
t .
!
~

I
$,

I
i

SOFTWARE DEVELOPED TO
CAPTURE AND PLAYBACK VIDEO
FROM A VIDEO CAMERA VIA USB

CABLE.

ATTA MUHAMMAD
2000\9806EE

ELECTRICAL AND COMPUTER ENGINEERING

OCTOBER, 2006

SOFTWARE DEVELOPED TO
CAPTURE AND PLAYBACK VIDEO
FROM A VIDEO CAMERA VIA USB

CABLE.

ATTA MUHAMMAD
2000\9806EE

ELECTRICAL AND COMPUTER ENGINEERING
DEPARTMENT

SUBMITTED IN PARTIAL FULFILLMENT OF THE
. REQUIREMENT FOR THE AWARD OF BACHELOR

OF ENGINEERING (B. ENG) IN ELECTRICAL AND
COMPUTER ENGINEERING SCHOOL OF

I ENGINEERING AND ENGINEERING TECHNOLOGY

FEDERAL UNIVERSITY OF TECHNOLOGY MINNA,
NIGER STATE

OCTOBER, 2006

11

DEDICATION

, dedicate this to my family.

111

DECLARATION

I Atta Muhammad, Declare that this work was done by me and has never been presented
elsewhere for the award of a degree.

,
Atta Muhammad Mr. S.N. Rumala

... ~ ... \.~I.~.~ / oJ;,
Signature and Date Signature and Date

Engr.M.D. Abdullahi External Supen'isor

I
Signature and Date Signature and Date

IV

ACKNOWLEDGEMENT

I send my gratitude to Almighty Allah, The Author and Dispenser of Knowledge and

wisdom for giving me the power to write this project. Thanks to my Mom whom has not only

I
supported me through school but has supported me all my life. Muhammad Ozigis, Bashir

I

Muhammad, Aminu Kandi, Aminu Lawai, Imam, and thanks to Ifeanyi, couldn't have done

this without him.

Thanks to my supervisor, Mr. S.N. Rumala for his time and effort.

v

i
~ ,

1
i
I

1
1

I
l'
I
'I

ABSTRACT

I A program developed to capture video and picture transmitted from a USB type video

1 camera and stores the received data to designated memory. The software was written in java
1
,1 with the Java Media Framework (JMF) application programming interface (API)

I
;1 incorporated to synchronize and control time based data.

I
~
1

f
I
1
1
'J

J
I
I
I
1
j

1
~
j
i

i
j

f
,j
j ,
~

t
I
I
t

I
I

I
I
j

j vi

~}
I
1
I ,

I
j
i

TABLE OF CONTENTS

Cover page .. .

Title Page , 11

Dedication.. III

Declaration............... IV

- v Acknowledgement.

Abstract.. VI

Table of Content.. VII

List of Figures ,.. IX

L'ist of Tables ... X

CHAPTER ONE: Introduction .. .

I I. I Project overview ... , 1

1.2 Aim and Objective ... 2

1.3 Research Methodology .. 2

1.4 Software Overview. 3

1.5 Specifications' 3

1.6 Terms Defined .. 4

CHAPTER TWO: literature review\ Theoretical background 6

2.1 Introduction .. 6

2.2· The Java Media Framework .. 6

VII

2.3 Design goals for the JMF API....................... 7

2.4 Working with time Based Media 8

2.5 Capture Devices, Capture controls.......................... 14

2.6 High level Architecture ·· 15

2.7 Previous works by others... 17

CHAPTER THREE: Design and Implementation 20

3.1 Introduction ... , 20

3.2 Code listings.. 22

I CHAPTER FOUR: Test, Results and Discussions 33
I

4.1 Viewing and capturing............................. 33

I

4.2 Taking snapshots... .36

·4.3 Play back of Video and Audio .. 37

4.4 Setting the output directories .. 38

CHAPTER FIVE: Conclusion and Recommendation 39

5.1 Conclusions ... 39

5.2 Possible Improvements <.. 39

References ... 40

Appendix........................... 41

VIII

List of Figures

Recording and processing time based media .. 16

Viewing and recording videos ... 20

Playing video and audio .. 21

Capture video dialog .. 34

Taking snapshots36

Playing video .. 37

Options dialog box .. 38

IX

List of tables

Common video formats ······································· 1 0

Common audio formats , ... , ., 11

x

CHAPTER ONE

Introduction

1.1 Project overview

Security is some what of a necessity and as the world is relying on solutions provided by

technology, previous methods are being set aside. Virtually all aspects of life have been

touched by technology if not all. This project focuses on the development of a program that

stores captured video and still images as demanded by the user and play them back as

required from a camera via the universal serial bus port or USB. The program makes up the

software component of a security system. The idea of creating a program for video capture

and playback was conceived as a result of the relocation of the school of engineering and

engineering technology to the permanent site of the federal university. Having in place

effective measures of security at the permanent site will increase the safety and more

importantly the subconscious feeling that comes from being in a secure environment of the

people living, working or just giving and getting lectures over there. Prevention is better than

cure, having a system in place to safe guard or watch over lives and property should count as

a plus, although in some cases may not function as such but serve as a deterrent.

The program was adapted from the original idea of a security system software to a more
I ,

functional capture and playback program which could serve various purposes. Other than

security purposes it could also provide spot on observation for instance in laboratory

experiments where a specimen needs to be observed round the clock for physically visible

I changes. With the right hardware in place to work with this software, a system could be

rigged to function as the observer and then storing images for later analysis. Businesses can

monitor and record activities in offices, hallways and warehouses. Home owners can monitor

every thing from the baby's room to the backyard. Also in a close circuit television system it

can provide the software requirement needed to bridge the hardware and the systems user. [n

traffic monitori~g many cities and motorway networks have extensive traffic monitoring

systems, using close circuit television to detect congestion and notice accidents. A more

recent development of close circuit television is close circuit digital photography. In the
I

instance of the necessity for clarity from the captured images. close circuit digital

photography prevails over close circuit television because of the use of mega pixel digital

still cameras that can take 1600 x 1200 pixel resolution images or more of the camera scene

depending on the camera in use.

The program which was written in java was designed to be small. simple, and portable across

platforms and operating systems although Windows is the primary OS it has been designed

for and designed with.

1.2 Aim and objective.

To create a program that will capture and playback video signals transmitted from video

camera to an IBM compatible computer running windows 98/me/2000/XP via a USB 2.0

cable.

1.3 Research methodology.

Primary and secondary sources of data amplified research and development. The primary

source of data involved interviews with people related to some portion of this project and
I

2

personal observation. For secondary data, text books, journals, websites and magazines
I

where engaged.

