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MAT 222 Study Guide 

Introduction 

MAT 222 Linear Algebra is a 2- credit unit course for students studying towards 

acquiring a Bachelor of Science in any field. The course is divided into 4 modules and 

14 study units. It will first introduce system of linear equation, change of basis and 

equivalence and similarity. Next, eigenvalues and eigenvectors, minimum and 

characteristic polynomials of a linear transformation (matrix) and Caley-Hamilton 

theorems. Finally, the student is introduced to bilinear and quadratic forms and also to 

orthogonal diagonalization canonical forms.  

The course guide therefore gives you an overview of what MAT 222 is all about, the 

textbooks and other materials to be referenced, what you expect to know in each unit, 

and how to work through the course material. 

Recommended Study Time 

This course is a 2-credit unit course having 14 study units. You are therefore enjoined 

to spend at least 2 hours in studying the content of each study unit. 

What You Are About to Learn in This Course 

The overall aim of this course, give you a good foundation in Linear Algebra, a course 

you might be taking in depth later. At the end of this course you will: 

1. Understand the important concepts in linear algebra 

2. Have understood systems of linear equations and their solutions, matrices and 

their properties 

3. Learned about determinants and their properties, vector spaces, subspaces, 

bases and dimension of vector spaces 

4. Know how to apply these concepts to such real world phenomena and also 

improve your ability to think and reason logically. 

Course Aims 

This course aims to introduce students to linear algebra and systems of linear 

equations. It is expected that the knowledge will enable the reader to communicate 

mathematics both orally and in writing. 

Course Objectives 

It is important to note that each unit has specific objectives. Students should study 

them carefully before proceeding to subsequent units. Therefore, it may be useful to 

refer to these objectives in the course of your study of the unit to assess your progress. 

You should always look at the unit objectives after completing a unit. In this way, you 

can be sure that you have done what is required of you by the end of the unit. 
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However, below are overall objectives of this course. On completing this course, you 

should be able to discuss: 

i. Solution of system of linear equation   

ii. Eigenvalues and eigenvectors 

iii. Basis and dimension 

iv. Diagonalization of a matrix 

v. Condition of Diagonalizability 

vi. Characteristic Polynomial  

vii. Cayley Hamilton theorem and some useful terms Discuss the cell cycle and 

mitosis 

viii. Minimum Polynomial of a Matrix 

ix. Bilinear form of Matrix  

x. Transformation of Matrix from one Basis to the other  

xi. Symmetric and Anti-Symmetric Bilinear Forms  

xii. Quadratic Forms  

xiii. Real Symmetric Bilinear Form  

xiv. Canonical and Triangular Form. 

Working Through This Course 

In order to have a thorough understanding of the course units, you will need to read 

and understand the contents. 

This course is designed to cover approximately sixteen weeks, and it will require your 

devoted attention. You should do the exercises in the Tutor-Marked Assignments and 

submit to your tutors. 

Course Materials 

The major components of the course are: 

1. Course Guide 

2. Study Units 

3. Text Books 

4. Assignment File 

5. Presentation Schedule 

Study Units 

There are 14 study units and 4 Modules in this course. They are: 

Module One Unit 1: Solution of System of Linear Equation 
Unit 2: Eigenvalues and Eigenvectors 
Unit 3: Basis and Dimension 
Unit 4: Diagonalization of a matrix 
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Module Two Unit 1: Condition of Diagonalizability 
Unit 2: Characteristic Polynomial 
Unit 3: Cayley Hamilton theorem and some useful terms 
Unit 4: Minimum Polynomial of a Matrix 

Module Three Unit 1: Bilinear form of Matrix 
Unit 2: Transformation of Matrix from one Basis to the other  
Unit 3: Symmetric and Anti-Symmetric Bilinear Forms 

Module Four Unit 1: Quadratic Forms 
Unit 2: Real Symmetric Bilinear Form 
Unit 3: Canonical and Triangular Form 

Recommended Texts 

The following texts and Internet resource links will be of enormous benefit to you in 

learning this course: 

1. Blake, J., Intermediate Pure Mathematics. (5th Edition). MacMillan Press Limited. 

1977 London. 

2. Bunday, J., Pure Mathematics for Advanced Level. (2nd Edition). Heinemann 

Educational Books Limited, 1988. London. 

3. Clarke, L. H., Pure Mathematics at Advanced Level. Metric Edition. Heinemann 

Educational Books Limited, 1977. London. 

4. STROUD, K.A., Engineering Mathematics. (4th Edition). MacMillan Press 

Limited, 1995. London. 

5. STROUD, K.A., Further Engineering Mathematics. (3rd Edition). MacMillan Press 

Limited. 1995. London. 

6.  TRANTER, C. J. & LAMBE, C. G., Advanced Level Mathematics, Pure and 

Applied. (4th Edition). Holder & Stoughton. 1979. Great Britain. 

Assignment File 

The assignment file will be given to you in due course. In this file, you will find all the 

details of the work you must submit to your tutor for marking. The marks you obtain 

for these assignments will count towards the final mark for the course. Altogether, 

there are Tutor marked Assignments (TMAs)s for this course. 

Presentation Schedule 

The presentation schedule included in this course guide provides you with important 

dates for completion of each Tutor marked Assignments (TMAs). You should therefore 

endeavour to meet the deadlines. 

Assessment 

There are two aspects to the assessment of this course. First, there are Tutor marked 

Assignments (TMAs)s; and second, the written examination. Therefore, you are 

expected to take note of the facts, information and problem solving gathered during 
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the course. The Tutor marked Assignments (TMAs)s must be submitted to your tutor 

for formal assessment, in accordance to the deadline given. The work submitted will 

count for 40% of your total course mark. 

At the end of the course, you will need to sit for a final written examination. This 

examination will account for 60% of your total score. You will be required to submit 

some assignments by uploading them to MAT 222 Page on the ulearn portal. 

Tutor-Marked Assignment (TMA) 

There are TMAs in this course. You need to submit all the TMAs. The best 10 will 

therefore be counted. When you have completed each assignment, send them to your 

tutor as soon as possible and make certain that it gets to your tutor on or before the 

stipulated deadline. If for any reason you cannot complete your assignment on time, 

contact your tutor before the assignment is due to discuss the possibility of extension. 

Extension will not be granted after the deadline, unless on extraordinary cases. 

Final Examination and Grading 

The final examination for MAT 222 will last for a period of 2 hours and has a value of 

60% of the total course grade. The examination will consist of questions which reflect 

the self-assessment questions and Tutor marked Assignments (TMAs)s that you have 

previously encountered. Furthermore, all areas of the course will be examined. It 

would be better to use the time between finishing the last unit and sitting for the 

examination, to revise the entire course. You might find it useful to review your TMAs 

and comment on them before the examination. The final examination covers 

information from all parts of the course. 

Practical Strategies for Working Through This Course 

1. Read the course guide thoroughly 

2. Organize a study schedule. Refer to the course overview for more details. Note 

the time you are expected to spend on each unit and how the assignment relates 

to the units. Important details, e.g. details of your tutorials and the date of the first 

day of the semester are available. You need to gather together all this information 

in one place such as a diary, a wall chart calendar or an organizer. Whatever 

method you choose, you should decide on and write in your own dates for 

working on each unit. 

3. Once you have created your own study schedule, do everything you can to stick 

to it. The major reason that students fail is that they get behind with their course 

works. If you get into difficulties with your schedule, please let your tutor know 

before it is too late for help. 

4. Turn to Unit 1 and read the introduction and the learning outcomes for the unit. 

5. Assemble the study materials. Information about what you need for a unit is given 

in the table of content at the beginning of each unit. You will almost always need 
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both the study unit you are working on and one of the materials recommended 

for further readings, on your desk at the same time. 

6. Work through the unit, the content of the unit itself has been arranged to provide 

a sequence for you to follow. As you work through the unit, you will be 

encouraged to read from your set books  

7. Keep in mind that you will learn a lot by doing all your assignments carefully. They 

have been designed to help you meet the objectives of the course and will help 

you pass the examination. 

8. Review the objectives of each study unit to confirm that you have achieved them. 

If you are not certain about any of the objectives, review the study material and 

consult your tutor. 

9. When you are confident that you have achieved a unit’s objectives, you can start 

on the next unit. Proceed unit by unit through the course and try to pace your 

study so that you can keep yourself on schedule. 

10. When you have submitted an assignment to your tutor for marking, do not wait 

for its return before starting on the next unit. Keep to your schedule. When the 

assignment is returned, pay particular attention to your tutor’s comments, both 

on the Tutor marked Assignments (TMAs) form and also written on the 

assignment. Consult you tutor as soon as possible if you have any questions or 

problems. 

11. After completing the last unit, review the course and prepare yourself for the final 

examination. Check that you have achieved the unit objectives (listed at the 

beginning of each unit) and the course objectives (listed in this course guide). 

Tutors and Tutorials 

There are few hours of tutorial provided in support of this course. You will be notified 

of the dates, time and location together with the name and phone number of your tutor 

as soon as you are allocated a tutorial group. Your tutor will mark and comment on 

your assignments, keep a close watch on your progress and on any difficulties you 

might encounter and provide assistance to you during the course. You must mail your 

Tutor marked Assignments (TMAs) to your tutor well before the due date. At least two 

working days are required for this purpose. They will be marked by your tutor and 

returned to you as soon as possible.  

Do not hesitate to contact your tutor by telephone, e-mail or discussion board if you 

need help. The following might be circumstances in which you would find help 

necessary: contact your tutor if: 

i. You do not understand any part of the study units or the assigned readings. 

ii. You have difficulty with the self-test or exercise. 

iii. You have questions or problems with an assignment, with your tutor’s 

comments on an assignment or with the grading of an assignment. 
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You should endeavour to attend the tutorials. This is the only opportunity to have face 

to face contact with your tutor and ask questions which are answered instantly. You 

can raise any problem encountered in the course of your study. To gain the maximum 

benefit from the course tutorials, have some questions handy before attending them. 

You will learn a lot from participating actively in discussions. 

GOODLUCK! 
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1.0 Introduction 

To solve a system means to find all values of the variables that satisfy all the equations 

in the system simultaneously. For example, consider the following system, which 

consists of two linear equations in two unknowns: 

                                              x1  + x 2  = 3 

                                             3x1  + x 2 = 4 

Although there are infinitely many solutions to each equation separately, there is only 

one pair of numbers x1 and x2 which satisfies both equations at the same time. This 

ordered pair, ( x1, x2) = (2, 1), is called the solution to the system.  

