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ABSTRACT 

As a need to reduce cost and minimise losses associated with downtime, early fault 

diagnosis in Induction Motors (IM) has become necessary for more reliable, efficient and 

productive industrial maintenance practices. This research is based on the Extended Park 

Vector Approach (EPVA) in diagnosing one of the earliest manifestations of stator faults 

- stator Inter-Turn Short Circuit (ITSC) fault. The conventional EPVA maintains the 

record among many other techniques as best in isolating load oscillation harmonics from 

incipient short circuit faults. However, the conventional EPVA uses frequency spectra 

analysis that requires complex computations and signal processing expertise for the 

interpretation of results. The EPVA technique used in this research maximized the 

advantage of the Park Vector Modulus (PVM). To diagnose faults, the PVM data were 

plotted as Park Vector Plot (PVP) and the visualized distortion was used to diagnose ITSC 

faults. Furthermore, the severities of faults were studied using means, variance, standard 

deviation and Root Mean Square Error (RMSE) as performance metrics to determine how 

much the ITSC occurrence in the IM has caused deviation from the original healthy state 

(when there is no ITSC). The research was simulation-based. The mathematical model of 

a three-phase IM with variable winding parameter, m, was designed and simulated in a 

MATLAB environment. The winding parameter, m, was varied from 0% – 10% to 

demonstrate different levels of ITSC fault severity. The datasets of winding currents were 

obtained and used in the EPVA for fault diagnoses. Furthermore, the impacts of faults on 

the torque, speed and Park currents were studied. The result shows that ITSC faults 

introduced AC ripples signals in the IM that were visibly seen on the speed, torque and 

currents waveforms. The result also shows that ITSC faults gradually prolonged the 

transient time from 0.7s at 0% fault operation to more than 3s at 9% – 10% ITSC faults 

under no load condition. It also shows that ITSC faults induced negative torques in the 

IM that affect the motor operation quadrant. The PVP distortion accurately detected and 

reflected the severity of ITSC faults in the IM. The plots of the means, variance, standard 

deviation and RMSE show how progressively, the ITCS faults caused deviations in the 

IM. The RMSE was more accurate to point to the ITSC level that could cause total failure 

in the IM which is at 6% and 5% under no load and 5 Nm load respectively. The study of 

ITSC fault in IM using the mathematical model was successful. 
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CHAPTER ONE 

1.0  INTRODUCTION 

1.1  Background to Study 

Induction Motors (IM) are the workhorse of power generation stations and processing 

industries. Statistically, Mustafa (2015) reported that more than 80% of electromechanical 

conversions in industrial drive applications employ the induction machine. This statistic 

has increased up to 95% in recent years due to the extreme penetration of new emerging 

technologies like lift systems, wind power generation, electric washing machines, and 

electrical-powered transportation systems (Irfan et al., 2015; Mani et al., 2021; Yang et 

al., 2015). Some of the characteristic features that make IM more suitable for industrial 

applications are low cost, longer durability, high reliability, simplicity, ruggedness and 

easy maintainability. IM are electrical machines that inert flux in their corresponding coils 

by electromagnetic induction. The three-phase IM does not require field windings or DC 

voltage for excitations, making these electrical machines simpler in design and energy 

efficient at a lower cost.  Most commercial and household appliances like electric pumps 

and fans use these machines for their diverse operations. Hence, the occurrence of failure 

in these machines affects a wide area of human affairs, causes great economic losses and 

cripples many engineering processes resulting in downtime.  

As reported by Imoru et al., (2018), the financial burden for maintenance and repairs of 

industrial equipment averaged about 50% of total industrial expenditures annually. Fault 

diagnosis, therefore, is an optimal priority in other to cut costs, minimise losses, and ensure 

a safer operation of IM. Also, maintenance operations can be more decisive and productive 

on a ground of a good diagnostic process. 
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In recent years, diagnostic operations have become incorporated into the operational 

systems of IM. Some IM characteristic parameters have been employed to develop several 

diagnostic techniques to have good and reliable diagnostic techniques. Parameters such as 

currents (Choqueuse and Benbouzid, 2015; Gangsar and Tiwari, 2017; Han et al., 2019), 

stray flux (Ishkova and Vítek, 2016; Panagiotou et al., 2018; Ramirez-Nunez et al., 2018), 

instantaneous power factor (Akar and Gercekcioglu, 2017) and harmonic index of the fault 

frequencies (Burriel-Valencia et al., 2017; Gyftakis et al., 2020; Sapena-Bano et al., 2015) 

have been used to diagnose faults in IM. Also, machine learning techniques have been 

reportedly used to enhance the automated diagnosis of faults in IM (Ali et al., 2019; Imoru 

et al., 2021; Jia et al., 2016; Lashkari et al., 2015; Razavi-Far et al., 2018; Wen et al., 

2017). Some of the techniques developed on these accounts have been found to express 

strength in some kinds of faults and highly unreliable results in others. 