1.4 Software Overview.

The software was designed to interface a video camera. Running the software on the

Windows Platform, the camera in use will require the video for Windows

(VFW) driver. Ifit where to run on the Linux platform, Video for Linux will be required.

With a camera connected via the Universal Serial Bus (USB) port of the system, the software

makes it possible for the user to view video conveyed from the camera givig the user

alternative choices depending on the number of cameras attached. It also provides the facility

to capture live video from the camera and save the captu:ed video to a file in a video format

&upported by most video players . The video formats supported are A VI(Audio-Video

Interleaved), MOV (Quicktime) and MPG (MPEG-l Video). It offers video size attribute

settings which is measured in pixels, also the video format with respect to color information

(RGB,YUV,C!nepak) and audio formats for cameras attached that support audio capture. The

software allows pictures to be taken and saved.

It incorporates a video/player that was included to provide a means of playing back captured

video and videos that it supports even if they are not sourced from this software.

1.5 Camera specification and operating platform/system issues.

The video camera used to carry out this project is a zenith web cam which matches the

speCifications listed above. It is a low resolution camera with its highest resolution at 640X

3

480 pixels and supports the video for Windows driver. The cameras resolution was a

significant constraint during the development of this program.

The operating platform/system used for this project is the Microsoft Windows XP operating

j;ystem (98, 20QO, NT, Milenium edition and both XP service packs can run the program).

The software was developed specificalry with the following platforms.

I. The Java Media Framework (JMF) versionc2.1.1 e

2. The java development kit (JOK) versions 5.0 update 6.

3. Notepad ++ served as the code editor. The source code was typed and edited within

Notepad.

4. Microsoft Windows XP service pack 2 was the operating system installed on the

systems used ~o develop the software.

5. Exe 4J from EJ Technologies Is a program designed to create executable files. It was

used to create the .EXE file for this program.

6. I Winrar was used for creating and packaging the installer.

1.6 Terms Defined.

• So'ftwa reo

The term software refers to all electronic instructions in the computers memory. this is to

say that without these instructions man cannot put any automated hardware to use. From this

statement, it is recalled that the computer system is only complete if these three things -

hardware. Software and human ware are available.

In the ,science of computer, the tetm software is categorized into two; we have system

software and application software. While the former is responsible for

4

Directing the operation of the computer, the later is installed in the computer to enable man

solve his problem. An example of system software is the operating system which is a

program that directs the operation of the system as well as serving as interface between the

system and the system user.

• Universal Serial Bus (USB)

USB is an open interface standard that has been included on PC motherboards since late

.1997. It is an external bus that supports Plug and Play installation. Using USB, you can
I

connect and disconnect devices without shutting down or restarting your computer. You can

use a single USB port to connect up to 127 peripheral devices (which would mean 127

cameras in relation to this project). The first versions of the USB spec (1.0 and I. I)

supported maximum transfer rates of I Mbyte/sec. version 2.0 of the USB specification

supports transfer rates of 480Mbits/sec [I].

• Media Capture

Time-based media captured from a live source for processing and playback. For example,

audio can be captured from a microphone or a video capture card can be used to obtain video

from a camera.

A capture device might deliver multiple media streams. For example, a video camera

might deliver both audio and video.

5

CHAPTER TWO

Literature review

2.1 Introduction

A clear understanding of the Java Media Framework (JMF) will shed light on the

theoretical background of this project. The following sections walk through the various

aspects of Java Media Framework (JMF) with a bid to give details on the API.

2.2 The Java Media Framework

The Java Media Framework (JMF) is an application programming interface (API) for

incorporating time-based media into Java applications and applets. The Java Media

Framework can be used to develop full Media systems which can play Videos, Audios, view
I

.and capture from a video camera, also capture from an audio device like microphones,

perform RTP (Real-Time transfer Protocol) operations. JMF is also used to develop browser

based web conferencing applications [2].

The JMF API was initially released In \998. The first API which was JMF 1.0 API

enabled programmers to develop Java programs that presented time-based media only. With

the advent of the JMF 2.0 API, the framework was extended to provide support for capturing

and storing medi~ data, controlling the type of processing that is performed during playback,

and performing custom processing on media data streams. In addition, JMF 2.0 defines a

plug-in API that enables advanced developers and technology providers to more easily

cu'stomize and extend JMF functionality. A plug-in is a program or a kind of Sub-API that

enables programmers to increase the capabilities or the level of functionality of the programs.

6

1
j
t

I

It is l,lsually installed into a pre-existing Application or API (API stands for Application

Programming Interface). The version of JMF used for our project is JMF 2.1.1 e API. To use

JMF, 'you won't find it difficult to meet the hardware and software requirements. Your old

J 66-MHz Pentium proves sufficient as long as it has at least 32 MB of RAM.

2.3 Design Goals for the JMF API

The JMF API supports media capture and addresses the needs of application developers

who want additional control over media processing and rendering. It also provides a plug-in

architecture that provides direct access to media data and enables JMF to be more easily

customized and extended. JMF is designed to:

I. Be easy to program

2. Support capturing media data.

3. Enable the development of media streaming and conferencing applications in Java.

4. Enable advanced developers and technology providers to implement custom solutions

based on the existing API and easily integrate new features with the existing framework.

5. Provide access to raw media data.

6. Enable the development of custom, downloadable demultiplexers, codecs, effects

processors, multiplexers, and renderers (JMF plug-ins).

7. Maintain compatibility with other versions of JMF.

7

Theoretical Background

2.4 Working with Time-Based Media

Any data that changes meaningfully with respect to time can be characterized as time­

based media. Audio clips, MIDI sequences, movie clips, and animations are common forms

I of time-based media. Such media data can be obtained from a variety of sources, such as

local or network files, cameras, microphones, and live broadcasts.

• Streaming Media

Streaming Media or time based media, is a term used to describe any flow of data that

requires reception and processing of data in real time. It is basically a steady stream of

information that needs to be addressed, processed and presented on the fly in order to either

present it to the user or record it into a file [3]

• Content Type

The format in which the media data is stored is referred to as its content type. QuickTime,

MPEG, and WAY are all examples of content types. Content type is essentia!!y synonymous

with file type-content type is used because media data is often acquired from sources other

than local fi les.

• Media Streams

A media stream is the media data obtained from a local file, acquired over the network, or

captured from a camera or microphone. Media streams often contain multiple channels of

dam called tracks. For example, a QuickTime file might contain both an audio track and a

8

I
I ,
i
f

I ,

')

\
!

)
I
~

l
I

I
I

~

video track. Media streams that contain multiple tracks are often referred to as multiplexed or

complex media streams.

Demultiplexing is the process of extracting individual tracks from a complex media

stream.