There are various ways of solving a system of linear equations. But two of such 

methods will be considered in this unit. 

2.0 Learning Outcomes 

At the end of this unit, you should be able to how to solve a system of linear equations 

by Gaussian Elimination Method and Gauss-Jordan Method, and also know how to 

represent the system of m linear equations in the n unknowns. 

3.0 Leaning Content 

3.1 Gaussian Elimination Method: 

  The system of m linear equations in the n unknowns is represented below 

 

 

 

 

 

 

 

i.e A.X = b 

All the information for solving the set of equations is provided by the matrix co-efficient 

A and the column matrix b. If the elements of b is written within the matrix  A; an 

augmented matrix B of the given set of equation is obtained   

a11 a12 a13……………..a1n 

a21 a22 a23……………..a2n 

 

 

 

an1 an2 an3……………..ann 

 

0 

x1 

x2 

 

 

 

xn 

 

= 

b1 

b2 

` 

 

 

bn       

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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B= 

 

 

 

 

We then perform row operations on B to reduce the matrix co-efficient s of x to a 

Triangular Matrix. 

The right-hand column is then detached back to its original position and by the idea of 

back substitution; we obtain the values for matrix co-efficient x. 

Example 1. 

 Solve the equations below by Gaussian Elimination Method 

 2x1 – x2 + 4x3 + x4 =11 

 x1 + x2 + x3 + x4 = 5 

 - 5x1 + 3x2 + x3 + x4 = 3 

 - x1 + 2x2 + x3 – x4 = 7 

Solution 

The Augmented matrix is A 

   

 

      

 

 

To have a leading 1 in the first row; divide row 1 by 

the first number (2)  

 

 

 

                                                                              

 

Using elementary row-operation to obtain Zeros below the leading 1 in the first  

a11 a12 a13……………..a1n 

a21 a22 a23……………..a2n 

 

 

 

an1 an2 an3……………..ann 

b1 

b2 

` 

 

 

bn       

2 -1 4 1 11 

1  1 1 1 5 

-5 3 1 1 3 

-1 2 1 -1 7 

1 -½  2 ½   11
2⁄  

1  1 1 1 5 

-5 3 1 1 3 

-1 2 1 -1 7 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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row; we have                               

R
1
2
 =  R2  +  R4 

R
1
3
  =  5R2  +  R3     =       

R4
1  =  R1  +  R4                                                                                                                                                                                                                                    

 

Also to obtain Zero below 3 in the second column; we have  

R3
1=8R2-3R3 

R4
1=R2-2R4;  

The matrix is now; 

 ` 

 

 

 

 

Also R4
1=2R3-R4 will give Zero below -2 in the 3rd column; we have 

 

 

 

 

 

 

To obtain a leading 1 in the 2nd, 3rd and 4th row; divide each row by the first number in 

that row; the matrix is now; 

 

------------------®            

 

 

 

The corresponding equations are:  

x1-x2+ 2x3  + x4 = 11/2  

1 -½  2 ½       11
2⁄  

0  3 2 0 12 

0 8 6 6 28 

0 3
2⁄  3 -½  25

2⁄  

1 -½  2 ½ 11
2⁄   

0  3 2 0 12 

0 0 -2 -18 12 

0 0 -4 1  -13 

1 ½  2 ½  11
2⁄   

0  3 2 0 12 

0 0 -2 -18 12 

0 0 0 -37  37 

1 -½  2 ½  11
2⁄   

0  1 2
3⁄  0 4 

0 0 1 9 -6 

0 0 0 1  -1 
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                2   

 x2+2
3⁄  x3= 4 

       x3 +9x4= -6 

               x4 = -1 

Expressing the leading variables in terms of the free variables, we have 

      x1 = 1½  + ½ x2-2x3-½ x4 

       x2=4-2 3⁄  x3 

         x3=-6-9x4 

           x4=-1 

Using back our substitution, we have 

x4=-1 

x3=-6 -9(-1) =-6+9 =3 

x2= 4 - 
2

3
(3) =4-2= 2 

x1=
11

2
 +½ (2)-2(3) -½ (-1) 

 =
11

2
+1 -6+½  =1 

Hence,    x1=1, x2= 2, x3= 3, x4= -1 

3.2 Gauss-Jordan Elimination Method 

The matrix ® obtained in the first method is in reduced row-echelon form. From the 

reduced row-echelon matrix, we perform further row operations to obtain only 1 in the 

leading diagonal of  the co-efficient matrix. The right hand column is then detached to 

its original position; and we obtain the values of x directly. For this method we obtain 

two triangular matrixes, one above and the other below. An example is illustrated 

below:  

Example 

 

  

 

 

 

 

From the row-echelon matrix 

1 -½  2 ½   11
2⁄   

0 1 2
3⁄  0 4 

0 0 1 9 -6 

0 0 0  1        -1 
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We perform further row operations 

 

R
1
3
 = 9R4 – R3 = 

 

 

 

 

 

Also, 

 

R
1
2

 = 
2

3
R3 + R2=   

      

 

 

R
1
1
 = R1 + ½ R2 =   

 

 

R
1
1
 = R1 + 2R3,  

 

R
1
1
  = R1 – ½ R4 =  

 

 

Multiply  row 3 by -1, the matrix becomes,  

 

 

 

 

 

1 -½  2 ½   11
2⁄   

0  1 2
3⁄  0  4 

0 0 -1 0 -3 

0 0 0 1  -1 

1 -½  2 ½   

11
2⁄  

0 1 0 0  2 

0 0 -1 0 -3 

0 0 0 1  -1 

1 0  2 ½ 

 13
2⁄   

0 1 0 0  2 

0 0 -1 0 -3 

0 0  0 1  -1          

1 0  0 0   1  

0 1 0 0  2 

0 0 -1 0        -3 

0 0  0 1         -1 

1 0  0 0   1  

0 1 0 0  2 

0 0 1 0         3 

0 0 0 1  -1          
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The corresponding equations are:  

x1=1 

x2=2 

x3=3 

 x4=-1 

Hence, 

 x1 = 1, x2 = 2, x3 =3, x4 = -1 

4.0 Conclusion 

We have observed that a system of linear equations is a collection of m equations in 

the variable quantities x1; x2; x3; : : : ; xn of the form, 

a11x1 + a12x2 + a13x3 + _ _ _ + a1nxn = b1 

a21x1 + a22x2 + a23x3 + _ _ _ + a2nxn = b2 

a31x1 + a32x2 + a33x3 + _ _ _ + a3nxn = b3 

... 

am1x1 + am2x2 + am3x3 + _ _ _ + amnxn = bm 

Where the values of aij , bi and xj are from the set of complex numbers, C. 

We can begin to describe our strategy for solving linear systems. Given a system of 

linear equations that looks difficult to solve,we would like to have an equivalent system 

that is easy to solve. Since the systems will have equal solution sets, we can solve the 

easy system and get the solution set to the difficult system. 

5.0 Summary 

You have learnt in this unit, how to use Gaussian Elimination method and Gauss-

Jordan method in solving a system of linear equation. And that all the information for 

solving the set of equations is provided by the matrix co-efficients A and the column 

matrix b. If the elements of b is written within the matrix A; an augmented matrix B of 

the set of equation is obtained. 

6.0 Tutor Marked Assignments (TMAs) 

Find the augmented matrix for the following equations: 

x1 - x2 + 2x3 = 1 

2x1 + x2 + x3 = 8 

x1 + x2 = 5 
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1.0 Introduction 

The eigenvalue problem is a problem of considerable theoretical interest and wide-

ranging application. For example, this problem is crucial in solving systems of 

differential equations, analyzing population growth models, and calculating powers of 

matrices (in order to define the exponential matrix). Other areas such as physics, 

sociology, biology, economics and statistics have focused considerable attention on 

"eigenvalues" and "eigenvectors"-their applications and their computations. 

2.0 Learning Outcomes 

At the end of this unit, you should be able define the word eigenvectors and 

eigenvalues. Also, you should be able to find the eigenvalues and the corresponding 

eigenvectors for the co-efficient of matrix and determine their characteristic 

determinant and equations. 

3.0 Learning Content 

3.1 Definition of Eigenvalues and Eigenvectors 

Let T be a linear operator on a vector space V over a field K, A scalar λK is called 

an Eigenvalue of T if there exists a non-zero vector vV for which T(v)= λv.  

Every vector satisfying this relation is then called an Eigenvector of T belonging to an 

Eigenvalue λ. 

In many applications of matrices to problems, equation of the form   

A∙X = λx which occur where A = [aij] is a square matrix  

λ is equal to a number (scalar). 

Clearly x = 0 is a solution for any value of λ and is not normally useful for non-trivial 

solutions i.e X≠0; the values of λ are called the Eigenvalues or characteristics values 

of the matrix A and the corresponding solutions of the given equations A∙X = λX are 

called the Eigenvectors or characteristic vectors of A. Expressed as a set of separate 

equation we have, 

A . X = λX 

a11 a12……………..a1n 

a21 a22……………..a2n 

. 

. 

. 

 

 

∙ 

x1 

x2 

 

 

 

 

 

 

=λ 

x1 

x2 

` 

 

 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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a11 x1+a12 x2+……….a1n xn=λx1 

a21 x1+a22 x2+……….a2n xn =λx2 

an1 x1+an2 x2 +……….ann xn=λxn 

Bring right-hand side to left-hand side; we have 

(a11 – λ) x1+ a12 x2+…………..a1nxn=0 

   A21 x1+ (a22 – λ)x2+……..a2n x2=0 

  

   an1 x1+an2 x2+…….(ann – λ)xn=0 

That is   

 

 

 

 

 

 

 

A . X = λx now becomes 

A . X – λx=0 

(A – λI)X=0 

The identity matrix I is introduced in other to convert the scalar λ to a matrix because 

a matrix can only be subtracted from another matrix. For this set of homogeneous 

linear equations to have a non-trivial solution, [A – λI] must be zero.  

[λ – λI] is called the characteristic determinant of A. 

[A – λI] = 0 is called the characteristic equation.  

On expanding the determinant we get a polynomial of degree n and the solution of the 

characteristic equation gives the values of λ i.e. Eigen values. 

