there are scalars a1 ...,an  F and not all 

equal to the zero of F such that 

a1v1 + a2v2 + ... +anvn=    the zero vector. Otherwise {v1, ..., vn} is called linearly  

independent. 

To determine whether a set {v1, v2,..., vn} is linearly independent or linearly 

dependent, we need to find out about the solution of 

 a1v1 + a2v2 + ... +anvn=     

If we find (by actually solving the resulting system or by any other technique) that 

only the trivial solution a1 = a2 = . . . = an = 0 exists, the S is linearly independent. 

However, if one or more of the an is non zero, then the set S is linearly dependent. 

3.2 Examples of Linear Dependence and Independence 

Example 1 

Determine whether S = {(1, 0), (0, 1), (1, -1)} is linearly independent.  
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Solution 

Consider 

a1(1, 0) + a2(0, 1)+a3(1, -1) =  = (0,0) 

Which is equivalent to  

 a1 + a3 = 0 

 a2   - a3 = 0 

This system has solution a3 = k, a1= -k, a2 = k,  if  k   0, then we have a non-trivial 

solution, and so S is not linearly independent - it is linearly dependent. 

Example 2 

Let S ={(1,0,1), (0,1,2), (-2,1,1)} be a set of  vectors in E3 . Is S linearly independent?  

Solution 

Consider 

a1(l,0,l) + a2(0,1,2) + a3(-2,l,l) =   = (0,0,0) which is equivalent to  

a1           -2a3 = 0 

          a2+ a3 = 0 

a1 + 2a2 + a3 = 0 

We can easily solve this system by eliminating one variable at a time. Thus subtracting (1) 

from (3), we get 2a2 + 3a3 = 0, and subtracting twice (2) from this, we get a3 = 0. 

Substituting into (1) and (2), this gives a1 = 0 and a2 = 0. Hence since a1 = a2 = a3 = 0, S 

is linearly independent. 

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 
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3.3 Theorem L1 

Let S = {v1,v2, . . ., vn} be a set of at least two vectors (n   2) in a vector space V. Then S 

is linearly dependent if and only if one of the vectors in S can be written as a linear 

combination of the rest.  

Proof 

If S is linearly dependent, then there are constants a1, a2, ..., an some of which are non 

zero, such that 

a1v1 + a2v2 + . . . + an vn =   Suppose ak(l   kn) is a non zero coefficient in the linear 

ombination. Then 

 akvk  = - a1v1 - a2v2 - . . . – ak-1 vk-1  – ak+1 vk+1 -…- an vn 

and since  ak 0  

n
n

1k
1k

1-k
1-k

2
2

1
1

k  v
a

-... -  v
a

  -  v
a

 - . . . - v
a

 - v
a

 -   v
kkkkk aaaaa

+
+=  

Therefore, vk is a linear combination of the othet vectors in S. 

Conversely, suppose that vk is a linear combination of the other vectors of S 

In particular, let  

vk  = - d1v1 - d2v2 - . . . – dk-1 vk-1  – dk+1 vk+1 -…- dn vn 

Then, adding (-l)vk to both sides, we have 

   =- d1v1 +…+ (-1) vk +…+ dn vn 

Because the coefficient of vk is non zero, the set S is linearly dependent. 

3.4 Example  

Show that 
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


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,

12

01
,
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11
S  

is linearly dependent in M22.   Write one of the matrices as a linear combination of the 

others.  
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Solution  

Consider 









==


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
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321 aaa  

This equation is equivalent to  

 a1     -a2      - a3      =0  

 a1         +2a3      =0 

3a1  +a2    +9a3      =0  

which reduces to  



















 −−

0

0

0

0

000

000

310

111

 

Therefore, a1 = -2k, a2 = -3k, a3 = k is a solution, where k is arbitrary.   Thus the set S is 

linearly dependent. Choosing k=1 we have 









=







−
+







−
−








−

00

00

96

21

12

01
3

30

11
2  

We can write 








−
+







−−
=









96

21

2

1

12

01

2

3

30

11
 








−
+








=







−

12

01
3

30

11
2

96

21
 








−
+








−=







−

96

21

3

1

30

11

3

2

12

01
 

Self-Assessment Exercise(s) 
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Self-Assessment Answer 

 

4.0   Conclusion 

At the end of this unit, you have learnt how to define a Linear Dependence and 

Independence and also how to determine whether vector space is linearly 

independent or not. 

5.0   Summary 

A nonempty set of (distinct) vectors {v1, ..., vn}of the vector space V is a linearly 

dependent set if there are scalars a1 ...,an  F and not all equal to the zero of F such 

that a1v1 + a2v2 + ... +anvn=    the zero vector. Otherwise {v1, ..., vn} is called linearly  

independent. 

To determine whether a set {v1, v2,..., vn} is linearly independent or linearly 

dependent, we need to find out about the solution of  a1v1 + a2v2 + ... +anvn=     

If we find that only the trivial solution a1 = a2 = . . . = an = 0 exists, the S is linearly 

independent. However, if one or more of the an is non zero, then the set S is 

linearly dependent. 

The set S = {v1,v2, . . ., vn}, n   2 in a vector space V is linearly dependent if and only if 

one of the vectors in S can be written as a linear combination of the rest.  

 6.0 Tutor Marked Assignment (TMA) 
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1.0 Introduction 

You have seen in the preceding Units that linearly independent sets of vectors 

often play a special role in describing vector spaces. In this Unit, you will study sets 

of vectors that play a role in an arbitrary vector space V similar to that of the set 

{v1, ..., vn} in En. If a set S of vectors spans V and S is linearly dependent, then 

representation of a vector x in terms of vectors in S is not unique. If we want 

uniqueness, the spanning set must also be linearly independent. Such a set is 

called a basis for V. Bases are very useful in coding theory. 

2.0. Learning Outcome 

At the end of this unit you should be able to  

1. Define Basis for a vector space 

2. Construct a Basis for V by choosing vectors from V 

3. Given a Set S of vectors in V, Construct a Basis for V by 

enlarging or deleting some (but not all ) vectors from S. 

4. Show if a vector is a Basis for a given vector space or 

not. 

5. Define dimension of vector space 

6. Determine the dimension of any given vector space.   

3.0 Learning Content 

3.1       Definition of Basis  

Let V be a vector space over the field F. A basis for V is a subset B of V such that: 

(a) B is a linearly independent set and 

(b) B spans V. 

3.2 Examples of Bases 

Example 1 

Show that En has the basis E = {e1 e2, ..., en), where ej = (0,0,...,0,1,0,...,0)      

Where 1 is the jth component  
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Solution 

For the span consider any x = (x1, x2,...,xn)   En and note that 

x = x1 (1,0,…0,)+ x2(0,1,0…0)+...+xn(0,…,0,1) 

  = x1 e1 + x2 e2, +...+xnen 

For linear independence consider 

a1e1 + a2 e2 + ... + an en =   = (0,0, ..., 0) 

So that a1 = a2 = ... = an = 0. Therefore, E is a basis for En. 

The vector e1, e2, ..., en are called the usual or standard basis for En.  

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

Example 2  

Show that the set S = {t2 + 1, t-1, 2t + 2} is a basis for the vector space P2. 

Solution 

To show this we must show that S span P2 and V is linearly independent. To show that S 

spans P2 

we take any vector in P2, that is, a polynomial at2 + bt + c, and wish to find a1,a2 and a3 

so that 

at2 +bt + c = a1(t2 +1)+a2(t - 1) + a3(2t + 2)  

=    a1t2 + (a2 + 2a3)t + (a1 - a2 + 2a3) 

Since two polynomials agree for all values of t only if the coefficients of respective 

powers of t agree, we get 

a1                                       =a 

         a2 + 2a3         =b 

a1     - a2 + 2a3       = c 

Then 
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4
,

2
, 321

abc
a

cba
aaa

−+
=

−+
=  

Hence, S spans P2. To show that S is linearly independent, we form, 

a1(t2 +1)+a2(t - 1) + a3(2t + 2)          =0 

  a1t2 + (a2 + 2a3)t + (a1 - a2 + 2a3)=0 

Again, this can hold for all values of t only if a1 = 0, a2 + 2a3 = 0 and a 1- a2 + 2a3 = 0. We 

get a1 = a2 = a3 = 0, which implies that S is linearly independent. 

Example 3 

The set 









































=

10

00
,

01

00
,

00

10
,

00

01
S  is a basis for the vector space M22 

Solution 

To verify that S is linearly independent, we form 









=








+








+








+









00

00

10

00

01

00

00

10

00

01
4321 aaaa  









=









00

00

43

21

aa

aa
 

Which implies that 

a1 = a2 = a3 = a4 = 0, Hence S is linearly independent. 

To verify that S spans M22, we take any vector  










dc

ba
 and we must find scalars a1 , a2 , a3 , a4 such that 









+








+








+








=









10

00

01

00

00

10

00

01
4321 aaaa

dc

ba
 

we find that a1 =a, a2 =b, a3 =c, a4 = d, so that S spans M22 

In the last Example, the coefficients in the linear combination of basis elements 

were unique for any given vector, 
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








dc

ba
 This is true in general. 

Theorem 1. 

Let S ={V1, ..., vn} be a basis for a vector space V. Let v be in V.  The coefficients in the 

representation v = a1v1 + ... + anvn are unique. 

Proof 

Suppose we have two representations 

v = a1v1 + ... + anvn 

v = b1v1 + ... + bnvn 

for v, we will show that the coefficients are actually equal. To do this form v + (-v), 

which equals   and combine terms to obtain. 

  = (a1-b1 )v1 + ... + (an-bn )vn 

Since S is a basis, it is a linearly independent set. Thus the coefficients in the last 

linear combination must all be zero. That is, a1 = b1, ..., an = bn and the original linear 

combinations are the same. 

Example 4 

Show that the sets S= {(1,2), (3,-l), (1,0)} is not a basis for E2. 

Solution 

The set S is linearly dependent because, for example, 

 (1,2) + 2(3,-1)-7(1,0) = (0,0) 

So S cannot be a basis for E2  

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 
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Definition of Minimal set of generators 

Let V  be a vector space over F. A Minimal set of generators is a set S of vectors 

such that 

(a)  V   =    <S> 

( b) If T  S, <T> is a proper subspace of V. 

Theorem 2 

Let V  be a vector space over the field F.  Let S be a minimal set of generators for V. 

Then S is a basis for V. 

 Proof 

Clearly, V=<S>, so we need only prove that S is linearly independent. 

Suppose S is linearly dependent, then there exists a nonempty subset T= {V1, 

..., Vr} of S such that T is linearly dependent. By Theorem 16.4 there is a Vi  T 

such that Vi is a linear combination of the elements of T- {V i}. 

Thus S-{V i} spans the same vector space as S, This contradicts that S 

is a minimal set of, generators, and so S is linearly independent. Thus S is a basis for 

V. 