A track's type identifies the kind of data it contains, such as audio or video. The format of

I a track defin~s how the data for the track is structured.

. A media stream can be identified by its location and the protocol used to access it. For

example, a URL might be used to describe the location of a QuickTime file on a local or

remote system. If the file is local, it can be accessed through the FILE protocol. On the other

hand, if it's on a web server, the file can be accessed through the HTTP protocol. A media

locator provides a way to identify the location of a media stream when a URL can't be used.

Media streams can be categorized according to how the data is delivered:

I. Pull--data trapsfer is initiated and controlled from the client side. For example,

Hypertext Transfer Protocol (HTTP) and FILE are pull protocols.

2. Push--the server initiates data transfer and controls the flow of data. For example, Real-
,
time Transport Protocol (RTP) is a push protocol used for streaming media. Similarly,

the SGI MediaBase protocol is a push protocol used for video-on-demand (YO D).

, • Common Media Formats

The following tables identify some of the characteristics of common media formats. When

selecting a format, it's important to take into account the characteristics of the format, the

target environment, and the expectations of the intended audience. For example, if you're

9

I'

delivering media content via the web, you need to pay special attention to the bandwidth

requirements.

The CPU Requirements column characterizes the processing power necessary for optimal

presentation of the specified format. The Bandwidth Requirements column characterizes the

transmission speeds necessary to send or receive data quickly enough for optimal

presentation.

Table 2.3.5.0 Common video formats.

J~~~t·I,Collt~~;T;~~'-rQuality : CPU Requirements Bandwidth Requirements:
I "", "r" l :

, C. i AVI '.
mepak j Q . kT' Medium Low High i UIC Ime

:'MPEG~l-lMP~G High; High High
!~-"" I A VI
i H.261 I RTP Low: Medium Medium

I

i H.263
QuickTime
AVI
RTP

Medium: Medium
i

,
QuickTime I

: JPEG A VI : High ' High
RTP I

I < !,

[Indeo I QuickTime A VI I Medium i Medium
: ___ ,.-_,,,,,,,,', ___ ,_,,,, __ ,_,,,,,,,,,,,,,,,,,,,,,, """""""1",, , ,

10

Low

High

Medium

l

)

1

I
!

1

I
I
1

1
I
i

I
t
I
j
j

Table 2.3.5.1 Common audio formats.

j,Fn.rniat TC.~nt~~-iT~~~-Q~aiii; . CPU Requirements Bandwidth Requirements
,--------r--.. ---.
!' IA~I. •.
: PCM I QUlckTlme . HIgh
, IWAV

I
i--'--~ -----r-~.--~". --- . -" "
. i AVI

I QuickTime
i Mu-Law I W AV

I
IRTP

! - T' .
: ADPCM ,AV:1 .

Low

Low

Low

! (DVI QUlckTlme
IMA4) WAY

! Medium Medium

iRTP
!

I MPEG-\ ! MPEG High High
r-~---~---'--"'" ~ .. --......... -........ .

MPEG MPEG High
: Layer3

High

i GSM I fu v---r ~o~ . Low

r--- ··········- .. r··············
: iWAV
. G.723.\ I RTP . Medium

!
. Medium

High

High

• Medium

High

Medium

i
! Low

Low

Some formats are designed with particular applications and requirements in mind. High-
I

quality, high-bandwidth formats are generally targeted toward CD-ROM or local storage

applications. H.26\ and H.263 are generally used for video conferencing applications and are

optimized for video where there's not a lot of action. Similarly, G.723 is typically used to

produce low bit-rate speech for telephony applications.

II

• Media Presentation

. Most time-based media is audio or video data that can be presented through output

devices such as speakers and monitors. Such devices are the ~ost common destination for
,

media data output. Media stre.ams can also be sent to other destinations--for example, saved

to a file or transmitted across the network. An output destination for media data is sometimes

referred to as a data sink.

• Presentation Controls

While a media stream is being presented, VCR-style presentation controls are often

provided to enable the user to control playback. For example, a control panel for a movie

player might offer buttons for stopping, starting, fast-forwarding, and rewinding the movie.

• Presentation Quality

The quality of the presentation of a media stream depends on several factors, including:

I. The compression scheme used

2. The processing capability of the playback system

I 3. The band'fidth available (for media streams acquired over the network)

Tra~itionally, the higher the quality, the larger the file size and the greater the processing

power and bandwidth required. Bandwidth is usually represented as the number of bits that

are transmitted in a certain period of time--the bit rate.

I To achieve high-quality video presentations, the number of frames displayed in each period

of time (the frame rate) should be as high as possible. Usually movies at a frame rate of 30

12

i I

I
frames-per-second are considered indistinguishable from regular TV broadcasts or video

tapes.

• Media Processing

A media clip must be processed before it is played. To process a media clip the program
I

must access a media source, create a Controller for that source and output the

'media [4].

In most instances, the data in a media stream is manipulated before it is presented to the

user. Generally, a series of processing operations occur before presentation:

I. If the stream is multiplexed, the individual tracks are extracted,

2. If the individual tracks are compressed, they are decoded,

3. I f necessary, the tracks are converted to a di fferent fonnat.

4. Effect filters are applied to the decoded tracks (if desired).

The tracks are then delivered to the appropriate output device. If the media stream is to be

stored instead of rendered to an output device, the processing stages might differ slightly, For

example, if you wanted to capture audio and video from a video camera, process the data,

and save it to a file:

1. The audio and video tracks would be captured.

2. Effect filters would be applied to the raw tracks (if desired).

3. The individual tracks would be encoded.

4. The compressed tracks would be multiplexed into a single media stream.

5. The fl1ultiplexed media stream would then be saved to a file.

13

j
Demultipiexers and Multiplexers

A demultiplexer extracts individual tracks of media data from a multiplexed media stream. A

multiplexer performs the opposite function, it takes individual tracks of media data and

merges them into a single multiplexed media stream.

2.5 Capture Devices

To capture time-based media you need specialized hardware--for example, to capture

audio from a live source, you need a microphone and an appropriate audio card. Similarly,

capturing a TV broadcast requires a TV tuner and an appropriate video capture card. Most

systems provide a query mechanism to find out what capture devices are available.

Capture devices can be characterized as either push or pull sources. For example, a still
I

camera is a pull source--the user controls when to capture an image. A microphone is a push

source--the liye source continuously provides a stream of audio.

The format of a captured media stream depends on the processing performed by the capture

1 device. Some devices do very little processing and deliver raw, uncompressed data. Other

capture devices might deliver the data in a compressed format.

• Capture Controls

Controls are sometimes provided to enable the user to manage the capture process. For

example, a capture control panel might enable the user to specify the data rate and encoding

type for the captured stream and start and stop the capture process.