  

an1 an2……………..ann xn xn       

(a11 – λ ) a12……………..a1n 

     a21          (a22 – λ) ………..a2n 

 

 

 

     an1            an2……..……..(ann – λ)  

 

 

. 

x1 

x2 

 

 

 

xn 

 

 

              
= 

0 

0 

 

 

0 

0      

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 

 

3.2 How to find the Eigenvalues and the Eigenvectors 

Example 1 

Find the Eigenvalue and the associated non-zero Eigenvectors of the matrix 

            A =         

                                  

SOLUTION 

A∙X    = λx………………….(1) 

|
1 2
3 2

|   |
𝑥1

𝑥2
|  |

𝑥1

𝑥2
| =  𝜆 

x1+ 2x2=λx1 

    3x1+2x2=λx2 

   (1 – λ) x1+2x2=0 

  = 3x1+(2 – λ) x2= 0   

The characteristic determinant [A – λI] 

   

 

 

The characteristic equation is [A – λI]   =  0 

(1 – λ) (2 – λ)–6=0 

  2 – λ -2 λ+λ2-6=0 

  λ 2-3λ-4=0 

1 2 

3 2            

(1 -  λ)           2 

    3          (2 -  λ )          
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  λ2 +λ-4λ-4=0 

λ(λ + 1)-4(λ + 1)=0 

(λ – 4)(λ + 1)=0 

λ (λ + 1)-4(λ + 1)=0 

λ1= 4,λ2=-1 

Each Eigenvalue obtained has corresponding to it a solution of X called an 

Eigenvector.  

In matrices, the term vector corresponds to line matrix or column matrix  

That is, 

line matrix – [     ] 

Column matrix -     

 

Now; to obtain the Eigenvectors that corresponds to the Eigenvalues λ1 & λ2 we recall 

our initial equation (1)  

A∙X = λx 

 For λ = -1; we have 

=-1                                                  

 x1 + 2x2 = -x1 2x1 = -2x2……………….(a) 

3x1 + 2x2 = -x2   3x1 = -3x2……………....(b) 

From both (a) & (b); we have 

 x1 = -x2 

∴  For λ = -1 the Eigenvectors are  

        

X =                =     

    

The simplest of such vectors is when they are assigned the value of 1. Therefore, 

 For λ = -1 ; the Eigenvectors X= 








−1

1
 

For λ = 4 

 A∙X = λx  

=-1           
1 2 

3 2            

x1 

x2          

x1                       

x2          

x1 

-x2          

1                   

-1          
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= 4           

x1 + 2x2 = 4x1   3x1 = 2x2………………..(a) 

3x1 + 2x2 = 4x2   3x1 = 2x2…………………(b) 

From  (a) & (b) ; we have 

x1 =  2 3⁄ x2 or 3x1 = 2x2 

∴ The Eigenvectors are:                

X  =     or  X =  

 

 

The simplest of such eigenvectors is when the x’s are assigned the value of 1 

∴ For λ = 4; we have 

  X = 









2

3

 

Hence the solution. 

Example 2 

Determine the eigenvalue and the corresponding eigenvectors for co-efficient matrix 

A given 

A =  

 

 

 

Solution 

A∙X = λx 

[A – λI] x = 0 

The characteristic equation is A – λI = 0 

 

   -   =  0 

 

 

 

1 2 

3 2            

x1 

x2          

x1                       

x2          

x1  

2
3⁄ x2            

3x1  

2x2            

2 0 1 

-1 4       -1 

-1 2 0           

2 0 1 

-1 4       -1 

-1 2 0           

λ 0 0 

0  λ        0 

0 0  λ            
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The characteristic determinant is 

 

 

 

 

For the characteristic equation; we have 

 

= 0 

 

 

(2 – λ )  - λ (4- λ(4 – λ) +2  - 0  -1 (- λ) -1  +1 -2 + 1(4 – λ)  = 0 

  ( 2 – λ) (λ2 - 4λ + 2) + (2 – λ) = 0 

   (2 – λ)  λ2 -   4λ + 2 + 1 = 0 

   ( 2 – λ)  λ2  - 4λ + 3  = 0 

   ( 2 – λ)  λ2 -  λ - 3λ + 3  = 0 

   ( 2 – λ)  λ ( λ – 1) – 3 (λ – 1)    = 0 

   (2 – λ) (λ – 3) (λ – 1) = 0 

     λ1 = 1 

        λ2 = 2  

         λ3 = 3 

To determine the corresponding eigenvector we have for λ = 1; recall 

 A∙X = λx 

  (A – λI) x = 0 

 

= 

 

 

(2- λ)       0    1 

-1    (4- λ) -1 

-1       2  - λ         

(2- λ)       0    1 

-1    (4- λ) -1 

-1       2  - λ         

(2- λ)       0    1 

-1    (4- λ) -1 

-1       2  - λ         

(2- λ)       0    1 

-1    (4- λ) -1 

-1       2  - λ         

x1 

x2 

x3                            

0 

0 

0                         
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=   

 

 

  x1 + 0x2 + x3 = 0    x1= -x3 or x3 = -x1................................i 

-  x1 + 3x2 – x3 = 0         -x1 + 3x2 + x1 =  0…………….ii 

-x1 + 2x2 – x3  =  0         -x1 + 2x2 + x1 = 0…………….iii 

From the ii and iii equation, we have, 

3x2 = 0      x2 = 0 

From the equation i we have,  x1 = -x3  

∴ The simplest of such values x can take is 1; that’s the corresponding eigenvectors 

for eigenvalue λ = 1 is 

 

X   =          

                          -        =    

 

For λ = 2; substitute value of λ in ( A – λI) x = 0. The characteristic equation becomes, 

 

 

   = 

 

x3 = 0 

   -x1+ 2x2-x3 =0      but x3 = 0 

  ∴  x1 = 2x2 

Similarly, 

 -x1+2x2-2x3=0  

 -x1+2x2=0 x1=  2x2   

                 For  λ = 2; the simplest of such values is 

1 0 1 

-1 3 -1 

-1 2 -1      

x1 

x2            

x3                            

0 

0 

0                         

x1 

x2            

x3                            

-x1 

 0            

x3                            

-1 

 0 

  1                        

 0 0  1 

-1 2 -1 

-1 2 -2      

x1 

x2            

x3                            

0 

0 

0                         

x1 

x2            
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X =        

   =              

 

For λ = 3  

  

                                                 = 

 

 

-x1+x3 = 0  

-x1+x2 -x3= 0 

-x1+2x2-3x3 = 0 

Substitute value for x1 = x3 in the 2nd and 3rd equation  

 -  x3 + x2  - x3 =0   x2 = 2x3 

 - x3 +2x2  – 3x3 = 0 

       -4x3= 2x2     x2 = 2x3 

 For λ=3, the corresponding eigenvectors are: 

  

      X =  =                    

 

 

Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 

 

x3                            

2 

1 

0                            

-1 0  1 

-1 1 -1 

-1 2 -3      

x1 

x2            

x3                            

0 

0 

0                         

x1 

x2            

x3                            

1 

2 

1                         
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4.0 Conclusion 

Eigenvectors make understanding of Linear transformations easy. They are the “axes” 

(directions) along which a linear transformation act simply by “stretching/compressing” 

and/or “flipping”. Eigenvalues give you the factors by which this compression occurs. 

The more directions you have along which you understand the behavior of a linear 

transformation, the easier it is to understand the linear transformation; so you want to 

have as many as linearly independent Eigenvectors as possible associated to a single 

linear transformation. 

5.0 Summary 

You have learnt in this unit how to define the eigenvectors and eigenvalues. Also, 

learnt how to find eigenvectors, eigenvalues and their characteristic function and 

equations. 

 

6.0 Tutor marked Assignments (TMAs) 

Find the eigenvalues and the corresponding eigenvectors for the co-efficient                              

of the matrix A and B             

A      = 

     

                                         

         

B    =       

            

 

7.0 References/Further Reading  

BLAKEY, J Intermediate Pure Mathematics, 5th Edition. MacMillan Press 

Limited.1977 London 

BUNDAY, B.D Pure Mathematics for Advanced Level, Second Edition. 

Heinemann Educational Books Limited, 1988. London   

CLARKE, L. Pure Mathematics at Advanced Level, Metric Edition. Heinemann 

Educational Books Limited, 1977.London 
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1.0 Introduction 

It is very important to define terms in mathematics. As a language of science the major 

concepts involves using terms correctly. This is why you must learn to use the 

definitions in this unit and this course. 

2.0 Learning Outcomes 

At the end of this unit you should be able to define Vector, Scalar, Field, Vector Space, 

Basis and Dimensions, linear Dependence and Independence. Also, you should be 

able to show how Vectors are Dependent or Independence. 

3.0 Learning Content 

3.1 Vector 

A vector is a quantity that has both magnitude and direction e.g Velocity, Force etc. 

3.2 Salar: 

A Scalar is a quantity that has only a magnitude without a direction e.g Temperature 

etc 

3.3 Field: 

A commutative ring R with a unit element is called a field if every non-zero element a

R has a multiplicative inverse that is, there exist an element a¯¹R such that aa¯¹ = 

a¯¹a = 1. 

3.4 Vector Space: 

Let K be a given field and V be a non-empty set with rules addition and scalar 

multiplication which assigns to any u,vV; a sum u+vV and to any uV, kK; a 

product kuV. Then V is called a Vector Space over K if the following conditions hold: 

C1:  ∀ u,v,w ∈ V; (u + v) + w = u + (v+w) 

C2:     There is a zero vector o∈V for which u + o = U ∀ u∈V 

C3:  ∀ u∈V ∋ a vector – u∈V ∋ U + (- u) = 0 

C4:  ∀ u,v∈V ; u + v = v + u 

C5:  ∀ scalars k∈K and vectors u,v∈V  k(u + v) = ku + kv 

C6:  ∀ scalars a,b∈K and any vector U∈V,  (a+b)u=au+bu 

C7:  ∀ scalars a,b∈K and any vector U ∈V  (ab) v = a (bu) 

C8: For the unit scalar 1∈k  1∙u = u ∀ U∈V 
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3.5 Basis 

A Vector V Is Said to be of finite dimension n or to be n-dimensional, written as                          

dim V = n if   linearly independent vectors e1, e2……….en which span V. The 

sequence  [e1, e2……….en] is then called a Basis V 

3.6 Theorem 

Let V be a finite dimensional vector space, then every basis of V has the same number 

of elements. 

The vector space [0] is said to have dimension O. 