Example 5 

Let V = E3, is the set S =  {(1,0,0), (0,1,0), (0,0,1),(1,-1,1)} minimal for V.  

Solution 

Clearly S as a generating set for V is not minimal, since S - {(1,-1,1)} also 

generates E3. The subset B = {(1,0,0), (0,1,0), (0,0,1)} is clearly a minimal set 

of generators for E3 and is a basis for E3 since its three elements are the standard 

unit vectors of E3. 

Self-Assessment Exercise(s) 
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Self-Assessment Answer 

 

3.4    Definition of maximal linearly independent subset of V 

Let V be a vector space over the field F. A subset S of V is called a maximal 

linearly independent subset of V if 

(a) S is linearly independent, and 

(b) If S   T, then T is linearly dependent. 

Note that the three notions of basis, minimal set of generators, and maximal 

linearly independent set are all equivalent. 

Theorem 3 

Let V be a vector space over F with a basis B. If B has n elements, then every 

basis of V has n elements. 

Before we can prove this theorem, we need the following lemma. 

Lemma 1 

Let A = {v1, ..., vn} be a linearly independent set of n vectors of the vector space 

V over F. Then any set B of linearly independent   vectors   in   the   subspace   

<A> 

spanned by A has at most n elements. 

Proof 

Let B = {u1, ..., ur} be a linearly independent set of vectors in the subspace <A>. 

Then ui is dependent on the set A; hence by Theorem 16.4 the set {v1 ..., vn, 

u1} is a linearly dependent set. Hence there are field elements a1, ..., a1+n, not 

all zero, such that 

a1v1 + ... + anv+ an+1u1=0 

Now if all of a1 ..., an are zero, then an+1   0 and therefore u1 = 0, a contradiction.   

Thus, at least one of a1 ..., an is not zero. Hence assume by reindexing if 
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necessary, that a1  0. Thus v1 is dependent on A1 = {v2, v3, ..., vn, u1}, and A1 

spans the same space as A. 

Next, we see that u2 is in the space <A1> spanned by A1, and so {v2, ..., vn, u1, 

u2} is a linearly dependent set. As before there are field elements b1, . . ., bn+1  not 

all zero, such that 

b1v2 + ... +bn-1vn + bnu1 + bn+1u2 = 0  

Again, if b1 = ... = bn-1 = 0, then bnu1 + bn+1u2 = 0 and at least one of the bn or bn+] is 

not zero. This contradicts that the subset {u1, u2} of B is a linearly independent set. 

Thus, we may assume, by reindexing if necessary, that b1  0, and so v2 is 

dependent on A2 = {v3, ..., vn, u1, u2}, 

whence <A2> = <A1> = <A> 

Now suppose that r > n. Then, continuing in this way for a total of n steps, we 

get An = {u1, ..., u2} spans the same subspace as <A>.  But then un+1 is in the 

space <An>, and therefore the set {u1, ..., un, un+1}B is linearly dependent- a 

contradiction, since a non empty subset of a linearly independent set is linearly 

independent Therefore, r n. 

Proof (of Theorem 3) 

Let B be a basis for V with m elements. Let A be another basis for V with n 

elements. From  

Lemma 16.8 mn. But now, reversing the roles of A and B, it follows that n   m. 

Thus, m=n 

Theorem 4 

If S =  {V1,  ..., vn}  is a set of non zero vectors which spans a subspace W of 

a vector space V, then some subset of S is a basis for W  

Proof 

If S is a linearly independent set, then by definition S is a basis for W. If S is 

linearly dependent, then one of the vectors can be written as a linear 

combination of the others. Suppose vm is such a vector (if not, shift the 

vectors in S around and relabel so that this is true). We claim that S1 - {v1 ..., 

vm-1} still spans W. To see this, let x be in W with  
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x = a1 v1 + . . . + am-1 vm-1 + am vm   

Now vm = d1 V1 + ... + dm-1 vm-1, so we can substitute this expression into the 

former linear combination to obtain 

 x = (a1 + am d1)v1+ . . . + (am-1 + am dm-1) vm-1 

Thus S1 spans W. If S1 is linearly independent, S1 is a basis for W. If S1 is linearly 

dependent one of the vectors in S1 is a linear combination of the others. Now we 

argue as before. In this way we must arrive eventually at a linearly independent 

set which spans W. (If we reduce to a set with a single vector, that set is linearly 

independent because S was a set of non zero vectors). The resulting set is a basis 

for W. 

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

3.5      Definition of Dimension 

Let V be a vector space over the field F. If V has a basis with n elements, then we 

say that V is an n-dimensional vector space or that V has dimension n over 

F. We denote this by dimF V = n, or more simply by dim V = n when the field F is 

clear from context. If V does not have a finite basis, then we say that V is infinite 

- dimensional over F, and we denote this by dimFV =  . The trivial vector space 

V = 0 is said to have dimension 0. 

The inclusion of the phrase "over F" in the definition of dimensionality is no mere 

pedantic adornment. For if we change the field of scalars to a proper subfield, then 

the dimension of the space may change. 
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Example  6 

Let V be the subspace of E3 spanned by S = {vi, v2, v3} where V1 = (0,1,1), v2 = 

(1,0,1) and v3 = (1,1,2). Determine dim V.  

Solution 

Since S is linearly dependent, and v3 = V1 + v2, a basis for V is {V1, v2}. Hence, dim 

V = 2 

Theorem 5 

Let dim V = n, and let S = {v1 v2, ..., vn} be a subset of V. The following are equivalent: 

1.   Set S is a basis for V 

2.   Set S is linearly independent 

3.   Set S spans V 

Proof 

S is a basis for V implies S is linearly independent follows from the definition of basis. 

Suppose S is linearly independent and S does not span V. Then there is a vector Vn+1 

V which is not in span S. That is 

T= {V1, v2, ..., vn, vn+1} 

is a linearly independent set from V. But then dim V   n + 1, which contradicts the 

hypothesis that dim V = n. Thus S spans V. 

Suppose S spans V and is not a basis for V. However, this subset must have less 

than n vectors in it, which implies that dim V < n, a contradiction. Hence, S spans V 

implies that S is a basis for V. 

Example 7 

Show that M23 has dimension 6  

Solution 

A basis is (infact, this is the standard basis)" 
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









































































100

000
,

010

000
,

001

000

000

100
,

000

010
,

000

001

 

so dim M23     
= number of vectors in S = 6 

Example 8 

The vector space Pn has dimension n + 1  

Solution 

A basis is   S = {1,x, ...,xn}. 

To   verify   this,   we   check   first   for   linear independence. The equation 

a11 + a2x + a3x2 + ... + an+1xn+l = 0  

holds only if the polynomial on the left is zero for all real x. From algebra this occurs 

only if all the coefficients are zero, that is, only if a1 = a2 = ... = an+1 = 0. Therefore, 

S is linearly independent. That S spans Pn follows from the fact that any polynomial in Pn 

is of the form 

 a0  + a1x + a2x2 + ... + anxn  

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

3.6     Definition 

Let A be an m x n matrix. The row rank of a matrix is the number of non zero rows in 

the reduced row echelon form of A. The column rank of a matrix is the number of non 

zero rows in the reduced row echelon form of AT. The row and column ranks of the zero 

matrix are defined to be zero. 
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Example 9 

Calculate the row and column ranks of 





















−−−

=

12111

34533

13212

21321

A  

Solution 

Row reducing A we have 





















−−−

=

12111

34533

13212

21321

A

144

133

2

3

122

RRR

RRR

RRR

−→

−→

⎯⎯⎯⎯ →⎯
+→





















−−−

−−−

−−−

31430

31430

31430

21321

 

244

233

RRR

RRR

−→

⎯⎯⎯⎯ →⎯
−→





















−−−

00000

00000

31430

21321

⎯⎯⎯ →⎯

−
→ 22

3

1
RR




















−

00000

00000

1
3

1

3

4
10

21321

 

⎯⎯⎯⎯ →⎯
−→ 211 2RRR

RA=























−

00000

00000

1
3

1

3

4
10

0
3

5

3

1
01

 

The final matrix AR has row rank 2, so row rank of  A = 2. 

For the column rank we can do column operations or form AT, do row operations, and 

transpose. We will use column operations 





















−−−

=

12111

34533

13212

21321

A

155

144

122

2

133

CCC

CCC

CCC

CCC

−→

−→

⎯⎯⎯⎯ →⎯

+→

+→





















−

−

−

00001

62863

31432

21431
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255

244

3

4

2

1

233

CCC

CCC

CCC

−→

+→

⎯⎯⎯⎯ →⎯
−→





















00001

00063

00032

00031

⎯⎯⎯ →⎯
→ 22

3

1
CC





















00001

00023

00012

00011

 

⎯⎯⎯⎯ →⎯
−→ 122 CCC





















−

−

−

00011

00013

00012

00001

⎯⎯⎯⎯ →⎯
+→ 211 2CCC





















−−

−

−

00011

00011

00010

00001

 

22 1CC −→





















− 00011

00011

00010

00001

= CA  

The column rank of A is 2 also  

The   column   rank   and   row rank   A   in the last Example were equal. This is always 

true. 

Theorem   6 

For any matrix A, 

row rank A = column rank A 

Proof 

Let V1, . . ., vm be the rows of Amxn. Suppose that after reduction a basis {w1, w2, . . ., wk}, k 

  m, is found for span {V1, ..., vm}. Thus 

V1 = a11w1 + a12w2 + ... + a1kwk 

v2 = a21w1 + a22w2 + . . . + a2kwk  

…      . . .   . . .         ...      ...(1) 

vm = am1w1 +     +am2w2   +amkwk 

Now writing 

       vj = (bj1 , bj2 , . . . bjn )  1 jn 

 and 

       wj = ci1 , ci2 , . . . cin )  1 in 
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we find after substitution into (1) that 



























++



























=



























mk

k

k

kj

m

j

mj

j

j

a

a

a

C

a

a

a

C

b

b

b

.

.

.
...

.

.

.

.

.

.

2

1

1

21

11

1

2

1  

This means that the transpose of each column is a linear combination of k vectors; 

therefore, the column rank of A is less than or equal to k. That is,  column rank A   row 

rank A In the same way, we find row rank A   column rank A. Therefore, the 

ranks are equal. 

Theorem 7 

If S = {v1, ..., vm} is a vector subset of En and A is the matrix formed by putting v1 in row 

1, v2 in row 2, and so on, and if B is the reduced row echelon form of A, then the nonzero 

rows of B form a basis for the row space of A. That is, the nonzero rows of B form a basis 

for span S.  

Proof 

Let the matrix be 



























=

m

mxn

v

v

v

A

.

.

.

2

1

 

By definition of row operations, if a row of zeros is obtained, that row was equal to 

a linear combination of other vectors in the set. The remaining rows are therefore all 

linear combinations of the independent vectors from the original set. Thus the span of 

the nonzero rows is equal to span S. Thus the non zero rows, being independent, form 

a basis for span S and dim (span S) = number of non zero rows. 