Also, the operating conditions (whether steady or transient state) of the machine have been 

found to have significant effects on the techniques used (Gritli et al., 2017). However, as 

reported in the experiment conducted on thirteen (13) widely known and used techniques, 

the Extended Park Vector Approach (EPVA) was reported as the second-best reliable 

technique in diagnosing faults and the best in diagnosing faults of low magnitude (Gyftakis 

et al., 2017). The EPVA is more suitable to differentiate emerging faults from transient 

load oscillation conditions that may occur in the machine due to high starting torque 

(Hameed et al., 2016). This has given great credit to the EPVA techniques in IM condition 

monitoring since most IM faults start as incipient faults of low magnitude. 

The EPVA technique is fundamentally based on the Park Vector Approach (PVA) but with 

an advanced spectral analysis using soft signal processing to analyse the Park Vector 

Modulus (PVM). With the PVM analysis, the result from the PVA is more efficient and 
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reliable (Cruz and Cardoso, 2001). EPVA utilises the IM's current parameters to diagnose 

various kinds of faults in the IM. As a result, it is an online diagnostic technique that does 

not interfere with machine operations (Mostafaei et al., 2018). 

Theoretically, a fault presence in an IM distorts the Park Vector Plot (PVP) in the direct-

quadrature (dq) plane, resulting in an elliptical plot. The degree of distortion is directly 

proportional to the magnitude of the fault. In this research, the EPVA technique was used 

to diagnose winding faults in an IM and used to develop indices to appropriately check the 

level of fault severity in the IM. 

1.2  Statement of the Research Problem 

Induction motors are prone to fault due to their frequent and continuous use in industrial 

applications (Gyftakis and Cardoso, 2017). Several effective techniques have been 

proposedly used to diagnose these faults in condition monitoring operations. These 

methods rarely comprise computation of the severity of these faults (Bouras et al., 2018; 

Corne et al., 2018; Hameed et al., 2016). There is a need to compute the severity of these 

faults as indicative of the extent to which the faults have caused a deviation from the 

normal healthy state of the IM. This research is targeted towards the computation of fault 

severity corresponding to occurring faults by maximizing the advantage of the visualized 

Park vector plot using EPVA. This entails the diagnosis of faults using the Park Vector 

Plot (PVP) and the computation of the Park Vector Modulus (PVM) corresponding to 

each diagnosis. These values were used to compute the deviation, dispersion, and 

correlation of the datasets in comparison to the healthy state of the motor to measure the 

severity of the fault in the motor. 
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1.3  Aim and Objectives 

The research aims to diagnose faults in a three-phase induction motor using EPVA. 

The objectives of this research are: 

i. To mathematically model a three-phase induction motor using dynamic 

mathematical equations. 

ii. To simulate the mathematical model of a three-phase induction motor using 

MATLAB R2019a. 

iii. To analyse the torque, speed and winding currents of the simulation model. 

iv. To diagnose the winding fault using the Park vector plot and mathematically 

compute the PVM. 

v. To measure the severity of the fault using the deviation, dispersion and correlation 

of the PVM as performance metrics 

1.4  Research Justification 

For every engineering design and application, the primary purpose is to ease work done 

at maximum efficiency, minimise cost and ensure the safety of lives and equipment. 

Induction machines of no doubt make the engineering process of electromechanical 

conversions in industrial electrical drives easy. Hence, they are essential components of 

generation plants and processing companies. However, they are prone to faults that are 

incipient and in the long run result in catastrophic damages, pose threats to lives and cause 

substantial financial losses.  