14

lavaTM Media Framework (JMF) provides a unified architecture and messaging protocol for

managing the acquisition, processing, and delivery of time-based media data. JMF is

designed to support most standard media content types, such as AIFF, AU, A VI, GSM,

MIDI, MPEG, QuickTime, RMF, and WA V.

By exploiting the advantages of the Java platform, JMF delivers the promise of "Write Once,

Run AnywhereTM" to developers who want to use media such as audio and video in their

Java programs. JMF provides a common cross-platform Java API for accessing underlying

media frameworks. JMF implementations can leverage the capabilities of the underlying

operating system, while developers can easily create portable Java programs that feature

time-based media by writing to the JMF API.

With JMF, you can easily create applets and applications that present, capture,

manipulate, and store time-based media. The framework enables advanced developers and

technology providers to perform custom processing of raw media data and seamlessly extend

JMF to support additional content types and formats, optimize handling of supported formats,

and create new presentation mechanisms.

2.6 High-Level Architecture

Devices such as tape decks and VCRs provide a familiar model for recording, processing,

I and presenting time-based media. When you playa movie using a VCR, you provide the

media stream to the VCR by inserting a video tape. The VCR reads and interprets the data on

the tape and sends appropriate signals to your television and speakers.

15

I
1 ,
j

I
J

Video tape
(Data Source)

VCR
(Player)

Output Devices
(DestinatIon)

Fig.2.6 Recording, processing, and presenting time-based media.

JMF uses this same basic model. A data source encapsulates the media stream much like a

video tape and a player provides processing and control mechanisms similar to a VCR.

Playing and cap~uring audio and video with JMF requires the appropriate input and output

devices such as microphones, cameras, speakers, and monitors.

Data sources and players are integral parts of JMF's high-level API for managing the

capture, presentation, and processing of time-based media. JMF also provides a lower-level

API that supports the seamless integration of custom processing components and extensions.

This layering provides Java developers with an easy-to-use API for incorporating time-based

media into Java programs while maintaining the flexibility and extensibility required to

support advanced media applications and future media technologies.

• Controls

JMF Control provides a mechanism for setting and querying attributes of an object. A

Control often provides access to a corresponding user interface component that enables user

16

control oYer an object's attributes. Many JMF objects expose Controls, including Controller

I objects, DataSource objects, DataSink objects, and JMF plug-ins.

Any JMF object that wants to provide access to its corresponding Control objects can

implement the Controls interface. Controls define methods for retrieving associated Control

objects. DataSource and PlugIn use the Controls interface to provide access to their Control

objects.

, • User Interface Components

A Control can provide access to a user interface Component that exposes its control

behaviour to the end user. To get the default user interface component for a particular

Control, you call getControlComponent. This method returns an A WT Component that you

can add to your applet's presentation space or application window.

A Controller might also provide access to user interface Component. [5]

2.7 Previous works by others

Cam Wizard- Is CCTV software, turns any PC and webcam into a full motion detection,

CCTV camera & VCR system .. Cam Wizard detects motion and starts recording into a

WMV file (Windows Media Video). The WMV movie can also be sent to any email address.

Cam Wizard is compatible with all USB web cams. A full year of CCTV web cam

surveillance video capture can fit onto a 100GB HD. With loud audio alarm siren function.

Also great for covert CCTV surveillance.

17

EasyCCTV- captures images up to 30 frames per second from any USB video device. The

prpgram performs simultaneous recording. Your camera(s) can be used as part of a

surveillance system. When the program detects motion in the monitored area, it sounds an

I

alarm, e-mails you captured images, or records video. The application is password protected

and may be used as home alarm.

River Past Cam Do- is an easy-to-use and fast webcam recording software. Pick the

webcam from the list and record to A VI, DivX, MKV, OGM, WMV, Xvid, or MOV, MP4 or

3GP/3Gp2 (Optional). Pick your video codec and quality setting. Option to record audio

from any sources, including microphone, line-in, or speakers. It has a built-in scheduler for

unattended recording. You can set the start time and/or the stop time.

Visual Hindsight Home Edition Monitor your home or business over the Internet with Visual

Hindsight--powerful, simple to use, affordable to ovm! Visual Hindsight is the ideal remote

network camera surveillance and recording tool for private or commercial use. Perfect for

remote monitoring of convenience stores, gas stations, day care centres, retirement facilities,

hospitals, laboratories, commercial property, private homes, and more.

Open Video Capturer- Open Video Capture can capture video from webcam, TV Tuner

card, digital video, digital camera and other capture devices. It can set video compression

codec and audio compression codec, output frame size and frame rate. It also snapshots

pictures with the hotkey. It can set each capture device's properties, preview and record real-

18

time video, watch TV if TV Tuner is installed. It encodes A VI files with DIVX, XYIO, DY

Video Encoder, etc.

WebCam Monitor- W'ebCam Monitor turns your PC into a video surveillance system that

allows you to monitor your home/office from a remote location.

WebCam ,Monitor can be configured to manually or automatically capture snapshot

images, or record video and audio images. When an alarm condition is detected, the program

I

can flash your computer screen, sound an audible alarm, or send you an email.

TinCam- TinCam is a powerful webcam program that will update your homepage with

webcam pictures or a live video stream. TinCam will also create a webcam homepage for

you so you can get you live webcam running in no time. It is easy to use and has many great

features: Easily creates a webcam homepage, Interval updates, Scheduled updates, Motion

detection updates, .live video streaming, Supports multiple cameras, advanced captions,

Overlay image, pictures before upload, Records .A VI videos with compression, Setup

Wizard for easy and fast setup. Starts with windows and runs unnoticed in system tray.

19

CHAPTER THREE

Design and Implementation

3.1 Introduction

This section of the project deals with the design of the software which is adequately

depicted with the flow charts shown

~~)
'-

•• \'s

//~
YES <-' "',,"".

'\,"""~

" ". " "- ,/
',/,1

Fig.3~O Viewing and recording videos\ capturing images

20

p

(START)

...

YES

YES
y

PlAY AUOIO AND
DISPLAY AUDIO

CONTROLS

YES

YES

PLAY VIDEO AND
DISPlAY VIDEO

CONTROLS

NO

Fig.3.1 Playing video and audio

To create a program in Java, the steps are as follows

YES

l. Create a source file-A source file contains text, written in the Java programming language, that

you and other programmers can understand. You can use any text editor to create and edit source

files.