Self-Assessment Exercise(s) 
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Self-Assessment Answer 

 

3.7 Basic Problem 

Now that we know what a basis of a vector space is, we can state one of the 

fundamental problem of linear algebra. 

Given a vector space V, the basis problem may take one of the following forms  

Problem 1: Construct a basis for V, by choosing vectors from V 

Problem 2: Given a set S of vectors in V, construct a basis for V by enlarging S, or 

deleting some (but not all) vectors from S, or both 

Before we try to solve this problem, one pertinent question arises, Is a solution even 

possible? We shall rely on the last Theorem which tells us to "throw out dependent 

vectors from a spanning set" to get a basis. 

Example 10 

Find a basis for the solution space of 

x1 + 2x2 +3x4 + x5 =0 

2x1 + 3x2 + 3x4 + x5            =  0 

x1 + x2 + 2x3 + 2x4 + x5 =  0 

3x1 + 5x2 + 6x4 + 2x5 =0 

2x1 + 3x2 + 2x3 + 5x4 + 2x5                = 0 

 

Solution 

The equations in augmented matrix form are 























0

0

0

0

0

.

.

.

.

.

.

25232

26053

12211

13032

13021

 ⎯⎯⎯⎯ →⎯ reduction Row 
 





















 −−

0

0

0

0

0

.

.

.

.

.

.

00000

00000

21100

13010

13001

 

And the general solution is 

(x1, x2 ,x4 , x5) = (3k+j, -3k-j, -k- 2
1 j, k, j) 
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   =(3k, -3k, -k, k,0)+(j, -j, - 2
1 j, k, j) 

   =k(3, -3, -1, 1, 0)+j(1, -1, - 2
1 , 0, 1) 

Since k and j can take on any values, letting them first be 1 and 0, and then 0 and 

1 , we get as solutions 

 v1=(3,-3,-l,l,0)        v2 = (l,-l,-'/2,0,l) 

Clearly S= {v1, v2} spans the solution space and is linearly independent, S is a 

basis for the solution space.   Therefore, the dimension of the solution space is 2. 

Example 11: 

The set spans S =n{(0,0,2,0), (1,1,4,2), (1,2,1,3), (2,1,2,3) } is a vector space. Find a basis 

for it. 

Solution 

Form A and row-reduce. 





















⎯⎯ →⎯





















=


3212

3121

0200

2411

3212

3121

2411

0200

21 RR
A  





















−−−

−
⎯⎯⎯ →⎯





















−−−

−−→

⎯⎯⎯ →⎯ 
−→

1610

0200

1310

2411

1610

1310

0200

2411

2

32

133

144

RR
RRR

RRR
 





















−

−
⎯⎯⎯ →⎯





















−

−

+→

⎯⎯⎯ →⎯ →
−→

0900

0100

1310

1701

0900

0200

1310

1701

32
1

3

211

244

RR
RRR

RRR
 





















+→

+→
⎯⎯⎯⎯ →⎯

−→

0000

0100

1010

1001

9

3

344

322

7 311

RRR

RRR

RRR
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Conclusion 

At the end of this unit, you have learnt how to define basis for a vector space, 

construct a basis for V by choosing vectors from V, given a Set S of Vectors in V, 

you know how to construct a basis for V by enlarging or deleting some (but not all) 

vectors from S. You have also learnt how to know if a Vector is a basis for a given 

vector space or not, how to define a dimension of vector space and how to determine 

the dimension of any given vector space.  

Summary 

Let V be a vector space over the field F. A basis for V is a subset B of V such that: 

(a) B is a linearly independent set and 

(b) B spans V. 

Let V be a vector space over the field F. If V has a basis with n elements, then we 

say that V is an n-dimensional vector space or that V has dimension n over 

F. We denote this by dimF V = n, or more simply by dim V = n when the field F is 

clear from context. If V does not have a finite basis, then we say that V is infinite 

- dimensional over F, and we denote this by dimFV =  . The trivial vector space 

V = 0 is said to have dimension 0. 

Let A be an m x n matrix. The row rank of a matrix is the number of non zero rows in 

the reduced row echelon form of A. The column rank of a matrix is the number of non 

zero rows in the reduced row echelon form of AT. The row and column ranks of the zero 

matrix are defined to be zero. 

6.0 Tutor-Marked Assignment (TMA) 

1. What is Basis? 

2. Give some examples of Bases 

7.0 References/Further Reading 

By the last theorem, T = {(1,0,0,1), (0,1,0,1), (0,0,1,0)} is a basis for span S 

and dim (span S) = 3. 

Odili,G. A. (2000): Algebra for Colleges and Universities: An Integral Approach. 

Anachuna Educational Books. ISBN978-2897-37-x. 

Robert, A. Beezer (2006): A First Course in Linear Algebra. http://linear.ups.edu/. 
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Unit 1  
 Introduction to Matrices 
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1.0 Introduction 

The history of matrices goes back to ancient times! But the term "matrix" was not 

applied to the concept until 1850. 

We have come across system of linear equations, and the various solution 

techniques.  In this unit we are going to discuss the origin of matrix, its definition, 

and areas of its application. 

2.0 Learning Outcome 

Upon completion of this unit, students should be able to: 

1. Know the origin of matrix; 

2. Define matrix; 

3. Know the areas of application of matrix formulation. 

3.0  Learning Content 

3.1     Definition (Matrix) 

"Matrix" is the Latin word for womb, and it retains that sense in English. It can 

also mean more generally any place in which something is formed or produced. 

The origin of mathematical matrices lie with the study of systems of simultaneous 

linear equations. An important Chinese text from between 300 BC and AD 200, 

Nine Chapters of the Mathematical Art (Chiu Chang Suan Shu), gives the first 

known example of the use of matrix methods to solve simultaneous equations. 

A matrix is an array of numbers arranged in a rectangular form.  The numbers in 

the array are called “entries” in the matrix.  

3.2 Areas of Application of Matrix 

In mathematics, a matrix (plural matrices) is a rectangular array of numbers, 

symbols, or expressions, arranged in rows and columns. The individual items in a 

matrix are called its elements or entries.  An example of a matrix with 3 rows and 

3 columns is given as below, 

 

http://saxakali.com/COLOR_ASP/developcm3.htm
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















−

897

642

531

 

Matrices find applications in most scientific fields. In physics, matrices are used to 

study electrical circuits, optics, and quantum mechanics. In computer graphics, 

matrices are used to project a 3-dimensional image onto a 2-dimensional screen, 

and to create realistic-seeming motion.  

A major branch of numerical analysis is devoted to the development of efficient 

algorithms for matrix computations, a subject that is centuries old and is today an 

expanding area of research.  

Algorithms that are tailored to the structure of particular matrix structures, e.g. 

sparse matrices and near-diagonal matrices, expedite computations in finite 

element method and other computations. Infinite matrices occur in planetary 

theory and in atomic theory. 

4.0 Conclusion 

At the end of this unit, you have learnt about the origin of matrix and it definition 

and how to apply matrix formulation. 

5.0 Summary 

At the end of this unit we were able to discuss the meaning of a meaning of a 

matrix, the historical development of matrix and the areas of its application. 

6.0 Tutor Marked Mark Assignment 

(Q) Define a matrix and explain its application in the areas of Agriculture 

7.0 References/Further Reading 

Brookes, Mike (2005), The Matrix Reference Manual, London: Imperial College. 

Carl, Meyer (2000): Matrix analysis and Linear Algebra. Siam publishing Company. 

Hazewinkel, Michiel, (2001), "Determinant", Encyclopedia of Mathematics, 

Springer, ISBN  978-1-55608-010-4. 
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Matrix Representation 

Content 

1.0 Introduction  

2.0 Learning Outcome 

3.0 Learning Content 

3.1 Representation of a Matrix from Linear Equations 

4.0 Conclusion 

5.0 Summary 

5.0 Tutor Marked Assignment (TMA) 

6.0  References/Further Reading 
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1.0 Introduction 

In this section we are going to study various ways through which we can represent 

matrix from linear equations, we are to going to consider various examples of 

matrices in the form of rows and columns. 

2.0 Learning Outcome 

Upon completion of this unit, students should be able to: 

1. List the defining properties of a linear transformation; 

2. List a number of different examples of linear transformation; 

3. Verify whether or not a transformation is linear or not. 

3.0 Representation of a Matrix from Linear equations 

We consider the following system m linear equations in n unknowns 

 

bmxaxaxa

bxaxaxa

bxaxaxa

nnnmm

nn

nn

=+++

=+++

=+++

...

...

...

...

...

...

2211

22222121

11212111

      

 (2.1) 

Equation (2.1) can be represented in a matrix form as given in equation (2.2) 



























=



























+++

+++

+++

bm

b

b

xaxaxa

xaxaxa

xaxaxa

nnnmm

nn

nn

.

.

.

...

..

..

..

...

...

2

1

2211

2222121

1212111

      (2.2) 

The left hand side matrix can be written as a product of two matrices; as shown 

in equation (2.3) 
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)3.2(

.

.

.

.

.

.

...

..

..

..

...

...

2

1

2

1

21

22221

11211



























=





















































+++

+++

+++

bm

b

b

x

x

x

aaa

aaa

aaa

mnnmm

n

n

 

Equation (2.3) can be represented by a simple matrix equation as shown in 

equation (2.4) 

bxA =          

 (2.4) 

where, 

 A  = Coefficient matrix 

 x  = Column vector 

 b  = Column Constant 

Example 2.1 (2 x 3 Matrix) 

A 2 x 3 matrix, is a type of matrix with 2 rows and 3 columns 

 
















− 434

012

  

A 2 x 3 matrix 

Example 2.2 (3 x 1 Matrix) 

A 3 x 1 matrix, is a type of matrix with 3 rows and 1 column 

 
















2

0

1

 

A 3 x 1 matrix 

Example 2.3 ( 3 x 3 Matrix) 

A 3 x 3 matrix, is a type of matrix with 3 rows and 3 columns 

















−− 216

105

214

 

A 3 x 3 matrix 

Example 2.4 ( 1 x 1 Matrix) 
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A 1 x 1 matrix, is a type of matrix with 1 row and 1 column ( )5  

A 1 x 1 matrix 

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

4.0 Conclusion 

At the end of this unit we were able to discuss the various representation of 

matrices in terms of the entries. 

5.0 Summary 

 

 

6.0 Tutor Marked Assignment (TMA) 

(Q)  Represent the system of equations below in a matrix form 

bmxaxaxa

bxaxaxa

bxaxaxa

nnnmm

nn

nn

=+++

=+++

=+++

...

...

...

...

...

...

2211

22222121

11212111

 

7.0 References/Further Reading 

Brookes, Mike (2005), The Matrix Reference Manual, London: Imperial College. 

Carl, Meyer (2000): Matrix analysis and Linear Algebra. Siam publishing Company. 