The financial burden for maintenance and repairs of industrial equipment averaged about 

50% of total industrial expenditures annually as reported (Imoru et al., 2018). To 

minimize these financial losses and ensure a safer working environment, it is important 
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to carry out diagnostic testing on industrial induction machines for early checks of 

possible faults developing in the machines. Also, it has become increasingly necessary to 

optimize the maintenance operations associated with fault diagnosis as most induction 

machine failures are due to poor maintenance practices. A diagnostic technique that can 

gauge the level of severity of diagnosed faults will help guide operatives on the choice to 

make during maintenance operations. 

Considering the vastly available techniques used for diagnosing faults, it is more suitable 

to use EPVA for its non-invasiveness, simplicity and efficiency. It is also one of the best 

techniques that can be used to appropriately compare the severities of the faults and 

distinguish between the types of faults. The choice of MATLAB for this research is 

because it is a good engineering software with the appropriate tools for modelling and 

analyses in real-time processes. 

1.5  Scope of Research 

The study covers the diagnosis of inter-turn short circuit (ITSC) winding faults in a three-

phase IM and the computation of the deviation and correlation of the diagnosed faults 

with respect to the healthy IM. It shows how to model and simulate the operation of a 

three-phase induction motor in MATLAB. The study demonstrates how to transform the 

phase currents into the Park’s Vector currents and properly diagnose the presence of ITSC 

fault. It further covers how to use the simulations to measure and analyse the PVPs which 

were used to compute the deviation and correlation of each diagnosed fault. 
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CHAPTER TWO 

2.0 LITERATURE REVIEW 

Fault diagnosis is a condition monitoring process that is used to detect the presence of a 

fault and identify the type of fault in the machine. Fault diagnosis uses the deviation in 

values of the induction machine’s characteristic properties or parameters to detect and 

identify faults (Mustafa, 2015). The effects of faults in induction machines have resulted 

in many manifestations such as decreased efficiency, unbalanced phase currents and 

voltages, pulsation in torque and speed, unbalanced eccentricity, and overheating of the 

machine (Bhattacharyya et al., 2015). In this chapter, the concept, types, causes and 

effects of faults in induction machines are discussed. The reviews of major diagnostic 

methods used in diagnosing faults with the unique signature associated with them are also 

highlighted. Furthermore, the advantages and limitations of various diagnostic methods 

are highlighted. This chapter ended with a chapter summary. 

2.1 Concepts, Causes and Effects of Faults in Induction Machines 

A fault is defined as an unpermitted deviation of at least one characteristic property or 

parameter of the system from the acceptable, usual and standard condition (Mustafa, 

2015). IMs are designed to operate within an acceptable limit or value of their parameters 

or characteristics. The importance of such design consideration is to have a precise 

controlling system associated with the machine and to determine what system the 

machine can be used in, based on the predicted output required. Therefore, there are 

diverse sizes of IMs based on different values of their rated parameters needed for a 

particular operation. At normal operation, it is, therefore, expected that IMs operate 

within their rated characteristics properties or parameters. Any unpermitted deviation 

from these limits or values is an indication of a fault’s presence (Mustafa, 2015). 
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Faults in IMs start as build-up or emerging faults as the machine is constantly subjected 

to electrical, magnetic, thermal, environmental and mechanical stresses (Al-Deen et al., 

2018; Gyftakis and Cardoso, 2017). Stresses cause deterioration, wear and tear of the 

machine components and eventually result in machine fault and failure. These stresses 

result from possible manufacturing defects, poor installation, poor working environment, 

deterioration of components and ineffective schedule maintenance (Sadeghi et al., 2017). 

Some of the major causes of faults in induction machines as reviewed are manufacturing 

defects, imbalance in phase voltages, phase over-supplied voltage, magnetic over fluxing; 

improper installation, contamination of lubricant, misalignment of the shaft, shaft 

overloading, under-supplied voltages, and poor maintenance (Choudhary et al., 2019). 

Due to the various causes of induction machine faults, several faults originate within and 

outside of the IM framework that directly affects the performance. These faults can be 

grouped as internal and external faults. Based on the nature of a fault, internal and external 

faults could be further categorized as mechanical, electrical, electromagnetic and 

environmental faults as shown in Figure 2.1 (Choudhary et al., 2019) 
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Figure 2.1:  Categories of faults in induction motors and their classifications 

(Choudhary et al., 2019). 