21

2. Compile the source file into a .class file.-The Java compiler, javac, takes your source file and

translates its text into instructions that the lava Virtual Machine can understand. The instructions

contained within this file are known as bytecodes. Compiling the source file entailed bringing up

a shell, or "command," winw>w (typing cmd in the run window). The prompt shows the current

directory. The current directory wili have to be changed to the directory where your file is

lbeated. At the prompt, type the command javac name of App.java and press Enter where the text

in italics should contain the name source file. If your prompt reappears without error messages

the program was successfully compiled. The compiler has generated a bytecode file, name of

App.c1ass.

3. Run the program.-The Java launcher (java) uses the Java Virtual Machine to run your

application.

In the same directory, enter at the prompt java then a space name of App .

3.2 CODE LISTINGS

The codes generated to execute this project are listed below.

• GetCapture Devicelnfo.java

//importing/including external libraries and code files

import javax.swing. *;
import javax.swing.10ptionPane. *:
import javax.swing.border. *:
importjavax.swing.BorderFactory. *;
importjava.awt.*;
import ja~a io. *;
import java uti I. *;
import java.awt.Component:
import javax.swing.10ptionPane:
import javaX.media. *;
import javax.media.protocol. *;
import javax.media. format. Video Format:
import javax.media. format.AudioFormat;

.. import javaawt.event. *;
import java",swing.event. *;
import java. net. Mal formedURL Except ion:

22

import javax.s wingJ F ileChooser;
import javax.media.control.*;
import javax.media.Manager. *;
import javax.media. format.·;

I importjavaawt.image.*;
import javax.imageio. *;
import javax.media. util.ButTerTol mage. *;
import java'l.media.util. *;
.. _ ... __ _-_ -_ - ---_ ---_ - _-
public class getCOInfo
{
VideoFormat formats;
Vector device list;
CaptureDevicelnfo COInfo;
MediaLocator locator;
DataSource CCTVSource;
Processor videoProcessor I;
Processor videoProcessor2;
StateConfigurer SCF;
FileTypeDescriptor FTD;
DBtaSink dataSink;
JlntemalFrame jif;

JButton recordMovie;
JButton pictureCapture;
JButton cancel;
JPanel panel;
MediaLocator dest;
DataSource source;
JComboBox format;
JComboBox devices;
private double scaleFactor;
private ButTerTolmage butTerTolmage;
ButTeredlmage image;
ButTeredlmage im;
ButTer buf;
String deviceName;

public getCDlnfo(final JDesktopPane jdpane, tinallFrame frame)
(
formats = new VideoFormat(VideoFormat.YUV);

deviceJist = CaptureDeviceManager.getDeviceList(formats);

indeviceJist.sizeO> o}
(

final JOialog dial = new JOialog(frame. "Select Capture Device". true):
IPanei OPanel = new JPaneIO;

IPanel bt = new JPanelO;
I

dia1.setDefauItCloseOperation(JDialog.OISPOSE _ ON_CLOSE);
dial.setSize(300, 170);
dial.setModal(true);

OPanel.setLayout(null);
DPanel.setBorder(new TitledBorder("Capture Device"»;
DPanel.setBackground(Color.white);

bt.setLayout(new FlowLayout());

Dimension win = dial.getSizeO;
Dimension opr = Toolkit.getDefaultToolkitO.getScreenSize():

23

int width = (opr.width-win.width)/2;
int height = (opr.height-win.height)/2;
dial.setLocation(width. hcight);

JLabel captureDevs = new JLabel("Capture Deviccs:");
devices = new JComboBox(device_list);
devices.setMaximumRowCount(20);

JButton okay = new JButton("Okay");
JButton cancel '" new lButton("Cancel");

bt.add(okay);
bt.add(cancel);

captureDevs.se18ounds(5. 15. 100. 30);

DPanel.add(captureDevs);

devices.setBounds(IOO. 17, 184.22);

DPanel.add(devices);
dial.getContentPaneO.add(DPanel, BorderLayout.CENTER):
dial.getContentPaneO.add(bt. BorderLayout.SOUTH);

okay.addActionListener(new ActionListenerO
(

public void actionPerformed(ActionEvent ok)
{

CDlnfo = (CaptureDevicelnfo)devices.getSelectedltemO:
dial.dispose();

jif= new llnternaIFrame("Capture Direct from Camera". false. true. false. true):
Container ct = jif.getContentPane():

CCTVVideoCapture CVC = new CCTVVideoCapture(jif. frame. jdpane. COlnfo):

ct.add(CVC. BorderLayout.CENTER):

jif.setSize(600, 500);
jif.setDefauItCloseOperation(JlnternaIFrame.DISPOSE ON CLOSE):
jif.setBackground(Color.gray); - -
Icon ic = new Imagelcon("LOGO l.gir');
jif.setFramelcon(ie):

Dimension win = jif.getSizeO:
Dimension opr '" Toolkit.getDefaultToolkitO.getScreenSizeO:
int width = (opr.width-win.width)/2;
int height'" (opr.height-win.hcight)/6;

jif.sctLocation(width, height);
try
(

j if.setSelected(true):
)
catch(Exception ecf) (ecf.toStringO;)
jdpane.setSelectedFrame(jif):
jdpane.add(jif);
ji f.setVisible(true);

)
));

cancel.addActionListener(new ActionListcncr()
{

24

public void actionPerformed(ActionEvent can)

{

}
});

dial.disposeO:

dial.setVisible(truel:

else
(

JOptionPane.showMessageDialog(null, "Your camera is not connected". "No video camera found",

JOptionPane. WARNING_MESSAGE);
return;

• CcrVVideoCapture,java

//importing/including external libraries and code files

import javax.swing.";
import javax.swingJOptionPane. *;
import javax.swing.border.";
import javax.swing. BorderFactory.":
import javaawt. *;
import java.io.";
importjava.util. *;
import java.awt.Component;
import javax.swingJOptionPane:
import javax.media. ";
import javax.media.protocol.":
import javax.media. format. Video Format:
import javax. media. format.AudioFormat;
import java.awt.event.·;
import javax.swing.event. *;
import javanet.Mal formedURLException;
import javax.swing.1FileChooser;
import javax.media.control.·;
import javax. med ia. Manager .• ;
import javax.media. format.·;
import javaawt. image.";
import javax.imageio.";
importjavax.media.utiI.BufferTolmage.*;
import javax.media.util. *;

public class CCTVVideoCapture extends lPanel implements Runnable
{
VideoFormat formats;
Vector device list;
MediaLocatorlocator;
DataSource CCTVSource;
Processor video Processor I:
Processor videoProcessor2;
s'tateConfigurer SCF;
FileTypeDescriptor FTD:

25

DataSink dataSink;
CaptureDevicelnfo cdi;

JButton ;ecordMovie;
JButton pictureCapture;
JButton cancel;