Hazewinkel, Michiel, (2001), "Determinant", Encyclopedia of Mathematics, 

Springer, ISBN 978-1-55608-010-4 
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Unit 3  
Types of Matrices 

 

Contents  

1.0 Introduction  

2.0 Learning Outcome 

3.0 Learning Content 

3.1 Major Types of Matrix 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment (TMA) 

7.0  References/Further Reading 
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1.0 Introduction 

In this section we are going to treat different types of matrices and their examples 

2.0 Learning Outcome 

Upon completion of this unit, students should be able to: 

1. List the defining properties of a linear transformation; 

2. List a number of different examples of linear transformation; 

3. Verify whether or not a transformation is linear or not. 

3.0 Learning Content 

3.1 Major Types of Matrix  

(i) Row Matrix (vector): is a 1 x n array of entries in a row, 

For example, 

 A = )...,,( 121 naaa  

(ii) Column Matrix (vector): is an n x 1 array of entries in a column, 

 

For example, 

























=

na

a

a

A

.

.

.
2

1

 

(iii) Null Matrix 

A Null matrix is an m x n matrix where all entries are zero 

Example, 

 































=

0...00

.

.

.

0

.

.

.

...0

.

.

.

0

0...00

A  
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(iv) Square Matrix 

A square matrix is a matrix with n rows and n columns 

Example, 

 































=

nnnn

n

n

aaa

aaa

aaa

A

...

.

.

.

.

.

.

...

.

.

.

...

21

22221

11211

 

nnaaa ...,,, 2211  are on the main diagonal 

(v) Diagonal Matrix 

A diagonal matrix is a type of matrix where all entries other than the main 

diagonal entries are zero. 

 

 Example, 

 

 D= 
















c

b

a

00

00

00

 

 B= 
















300

020

001

 

(vi) Upper Triangular Matrix 

Is a square matrix where the entries along the main diagonal as well as 

entries below the main diagonal are zeros. 

Example, 

 





















=

0000

000

00

0

f

ed

cba

U    
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(vii) Lower Triangular Matrix 

Is a square matrix where the entries, except entries below the main 

diagonal, are zeros 

Example, 

 





















=

0

00

000

0000

fed

cb

a
L    

(viii) Unity (Identity) Matrix 

 Is a diagonal matrix where every entry is a unity 

Example 

 
















=

100

010

001

I  

(ix) Symmetric Matrix 

 Is a square matrix where all entries above the main diagonal are 

mirror images of entries below the main diagonal 

Example 

 
















−

−

=

345

421

511

 

(x) Skew-Symmetric Matrix 

 A square matrix is skew-symmetric if every entry is such that; 

 0; =−= iijiij aaa  

where all entries above the main diagonal are mirror images of entries 

below the main diagonal 

Example 

 
















−−

−

=

032

301

210
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Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

4.0 Conclusion 

At the end of this unit we were able to discuss the various types of matrices with 

respect to the entry type. 

5.0 Summary 

 

 

 

6.0 Tutor Marked Assignment (TMA) 

Give examples of the following types of marices 

(i) A column matrix 

(ii) A row matrix 

(iii) Upper triangular matrix 

(iv) Lower triangular matrix 

7.0 References/Further Reading 

Brookes, Mike (2005), The Matrix Reference Manual, London: Imperial College. 

Carl, Meyer (2000): Matrix analysis and Linear Algebra. Siam publishing Company. 

Hazewinkel, Michiel, (2001), "Determinant", Encyclopedia of Mathematics, 

Springer, ISBN 978-1-55608-010-4 
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Unit 4  
Operations on Matrices 
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7.0  References/Further Reading 
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1.0 Introduction 

We are going to consider some basic operations that are relevant in matrix 

operations that will lead to the finding of an inverse of a matrix. 

2.0 Learning Outcome 

By the end of this unit, student should be able to; 

1. know the minor of a matrix 

2. know the cofactor of a matrix 

3. solve problems using determinant 

3.0 Learning Content 

3.1 The Minor of an Entry ija  

The minor of an entry ija
of a matrix A is the determinant of the submatrix obtained 

by eliminating the ith row and the jth column of A, and is denoted by ijM
  

3.2 Cofactor of ija  

The cofactor of ija
 is the minor of ija

multiplied by the prescribed sign of ija
,  

For example the cofactor of ijC
is defined by ij

ji

ij MC +−= )1(
 

3.2.1 Cofactor Matrix of A 

The cofactor matrix of A is the matrix obtained by replacing the entries ija
of A by 

their cofactors 

For example, Cofactor matrix of A is given by; 

 































=

nnnn

n

n

CCC

CCC

CCC

A

...

.

.

.

.

.

.

...

.

.

.

...

21

22221

11211
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3.3 Adjoint of a Matrix 

The adjoint matrix of A is the transpose of the cofactor matrix of A, for example 

 






























=

nnnn

n

n

CCC

CCC

CCC

AAdj

...

.

.

.

.

.

.

...

.

.

.

...

)(

21

22212

12111

 

The inverse of a matrix A denoted by 
1−A  is given by; 

 
)(det

)(1

A

AAdj
A =−

 

The inverse 
1−A  is defined by the relation,  

 IAAAA == −− 11

 

Example   

Find the inverse of the matrix 

 
















−

−

=

120

132

011

A

 

Solution 

7

)02()23(1

=

−++=A

 

Cofactor matrix of A 

 = 
























−

−
−

−

−

−
−

−
−

−
−

−

32

11

12

01

13

01

20

11

10

01

12

01

20

32

10

12

12

13
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 = 
















−

−

511

211

425

 

 

 Adj(A)  = 
















−

−

524

112

115

 

 
)(det

)(1

A

AAdj
A =−

 

 
















−

−=−

524

112

115

7

11A

    

  























−

−
=−

7

5

7

2

7

4
7

1

7

1

7

2
7

1

7

1

7

5

1A

 

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

4.0 Conclusion 

At the end of this unit we were able to discuss the operations that are perform on 

matrices including determining the adjoint of a matrix. 
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5.0 Summary 

 

6.0 Tutor Marked Assignment (TMA) 

(Q)  Find the inverse of the matrix 

 

















−

−

=

120

132

011

A
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1.0 Introduction 

In linear algebra, the determinant is a value associated with a square matrix. It 

can be computed from the entries of the matrix by a specific arithmetic expression, 

while other ways to determine its value exist as well. The determinant provides 

important information when the matrix is that of the coefficients of a system of 

linear equations, or when it corresponds to a linear transformation of a vector 

space: in the first case the system has a unique solution if and only if the 

determinant is nonzero, while in the second case that same condition means that 

the transformation has an inverse operation. 

In this unit we are going to look at various ways of representing linear equations 

using the concept of matrix, we shall also consider the solution techniques of 

determinants in solving system of linear equations. 

2.0 Learning Outcome 

By the end of this unit the student should be able to 

(i) know the definition of determinants 

(ii) know the order of determinants 

(iii) solve system of linear equations using determinants 

3.0 Learning Content 

3.1 Concepts of Determinants 

Determinants arise naturally from the solution of systems of linear equations.   

We consider the system of equations below, 

 
111 cybxa =+  

 
222 cybxa =+  

Solving by elimination method we have, 

)1(122121 cbybbxba =+

 

)2(212112 cbybbxba =+  

Subtracting equation (2) from equation (1), we obtain; 
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21121221 )( cbcbxbaba −=−  

 
1221

2112

baba

cbcb
x

−

−
=          (3) 

Similarly, 

 121221 caybaxaa =+         (4) 

 212121 caybaxaa =+          (5)

  

Subtracting equation (5) from equation (4) 

 
21122112 )( cacaybaba −=−          (6) 

 )7(
1221

1221

baba

caca
y

−

−
=  

Equation (3) can be written as; 

 

22

11

22

11

ba

ba

bc

bc

x =  

Similarly, equation (7) can also be written as; 

 

22

11

22

11

ba

ba

ca

ca

y =

 

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 
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3.2 Order of a Matrix: 

The number of rows and number of columns in a matrix, is called order of the 

matrix, denoted by nxm  or ),( nm .  

Where; 

 m  =  number of rows,  

n  = number of columns. 

Example 1 

(1) Solve using determinants the system of equation below, 

 
82

12

=+

=−

yx

yx
 

Solution 

 

21

12

28

11

−

−

=x  

 = 2
5

10
−=  

Similarly, 

 

21

12

28

12

−
=y  

 = 3
5

15
=

 



71 

 

Self-Assessment Exercise(s) 

Please insert SAQ 

Self-Assessment Answer 

Please provide Self-Assessment Answers in SAQ 

Example 2 

Solve the system of linear equations below using the principle of determinants 

 

523

32

4

=++

=−−

=−+

zyx

zyx

zyx

 

Solution 

 

213

211

111

215

213

114

−−

−

−−

−

=x  

 = 2
12

24
=

−

−
 

 

213

211

111

253

231

141

−−

−

−

−

=y  

 = 1
12

12
=

−

−
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213

211

111

513

311

411

−−

−

−

=z  

 = 1
12

12
−=

−

−
 

4.0 Conclusion 

 

 

 

5.0 Summary 

At the end of this unit we were able to discuss the meaning of determinants, the 

order of a matrix and the solution techniques for solving the system of linear 

equation. 

6.0 Tutor Marked Assignment (TMA) 

(Q)Solve using determinant, the system of linear equations below  

 

523

32

4

=++

=−−

=−+

zyx

zyx

zyx

 

7.0 References/Further Reading 

Brookes, Mike (2005), The Matrix Reference Manual, London: Imperial College. 

Carl, Meyer (2000): Matrix analysis and Linear Algebra. Siam publishing Company. 

Hazewinkel, Michiel, (2001), "Determinant", Encyclopedia of Mathematics, 

Springer, ISBN 978-1-55608-010-4 
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1.0  Introduction  

You have already encountered real-valued functions that play an incredibly 

important role in calculus, mathematics generally and numerous other applied 

fields such as Engineering and physics. Linear functions, which you studied in MAT 

111, are also examples of linear transformations that you study in detail in this 

unit. You recall that a function of one variable, y = f(x), transforms each number 

x into the domain of f (a subset of R or R itself) exactly one number f(x) in R. The 

same function can also be said to map or transform a vector x (since R is a vector 

space) into another vector y = f(x) in the range of f, and this meaning is reflected 

by the alternative function notation: f: x→f(x).  

2.0 Learning Outcome 

Upon completion of this unit, students should be able to: 

1. List the defining properties of a linear transformation; 

2. List a number of different examples of linear transformation; 

3. Verify whether or not a transformation is linear or not. 

3.0 Learning Content 

3.1 Definitions and basic properties of linear transformations. 

Definition 

If V and W are two vector spaces, a function T: V→ 𝑊 is called a linear 

transformation if it satisfies the following axioms: 

T1 : 𝑇(𝑣 + v1) = T(v) + T(v1) for all v and v1 ∈ 𝑉 

T2: T(rv) = rT(v) for all v∈ 𝑉 and 𝑟 ∈ 𝑅. 