2.2 Overview of the Common Types of Faults in IM 

Several studies have categorised the most common faults in IM as stator faults, rotor 

faults, bearing faults and other faults (air-gap eccentricity) based on the major 

components affected (Amanuel et al., 2021; Sarikaya et al., 2019). In studying the 

magnitude of these common faults in a medium-voltage IM, the Institution of Electrical 
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and Electronics Engineers (IEEE) and the Electric Power Research Institute (EPRI) 

presented a statistic that shows that bearing and stator related faults are the most common 

types of IM faults as shown in Figure 2.2 (Agyare et al., 2019).  

Further studies by Zhang et al (2011); Nandi et al (2005); and Tavner (2008) as shown in 

Figure 2.3, indicate that the magnitude of the faults in various components of IM also 

dependent on the voltage size of the machine. 

The statistics further revealed that mechanical faults are significantly high in low-voltage 

IM, where bearing faults contributed 75% of total machine faults as compared to medium- 

and high-voltage induction machines which are 44% and 13% respectively. While faults 

of electrical nature, such as stator-related faults increase gradually as the voltage level of 

the machine increases. This is due to an increase in the electrical and thermal stresses as 

the voltage level of the machine increases (Zhang et al., 2011). 

Another possible cause of the variations is the strength of the materials used in the 

manufacturing of the machine's components. Gyftakis and Cardoso (2020), have reported 

that the use of sleeve bearings in large machines, reduces the degradation process, 

compared to the rolling element bearings applied in low and medium-voltage induction 

machines (Gyftakis and Cardoso, 2020). This account for the reduced bearing faults in 

high-voltage IM. 



10 

 

2.2.1 Bearing related faults 

Bearings are important components of an induction machine. They are made of an inner 

and outer race, separated by rotating metallic balls and cages that are furnished in a ring-

like structure as shown in Figure 2.4. 

Figure 2.2: Percentage (%) component of IM failure in medium IM by IEEE and 

EPRI (Agyare et al., 2019) 

Figure 2.3: Magnitude of faults in IM in correlation to machine sizes (Nandi et al., 

2005; Tavner, 2008; Zhang et al., 2011) 
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Figure 2.4: Structural section of a bearing (Yadav et al., 2013) 

Bearings are used primarily as supports for the rotating shafts of the rotor fixed at both 

ends of the shafts (Bharti et al., 2020). They are essential for the rotating mechanical 

system of the induction machine to be fully operational. They create allowance between 

the rotating components (rotor) and the stationary components (stator and stator cage) to 

reduce friction and make mechanical movement easy (Jung et al., 2017). Bearing faults 

are the most common faults in three-phase IM. The statistics presented by IEEE and EPRI 

show that bearing-related faults range from 40 – 44% of total faults in medium voltage 

IM. Research has also revealed that this fault can increase up to 90% of total faults in 

small-size IM (Jiang et al., 2017; Kompella et al., 2018). Bearing faults are seen as 

bearing corrosion, wear debris on either the inner race or outer race and defects in the ball 

cage (Malla and Panigrahi, 2019). 

Bearing failure could be localized or distributed (Irfan, 2019; Liu and Shao, 2018). 

Bearing failure has been reported as the major cause of rotor deterioration (Önel and 

Benbouzid, 2008). Therefore, an early diagnosis of bearing faults is necessary to prevent 

distributed fault effects on other components. 

Some of the highlighted causes of bearing fault or failure are under/over lubrication 

causing abrasive and overheating, misalignment of bearing and rotor shaft, 
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contamination, moisture presence leading to corrosion, overloading of the shaft, the 

vibration of the machine due to poor mounting increasing shear stress in bearing, and 

manufacturing defect (Kudelina et al., 2021; Malla and Panigrahi, 2019; Ozigis et al., 

2021).  

 

Figure 2.5: Manifestation of bearing faults 

Vibration monitoring, current monitoring, acoustic monitoring and lubrication analysis 

have all been used as good signals to diagnose bearing faults (Chandra and Rao, 2019; 

Liu et al., 2020; Poddar and Tandon, 2019; Wang et al., 2019). Vibration monitoring has 

been identified as the best and most sensitive condition monitoring in diagnosing bearing 

faults (Stief et al., 2019). 
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2.2.2 Rotor related faults 

The IM rotor is the rotating part of the IM that drives other external loads. The rotor bar 

could be wound type (that is, containing windings) or cage type. Most small-size IMs are 

made of wound-type and cast cage rotors while large machines are made of fabricated 

cage rotors (Sharma et al., 2018). Rotor faults contribute to about 10% of total IM faults 

(Halder et al., 2022). The manifestation of rotor faults is seen in broken rotor bars, cracked 

rotor bars, bent rotor bars, damaged rotor winding and lamination (Anish Kumar et al., 

2022; Antonino-Daviu et al., 2020; Singh, 2019). The effects of these faults are seen in 

the reduced performances of the machine such as reduced, and pulsating speed and torque, 

vibrations of the machine, and arcing in the rotor. 