 3.7 Linear Dependence and Independence:  

Let V be a vector space over a field K. The vectors v1,……..vmV are said to be 

linearly dependent over  K if there exist scalars  a1, ………. amk not all of them are zero, 

such that    a1v1 + a2v2 + …….. + amvm= 0………..(1) otherwise, the vectors are said 

to be linearly independent over K. The relation (1) will  always hold if all the a’s are 

zero. If the relation holds only in this case i.e a1v1 + a2v2 + ……amvm = 0 only if a1= 0, a2 

= 0, ……..…….am=0; then the vectors are linearly independent. If the relation holds 

when one of the  a’s≠0, then the vectors are linearly dependent. 

Example 1 

The vectors  u = (1,-1,0) 

    V = (1,3,-1) and  

    W = (5,3,-2) are dependent since 

 3u + 2v – w = 0 

     3(1,-1,0) + 2(1,3,-1) – (5,3,-2) = 0 

     (3,-3,0) + (2,6,-2) – (5,3,-2) =0 

               3 + 2 – 5 = 0 

    -3 + 6 – 3 = 0 

0 = 0 

Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 
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4.0 Conclusion 

In order to have a comprehensive understanding of Basis and Dimensions, you need 

to define certain terms like Vector, Scalar, Field etc. Each of this definition will come 

in a useful way in your further studies of Basis and Dimensions. 

5.0 Summary 

You have learnt in this unit the definition of the following terms: Vector,                      

Scalar, Field, Vector Space, Basis and Dimensions, Linear Dependence and   

Independence. Also, how to show that vectors are either dependence or 

Independence. 

6.0 Tutor marked Assignments (TMAs) 

Show that the following vectors are independent: 

u = (6,2,3,4), v = (0,5,-3,1) and  w = (0,0,7, 2). 

7.0 Reference/Further Reading 

BLAKEY, J Intermediate Pure Mathematics, 5th Edition. MacMillan Press 

Limited.1977 London 

BUNDAY, B.D Pure Mathematics for Advanced Level, Second Edition. Heinemann 

 Educational Books Limited, 1988. London   

CLARKE, L. Pure Mathematics at Advanced Level, Metric Edition. Heinemann 

Educational Books Limited, 1977.London 
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1.0 Introduction 

It is very important to know how a square matrix A is diagonalizable and that is the 

basic concept of this unit. 

2.0 Learning Outcomes 

At the end of this unit you should be able to know the steps involved in the process of 

diagonalizing a diagonalizable nn matrix A and also the conditions necessary for 

diagonalizing a matrix. 

3.0 Learning Content 

3.1 Process of Diagonalizing a Matrix 

Let T : V→V be a linear operator on a vector space V with finite dimension n. Then T 

can be represented by a diagonal matrix. 

   K1 0………….0 

  0 K2………...0 

  0 0………....Kn 

If and only if there exists a basis (V1,……….Vn) for which 

 T(V1) = K1V1 

 T(V2) = K2V2 

                                                                                                                                      

           T(Vn) = K2V2 

That is, such that the vectors V1,…….Vn are Eigen vectors of T belonging respectively 

to eigenvalues K1,…….Kn. 

A square matrix A is called diagonalizable if there is an invertible matrix P ∋

𝑃1AP is a diagonal matrix.  P is said to diagonalize A. 

THEOREM 1: 

 If A is an n×n matrix, then the following are equivalent. 

a.  A is diagonalizable. 

b.  A has n linearly independent eigen-vectors. 

THEOREM 2: 

 An n-square matrix A is similar to a diagonal matrix B if and only if A has n linearly 

independent e-vectors.  In this case, the diagonal elements of B  are the corresponding 

eigen-values. If we let P be the matrix whose columns are the n- independent e-vectors 

of A. Then,  

. 

. 

. 

. 

. 
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    B = P-1AP 

The following are the steps involved in the process of diagonalizing a diagonalizable 

nxn matrix A. 

STEP 1: 

Find n linearly independent eigen-vectors of A; say p1, p2……………pn  

STEP 2: 

Form the marix P having p1, p2……………pn as its column vectors 

STEP 3: 

The matrix P-1 AP will then be diagonal with 𝜆1, 𝜆2……………. 𝜆n as its successive 

diagonal entries, where 𝜆𝑖 is the eigen-value corresponding to P𝑖, i = 1, 2………..n. 

Example 1 

Find a matrix P that diagonalizes  

 A  =  0 0 -2 

   1 2  1 

   1 0  3  

Solution 

STEP 1: 

  | 𝜆 I – A1|  =       𝜆  0 2       = 𝜆 [(𝜆 -2) (𝜆 – 3)] +2 (𝜆 - 2) 

        -1  𝜆-2 -1         𝜆 (𝜆2 - 5 𝜆 +6) +2𝜆 - 4 

        -1  0 𝜆-3                                             

= 𝜆3 - 5𝜆2 + 6𝜆 + 2𝜆 – 4 

𝜆3 - 5𝜆2 + 8𝜆 - 4 = 0 

     𝜆 = 1 and 𝜆 = 2 are solutions 

i.e (𝜆 -1) and (𝜆-2) are factors 

 (𝜆-1) (𝜆-2) = 𝜆2 – 3𝜆 + 2 

 To obtain the remaining factors, we use long division. 

                                      𝜆 - 2  

  𝜆2 - 3𝜆 + 2 √𝜆3 − 5𝜆2 +  8𝜆 − 4  

                         𝜆3 - 3𝜆2 + 2𝜆               

         - 2 𝜆2 + 6𝜆 – 4 

         -  2𝜆2 + 6𝜆 - 4           

                                         0 
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The eigen-values of A are 𝜆=2; 𝜆 = 1 

To determine the eigen-vectors 

(𝜆I – A)x = 0  

For 𝜆 = 2 

 𝜆 0 2          x1         0 

-1 𝜆-2 -1  x2    =    0 

-1 0 𝜆-3      x3          0     

2x1+2x3=0 

-x1-x3=0 

-x1-x3 =0 

 -x1=x3  

i.e  x1 = -x3 

Let x3=S 

      x1=-S 

Let x2=t 

x1 = -S,   x2= t, x3= S 

 

  x1         -S          0                -1            0 

  x2   =    0     +    t       = S      0    + t    1 

  x3         S           0                1            0        

 

The eigen-vectors corresponding to 𝜆 = 2 are: 

P1 =     -1    and P2  =     0 

             0                        1    

1 0     

 

For 𝜆 = 1 

   1 0 2        ∝1         0 

  -1 -1 -1       ∝2   =    0 

  -1 0 -2       ∝3         0  

  x1+ 2x3= 0 



28 

 

   -x1-x2-x3=0 

    -x1-2x2=0 

            x1=-2x3 

         -(-2x2) -x2-x3 =0 

            2x3-x2-x3=0    -x2+x3=0 

                                      x3=x2 

Let     x3= S 

  x2= S 

  x1= 2S 

     x1          -2S              -2 

     x2     =     S       =S     1 

     x3            S                1 

 

 i.e. The eigen-vector corresponding to λ = 1 is 

P3 =      -2 

         1  

         1     

 

 

We show that [P1, P2, P3] is linearly in the pendent  

i.e  a1P1+a2P2+a3P3=0 

 

a1       -1                 0                 -2            0 

0      + a2      1     + a3      1     =      0 

1                  0                  1             0     

 

         -a1-2a3=0  -( a1)-2a3 = 0 a 

     a2+ a3=0   a2= -  a3 

     a1+ a3=0     a1 = -a3 

 a1 = -a3 

 a2
 = -a3 

 -(-a1) -2a3=0 

    i.e.  -a3 = 0  a3 =0 

    a2 = -a3   a2= 0 

    a1 = -a3  a1= 0 

Since  a1= 0, a2=0 and a3= 0 

This has shown that P1, P2 and P3 are linearly independent  
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STEP 2: 

      P =     p1     p2     p3  =    -1      0     -2 

                    0     1      1 

                   1     0      1       

P-1   =          1      0       2 

          1       1      1 

          1       0     -1    

 

P-1 AP   =     1       0      2            0       0     -2       -1      0     -2 

           1       1      1            1       2      1         0      1      1 

                     1      0     -1            1       0      3         1      0      1  

 

 

P-1 AP   =     2      0       0   

          0      2       0 

           0     0       1      

 

Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 

 

 

EXAMPLE 2 

Find a matrix P that diagonalizes 

       A    =   -3   2 

    -2       1     

 

Solution 

The characteristic equation 

| λI – A|  =     λ+3    -2     = 0 

                       2       λ-1   

 (λ – 1) (λ+3) + 4 = 0 

λ 2 + 2λ -3 + 4 = 0; λ2 + 2λ + 1 = 0 
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λ2 + λ + λ + 1 = 0 

λ (λ + 1) +1 (λ + 1) = 0; (λ + 1)2 = 0 

λ = -1 is the only eigen-value of A 

λ = -1 

 

To find corresponding eigen-vector 

 2         -2      x1   =     0 

 2         -2      x2             0     

2x1 - 2x2 = 0     x1 = x2 

2x1 - 2x2 = 0   x1= x2 

  Let  x2 = S 

 x1= S 

  x1      =     S       -    S   1 

  x2             S                 1 

 

The vector P1  =    1 

                               1 

 

The eigenspace is 1-dimensional. A does not have two linearly independent vectors 

and is therefore not diagonalizable. 

Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 

 

3.2 Conditions for Diagonalizability 

Theorem 1: 

If v1,v2, ……. Vn  are eigen-vectors of A, corresponding to distinct eigen-values  X1, 

X2……. Xn;  then   {v1 v2,….. vn}is a linearly independent set. 

As a consequence of this theorem ; the second theorem follows: 

Theorem  2: 

If an nxn matrix A has n distinct eigenvalue; then A is diagonalizable. 
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4.0 Conclusion 

A square matrix A is called diagonalizable if there is an invertible matrix PP­¹AP is a 

diagonal matrix. P is said to diagonalixe A. 

5.0 Summary 

You have learnt in this unit how to diagonalize a matrix and the steps and conditions 

involved in the process of diagonalizing a matrix. Also, some theorem was introduced 

in this unit to authenticate the diagonalization process. 

6.0 Tutor marked Assignments (TMAs) 

 

Let    A       =       0     1     0 

          0     0     1 

          4    -17   8 

Verify that A is diagonalizable.  

Hence, find the diagonal matrix. 

7.0 References/Further Reading 
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Limited.1977 London 

BUNDAY, B.D Pure Mathematics for Advanced Level, Second Edition. Heinemann 

Educational Books Limited, 1988. London   

CLARKE, L. Pure Mathematics at Advanced Level, Metric Edition. Heinemann 

Educational Books Limited, 1977.London 
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1.0 Introduction 

Square matrices can be multiplied by themselves repeatedly in the same way as 

ordinary numbers, because they always have the same number of rows and columns. 