A linear transformation T: 𝑉 → 𝑉 is called a linear operator on V. 

Axiom T1 is just the requirement that T preserves Vectors addition while T2 means 

that T preserves scalar multiplication. 

Definition 

If V and W are vector spaces, the following are linear transformations: 

Zero transformation 
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A mapping T: 𝑉 → 𝑊, which maps the vector space V into the vector space W is 

called zero transformation if T(v)=0 for every v∈ 𝑉. 

Identity transformation 

The mapping I: 𝑉 → 𝑉, defined b linear transformation that maps a vector space V 

into itself is called a linear OPERATOR on V, thus the identity transformation is a 

linear operator on V. 

Scalar operator V→V 

a: v → v where a(v)=av for all v∈V.  

Here, a is a real number. The zero (0) will be used to denote zero transformation 

from V→W for any spaces V and W. 

Theorem 3.1.1: 

Let T: V→W be a linear transformation then 

i. T(0)=0 

ii. T(-v)=-T(v) for all v∈V 

iii. T(r1v 1+r2v2 + …+rkvk)= r1T(v1)+r2T(v2)+ …+rkT(vk) 

For all v1 ∈ V and r1 in 

 Proof: 

i. T(0) = T(0v) = 0T(v) for all v in V 

ii. T(-v) = T[(-1)v] = (-1)T(v) = -T(v) for all v in V. 

iii. If k=1, this is T(r1v1) = r1T(v1) by axiom T2. The general result is proved by 

induction on k. if it holds for a particular k≥ 1 then using axiom T1  and the 

induction assumptions, we have 

T(r1v 1+…+rkvk + rk+1vk+1) = T(r1v 1+…+rkvk)+ T(rk+1vk+1) 

    = r1T(v1)+ …+r2T(v2)+ rk+1T(vk+1). 

This completes the induction and so proves property (iii). 

Self-Assessment Exercise(s) 
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Self-Assessment Answer 

 

Example 1 

Show that each of the transformations, T , is a linear transformation. 

(a) T: P3 → P2 defined by T(a0 + a1x+a2x
2) = a2x

2. 

(b) Let C be the set of all real valued functions of one variable that are defined and 

continuous for all x in R. Define T: C→C by T(f(x)) = 2f(x) for each f in C and 

x in R. 

Solution 

(a) P2 is a space . suppose P(x) = a0 + a1x+a2x
2 and Q(x)= b0 + b1x+b2x

2 are any 

two polynomials in  P2 then to verify part (ii) of the definition: 

T(P(X)+Q(x)) = T((a0 + a1x+a2x
2)+( b0 + b1x+b2x

2)) 

  = T((a0 + b0) + (a1 + b1)x + (a2+b2)x
2) 

  =(a2+b2)x
2) by definition of T 

  = a2x
2 + b2x

2 

  = T(P(X))+T(Q(x)) by the definition of T. 

Thus proving (ii) of the definitions. Similarly, to verify part (iii) of the definition: 

T(cP(x)) = T(c(a0 + a1x+a2x
2)). 

 = T(ca0 + ca1x + ca2x
2) 

 = (ca2x
2) 

 = cP(x) by the definition of T,  thus proving (iii) of the definition. 

(b) To show T is a linear transformation, we prove properties (ii) and (iii) as 

follows, where f and g are any two functions in C and c in R: 

T(f(x)+g(x)) = 2(f(x)+g(x)) 

        = 2f(x)+2g(x) = T(f(x))+T(g(x)). 

Next, T(cf(x)) = 2(cf(x)) = c(2f(x)) = cT(f(x)).    

Example 2 
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Let T: R3 → 𝑅2 be the function defined by the formula, T(x, y, z) = (x, x + y + z). 

Determine whether T is a linear transformation.  

Solution 

If u= (x1, y1, z1) and v= (x2, y2, z2), then 

u + v= (x1, y1, z1) + (x2, y2, z2) 

=(x1 + x2, y1 + y2,z1 + z2) 

T(u + v)=T(x1 + x2, y1 + y2,z1 + z2) 

 =((x1 + x2), (x1 + x2+y1+y2+z1+z2))  

 =(x1, x1 + y1+z1) + (x2, x2 + y2 + z2) 

=T(x1, y1, z1)+T (x2, y2, z2) 

=T(u)+T(v). 

Furthermore, if k is any scalar, then 

k u =k(x1, y1, z1) = (kx1, ky1, kz1), i.e. 

T(k u)=T(kx1, ky1, kz1) or T(k(x, y, z)) 

 = (kx1, kx1 + ky1+kz1) 

 = (kx1, k(x1 + y1+z1)) 

 = k (x1, x1 + y1+z1) 

 =k T(x1, y1, z1) 

 =k T(u). 

Thus, T is a linear transformation. 

Example 3 

Let T: R→ 𝑅 be the function defined by the formula, T(x) = x+y+5. Verify whether 

T is a linear transformation or not. 

Solution 

Let x, y ∈ 𝑅. 

T(x + y) = x+y+5………………………………………………………… (1) 

 But T(x) = x+5 and T(y) = y+5. 
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Therefore, T(x) + T(y) = x+y+10………………………………………… (2) 

From (1) and (2), we conclude T(x + y) ≠ T(x) + T(y). 

Hence, T is not a linear transformation. 

Or, T(k x) = kx+5 

k T(x) = k(x+5) = k x + 5k ≠ T(k x). 

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

Example 4 

If the mapping T:R2 → R2 is defined by the formula, T(x,y)=(-x,y). Show that T is 

a linear transformation. 

Solution 

T(0,0)=(0,0). 

Hence, T is linear because, it takes the zero vector into the zero vector. 

Example 5 

Define a function T: R2 → R3 by T[
𝑥
𝑦] = [

𝑥 + 𝑦
𝑥 − 2𝑦

3𝑥
] for all [

𝑥
𝑦]  in R2. Show that T is a 

linear transformation 

Solution 

We verify the axioms. Given   [
𝑥
𝑦] and [

𝑥1

𝑦1
] in R2, compute T([

𝑥
𝑦] + [

𝑥1

𝑦1
])= T [

𝑥 + 𝑥1

𝑦 + 𝑦1
] 

   =  [

(𝑥 + 𝑥1) + (𝑦 + 𝑦1)
(𝑥 + 𝑥1) − 2(𝑦 + 𝑦1)

3(𝑥 + 𝑥1)
]  

   = [
𝑥 + 𝑦
𝑥 − 2𝑦

3𝑥
]+ [

𝑥1 + 𝑦1

𝑥1−2𝑦1

3𝑥1

]= T [
𝑥
𝑦] +T [

𝑥1

𝑦1
]. 

This proves axiomT1, and T2 is proved as follows:  
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T(r  [
𝑥
𝑦] )=T [

𝑟𝑥
𝑟𝑦] =    [

𝑟𝑥 + 𝑟𝑦
𝑟𝑥 − 2𝑟𝑦

3𝑟𝑥
] = 𝑟  [

𝑥 + 𝑦
𝑥 − 2𝑦

3𝑥
] = 𝑟𝑇  [

𝑥
𝑦]. 

 

Hence, T preserves addition and scalar multiplication and so, is a linear 

transformation. The linear transformation in the above example can be described 

using matrix multiplication: 

𝑇  [
𝑥
𝑦] = [

1
1
3
 
1

−2
0

] [
𝑥
𝑦]  for all [

𝑥
𝑦] in R2. 

Example 6 

The function T: R2 → R2 defined by 𝑇 (
a
b
) = (

a
b + 1

) is not a linear transformation, 

since, for example  

T((
0
0
) + (

1
1
)) = T(

1
1
) = (

1
2
)  

But  𝑇 (
0
0
) + T (

1
1
) = (

0
1
) + (

1
2
) = (

1
3
). 

Example 7 

Determine whether the function R2 → R2 defined by T(x, y) = (x2, y) is linear? 

Solution 

We have  

T((x, y) + (z, y)) = T(x + z, y + w) = ((x + y)2, y + w)  

  ≠ (x2, y) + (z2, w) = T(x, y) + T(z,w). 

So, T does not preserve additivity. So, T is not linear. 

Alternatively, you could check that T does not preserve scalar multiplication. Also, 

alternatively you could check this failure(s) numerically. For example,  

T((1,1) + (2,0)) = T(3,1) = (9,1) ≠ T(1,1) + T(2,0).  

Self-Assessment Exercise(s) 

Please insert SAQ 
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Self-Assessment Answer 

 

3.2 Range, Domain and Co domain 

Definition 

Let T: v→T(v), the set of all values T (v) is called the range of T: 

Definition. 

The vector spaces V and W are sometimes called, respectively, the domain and 

co domain of T: 

Note: We sometimes write this T : v → T (v) and as T : V → W in order to stress 

the transformation from one vector or vector space to another. We also write that 

T maps v into T (v) and T is a mapping from V to W: 

Definition. 

A linear transformation T is sometimes called a linear operator, especially when 

V = W: 

Theorem 3.2.1 The range of the linear transformation T: V → W is a vector space. 

Proof. The values of T are all in the vector space W. Recall that when a set S of 

vectors is already in a vector space then to show S is a subspace (i.e., a vector 

space) it is only necessary to show that it is closed under addition and scalar 

multiplication. Prove this yourself. That is, show the range is closed under addition 

and scalar multiplication. Hint: make use of the linearity properties (b) and (c) 

above. 

  



82 

 

Definition. 

The dimension of the vector space that is the range of a linear transformation T is 

called the rank of T and is sometimes denoted rank (T). 

4.0 Conclusion 

In this unit you have learnt the concept of linearity in transformation, nonlinear 

transformation and valuable theorems on linear transformation with examples. 

5.0 Summary 

Conditions for Linearity of a Linear Transformation: Let T: V→T(v), then 

1. T1 : 𝑇(v + v1) = T(v) + T(v1) for all v and v1 ∈ 𝑉 

2. T2: T(rv) = rT(v) for all v∈ 𝑉 and 𝑟 ∈ 𝑅. 

Types of linear transformations 

If V and W are vector spaces, the following are linear transformations, then 

1. A mapping T: 𝑉 → 𝑊, which maps the vector space V into the vector space W 

is called zero transformation if T(v)=0 for every v∈ 𝑉. 

2. The mapping I: 𝑉 → 𝑉, defined b linear transformation that maps a vector space 

V into itself is called a linear OPERATOR on V 

3. a: v → v where 𝑎(𝑣) = 𝑎𝑣 for all 𝑣 ∈ 𝑉 is called a  Scalar operator . 

4. Let T: v→T(v), the set of all values T (v) is called the range of T 

5. The vector spaces v and T(v) are sometimes called, respectively, the domain 

and co domain of T 

6. A linear transformation T is sometimes called a linear operator, especially 

when v = T(v): 

7. The dimension of the vector space that is the range of a linear transformation 

T is called the rank of T and is sometimes denoted rank (T). 