, JPanel panel;
MediaLocator dest;
DataSource source;
JComboBox format;
}ComboBox devices;
private double scaleFactor;
private BufferTolmage butTerTolmage:
Bufferedlmage image;
BufTeredlmage im;
Buffer buf:
String deviceName;
String FNarne;·
String DIR;

Thread logot;

public void runO
{

I

while(true)
{

J

this.repaintO:
try
{
Thread.sleep(100);

J
catch(Exception e){ J

public CCTVVideoCapture(final 1IntemalFrame own. final JFrame owner. final JDesktopPane jdpane. final
CaptureDevicelnfo CD Info)
{

logot = new Thread(this);
this. setLayout(new 8orderLayout());
panel = new JPaneIO;
panel.setLayout(new FlowLayout());
cdi = CDInfo;

try
{

locator = CDInfo.getLocatorO;
CCTVSource = Manager.createDataSource(locator):
CCTVSource = Manager. createCloneableDataSource(CCTVSource);

catch(IOException e)
{

JOptionPane.showMessageDialog(null. "The Capture Device you selected might currently be in
use.\nPlease select another Capture device or Close the process making use\nofthis capture device".
"Capture Device in Use", JOptionPane.WARNlNG_MESSAGE);

}

own.setVisible(false);
return;

catch(Exception e)
{

26

JOptionPane.showMessageDialog(null, "The Capture Device you selected might ~urrentl)' be i~ "
use.\nPlease select another Capture device or Close the process making use\nofthls capture devIce,
"Capture Device in Use", JOptionPanc.WARNING_MESSAGE):

own.setVisible(false):
return;

try
(

video Processor I = Manager .createProcessor(CCTVSource):
}
catch (IOException e)
(

}

JOptionPane.showMessageDialog(nuIL "10 Exception creating processor: "+ e.getMessage(). "Error".
JOptionPane. WARNING_MESSAGE):

return;

catch (NoProcessorException e)
(

}

JOptionPane.showMessageDialog(nulL "Exception creating processor: "+ e.getMessageO. "Error".
JOptionPane. WARNING_MESSAGE):

return;

SCF = new StateContigurer(videoProcessorl):
if{!SCF.configure(10000»
(

JOptionPane.showMessageDialog(nulL "cannot configure processor", "Error".
JOptionPane.WARNING_MESSAGE):

return;

video Processor I .setContentDescriptor(null):

if{!SCF.realize(I 0000»
(

}

JOptionPane.showMessageDialog(null, "cannot realize processor", "Error".
JOptionPane. WARNING_MESSAGE);

return;

video Processor I.start();
videoProcessor I .get V isuaIComponentO.setBackground(Co lor .gray);

pictureCapture = new JButton("Take Snapshot");
pictureCapture.addActionListener(new ActionListener()
(

public void actionPerformed(ActionEvent PCT)
(

if(videoProcessorl = null)
(

return;

video Processor I.stop();
video Processor I.deallocate();
videoProcessor l.closeO;

final lDialog dial = new JDialog(owner. "Take Snapshot". true);
lPanel DPanel = new JPanelO;
lPanel bt = new JPanelO:
dial.setDefauItCloseOperation(JDialog.DISPOSE _ ON _ CLOS E);

27

}
));

dial.setS ize(300. J 70):
dial.setModal(true):
DPane! .setLayout(nu II):
DPanel.setBorder(new TitledBorder("Save Picture")):
DPanel.setBackground(Color.white):
bt.setLayout(new FlowLayout()}:

Dimension win 1 = dial.getSizeO:
Dimension oprl = Toolkit.getDefaultToolkitO.getScreenSize():
int width 1 '" (opr J • width-win I. width)/2:
int height J = (opr I.height-win l.height)/2:
dial.setLocation(width l, height J}:

JLabel captureDevs = new JLabel("Entcr File Name:"):
final HextField filename = new HextField(I 0):
JButton okay = new JButton("Okay"):
JButton cancel = new JButton("Cancel"):

bt.add(okay);
bt.add(cancel):
captureDevs.setBounds(5. 15. 100.30):
DPanel.add(captureDevs):
ftlenamll.setBounds(100, 17, 184,22):
DPanel.add(fiIename);
dial.getContentPaneO.add(DPanel. BorderLayout.CENTER):
dial.getContentPaneO.add(bt, BorderLayout.SOUTH):

okay.addActionListener(new ActionListener()

I
public void actionPerformed(ActionEvent ok)
{

tty

I

}

ObjectlnputStream istream = new ObjectlnputStream(new
BufferedlnputStrcam(new FilelnputStream("picDIR.cctv"»):

DIR = (String)istream.readObjectO:
FNarne = DIR+filename.getText():

catch(Exception stre)
{

}

JOplionPane.showMessageDialog(null. "Error reading URL". "Error".
JOptionPane.ERROR_MESSAGE):

stre.printStackTraceO:

dial.dispose():

JMFCapture camera;
camera = new JMFCapture(300, FNarne):

camera.closeO; II close down the camera
own.disposeO:

cancel.addActionListcner(new ActionListencr()
(.

public void actionPerformed(ActionEvent can)
{

dial.disposeO:

28

own.disposeO;
}

));
dial.setVisible(true);

JlnternalFramejif=" new JlnternaIFrame("Capture Direct from Camera". true. true. true. true):

Container ct =" jif.getContentPaneO;
CCTVVideoCapture I CVC == new CCTVVideoCapture I (jif. owner. jdpane. CDlnfo):

ct.add(CVC, BorderLayout.CENTER);
jif.setSize(600, 500);
jif.setDefaultCloseOperation(JlnternaIFrame.DIS pas E _ ON _CLOSE):
jif.setBackground(Color.gray):
Icon ic = new Imagelcon("LOGO I.gir·):
jif.setFramelcon(ic):

Dimetlsion win =" jif.getSizeO:
Dimension opr =" Toolkit.getDefaultToolkitO.getScreenSize();
int width = (opr.width-win.width)/2;
int height == (opr.height-win.height)/6;
jif.setLocation(width, height);
jdpane.setSelectedF rame(j i I):
jdpane.add(jit);
j i r.set Visi ble(true);

}
});

recordMovie == new lButton("Record Movie");
recordMovie.addActionListener(new ActionListener()
(

public void actionPerformed(ActionEvent EET)
(

if(videoProcessorl = null)
return:
video Processor I.stop();
videoProcessor I.deallocate();
videoProcessor l.closeO;
VideoCapture capture == new VideoCapture(owner. own. jdpane. CDlnfo);

)
));
cancel = new lButton("Cancel");
cancel.addActionListener(new ActionListenerO
(

public void actionPerformed(ActionEvent canc)
(

}

if(videoProcessorl = null)
return;
videoProcessor I.stop();
video Processor I.deallocate();
video Processor l.closeO;
own.disposeO;