This repeated multiplication can be described as a power of the matrix. This is why 

you have to learn how to compute powers of a matrix in this unit. 

2.0 Learning Outcomes 

At the end of this unit, you will learn how to compute powers of matrices and illustrate 

them with examples. 

3.0 Learning Content 

3.1 Powers of a Matrix 

If A is an nn matrix and P is an invertible matrix, then 

(P -1 AP)² = P -1  APP -1AP 

          = P -1 AIAP = P -1 AAP 

                          = P -1 A2P 

For any positive integer n; 

(P -1 AP)n = P -1  An P 

P -1 An P = (P -1 AP)n  = Dn 

An = PDn P -1 

Example 

 If A =     0     0    -2 

    1     2     1 

    1     0     3 

 

Find A13    

Solution: 

  P = matrix for eigenvectors of A  

 

P  =          -1       0       -2 

  0       1         1 

  1       0         1 

   



35 

 

  D =  P -1 AP=    2      0      0 

          0      2      0 

          0      0      1 

 

D13 =  213        0       0 

  0          213 0 

  0          0      113 

A¹³   =  PD¹³Pֿ¹ 

 

A13  = -1      0      -2  213        0     0 1     0     2 

    0      1       1 0          213   0 1       1     1 

    1      0      1   0          0     113    1      0    -1  

 

 = 8190  0  -16382 

  8191  8192    8191 

  8191  0    16383 

 

 

Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 

 

4.0 Conclusion 

The need to compute the powers of a matrix arise in many practical problems. It is 

easy to raise a diagonal matrix to a power but when raising an arbitrary matrix (not 

necessary a diagonal matrix) to a power, it is often helpful to exploit this property by 

diagonalizing the matrix. 
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5.0 Summary 

You have learnt in this unit how to compute powers of a matrix and also being able to 

learnt that rectangular matrices do not have the same number of rows and columns 

so they can never be raised to a power. 

6.0 Tutor marked Assignments (TMAs) 

 

If A =   0     0    -2 

    1     2     1 

    1     0     3 

 

Find A14   

7.0 References/Further Reading 

BLAKEY, J    Intermediate Pure Mathematics, 5th Edition. MacMillan Press 

Limited.1977 London 

BUNDAY, B.D Pure Mathematics for Advanced Level, Second Edition. 

Heinemann Educational Books Limited, 1988. London   

CLARKE, L. Pure Mathematics at Advanced Level, Metric Edition. Heinemann 

Educational Books Limited, 1977.London 
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1.0 Introduction 

In linear algebra, every square matrix is associated with a characteristic polynomial. 

This polynomial encodes several important properties of matrix, most notably its 

eigenvalues, its determinant and its trace. 

2.0 Objectives 

At the end of this unit you should be able to explain the word characteristic polynomial 

and be able to find the characteristic polynomial of any given matrix 

3.0 Learning Content 

3.1 Characteristic Polynomial 

Consider an n-square matrix A over a field K 

               A =     a11    a12………. a1n 

         a21       a22 ……… a2n 

         an1      an2 ……………..ann 

 

The matrix tIn – A where In  is the n-square identity matrix and t is an indeterminant 

called the characteristic matrix of A. 

          tIn – A=   t   0…….. 0          a11   a12………. a1n 

                     0   t……   0     -    a21   a22………. a2n 

                         …………...            ………………….. 

                        0    0……..t          an 1   an2………. ann  

        

       

              =    t- a11         - a12………………. a1n                  

                     - a21      t- a22……………….a2n 

                            - an1       - an2………………. t- ann          

 

Its determinant, 

∆A(t) = det (tIn – A) which is a polynomial in t is called the characteristic polynomial of 

A. 

Also, ∆A(t) = det (tIn – A) = 0 is called the characteristic equation of A. 
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Each term in the determinant contains one and only entry from each row and from 

each column; hence the above characteristic polynomial is of the form 

∆A(t) = (t – a11) (t – a22)…………(t – ann)with at most n – 2 factors of the form t-aii. 

Thus, the characteristic polynomial ∆A(t) = det (tIn – A) of A is a Monic Polynomial of 

degree n. A polynomial is monic if it is leading co-efficient is 1. 

EXAMPLE 

      The characteristic polynomial of the matrix 

                   

A=  1        3      0                                                                                                                    

           -2        2     -1         is 

                   4        0     -2 

 

 

∆(t) = |tI – A|  =      t-1    -3      0 

                                2       t-2     1 

                               -4        0    t+2     

 

=   (t – 1) (t – 2) (t + 2) + 3[2(t + 2) + 4]  + 0  

       (t – 1) (t – 2) (t + 2) + 6 (t + 2) + 12  

        = t3 – t3 + 2t + 28 

∆(t) is a Monic Polynomial of degree 3 

Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 
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4.0 Conclusion 

The characteristic polynomial can as well be extended to a graph g which can be 

defined as the characteristic polynomial of its adjacency matrix and can be computed 

in mathematical form using characteristic polynomial [adjacency  matrix[g], x]. 

5.0 Summary 

You have learnt in this unit the meaning of characteristic polynomial and how to find 

the characteristic polynomial of a matrix. 

6.0 Tutor marked Assignments (TMAs) 

Find the characteristic polynomial of 

A =  2       1 

       -1       0 

 

7.0 References/Further Reading 
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Limited.1977 London 

BUNDAY, B.D Pure Mathematics for Advanced Level, Second Edition. Heinemann 
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41 

 

 

 

 

 

Unit 3  

 Cayley Hamilton 
Theorem and Some 

Useful Lemma 
 

Content 

1.0  Introduction 

2.0  Leaning Outcomes 

3.0  Learning Content 

 3.1 Statement of Cayley Hamilton Theorem 

 3.2 Useful Lemma to Proof Cayley Hamilton Theorem 

4.0  Conclusion 

5.0  Summary 

6.0  Tutor marked Assignments (TMAs) 

7.0  Reference/Further Reading 

  



42 

 

1.0 Introduction 

For a better understanding of linear algebra, there is need for you to have an in-depth 

knowledge of Cayley Hamilton Theorem because it is one of the most useful theorems 

in mathematics that is what this unit is all about. 

2.0 Learning Outcomes 

At the end of this unit you should be able to state the Cayley Hamilton theorem and 

some other useful lemma for the theorem.  

3.0 Learning Content 

3.1 Statement of Cayley Hamilton Theorem 

The Cayley Hamilton theorem states that “Every matrix is a zero of its characteristic 

polynomial or every matrix satisfies its characteristic equa- 

tion, that equation define  by pA (t) = 0. 

3.2 Useful Lemma to Proof Cayley Hamilton Theorem 

Lemma 1:  

Suppose for all j¸j large enough, 

A0 + A1¸ + ¢ ¢ ¢ + Am¸m = 0; 

where the Ai are n £ n matrices. Then each Ai = 0: 

Proof: Multiply by ¸¡m to obtain 

A0¸¡m + A1¸¡m+1 + ¢ ¢ ¢ + Am¡1¸¡1 + Am = 0: 

Now let j¸j ! 1 to obtain Am = 0: With this, multiply by ¸ to obtain 

A0¸¡m+1 + A1¸¡m+2 + ¢ ¢ ¢ + Am¡1 = 0: 

Now let j¸j ! 1 to obtain Am¡1 = 0: Continue multiplying by ¸ and letting ¸ ! 1 to 

obtain that all the Ai = 0: This proves the lemma. 

With the lemma, here is a simple corollary. 

Corollary 3.4.3 Let Ai and Bi be n £ n matrices and suppose 

A0 + A1¸ + ¢ ¢ ¢ + Am¸m = B0 + B1¸ + ¢ ¢ ¢ + Bm¸m 

for all j¸j large enough. Then Ai = Bi for all i: Consequently if ¸ is replaced by any n £ n 

matrix, the two sides will be equal. That is, for C any n £ n matrix, 

A0 + A1C + ¢ ¢ ¢ + AmCm = B0 + B1C + ¢ ¢ ¢ + BmCm: 

Proof: Subtract and use the result of the lemma. 
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With this preparation, here is a relatively easy proof of the Cayley Hamilton theorem. 

Theorem 3.4.4 Let A be an n£n matrix and let p (¸) ´ det (¸I ¡ A) be the characteristic 

polynomial. Then p (A) = 0: 

1A special case was ¯rst proved by Hamilton in 1853. The general case was 

announced by Cayley some 

time later and a proof was given by Frobenius in 1878. 

96 DETERMINANTS 

Proof: Let C (¸) equal the transpose of the cofactor matrix of (¸I ¡ A) for j¸j large. 

(If j¸j is large enough, then ¸ cannot be in the ¯nite list of eigenvalues of A and so for 

such 

¸; (¸I ¡ A)¡1 exists.) Therefore, by Theorem 3.3.15 

C (¸) = p (¸) (¸I ¡ A)¡1 : 

Note that each entry in C (¸) is a polynomial in ¸ having degree no more than n ¡ 1: 

Therefore, collecting the terms, 

C (¸) = C0 + C1¸ + ¢ ¢ ¢ + Cn¡1¸n¡1 

for Cj some n £ n matrix. It follows that for all j¸j large enough, 

(¸I ¡ A) 

¡ 

C0 + C1¸ + ¢ ¢ ¢ + Cn¡1¸n¡1¢ 

= p (¸) I 

and so Corollary 3.4.3 may be used. It follows the matrix coefficients corresponding to 

equal 

powers of ¸ are equal on both sides of this equation. Therefore, if ¸ is replaced with A; 

the 

two sides will be equal. Thus 

0 = (A ¡ A) 

¡ 

C0 + C1A + ¢ ¢ ¢ + Cn¡1An¡1¢ 

= p (A) I = p (A) : 

This proves the Cayley Hamilton theorem. 
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Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 

 

4.0 Conclusion 

You need to have a better understanding of Cayley Hamilton theorem in this unit in 

order to solve any problem in minimum polynomial that will be introduced in the next 

unit 

5.0 Summary 

You have learnt in this unit how to state the theorem of Cayley Hamilton and also some 

useful lemma that is needed for better understanding of the theorem. 