6.0 Tutor-Marked Assignment (TMA) 

Investigate whether or not the following transformations are linear. 

1. T: p2 → p1 defined by T(a0 + a1x + a2x
2) = a1x. 

2. T: p1 → p1 defined by T(a0 + a1x)=a0x + a1. 

3. T: p2 → p2 defined by T(a0x + a1x + a2x
2) = 2+a1x + a2x

2. 

4. T: R2 → R2defined by T(x,y)=(x2, y). 
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5. Show that each of the following functions is a linear transformation: 

(a) T: R2 → R3; 𝑇 [
𝑥
𝑦] = [

𝑥 − 𝑦
𝑥 + 2𝑦

3𝑦
]. 

(b) T: R3 → R2; 𝑇 [
𝑥
𝑦
𝑧
] = [

2𝑥 − 3𝑦 + 5𝑧
0

]. 

(c) T: R2 → R2; 𝑇(𝑥, 𝑦) = (𝑥,−𝑦), reflection in the x-axis. 

(d) T: R3 → R3; 𝑇(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, −𝑧), reflection in the  x-y plane. 

(e) T: C → C; 𝑇(𝑍) = 𝑍̅ ( conjugation). 

7.0 References/Further Reading 

Nicholson, W. K (1995): linear Algebra with applications. P. W. S Publishing 

company.  

Carl, Meyer (2000): Matrix analysis and Linear Algebra. Siam publishing Company. 
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1.0 Introduction 

In this unit, this students learn matrix transformation in R2 and R3, standard basis, 

matrix of transformation with examples. Efforts are also made to give examples 

on inverse transformations. 

2.0 Learning Outcome 

Upon completion of this unit, you should be able to: 

1. Find and use matrices of linear transformations from Rn → Rm; 

2. List and work with the linear transformations R2 and R3; 

3. Find the inverse of a given linear transformation, or show that it does not exist; 

4. Explain the meaning of a matrix of a general linear transformation; and 

5. Find matrix of a general linear transformation. 

3.0 Learning Content 

3.1 Matrix Transformation 

Definition 

If A is any m× 𝑛 matrix, the matrix transformation TA : Rn → Rm is defined by 

TA( X) in (X) = AX for all columns X in Rn. 

Theorem 3.1.1 

TA: Rn → Rm  is a linear transformation for each m× 𝑛 matrix A. 

Proof: 

Given X and X1 in Rn and r in R, matrix arithmetic gives 

TA( X + X1) = A( X + X1) = AX + AX1  

TA(X) + TA(𝑋1) . 

TA(rX) = A(rX) = r(AX) = rTA(X). 

Hence  TA is a linear transformation. 

Example 1 

Consider the matrix operators onR2 given by the three types of elementary 

matrices: 

𝐸 = [
0 1
1 0

] , 𝐹 = [
2 0
0 1

], 𝐺 = [
1 1
0 1

],  then 
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TE [
x
y] = [

y
x
], TF [

x
y] = [

2x
y

], TG [
x
y] = [

x + y
y ]. 

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

Example 2 

If T: R3 → 𝑅 is a linear transformation with T(3, -1, 2) = 5 and T(1, 0, 1) = 2, 

compute T(-1, 1, 0). 

Solution 

This can be done by theorem 2 provided that (-1, 1, 0) can be expressed as a 

linear combination of T(3, -1, 2) and T(1, 0, 1). This is indeed possible:  

(-1, 1, 0) = -(3, -1, 2)+2(1, 0, 1).  

So, T(-1, 1, 0) = -T(3, -1, 2)+2T(1, 0, 1) 

  = -5+4 = -1.  

Definition 

If 𝐴 = (

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

) and X=(

𝑥1

⋮
𝑥𝑛

) 

If a vector in Rn expressed in matrix , then AX is a vector in Rm and the function 

T: Rn → Rm defined by the formula: 

T(x)=𝐴𝑋 = (

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

)(

𝑥1

⋮
𝑥𝑛

) is a linear transformation called multiplication 

by  

A. Such linear transformations are called matrix transformations. To establish that 

T(X)=AX is a linear transformation, we let u and v be n× 1 matrices and let k be a 

scalar. Using properties of matrix multiplication, we have 
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A(u + v)=Au +Av and A(ku) = k(Au) 

Or, T(u + v)= T(u)+T(v) and T(k u) = k T(u). 

Hence, T(X) = AX is a linear transformation. 

Example 3 

Let T: R2 → R2 be the linear transformation such that T(1,1)=(0,2) and T(1,-

1)=(2,0). Then compute 

(a) T(1,4) (b) T(-2,1). 

 Solution 

(a) We write (1,4)=a(1,1)+b(1,-1). 

Solving, (1,4)=2.5(1,1)-1.5(1,-1). 

So, T(1,4)=2.5T(1,4)-1.5T(1,-1) 

    =2.5(0,2)-1.5(2,0) 

    =(-3,5). 

(b) We write (-2,1)=a(1,1)+b(1,-1). 

Solving (-2,1)= -0.5(1,1)-1.5(1,-1). 

So, T(-2,1)=-0.5T(1,1)-1.5T(1,-1) 

      =-0.5(0,2)-1.5(2,0) 

      =(-3,-1).   

Example 4 

Let A be a 2× 3 matrix and T: R3 → R2 be the matrix transformation T(X) = AX, 

Given that  

T((
1
0
0
)) = (

1
1
),  T((

0
1
0
)) = (

3
0
), T((

0
0
1
)) = (

4
−7

). Find the following:  

(a) T((
1
3
8
))  (b) T((

𝑥
𝑦
𝑧
))  (c)  A. 

Solution 

(a) T(X)=AX 

T((
1
0
0
)) = (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23
)(

1
0
0
) = (

1
1
) 
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(
𝑎11

𝑎21
) = (

1
1
)  

T((
0
1
0
)) = (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23
)(

0
1
0
) = (

3
0
) 

(
𝑎11

𝑎21
) = (

3
0
)  

T((
0
0
1
)) = (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23
)(

0
0
1
) = (

−4
7

) 

(
𝑎11

𝑎21
) = (

−4
7

)  

To find, 

T((
1
3
8
)) = 𝐴𝑋 = (

1 3 4
1 0 −7

)(
1
3
8
) = (

42
−55

) 

(b) T((
𝑥
𝑦
𝑧
)) = 𝐴𝑋 = (

1 3 4
1 0 −7

)(
𝑥
𝑦
𝑧
) = (

𝑥 + 3𝑦 + 4𝑧
𝑥 − 7𝑧

) 

(c) A= (
1 3 4
1 0 −7

) 

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

Example 5 

Let T: R3 → R3 be a linear transformation such that  

T(1,0,0) = (2,4,−1), 𝑇(0,1,0) = (1,3,−2), 𝑇(0,0,1) = (0,−2,2). Compute T(-2,4,-1). 

Solution 

We have 

 (−2,4,−1) = −2(1,0,0) + 4(0,1,0) − (0,0,1). 

So, T(-2,4,-1)=−2𝑇(1,0,0) + 4𝑇(0,1,0) − 𝑇(0,0,1) 
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  = (2,4,−1) + (1,3,−2) + (0,−2,2) 

  = (3,5,−1).  

Theorem 3.1.2: 

Let V and W be vector spaces and let {𝑒1, 𝑒2, … 𝑒𝑛} be basis of V. Given any vectors 

w1,w2,   …, wn in W (they needn’t be distinct), there exists a unique linear 

transformation T : V→W satisfying 𝑇(ei) = wi for each 𝑖 == 1, 2,… , 𝑛. In fact, the 

action of T is as follows: 

Given 𝑣 = 𝑣1e1 + 𝑣2e2+⋯+𝑣nen in V, then 

𝑇(𝑣) = 𝑇(𝑣1e1 + 𝑣2e2+⋯+𝑣nen) = 𝑣1w1+𝑣2w2+⋯+ 𝑣𝑛wn. 

Proof: 

If such a transformation T does not exist, and if S is any other such  transformation 

then 𝑇(ei) = wi holds for each 𝑖 , so S=T. Hence, T is unique if it is exists and it 

remains to show that there really is such a linear transformation. Given v∈ 𝑉 , we 

must specify T(v) in W. Because {𝑒1,𝑒2, … , 𝑒𝑛} is  a basis of V, we have  v= (𝑣1e1 +

𝑣2e2+⋯+𝑣nen), where 𝑣1,𝑣2,…,𝑣𝑛 are uniquely determined by V. hence we can define 

T: V→W by  

𝑇(𝑣) = 𝑇(𝑣1e1 + 𝑣2e2+⋯+𝑣nen) = 𝑣1w1+𝑣2w2+⋯+ 𝑣𝑛wn   for all  𝑣 = 𝑣1e1 + 𝑣2e2+⋯+𝑣nen in 

V. This satisfies  𝑇(ei) = wi for each  ; the verification  that T is linear is left as 

exercise to the reader. 

 

Example 6 

Find a linear transformation T: R3 → R2 such that : 

𝑇 [
1
1
0
]=[

2
1
] ,  𝑇 [

1
0
1
]=[

−1
1

] , 𝑇 [
0
1
1
]=[

0
0
].  

Solution 

The set {[
1
1
1
] , [

1
0
1
] , [

0
1
1
]} is a basis of R3, so then theorem 3 applies. The expansion of 

an arbitrary vector in R3  as a linear combination of these vectors is  
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[
𝑥
𝑦
𝑧
] =

1

2
(𝑥 + 𝑦 − 𝑧) [

1
1
0
] +

1

2
(𝑥 − 𝑦 + 𝑧) [

1
0
1
] +

1

2
(−𝑥 + 𝑦 + 𝑧) [

0
1
1
]. 

Hence, the transformation T must be given by   

𝑇 [
𝑥
𝑦
𝑧
] =

1

2
(𝑥 + 𝑦 − 𝑧)𝑇 [

1
1
0
] +

1

2
(𝑥 − 𝑦 + 𝑧)𝑇 [

1
0
1
] +

1

2
(−𝑥 + 𝑦 + 𝑧)𝑇 [

0
1
1
]  

=
1

2
(𝑥 + 𝑦 − 𝑧) [

2
1
] +

1

2
(𝑥 − 𝑦 + 𝑧) [

1
−1

] +
1

2
(−𝑥 + 𝑦 + 𝑧) [

0
0
] 

=
1

2
[
3𝑥 + 𝑦 − 𝑧
2(𝑦 − 𝑧)

]. 

Theorem 3.1.3:  

Let T: Rn → Rm be a linear transformation. Write vectors in Rn as columns: 

1 . There exists an m× 𝑛 matrix A such that T(X) = AX for all columns X in Rn; that 

is T = TA. 

2 .  the columns of A are respectively 𝑇(E1), T(E2),… , T(En) , where {E1, E2, … , En} is 

the standard basis of Rn. hence, A can be written in terms of its columns as  

𝐴 = [𝑇(E1)  T(E2)    …     T(En)] .  