});
panel.add(recordMovie);
panel.add(pictureCapture);

panel.add(cancel);
this.add(videoProcessorl.getControIPaneIComponent(). BorderLayout.NORTH);
this.add(videoProcessorl.getVisuaIComponentO, BorderLayout.CENTER):
this.add(panel. BorderLayout.SOUTH);

logot.startO;

29

private void saveSnap(Bufferedlmage im. String fnm)
/I Save image as }PG
(
Syst~m.out.println("Saving image");
try
(

}

ImageIO.write(im, "jpg". new File(fnm+".jpg");
JOptionPane.showMessageDialog(nuli. "Image Saved Successfully". "Success",
JOptionPane.INFORMATION _MESSAGE);

catch(IOException e)
(

JOptionPane.showMessageDialog(null. "Could not save Image". "Not Successful".
JOptionPane.INFORMATION_MESSAGE);

e.printStackTrace();
I

}

class JMFCaplure
{

private int size = 300;
private PI~er p;
private FrameGrabbingControl fg;
private boolean closed Device;
private static final String CAP_LOCATOR = "vfw:lIO";
CaptureDeviceinfo devlnfo = null;

private MediaLocator ftndMediaO
(

Vector devices = CaptureDeviceManager.getDeviceList(null);
devlnfo = cdi; II(CaptureDeviceinfo) deviceName;
return devlnfo.getLocatorO; 1/ this method may not work

} II end offtndMediaO

public JMFCapture(int sz. String FName)
{

size = sz;
closedDevice = true; II since device is not available yet
II link player to capture device
try
(

}

MediaLocator ml = findMediaO;
p = Manager.createRealizedPlayer(ml); 1/ stage 2
System.out.println("Created player");

catch (Exception e)
(

}

System.out.println("Failed to create player");
return;

II create the frame grabber (stage 3)
fg = (FrameGrabbingControl) p.getControl("javax.media.controI.FrameGrabbingControl");

if(fg= null)
(

}

System.out.println("Frame grabber could not be created"):
return;

System.out.println("Frame Grabber created"):
"wait until the player has slarted (stage 4)

30

System.out.println("Starting the player ... ");
try
(

p.start();
System.out.println("player Started");

I
catch (Exception e2)
{

~2.printStackTraceO;

waitForBufferTolmageO: II stage 5
System.out.println("BufTerToimage: "+bufTerTolmage);
Systtm.out.println("Buffer: "+bul);

Image im = bufferTolmage.createlmage(buf);
if(im = null)
(

System.out.println(''No grabbed image");

else
(

System.out.println("lmage: "+im);
}
image = makeBIM(im);
saveSnap(image. FName):

} II end of JMFCaptureO

void waitForBufTerToimageO
(

boolean result = hasBufTerTolmageO;

while(!result)
(

result = hasBufferTolmageO:
I

I

private boolean hasButTerTolmageO
{

buf= fg.grabFrameO; II take a snap
while (buf== null)
(

}

System.out.println("No grabbed frame");
return false:

II there is a butTer. but check if it's empty or not

VideoFormat vf= (Video Formal) bufgetFormatO:
while(vf= null)
{

}

System.out.println("No video format");
return false;

System.out.println("Video format: " + vI);

int width = vf.getSizeO.width;
int height = vf.getSizeO.height:
if (width> height)
scale Factor = «double) size) / width:

31

else
scaleFactor = «double) size) I height;
1/ initialize bufTerTolmage with the video format info.
bufTerTolmage = new BufTerTolmage(vf);
return true;

} II end ofhasBufTerTolmageO

private BufTeredlmage makeBIM(lmage im)
(
BufTeredlmage copy = new Bufferedlmage(size. size. BufferedlmageTYPE_fNT _RGB):
II create a graphics context
Graphics2D g2d = copy.createGraphicsO;
1/ image --> resized BufTeredlmage
setScale(g2d, im);
g2d.drawlmage(im.O,O.null);
g2d.dispose();

return copy;
} "end ofmakeBlMO

private void setScale(Graphics2D g2d, Image im)
(

if (scaleFactor = 0.0) ("scale not yet set
int1width = im.getWidth(null); " get the image's dimensions
int height = im.getHeight(null):
if (width > height)
scaleFactor = «double) size) I width;
else I

scaleFactor = «double) size) I height;
}
g2d.scale(scaleFactor, scaleFactor); " scale the context

synchronized public BufTeredlmage grablmageO
{

if(c1osedDevice)
return null;
System.out.printin("BufTerTolmage: "+bufferTolmage):
Image im = bufTerTolmage.createlmage(buf):
System.out.println("lmage: "+im):
if(im = null)
{ .

}

System.out.println("No grabbed image"):
return null:

return makeBIM(im); II image --> Bufferedlmage
} II end of grablmageO

synchronized public void closeO
{

p.c1oseO;
c10sedDevice = true;

Due,to maximum page constraints, the codes where not listed in their entirety.

32

CHAPTER FOUR

Tests, Results and Discussion

4.1 Viewing and Capturing Video and Audio from Capture Devices

To view from the Video Camera, launch the software (Digital Eye) then click on the

"Action" menu and select the "View video from Cam" menu item. You are prompted with a

dialog box containing a combo box with a list of the Video cameras and other capture

devices like Microphones connected to your computer, selecting any of the capture devices

and clicking on the "Okay" button disposes the dialog box after which you are let to view or

listen to the output from the capture device. If the capture device is a Video Camera, you will

see a live video being displayed on the opened window else if it was a microphone you will

hear your voice from the speakers of the computer.
I

You can capture the current event and save it as a file on your system for playback later.

Video fild are captured and saved if you are using a Video Camera. You can also take

snapshots with the Video Camera and save it to your system as a Picture file (JP,EG).

To capture Video from the camera, click on the "Record Movie" in the open window (i.e.

the View video from Cam menu item). On clicking this button, you are prompted with a

dialog box packed with various settings needed to compose or build up a video. A screen

shot of the dialog box titled "Capture Video" is presented below;

33

FMe Format ~k.ji~].

J Audio

YUV 44100

160x12O •

Mono J Stereo

8-6~ .f \6-6it

Fig.4.1 Capture video dialog box

The settings present in the dialog box are:

• File Format: This setting deal with the extension of the video file which

determines the application that can playback the video file. E.g. the Quicktime format

(.MOV) is originally designed to playback with the Quicktime Application from

Apple Computers, so if you don't have this application installed, you might not be

able to play back a video file with this format. Some other applications playback this

format like the Nero Media Player. Other formats supported by this Project

(Software) include the Video for Windows format (.A VI) and MPEG format (.mpg).