6.0 Tutor marked Assignments (TMAs) 

Apply the Cayley Hamilton theorem to solve the matrix below 

A =      1      2 

            3      2 

7.0 References/Further Reading 
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1.0 Introduction 

The minimum polynomial is often the same as the characteristic polynomial but not 

always. Minimum polynomials are useful for constructing and analyzing field 

extensions. 

2.0 Learning Outcome 

At the end of this unit you should be able to define minimum polynomial and be 

conversant with some theorems on minimum polynomial. Also, you should be able to 

find the minimum polynomial of a given matrix 

3.0 Learning Content 

3.1  Definition of Minimum Polynomial      

If A is an n-square matrix over a field F then, there exists non-zero polynomialsf(𝜆) ∋ f 

(A) = 0 for example, the characteristic polynomial of A. Among these polynomials we 

consider the lowest degree polynomial whose leading co-efficient is 1 (i.e. monic). 

Such a polynomial m(𝜆) exists and is unique. It is called the minimum polynomial of A. 

3.2 Minimum Polynomial Theorems 

Theorem 1: 

Every polynomial which has A as a zero is divisible by the minimum polynomial m(𝜆) 

of A. In particular, the characteristic polynomial p(𝜆) of A is divisible by m(𝜆). 

Proof: 

1. Let f(x) be a polynomialf(A) = 0 

2. By the division of algorithm given polynomials q(𝜆) and r(𝜆) 

 f(𝜆) = m(𝜆)q(𝜆)+r(𝜆) where r(𝜆)  = 0 or deg r(𝜆) < deg m(𝜆) 

3. Let 𝜆= A in the equation above, it implies 

         f(A) = m(A) q(A) + r(A) 

        But f(A) = 0 =  m(A) 

         0 =  0 + r(A) 

           r(A) = 0 

4. If r((𝜆) ≠ 0   r (𝜆)  is a polynomial of degree less than m(𝜆) which has A as a zero 

but this contradicts the definition of a minimum polynomial  

Hence, r(𝜆)= 0 

5. It implies that f(𝜆) = m(𝜆)q(𝜆)  
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i.e f(𝜆) is divisible by m(𝜆) 

Theorem 2: 

The characteristic and minimum polynomials of a matrix A have same irreducible 

factors. 

This does not imply that m(𝜆) = P(𝜆) only that any irreducible factor of one must be  

divisible by the other. In particular, since a linear factor is irreducible m(𝜆) and P(𝜆) 

have the same linear factors, hence they have the same roots. 

Theorem 3: 

A scalar 𝜆 as an eigenvalue for a matrix A if and only if 𝜆 is a root of the minium 

polynomial of A. 

Example 1 

Find the minimum polynomial m(𝜆) of the matrix 

   2 1 0 0 

A =  0 2 0 0 

   0 0 2 0 

   0 0 0 5 

 

Solution: 

The characteristic polynomial of A is  

P(𝜆) = 𝜆𝐼 - A   

 =    𝜆-2 -1 0 0 

         0          𝜆-2 0 0 

         0    0    𝜆-2       0  

                  0             0      0        𝜆-5 

 

 P(𝜆)  = (𝜆-2)3 (𝜆-5) 

The minimum, polynomial m(𝜆) must divide the characteristic polynomial P (𝜆) 

Also each irreducible factor of P (𝜆) i.e. 𝜆 - 2 and 𝜆 - 5 must be factors of m (𝜆). 

   Thus m(𝜆) must be one of the following polynomials. 

    M1(𝜆)  =  (𝜆 - 2) (𝜆 – 5)  

    M2(𝜆)  =  (𝜆 - 2)2  (𝜆 – 5) 

    M3(𝜆)  =  (𝜆 - 2) 3 (𝜆 – 5) 
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But  

    M1(A)  = (A – 2I)  (A – 5I) ≠ 0 

    M2(A)  = (A – 2I)2  (A – 5I)   

 

                               2 1 0 0           2        0        0        0       2 

 =  0 2 0 0     -     0        2        0        0 

   0 0 2 0           0        0        2        0 

   0 0 0 5           0        0        0        2 

 

 

                               2 1 0 0           5        0        0        0          

   0 2 0 0     -     0        5        0        0 

   0 0 2 0           0        0        5        0 

   0 0 0 5           0        0        0        5 

                                                                  = 0 

       

M3(A)  = (A – 2I)3 (A – 5I) = 0 

By Cayley Hamilton theorem, M3(A) = P(A) = 0. 

However, the degree of M2(𝜆) is less than the degree of M3(𝜆).  

Hence, M2(𝜆) is the minimum polynomial of A. 

Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 

 

EXAMPLE 2 

Let A be a 3 X3 matrix over the real field R, show that A cannot be a zero of the 

polynomial f(𝜆) = 𝜆3 + 3 
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SOLUTION: 

By Cayley Hamilton theorem; A is a zero of its characteristic polynomial P(𝜆). Since 

P(𝜆) is of degree 3, it implies that P(𝜆) has at least one real root. Assume A is a zero 

of f(𝜆). Since f(𝜆) is irreducible over R, f(𝜆) must be the minimum polynomial of A. But 

f(𝜆) has no real roots. This contradicts the fact that m(𝜆) and P(𝜆) have the same roots. 

Thus, A is not a zero of f(𝜆). 

EXAMPLE 3 

Find the minimum polynomial m(𝜆) of 

                               2 1 0 0 

     A =  0 2 0 0 

   0 0 1        1 

   0 0       -2 4 

SOLUTION: 

The characteristic polynomial 

P(𝜆) = |𝜆 I – A|  

 

                𝜆-2         -1           0           0 

          =    0           𝜆-2          0           0 

                0             0         𝜆-1        -1 

                0             0           2       𝜆-4   

         =   𝜆-2       -1            𝜆-1       -1 

 

 

               0        𝜆-2           2         𝜆-4 

        =  (𝜆2 – 4𝜆 + 4) (𝜆2 - 5𝜆 + 4 + 2)   

        = (𝜆 – 2)2 (𝜆 – 3) 

         P(𝜆) = (𝜆 – 3) (𝜆 - 2)3 

The minimum polynomial m(𝜆) must divide P(𝜆). Also, each irreducible factor of P(𝜆) 

i.e. (𝜆 – 3) and (𝜆 - 2) must be a factor of m(𝜆) 

Thus m(𝜆) is one of the following polynomials: 

         m1(𝜆) = (𝜆 -3)( 𝜆 -2) 

         m2(𝜆) = (𝜆 -3) (𝜆 -2)2 

         m3(𝜆) = (𝜆 -3) (𝜆 -2)3 
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         m1(𝐴) = (𝐴 -3I) (A-2I) 0 

         m2(𝐴) = (A-3I) (A-2I)² 

       

  =              -1      1      0      0          0      0      0      0 

        0     -1      0      0     0      0      0      0 

                   0       0     -2     1          0      0      -1     1 

        0       0     -2      1 0       0      -2     2 

 

 =  0 0 0 0 

  0 0 0 0  

                    0 0 0 0 

                     0         0         0        0 

 

By Cayley Hamilton theorem, m3(A) = (A-3I)(A-2I)³ = 0   

However, the deg m2(𝜆) < deg m3(𝜆). 

 Hence, m2(𝜆) = m(𝜆) which is the minimum polynomial of A. 

Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 

 

4.0 Conclusion 

In order to solve any question on minimum polynomial, you need to have a better 

understanding of Cayley Hamilton theorem. So do ensure to study this unit carefully. 

5.0 Summary 

You have learnt in this unit the definition of minimum polynomial and its theorems and 

also how to find a minimum polynomial of a given matrix. 
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6.0 Tutor marked Assignments (TMAs)  

Find the minimal polynomial m(𝜆) of the matrix 

             D = a b 0 

   0 a b 

   0 0 a 
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1.0 Introduction 

The definition of bilinear form can easily be extended to include modules over a 

commutative ring, with linear maps replaced by module homomorphism. When F is 

the field of complex numbers C, one is often more interested in sesquilinear form which 

are similar to bilinear form but are conjugate linear in one argument 

2.0  Learning Outcome 

At the end of this unit you should be able to know how bilinear polynomial 

corresponding to matrix is form, bilinear forms and matrices and the definition of 

bilinear forms. 

3.0 Learning Contents 

3.1 Definition of Bilinear Forms 

Let V  be a vector space of finite dimension over a field K. A bilinear form on V is a 

mapping F:VxV→K which satisfies the following: 

(i). f(au1+bu2, v) = af(u,v)+bf(u2v)              

(ii). f(u,av1+bv2) = af(u,v1) + bf(u,v2) 

for all a,bk and all ui,viv. We express condition (i) by saying f is linear in the first 

variable and condition (ii) by saying f is linear in the second variable. 

Example 1:  

Let  and   be arbitrary linear functional on v. Let f:v x v→ k be defined by f(u,v)=

(u)  (v). Then f is bilinear because  and  are each linear. 

Example 2: 

Let f be a dot product on nR . That is f(u,v) = u.v =a 1 +b 2 +……+a n b n where u=(a i ) 

and v = b i . Then F is a bilinear form on R n . 

Example 3: 

Let A = (aij) be any nxn matrix over K. Then A may be viewed as a bilinear form on Kn 

by defining  

f(x, y) = Xt AY = 
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      (x1,x2…………xn) 

  

 

 

 

 

 

   ∑ aijn
i,J=1  = a11 x1 y1 + a12 x2 y2 +…………………ann x12 yn 

The above expression in variables Xi, Yi is termed bilinear polynomial corresponding 

to the matrix A. 

3.2 Bilinear forms and Matrices 

Let F be a bilinear form on V and let {e 1 ,…………..en} be a basis of V. suppose u,v

V and suppose  

u = a1 e1 + a2e2 +……………….+anen 

v = b1 e1 + b2 e2 +……………....+bnen 

Then 

F (u, v) = f (a1 e1 +…………...an en, b1 e1 +………………bnen) 

    = a1 b1 f(e1, e1) + a1 b2 f(e1, e2) + ………………….+anbn f(en, en) 

         n 

=      ∑ aibj f(ei,, ej) 

       i,j=1 

Then f is completely determined by f(ei, ej). The matrix A= (aij) where aij =f(v1,v2) is 

called the matrix representation of f relative to the basis {ei} or simply the matrix of f in 

{ei}. It represents f in the sense that 

f(u,v) =  ai bj f(ei, ej) 

 

= (a1, a2………………an) A    b1 

        b2 

      

         bn 

 = [U]
t
e
  A [V]e 

a11 a12…………….a1n 

a21 a22…………….a2n 

 

 

 

an1 an2…………….ann 

 y1 

y2 

 

 

 

yn 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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For all   u,vV 

[U]e denotes the coordinates (column) vector of uV in the basis {ei} 

Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 

 

4.0 Conclusion 

In order to appreciate the knowledge of bilinear forms, you must have a better 

understanding of matrix, vector space and some other terms. Each of these terms will 

come in very useful in further studies of Bilinaer forms 

5.0  Summary 

You have learnt in this unit the definition of bilinear forms, bilinear forms and matrix. 