Proof: 

Write (E1) = [

𝑎11

𝑎21

𝑎𝑚1

] ,  𝑇(E2) = [

𝑎12

𝑎22

𝑎𝑚2

] , …,   𝑇(En) = [

𝑎1𝑛

𝑎2𝑛

𝑎𝑚𝑛

]. 

Then 𝐴 = [aij] is an m × n matrix whose jth column is 𝑇(Ej). Given X∈ 𝑅𝑛, write 

 X = x1E1 + x2E2 + ⋯+ xnEn, xi ∈ 𝑅. Now, compute T(X) using theorem 2. 

X = x1T(E1) + x2T(E2) + ⋯+ xnT(En)  

    = x1 [

a11

a21

⋮
am1

] + x2 [

a12

a22

⋮
am2

] + ⋯+ xn [

a1n

a2n

⋮
amn

]    

    =  [

a11x1 + a12x2 + ⋯+ a1nxn

a21x1 + a22x2 + ⋯+ a2nxn

⋮
am1x1 + am2x2 + ⋯+ amnxn

] 

    = AX 

    = TAX. 
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Because is holds for all x∈ 𝑅𝑛, it follows that 𝑇 = TA. 

Note: the matrix A in theorem 4 is called the standard matrix of T. 

Example 7 

Find the standard matrix of T: R3 → R2 when 𝑇 [
𝑥
𝑦
𝑧
] = [

𝑥 − 2𝑦 + 𝑧
𝑥 − 𝑧

]. 

Solution 

The desired matrix can be observed directly:  𝑇 [
𝑥
𝑦
𝑧
] = [

1 −2 1
1 0 −1

] [
𝑥
𝑦
𝑧
]. 

However, the second part of theorem 4 also gives the matrix. If {𝐸1, 𝐸2, 𝐸3} is the 

standard basis of R3, then the columns are indeed 𝑇(E1), T(E2) and T(E3) , as the 

reader may verify. 

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

4.0 Conclusion 

The work done in this unit is detailed enough to give students quick understanding 

on matrix transformations. Efforts are also made to give examples on inverse 

transformations and matrices of transformations. 

5.0 Summary 

1. If A is any m× 𝑛 matrix, the matrix transformationTA : Rn → Rm is defined by 

TA( X) in (X) = AX for all columns X in Rn. 

2. If 𝐴 = (

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

) and X=(

𝑥1

⋮
𝑥𝑛

), 

If a vector in Rn expressed in matrix, then AX is a vector in Rm and the function T: Rn →

Rm defined by the formula: 
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T(x)=𝐴𝑋 = (

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

)(

𝑥1

⋮
𝑥𝑛

) is a linear transformation called multiplication by 

A.  

6.0 Tutor-Marked Assignment (TMA) 

1. In each of the following cases, find a linear transformation with the given 

properties and compute T(v). 

(a) T: R2 → 𝑅3; 𝑇(1,2) = (1,0,1),   𝑇(−1,0) = (0,1,1);   𝑣 = (2,1). 

(b) T: R2 → 𝑅3; 𝑇(2,−1) = (1,−1,1),   𝑇(1,1) = (0,1,0);   𝑣 = (−1,2) 

(c) T: P2 → P3; 𝑇(𝑥2) = 𝑥3, 𝑇(𝑥 + 1) = 0, 𝑇(𝑥 − 1) = 𝑥; 𝑣 = 𝑥2 + 𝑥 + 1 

2. Let T (v1, v2, v3) = (2v1+v2, 2v2 − 3v1, v1−v3). Find 

(a) T (-4, 5, 1) (b) the preimage of w = (4, 1, -1). 

3. Let T: R3 → R3 be a linear transformation such that T(1, 0, 0)=(2, 4, -1), T(0, 

1, 0)=(1, 3, -2), T(0, 0, 1)=(0, -2, 2). Compute T(-2, 4, -1). 

4. Let A=(
−1 2 1
0 0 2   

   3 4
−1 0

)  be the linear transformation T(X)=AX. 

(a)  Compute T(1, 0, -1, 3, 0). 

(b) Compute the preimage under T, of (-1, 8). 

Hint: solve (
−1 2 1
0 0 2   

   3 4
−1 0

)

(

 
 

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5)

 
 

= (
−1
8

). 

5. in each case, assume that T is a linear transformation, 

(a) If 𝑇: 𝑉 → 𝑅, and 𝑇(v1) = 1, T(v2) = 1,  find 𝑇(3v1 − 5v2) 

(b) If 𝑇: R2 → 𝑅2 and 𝑇 [
1
3
] = [

1
1
], 𝑇 [

1
1
] = [

0
1
]; find  𝑇 [

−1
3

]. 

7.0 References/Further Reading 

Nicholson, W. K (1995): linear Algebra with applications. P. W. S Publishing 

company.  

Carl, Meyer (2000): Matrix analysis and Linear Algebra. Siam publishing Company 
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1.0 Introduction 

This unit explains the meaning of kernels and images of linear transformations 

with relevant theorems and examples on how to find them. 

2.0 Learning Outcome 

Upon completion of this unit, students should be able to: 

1. Explain the meaning of kernel and range of a linear transformation; 

2. List the properties of kernel and range of a linear transformation; 

3. Find the kernel and range of a linear transformation. 

3.0 Learning Content 

3.1 Kernels and Images of a Linear Transformation 

Definition 

Let T: V→ 𝑊 denotes a linear transformation. The kernel of T (denoted kerT) and 

image of T (denoted imT or T(v) are defined by  

(a) KerT= {v ∈ V: T(v) = 0} 

(b) imT={T(v): v ∈ V}. 

the kernel of T is often called the null space of T. it consists of all vectors v∈ 𝑉 

satisfying the condition that T(v)=0. The image of T is often called the range of T 

and consists of all vectors w∈ 𝑊 of the form w=T(v ) for some v∈ 𝑉. 

Theorem 3.1.1 

If T: V→W is a linear transformation, kerT is a subspace of V, and imT is a subspace 

of W. 

Proof: 

The fact that T(0)=0 shows that both kerT and imT contain the zero vector. If v 

and v1 lie in kerT, then T(0)=0=T(v1), so  

T(v+v1) = T(v)+T(v1) = 0+0=0, 

T(rv) = rT(v) = r0=0 for all r∈ 𝑅. Here v+v1 and rv lie in kerT (they satiafy the 

required condition), so kerT is a subspace of V. if w and w1 lie in imt, write w=T(v) 

and w1 =T(v1) where v and v1 lie in V. then 
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w+w1= T(v)+T(v1)= T(v+v1), 

rw=rT(v)=T(rv) for all r∈ 𝑅. 

Hence w+w1 and rw both lie in imT (they have the required form), so imT is a 

subspace of W. 

Example 1 

If 𝑇: R3 → 𝑅3 is defined by 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 − 𝑦, 𝑧, 𝑦 − 𝑥), find kerT and imT, and compute 

their dimensions. 

Solution 

We use the definitions: KerT= {(x, y, z): (x − y, z, y − x) = (0,0,0)} 

   = {(t, t, 0): t ∈ R} 

imT= {(x − y, z, y − x): x, y, z ∈ R} 

        = {s, t, −s ∶ s, t ∈ R}. 

Hence dim(kerT)=1 and dim(imT)=2. 

Example 2 

Suppose that T: R4 → R3 is a linear transformation, with ker.T= W. Let 

𝐴 = (
1 2 0
2 −1 2
1 −3 2

  
1

−1
−2

)   be a matrix representation of T. 

(a) Find a basis for image of T=U, say. 

(b) Find a basis for ker.T=W. 

(c) Confirm that dim. R4 = rank(T) + nullity(T) in this case. 

Solution 

(a) Let T: R4 → R3, with A= a matrix representation of T. So, the images of generators of 

R4 under T, generate the image U under T. i.e. the column space of A is Ac 

=(

1 2 1
2 −1 −3
0 2 2
1 −1 −2

). 

Row reduce Ac to echelon form, we have 
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(

1 2 1
0 2 2
2 −1 −3
1 −1 −2

) → (

1 2 1
0 2 2
0 0 0
0 0 0

) → (

1 2 1
0 1 1
0 0 0
0 0 0

)  

i.e. (1,2,1), (0, 1, 1) is a basis for U. S, dimU =2. 

(b) For kerT=W, to establish a basis for W, we want a set (x,y,s,t);  x,y,s.t ∈ 𝑅, 

such that T(x,y,s,t)=(0,0,0) ∈ 𝑅3. i.e.  

x+2y+t=0 

2x-y+2s-t=0 

x-3y+2s-2t=0. 

The solution space of this homogeneous system of linear equation is the kernel 

W, of T. 

So,  

x-3y+2s-2t=0 

2x-y+2s-t=0 

x+2y+t=0 

this system reduces to 

x-3y+2s-2t=0 

   5y-2s+3t=0 

   5y-2s+3t=0 

i.e. x-3y+2s-2t=0 

        5y-2s+3t=0 

So, dimW=2. 

Thus, we can use s and t as free variables to generate any two vectors in R4 as 

basis for ker T.  

(b) Clearly, dimR4=rank(T)+ nullity of T. 

   =2+2=4. 
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Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

4.0 Conclusion 

A detail insight into kernel and images of linear transformations has been covered 

in this units with detailed examples. 

5.0 Summary 

1. Let T: V→ 𝑊 denote a linear transformation.  

KerT = {v ∈ V: T(v) = 0} 

imT = {T(v): v ∈ V}. 

2. If T: V→W is a linear transformation, kerT is a subspace of V, and imT is a subspace 

of W. 

6.0 Tutor-Marked Assignment (TMA) 

 

(1)  T(
𝑥
𝑦
𝑧
) = (

𝑥 − 𝑦 − 𝑧
𝑥 + 3𝑦 + 𝑧
3𝑥 − 𝑦 − 2𝑧

) = (
1 −1 −1
1 3 1
3 −1 −2

)(
𝑥
𝑦
𝑧
). Find the basis for the range of T. 

Hint: Range of T =span of the columns of A.  

Solution: {(
1
1
3
) , (

0
2
1
)} 

2. Suppose that T: R4 → R3 is a linear transformation, with ker.T= W. Let 

𝐴 = (
2 0 1
4 −2 0
0 1 1

  
−2
−2
−1

)   be a matrix representation of T. 

(a) Find a basis for image of T=U, say. 

(b) Find a basis for ker.T=W. 
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       (c) Confirm that dim. R4 = rank(T) + nullity(T) in this case. 

3 . For each of the following matrix A, find a basis for the kernel and image of TA. 

(a) [
1 2 −1 1
3 1 0 2
1 −3 2 0

] 

 

(b) [

1 2 −1
3 1 2
4 −1 5
0 2 −2

] 

4 . In each of the cases, (i)find a basis of kerT, and (ii) find a basis of imT. 