• Video Settings: This setting deals with the format which the Video is encoded

with and the screen resolution (screen area which the video occupies) of the video.

34

I
t
f
1
I

i
J
j

1
j

I
j

I
1
f
i
I

I
J
j
j

j
1
1

The Video formats available in this software includes: YUV, RGB, CINEPAK,

H.261, H.263 and the resolutions available are: 160 x 120, 320 x 240, 640 x 480, 800

x 600, and 1024 x 768. Note that not all formats and resolution listed above might be

supported by your camera. Test each of the format and resolution to get your desired

resolution which is supported by your camera.

• Audio Settings: The audio settings contain information needed for encoding the

audio within the video, information's like the frequency which the audio plays, the bit

rate and the sound quality (Mono or Stereo). If after capturing you don't hear any

audio while the video plays back then your camera might not have a microphone or

sound system built into it. You can attach an external microphone to your system to

serve as your sound capture facility.

Satisfied with the settings, you can then go on to click on the start button to begin capturing.

Clicking this button presents a dialog box asking you to enter the name which you wish to

give the video file. After entering the name, the capture begins.

When you are done with capturing, click on the End button to stop the capture process. The

"Start" and "Exit" buttons will be enabled once again along with other components on the

dialog box. To exit the "Capture Video" dialog box. click on the exit button. This button

closes the dialog and re-opens the live video view from the Video camera.

35

4.2 Taking Snapshots

To take a snapshot of the Camera's immediate view, click on the "Take Snapshot" button.

On clicking this button, the picture is taken and you are prompted to enter the filename for
I

the picture file. Note that depending on the speed of your camera and Video formats
.

supported by ypur camera, there might be a slight delay in the picture capture. If your camera

is a bit slow and supports few video formats, the program takes some time to locate the video

I format supported by the camera before it snaps. If the Snapshot process was successful, you

will get a message telling you that the image was successfully saved else you get a message

telling that there was an error during the process.

Fig.4.2 Taking snapshots

Clicking on the pause button at the upper left part of the window pauses the live view from

the camera. To exit this window, click on the "Cancel" button

36

4.3 Playback of Video and Audio files

For this functionality, click on the "Actions" menu and select the "Play Captured Videos"

menu item. After selecting this menu item you are prompted with an "Open" dialog box to

enable you select the Video or Audio file which you want to playback. Note that this project

dissertation does not support all video or audio files. Video files supported include files with

extension .jvfOV, .A VI, .mpg, .SWF and a host of others but the popular .DA T format for

YCD (Video Compact Disk) files is not supported. Audio files supported include .mp3, Sun

I
Audio (.au) and a host ofothers but formats like The Windows Media Audio (.WMA) is not

supported. All video captured with this software is supported.

After selecting the video file of your choice, click on the "Open" button within the dialog.

This begins the playback of the video. A window opens up with the video being played back.

The video controls are located at the top of the window. To stop the playing video, click on

the "Stop" buttol) at the lower end of the window and to close this window, click on the

"Cancel" button. Below is a screen shot of a playing video.

Fig.4.3 playing video

37

To play another video or change the current playing video, click on "Play another Video"

button then select another video.

4.4 Setting the output directories for Video and picture files captured

You can set the location where your video and picture files are stored each time you

capture and save videos and audios.

To set the output directories for video and picture files captured, select the "Options"

menu item from the "Actions" menu. A dialog box is opened with two text fields on it, one

holding the path where your captured pictures are and the other holding the path where your

captured videos are. To change this, click on the "Browse" button beside each text field and

select the directory (folder) where you want your files to be stored then cl ick on the "Okay"
I

button to save your changes. The dialog box looks like this:

Options

File Output Directories

Pictures: C:\Pictures_CCTV\

Videos:

Fig.4.4 Options dialog box,

38

CHAPTER FIVE

Conclusions and Recommendations

5.1 Conclusions.

The objective of this project which was realized was to create a program that will capture

and playback video' received from a video camera. The source code was generated and

compiled and virtually all aspects went according to plan. The code bridges the system and

the external peripheral which in this case is a video camera required to feed data into the

system via the universal serial bus (USB) to a system operating on the Windows platform.

The program was written in java which is a programming language created and updated by

Sun Microsystems.

5.2 Possible improvements.

Further work could be done in the following area to enhance the softwares functionality
,

1. Capture could be configured to automatically capture snapshot images, or record video and
.

audio images. A ~otkey could be could be incorporated to take handle such. One press from a

designated hotkey initiates image capture and storage.

2'. A login process could be designed to restrict access to the softwares capabilities; the flow

charts shown in appendix I and 2could very well do the job.

3. The program could be enhanced to detect motion in monitored areas; it sounds an alarm,

stores captured images or records video when motion is detected.

39

References

[1 J http://en.wikipedia.orglwikiluniversal serial bus

[2JArticIe by Pramod Jain and Yayati Kasralikar, Web conferencing using JMF

, [3JArticIe by Gal Ratner, Focus on Java, inverted Software page I

[4JD&A Deitel and Associate, Java how to program, , published by Prentice I-Iall pg 1246

[5J Sun Microsystems, java Media Frame Work API Guide, Nov 19 1999

Miscellaneous references

Article by David Fischer, Java programming examples, 23 rd Jan 2003

Article by Budi Kurniawan, posted on www.javaworld.com/feedback

Elliotte Rusty Harold, Java 110, First Edition March 1999

Bruce Eckel, Thinking in Java second edition, published by Prentice-Hall mid-June, 2000

Sun Microsystems, the Java tutorial, published by Sun Microsystems.

40

~
\

, I
I
I

1~-1 I
I

NO

CHARACTER
NAME.NVMERIC

COUNTER.
PASSWORD

LET THE USER
USE THE

SYSTEM APf>

NO

NO

Flowcharts

•

NO /ISCHANGE
- "~SWORO CLICKED

NO

I YES YES

(9

Appendix 1

41

I.

..
CHI>.RACT'II OW N.Wf CtWW:Tl'1I
0.0 r AS3WOAD.CHA".'-'CrfR NtW

k4ME, \~HMU,G!'fR NEW P"'.$9\-'(~ll

ACCEPT OLD
NAME

AC~PTOlO
PASSWORD

! : ..

~YES

YES

ENABLE NEW
NAME.NEW

PASSWORD AND
OKBUTiON

ACCEPT
NEW NAME

AND
PASSWORD

NO .. NO

YES

.. -- ---- ------ ----- -- -- ----------1

CHANGE
USERNAME AND

PASSWORD

f:<ETURNTO
LOGIN BOX ..

Appendix 2

42

S CANCEL NO, C7----
YES