Also learnt how bilinear polynomial corresponding to matrix is formed 

6.0 Tutor marked Assignments (TMAs) 

Define bilinear forms and state the condition necessary for bilinear polynomial 

corresponding to matrix is form. 

7.0 References/Further Reading 

BLAKEY, J Intermediate Pure Mathematics, 5th Edition. MacMillan Press Limited.1977 

London 

BUNDAY, B.D Pure Mathematics for Advanced Level, Second Edition. Heinemann 
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Educational Books Limited, 1977.London 
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1.0 Introduction 

Since it is often desirable to work with more than one basis for a linear vector space, 

it is of fundamental importance in linear algebra to be able to easily transform 

coordinate-wise representations of vectors and linear transformations taken with 

respect to one basis to their equivalent representations with respect to another basis. 

Such a transformation is called a change of basis in matrix. 

2.0 Learning Outcome 

At the end of this unit you should be able to understand how a matrix is transform from 

one basis to other and how does a matrix representing a bilinear form transform when 

a new basis is selected. Also, some theorems will be introduced for better 

understanding of this unit. 

3.0 Learning Content 

3.1 Transformation of matrix theorem 

Theorem 

Let P be the transition matrix from one basis to the other. If A is the matrix of F in the 

original basis, then we have B = Pt AP as the matrix of F in the new basis. 

EXAMPLE 1: 

Let F be the bilinear form defined by f(x1, x2), (y1, y2) = 2x1y1 – 3x1y2 + x2y2 

i. Find the matrix A of F in the basis B ={u1 = (1,0), u2 = (1,1)}   

ii. Find a matrix C of F in the basis  B1 =    {v1 = (2,1) , v2 = (1,1)} 

iii. Find the transition matrix P from the basis B1 to the basis B and verify that  

C = Pt A P 

SOLUTION 

i. Set  A = (aij) where aij = f(ui, uj),  

        a11 = f(u1, u1) = f(1,0), (1,0)   

        a11 = f(u1, u1) = 2(1) (1) – 3 (1) (0) + 0  

(0)= 2 – 0 + 0 = 2                                                                                                                                 

a12 = f(u1, u2) = f  (1,0), (1,1)  = 2 – 3 + 0 = -1                                                                                                   

a21 = f(u2, u1) = f(1,1) (1,0) = 2 – 0 + 0 =2                                                                                                             

a22 = f(u2, u2) = f(0,1), (1,1) = 2 – 3 + 1 = 0                                                                                                    

Thus,                                                                                                                               

 

A=  a11      a12  2    -1 

      a21        a22  2     0 
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Is  the matrix of F in the basis B1 = {u1, u2} 

ii. Set C = (cij) where cij = f (vi, vj)                                                                                 

C11 = f(v1, v1) = f(2,1), (2,1)             = 8 – 6 + 1 = 3                                                                                                                                                      

C12 = f(v1, v2) = 4 + 6 – 1 = 9                                                                           

C21 = f(v2, v1) = 4 - 3 – 1 =  0                                                                                         

C22 = f(v2, v2) = f(1,-1) , (1, - 1) = 2 + 3+ 1 = 6   

 

Thus,     C =         C11        C12   =   3        9 

                C21        C22        0        6 

      Is the matrix of F in the basis B1 = {v1, v2} 

iii. We must find v1 & v2 in terms of ui,   

V1 = (2,1)   

(2,1) = au1 + bu2 

  a (1,0) + b (1,1) = 

(2,1)                                                                                                       

a+b=2                                                                                                                                

      b = 1                                                                                                                                          

a = 2 -1 = 1                                                                                                         

But 

    V1 = au1 + bu2 

     Substitute values obtained for a and b 

     V1 = u1 + u2 

                     = [V1]B =  1 

                            1  

V2 = (1,-1)   = au1 + bu2 

au1 + bu2 = (1, -1) 

a (1,0) + b (1,1)  = (1,-1) 

a + b = 1 

b = -1    a = 1 – (-1) = 2 

∴ (1,-1)   = 2u1 – u2 

∴ [V2]B   =   2 

                   -1 

Then,  

P =    1       2                           Pt = 1      1 

          1     -1                                   2    -1 

Pt AP  =   1      1        2     -1        1      2        =      3      9       = C 

                2     -1        2      0        1     -1                0      6     
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Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 

 

EXAMPLE 2 

Let A be an nxn matrix over K. show that the following mapping f is a bilinear form on 

Kn : f(x, y) = Xt A Y 

SOLUTION: 

For any a,bk and any xiyikn 

f(ax1 + bx2, y) = (ax1 + bx2)t A Y 

         = a x
𝑡
1
   AY + b x

𝑡
2
  AY 

         =   af(x1 y) + bf(x2, y) 

Hence, f is linear in the first variable  

Also, 

f(x1 ay1 + by2) = xt A(ay1 + by2) = axt Ay1 + bxt Ay2 

           f(x1 ay1 + by2)= af(x1 y1) + bf(x2, y2) 

Hence, f is linear in the second variable and so f is a bilinear form on Kn 

Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 
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4.0 Conclusion 

Understand that there is nothing extremely special about the standard basis vector 

[1,0] and [0,1]. All 2D vectors may be represented as linear combinations of these 

vectors. You may take linear combinations of any other reasonable (linearly 

independent) set of vectors, and still be able to express the same as linear 

combinations of those. 

5.0 Summary 

You have learnt in this unit how a matrix is transform from one basis to other and how 

does a matrix representing a bilinear form transform when a new basis is selected.  

6.0 Tutor marked Assignments (TMAs) 

Let U = (x1, x2, x3) and V = (y1, y2, y3) and let  

f(u,v) = 3x1y1 – 2x1y2 + 5x2y1 + 7x2y2 – 8x2y3 + 4x y2 – x3y3 

Express F in matrix notation. 

7.0 Reference/Further Reading  

BLAKEY, J Intermediate Pure Mathematics, 5th Edition. MacMillan Press Limited.1977 

London 

BUNDAY, B.D Pure Mathematics for Advanced Level, Second Edition. Heinemann 

Educational Books Limited, 1988. London   

CLARKE, L. Pure Mathematics at Advanced Level, Metric Edition. Heinemann 

Educational Books Limited, 1977.London 

 

 

  



62 

 

 

Unit 3  

Symmetric and Anti-
Symmetric Bilinear 

Forms 
Content 

1.0  Introduction 

2.0  Learning Outcomes 

3.0 Learning Content 

 3.1  Definition of Symmetric Bilinear Forms 

 3.2  Definition of Anti-Symmetric Bilinear Forms 

4.0  Conclusion 

5.0  Summary 

6.0  Tutor marked Assignments (TMAs) 

7.0  Reference/Further Reading 

  



63 

 

1.0 Introduction 

Symmetric bilinear form is of great importance in the study of orthogonal polarity and 

quadrics. They are also more briefly referred to as just symmetric forms when bilinear 

is understood. 

2.0 Learning Outcome 

At the end of this unit you should be able to know when a bilinear form is symmetric 

and also when it is Anti-Symmetric. 

3.0 Learning Content 

3.1 Definition of Symmetric Bilinear Forms 

A bilinear form F on V is said to be symmetric if F(u, v) =  F(v, u) for every u,vv. If A 

is a matrix representation of F we can write 

           F(x, y) = Xt AY = (Xt AY)t = YtAt X………………..(i) 

(We use the fact that XtAY is scalar and therefore equals its transpose). If F is 

symmetric, then 

          F(y, x) = YtAX ……………………………………....(ii) 

i.e.    YtAtX = YtAX  this follows from (i) and (ii) and it is due to the definition above. 

Now; Since this is true for all vectors x, y it follows that A = At or A is symmetric. 

Conversely, if A is symmetric then F is also symmetric.  

THEOREM 

Let A be a symmetric matrix over K (in which 1+1≠ 0). Then such an invertible (or non–

singular) matrix P ∋ PtAP is diagonal 

EXAMPLE 1 

For the symmetric matrix A given below, find a non–singular matrix P ∋ PtAP that is 

diagonal.                

                1        2       -3 

A    =       2        5       -4 

               -3      -4         8 

 

SOLUTION 

Since an invertible matrix P is a product of elementary matrices; one way of obtaining 

the diagonal from Pt A P is by a sequence of elementary row operations and the same 
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sequence of elementary column operations. These same elementary row operations 

on I will yield Pt . Therefore, it is convenient to form the block matrix (A, I). 

 

(A, I)  =            1      2     -3          1      0      0 

                        2      5     -4         0      1      0 

                       -3    -4       8         0      0      1 

We apply the operations to (A, I)  

R
1
2
 = -2R1+R2 

R
1
3
   = 3R1 +R3 

And then the corresponding operation to A 

C
1
2
 = -2C1+C2 

C
1
3
 = 3C1+C3 

To obtain,  

                        1       2      -3       1      0      0 

                        0      1       2       -2      1      0     and 

                        0      2      -1        3      0      1 

          

             1      0      0         1      0      0 

                        0      1      2        -2      1      0     respectively  

                        0      2     -1         3      0      1 

We now apply the operations, 

R3= -2R2 + R3  to  (A, I) and  

C3 = -2C2+ C3  to A to obtain 

                        1      0      0         1      0      0 

                        0      1      2        -2      1      0     and 

                        0      0     -5         7     -2      1 

        

             1      0      0         1      0      0 

                        0      1      0        -2      1      0    respectively 

                        0      0     -5         7      -2     1 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 



65 

 

Now A has been diagonalized. We set, 

Pt AP  =          1      0      0 

                        0      1      0       and 

                        0      0     -5  

 

P   =                1     -2      7 

                        0      1     -2  

                        0      0      1 

 

Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 

 

3.2  Definition of Anti-Symmetric Bilinear Form 

A bilinear form F on V is said to be alternating if 

 (i)     F(v,v) = 0 ∀ v E V 

                   If F is alternating then, 

                   0 = F(u + v, u+v) = F(u, u) + F(u, v) + F(v, u) + F(v, v) 

 (ii)     F(u, v) = - F(v, u) for every u,vV. 