(a) T: R3 → R2;  𝑇(𝑎 + 𝑏𝑥 + 𝑐x2) = (𝑎, 𝑏) 

(b) T: R3 → R3; 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦, 𝑥 + 𝑦, 0). 

7.0 References/Further Reading 

Nicholson, W. K (1995): linear Algebra with applications. P. W. S Publishing 

company.  

Carl, Meyer (2000): Matrix analysis and Linear Algebra. Siam publishing Company. 
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1.0 Introduction 

In this unit the students learn the concepts of nullity and rank, relationship 

between dim(kerT) and nullity(T), dim(imT) and rank(T) with relevant examples. 

Tutor-Marked Assignment (TMA) are provided at the end of the unit to exercise 

the students on the topic. 

2.0 Learning Outcome 

Upon completion of this unit, students should be able to: 

1. explain the meaning of nullity and rank of a given linear transformation;  

2. determine the nullity and rank of a given linear transformation;  

3. explain the meaning of one to one linear transformation; 

4. explain the meaning of inverse linear transformation; and 

5. Determine whether a linear transformation is also an isomorphism. 

3.0 Learning Content 

3.1 Nullity and Rank 

Definition 

Given a linear transformation T: V→W, 

1 .  dim(kerT) is called the nullity of T and denoted as nullity(T).  

2 . dim(imT) is called the rank of T and denoted as rank(T). 

The rank of a matrix was defined earlier on to be the dimension of the columns of 

A, the column space of A. The two usages of the word rank are consistent in the 

following sense. 

Example 1 

Given an m× 𝑛 matrix, show that imTA = Col A, so rankTA= rank of A. 

Solution 

Write A= [C1,…,Cn] in terms of its columns, then 

imTA = {AX: X ∈ Rn} = { [C1,…,Cn] [

x1

⋮
xn

] : xi ∈ R}  

            ={x1C1+⋯+ xnCn ∶  xi ∈ R}. 
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Hence imTA =span{C1,…,Cn} is the column space of A. 

Example 2 

Given the 4×3 matrix A=[

1 −1 2
3 0 1
1 2 −3

−2 −1 1

], compute the kernel and image of the 

corresponding matrix transformationTA ∶  R3 → R4, and determine the rank and 

nullity of TA. 

Solution 

Bring A to reduced row-echelon form: 

[

1 −1 2
3 0 1
1 2 −3

−2 −1 1

] → [

1 −1 2
0 3 −5
0 3 −5
0 −3 5

] →

[
 
 
 
 1 0

1

3

0 1 −
5

3

0 0 0
0 0 0 ]

 
 
 
 

 . 

So rankTA = rankA = 2. Moreover, the solutions of AX=0 are[−t  5t  3t]T, where T is 

a parameter. Because kerT = {X ∈ R3 ∶ AX = 0}, this means that nullity TA= 

dim(kerTA)=1. 

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

Definition 

If it is Let T: V→W be a linear transformation. 

1 . T is said to be onto if imT= W 

2 . T is said to be one to one if T(v)=T(v1) implies v=v1. 
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Theorem 3.1.1 

If T: V→W is a linear transformation, then T is one to one if and only if kerT=0. 

Proof: 

If it is one to one, let V be any vector in kerT. Then T(v)=0, so T(v)=T(0). Hence 

v=0 because T is one to one. Conversely , assume that kerT=0 and let T(v)=T(v1) 

with v and v1 in, then T(v-v1)= T(v)-T(v1)=0, so 

 v-v1 lies in kerT=0. This means that v-v1 =0, so v=v1. This proves that T is one 

to one. 

Example 3 

The identity transformation 1v : V→V is both one to one and onto for any vector 

space V. 

Example 4 

Consider the linear transformations: 

S: R3 → R2 given by S(x, y, z)= (x+y, x-y) 

T: R2 → R3 given by T(x, y)=(x+y, x-y, x). 

Show that T is one to one but not onto, where as S is onto but one to one. 

Solution 

The verification that they are linear is omitted. T is one to one because  

KerT={(x, y): x + y = x − y = x = 0} = {(0,0)} = 0.  

However, it is not onto. For example (0, 0, 1) does not lie in imT because if   

(0, 0, 1)= (x+y, x-y, x) for some x and y, then  

x+y=0=x-y and x=1, an impossibility. Turning to S, it is not one to one by 

theorem 2 because (0, 0, 1) lies in kerS. But every (s,t) in R2 lies in imS because 

(s, t) = (x+y, x-y) for some x and y ( in fact x=
1

2
(s + t) and y= 

1

2
(s − t). Hence S is 

onto. 

Self-Assessment Exercise(s) 
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Self-Assessment Answer 

 

Definition. 

The nullity of a linear transformation T is the dimension of the vector space that 

is the kernel of T: 

Example 5 

A linear transformation T: V →W is one-to-one if and only if the kernel of T contains 

only the single Vector, the zero vector of V (equivalently, the nullity is zero). 

Solution.  

If the kernel has a non-zero vector v (so T (v) = 0) then for any other vector u ∈ 

V it follows 

that: 

T (u + v) = T (u) + T (v) = T (u) + 0 = T (u) and so T is not one-to-one. That is: 

nullity (T) > 0 which implies T is not one-to-one or in the contra positive form: 

T is one-to-one implying that nullity (T) = 0. Conversely, if nullity (T) = 0 then T 

must be one-to-one, because: 

T (u) = T (v) => T (u -v) = 0 

 => u - v ∈ ker (T). 

 Hence, u - v = 0 is the zero vector and so u = v. 

 

Self-Assessment Exercise(s) 
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Self-Assessment Answer 

 

Theorem 3.1.2: If T : V → W is a linear transformation and the vector space V 

has dimension n; then:  

rank (T) + nullity (T) = n. That is, the difference between the dimension V and 

the dimension of its kernel subspace, namely n - ker (T) is equal to the dimension, 

nullity (T), of the range T; (a subspace of W). 

Theorem 3.1.3 (dimension theorem) 

Let T: V→W be any linear transformation and assume that kerT and imT are both 

finite dimensional. Then V is also finite dimensional and  

dimV=dim(kerT) + dim(imT). 

In other words, dimV=nullity(T)+rank(T). 

Definition. 

If T : V  → W is a linear transformation then: 

a.  T is said to be one-to-one if for every pair of distinct vectors v1; v2 (v1 ≠ v2) in V, the 

vectors T(v1), T (v2) are also distinct vectors in W. 

b.   If T is one-to-one then the inverse transformation 𝑇−1 is defined from W’→ V; where 

W’ is the range of T (a subspace of W) as follows. For each pair v ∈ V and w ∈ W’ with 

W = T (v); define 

𝑇−1  (w) = v.  
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3.2 Singular and Non-Singular Linear Transformations 

Definition 

Singular Linear Transformations:  

Let T: V→U be a linear transformation as usual. If there exists v∈ 𝑉 such that v 

≠ 0, T(v) = 0 then T is called a singular linear transformation. Any n×n matrix A 

is called singular if det(A)=0, and so a singular matrix is not invertible. We called 

a linear transformation TA: Rn → Rn singular if matrix A is singular. 

Non Singular Linear Transformations 

T is a nonsingular linear transformation if only 0∈ 𝑉 is linearly transformed to 0∈ 𝑈 

which implies that kerF = {0}. Similarly, just like in the case of singular matrix, 

any n×n matrix A is called nonsingular if det(A)≠0, and so a nonsingular matrix is 

invertible. We called a linear transformation TA: Rn → Rn nonsingular if matrix A is 

nonsingular. 

Remarks: 

i . A one-one linear transformation is called an isomorphism. 

ii .T: V→ 𝑈 defines an isomorphism if and only if T is nonsingular. 

iii .T: V→ 𝑈 is a nonsingular linear transformation iff the image of an independent 

set of vectors is also a linearly independent set of vectors. 

Example 6 

Let T be a finite dimensional vector space over R. let T: V→ 𝑈 be a linear 

transformation. Show that V and the image of T have the same dimension iff T is 

nonsingular.   

Solution 

We know that dimV= dim(Im.T)+dim(ker.T).  Hence, V and im.T have the same 

dimension iff dim(kerF) =0 or kerF={0}. i.e. iff T is nonsingular. 
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Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

Isomorphism 

A linear transformation T: V→W is called an isomorphism if it is both onto and one 

to one. The vector spaces V and W are called isomorphic there exists an 

isomorphism T: V→W. 

Definition 

The identity transformation  1v : V→V is an isomorphism for any vector spece V. 

the word isomorphomism comes from two Greek roots: iso, meaning “same” and 

morphos, meaning “form”. The isomorphism T induces a pairing v↔T(v) between 

vectors v in V and vectors T(v) in W that preserves vectors addition and scalar 

multiplication. 

Theorem 3.1.4 

If V and W are finite dimensional spaces, the following conditions are equivalent 

for a linear transformation T: V→W. 

1 . T is isomorphic 

2 . If {e1, e2, … , en} is any basis of V, then {T(e1), T(e2),… , T(en)} is a basis of W. 

3 . There exists a basis  {e1, e2, … , en} of V such that {T(e1), T(e2),… , T(en)} is a basis 

of W. 
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Theorem 3.1.5 

Two finite dimensional vectors V and W are isomorphic if and only if  dimV =dimW. 

Proof: 

It remains to show that if T: V→W is an isomorphism, then dimV=dimW. But if  

{e1, e2, … , en} is a basis of V, then  {T(e1), T(e2),… , T(en)} is a basis of W.  

So dimW =n= dimV.  

Self-Assessment Exercise(s) 

 

Self-Assessment Answer 

 

 4.0 Conclusion 

The concepts of nullity and rank of linear transformations has been discussed 

intensively in this unit with enough examples and theorems for illustrations. 

5.0 Summary 

1. Given a linear transformation T: V→W, 

dim(kerT) is called the nullity of T and denoted as nullity(T).  

dim(imT) is called the rank of T and denoted as rank(T) 

3. The identity transformation 1v : V→V is both one to one and onto for any vector 

space V. 

4. The nullity of a linear transformation T is the dimension of the vector space 

that is the kernel of T: 

5. T is said to be one-to-one if for every pair of distinct vectors v1; v2 (v1 ≠ v2) 

in V, the vectors T(v1), T (v2) are also distinct vectors in W. 

6. a linear transformation TA: Rn → Rn nonsingular if matrix A is nonsingular 

7. a linear transformation TA: Rn → Rn nonsingular if matrix A is nonsingular. 

8. dimV= dim(Im.T)+dim(ker.T) 
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9. A linear transformation T: V→W is called an isomorphism if it is both onto and 

one to one.  

6.0 Tutor-Marked Assignment (TMA) 

1 . For each of the following matrix A, find a basis for the kernel and image of TA, 

and find the rank and nullity of TA. 

(a) [
1 2 −1 1
3 1 0 2
1 −3 2 0

]  

 

(b) [

1 2 −1
3 1 2
4 −1 5
0 2 −2

]  
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