 A bilinear form which satisfies condition (ii) is said to be  anti-symmetric (skew – 

symmetric). 

4.0  Conclusion 

A symmetric bilinear form is a bilinear form on a vector space that is symmetric. 

Conversely, an alternating bilinear form is anti-symmetric. 
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5.0  Summary 

You have learnt in this unit the definition of symmetric and anti-symmetric bilinear 

forms and also the conditions necessary for a bilinear forms to be symmetry or anti-

symmetric. 

6.0 Tutor Marked Assignment  

1. Define symmetric and anti-symmetric. 

2. State the conditions necessary for a bilinear form to be anti-symmetric 

7.0 References/Further Reading 

BLAKEY, J Intermediate Pure Mathematics, 5th Edition. MacMillan Press 

Limited.1977 London 

BUNDAY, B.D Pure Mathematics for Advanced Level, Second Edition. Heinemann 

Educational Books Limited, 1988. London   

CLARKE, L. Pure Mathematics at Advanced Level, Metric Edition. Heinemann 

Educational Books Limited, 1977.London 
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1.0  Introduction 

In mathematics, a quadratic form is a homogeneous polynomial of degree two in a 

number of variables. Quadratic forms are homogeneous quadratic polynomials in a 

variables. In the cases of one, two, and three variables, they are called unary, binary, 

and ternary. 

2.0  Learning Outcomes 

At the end of this unit you should be able to know what quadratic forms in linear algebra 

is all about. 

3.0 Learning Content 

3.1  Definition of Quadratic Forms 

A mapping q:v→k is called a quadratic form if q(v) = f(v, v) for some symmetric bilinear 

form f on V. 

We call q the quadratic form associated with the symmetric bilinear form f. If 1+1 ≠ 0 

in k; then f is obtainable from q according to the identity. 

 f(u, v) = ½ q(u+v) – q(u) – q(v)  

The above formula is called the Polar form of f. 

Now; if the symmetric matrix A = (aij) is the matrix representation of f,q can be 

represented in the form. 

q(x) = f(x,x) = XtAX 

q(x) = XtAX 

    = (x1, x2…………xn)       a11 a12…………….an       x1 

 

             an1…………………...ann        xn 

=      ∑ aij xi xj = a11 x
2
1
  +  a22  x

2
2
  +……..ann x

2
𝑛

  + 2 =      ∑ aij xi xj 

        ij=1                                                                                kj  

The above formula expression is called the quadratic polynomial corresponding to the 

symmetric matrix A. Note that if A is diagonal; then q has the diagonal representation. 

     q(x) = a11 x
2
1
   + a22 x

2
2
  +……………+ann x

2
𝑛

   

By the foregoing theorem, every quadratic form has the above representation (when    

1+1 ≠ 0) 

  

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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EXAMPLES 

Find the symmetric matrix which corresponds to each of the following quadratic 

polynomials. 

a. q(x, y) = 2x 2 – 6xy – 8y2 

b. q(x, y, z) = 3x2 + 4xy – y2 + 8xz – 6yz + z2 

c. q (x, y, z)  = x2 – 2yz + xz 

SOLUTION 

The symmetric matrix A = (aij) has the diagonal entry aii equal to the co–efficient x
2
𝑖
   

and has the entries aij and aji each equal to half the co-efficient of xixj. Thus, 

(a)      2       -3  (b)     3        2       4  (c)          1        0       ½  

         -3       -8                              2       -1      -3                           0        0      -1 

                                                    4        -3       1                           ½      -1       0 

Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 

 

4.0  Conclusion 

Quadratic forms occupy a central place in various branches of mathematics, not only 

in linear algebra it also includes, number, theory, group theory etc. 

5.0  Summary 

You have learnt in this unit how to define the quadratic form of linear algebra and also 

how to find symmetric matrix that corresponds to quadratic polynomials. 

6.0  Tutor marked Assignments (TMAs) 

Find the symmetric matrix which corresponds the following quadratic polynomials. 

a. q(x, y, z) = 3x2 + 4xy – y2 + 8xz – 6yz + z2 
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7.0  References/Further Reading 

BLAKEY, J Intermediate Pure Mathematics, 5th Edition. MacMillan Press 

Limited.1977 London 

BUNDAY, B.D Pure Mathematics for Advanced Level, Second Edition. Heinemann 

Educational Books Limited, 1988. London   

CLARKE, L. Pure Mathematics at Advanced Level, Metric Edition. Heinemann 

Educational Books Limited, 1977.London 
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1.0  Introduction 

With the help of real symmetry bilinear forms, we can easily find the signature of a 

matrix in any linear algebra problem which this unit is all about. 

2.0  Learning Outcomes 

At the end of this unit you should be able to define and find the signature of a matrix 

in. 

3.0 Learning Content 

3.1 Nature of Real Symmetric Bilinear Forms 

Theorem: 

Let f be a symmetric bilinear form on V over R. Then there is a basis of V in which f is 

represented by a diagonal matrix; every other  diagonal representation has the same 

number P of Positive entries and the same number N of Negative entries. The 

difference S= P –N is called the signature of f. 

EXAMPLE: 

For the real symmetric matrix A, find a non-singular matrix P such that PtAP is diagonal 

and find its signature 

                1        -3         2 

 A    =     -3         7        -5 

                2        -5         8   

SOLUTION: 

First form the block matrix (A, I) 

                        1    -3     2         1      0      0 

  (A, I)    =     -3      7    -5         0      1      0   

                       2    -5      8         0       0      1 

Apply the row operations  

R
1
2
   = 3R1 + R2 and R

1
3
  = -2R1 + R3 to (A, I) and 

Corresponding column operations 

C
1
2
  = 3C1 + C2 

C
1
3
  = -2C1 + C3 to A to obtain 

. 

. 

. 

. 

. 
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                         1    -3      2         1      0      0              1      0      0        1      0      0 

                        0    -2      1         3       1      0     and   0    -2      1         3      1      0  

                        0      0      4        -2     0      1               0      1      4       -2      0      1 

 

Respectively  

Let apply the row operations 

R
1
2
   = R2 + 2R3 and corresponding column operations 

C
1
3
  = C2 + 2C3 to obtain 

                        1      0     0         1      0      0 

                        0    -2      1         3      1      0     and then  

                        0      0      9       -1      1      2 

            

             1      0     0         1      0      0 

                        0    -2      0         3      1      0   

                        0     0     18       -1      1      2 

 

Now A has been diagonalized with  
 

                        1      0      0                            1     3      -1 

PtAP =             0    -2      0      and P =          0      1      1   

                        0     0     18                            0      0      2 

 

The signature S of A is  

S = P – N = 2 – 1 = 1 

Self-Assessment Exercise (SAE) 

 

 

  

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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Self-Assessment Answer (SAA) 

 

4.0 Conclusion 

The signature of a matrix can be found easily when you know the number of the 

positive and negative entries. 

5.0  Summary 

You have learnt in this unit how to find the signature of a matrix haven known the 

positive and negative entries. 

6.0 Tutor marked Assignments (TMAs) 

What is signature of a matrix 

7.0 References/Further Reading  

BLAKEY, J Intermediate Pure Mathematics, 5th Edition. MacMillan Press Limited.1977 

London 

BUNDAY, B.D Pure Mathematics for Advanced Level, Second Edition. Heinemann 

Educational Books Limited, 1988. London   

CLARKE, L. Pure Mathematics at Advanced Level, Metric Edition. Heinemann 

Educational Books Limited, 1977.London 
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1.0  Introduction 

Generally, in mathematics, a canonical form (often called normal form or standard 

form) of an object is a standard way of presenting that object. Canonical form can also 

mean a differential form that is defined in a natural (canonical) way. Finding a 

Canonical form is called canonization. 

2.0  Learning Outcomes 

At the end of this unit you should be able to have details knowledge of what canonical 

form and triangular form in linear algebra is all about. 

3.0 Learning Content 

3.1  Canonical Forms 

Let T be a linear operator on a vector space of finite dimension. T may not have a 

diagonal matrix representation. But T can be considered in three forms namely: the 

Triangular, Jordan and Rational Canonical forms. 

The triangular and Jordan Canonical forms exist for T if and only if the characteristic 

polynomial ∆(t) of T has its entire root in the base field K. This is always true if K is the 

complex field C but may not be true if K is the real field R. 

3.2 Triangular Forms 

Let T be a linear operator on an n-dimensional vector space V. Suppose T can be 

represented by the triangular matrix. 

                a11  a12     a1n 

A   =        a22…………………..a2n 

                               

                ann 

 

Then the characteristic polynomial of T is  

     ∆(t) = |t I – A| = (t – a11) (t – a22)………..(t – ann) is a product of linear factors. The 

converse is also true. 

Theorem: 

Let A be a square matrix whose characteristic polynomial factors into linear 

polynomials. Then A is similar to a triangular matrix i.e. there exist an invertible matrix 

P such that  P-1AP is triangular. 

. 

. 

. 

. 

. 
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We say that an operator T can be brought into triangular form if it a be represented by 

a triangular matrix. Note that in this case, the Eigen-value of T are precisely those 

entries appearing on the main diagonal. 

Self-Assessment Exercise (SAE) 

 

Self-Assessment Answer (SAA) 

 

4.0 Conclusion 

In the mathematical discipline of linear algebra, a triangular matrix is a special kind of 

square matrix. A square matrix is called lower triangular if all the entires above the 

main diagonal are zero. Conversely, a square marix is called upper triangular if all the 

entries below the main diagonal are zero. A triangular matrix is one that is either lower 

triangular or upper triangular. A matrix that is both upper and lower triangular is a 

diagonal matrix 

5.0  Summary 

You have learnt in this unit the understanding of canonical and triangular forms of 

linear algebra and the major differences between canonical and triangular forms of 

linear algebra. 

6.0  Tutor marked Assignments (TMAs):  

Let A be a square matrix over the complex field C. Show that √𝜆 or - √𝜆 is an eigen-

value of A. 

7.0  Reference/Further Reading 

BLAKEY, J Intermediate Pure Mathematics, 5th Edition. MacMillan Press Limited.1977 

London 

BUNDAY, B.D Pure Mathematics for Advanced Level, Second Edition. Heinemann 

Educational Books Limited, 1988. London   

CLARKE, L. Pure Mathematics at Advanced Level, Metric Edition. Heinemann 

Educational Books Limited, 1977.London 