Rotor faults are majorly due to faults distribution from other components of the IM like 

bearing. Studies have shown that bearing faults majorly contribute to rotor deterioration 

(Liu et al., 2022). Other causes of rotor faults are due to thermal stress, overloading of 

the rotor shaft, mass unbalances, manufacturing defects, and UMP (Gangsar and Tiwari, 

2020; Sheikh et al., 2022).  

2.2.3 Stator related faults 

Stator Faults are majorly classified as stator winding faults and stator core faults. Stator 

winding faults have been reported as the major stator fault in IM (Maraaba et al., 2018; 

Verma et al., 2018). ITSC faults are the early manifestation of stator winding faults 

(Afshar et al., 2019; Pietrzak and Wolkiewicz, 2021b). As a result, short circuit current 

recycles within the coil, building up excessive heat that may lead to other distributed 

faults like coil-to-coil faults, phase-to-phase faults and phase-to-ground faults of higher 

magnitude. Such high magnitude faults have being reported to be the cause of stator core 
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faults and other machine failures like open circuit, causing an abrupt shutdown of the 

machine (Singh, 2019). 

It has been reported that the initial cause of winding faults is due to winding insulation 

breakdown (Ashok et al., 2021; Pietrzak and Wolkiewicz, 2021a). Other causes are 

slacking of the coil and excessive surge current or voltage in the coil leading to burns. 

These effects lead to inter-turn faults, hotspots, open circuits and possible burns.  

2.2.4 Air-gap eccentricity faults 

Air-gap eccentricity fault is a type of mechanical fault that is rotational axis related. It 

creates a non-uniform air gap between the stator and the rotor. In a healthy machine, the 

axis of rotation of the machine rotor will be in alignment with the rotor and stator axes as 

shown in Figure 2.6a. 

Figure 2.6: Types of eccentricity in induction machines (Faiz and Moosavi, 2016) 

In this case, the centre of rotation, the rotor and the stator centres are the same (or aligned) 

making the air gap (or air space) between the rotor and the stator uniform. Any deviation 

that causes the misalignment of the centre of rotation from either the rotor or stator axes 
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or both results in one of these types of eccentricity faults as shown in Figures 2.6b, 2.6c 

and 2.6d. 

Static Eccentricity (SE) fault is when the axis of rotation correlates with the centre of the 

rotor but is misaligned from the stator centre. The rotor will rotate about the rotor axis 

but shifted from the centre of the stator (Aggarwal and Strangas, 2019), thereby creating 

an unbalanced air gap that is fixed in the machine. In this case, the rotor will be tilted 

closer to one side of the stator than the other, however, that position remains fixed even 

when rotating (Mirzaeva and Saad, 2018). 

Dynamic Eccentricity (DE) fault is when the axis of rotation correlates with the centre of 

the stator but is misaligned from the rotor centre. The rotor will rotate about the stator 

axis but not in its centre. This will create an unbalanced air gap that is constantly changing 

from side to side between the stator and the rotor. Some of the causes of DE are related 

to torque oscillation faults like bearing faults, rotor misalignment, and rotor faults (Shin 

et al., 2021). Faiz and Moosavi, (2016), deduced that this is because DE eccentricity and 

torque oscillation normally occur simultaneously. It has also been reported that about 

80% of many mechanical faults (bearing faults, rotor misalignment, mass unbalance, and 

rotor faults) eventually lead to eccentricity faults (Nath et al., 2021). 

2.3 Fault Diagnosis in IM 

As earlier stated in section 2.0, fault diagnosis is a condition monitoring process that uses 

deviation in the machine’s characteristic parameters or properties to identify the presence 

of faults based on a reference signature pattern. IM characteristics such as winding 

voltages (Alloui et al., 2022) and currents (Burriel-Valencia et al., 2018a), torque 

(Gyftakis et al., 2013; Hemamalini, 2018), instantaneous power factor (Akar and 

Gercekcioglu, 2017), instantaneous power (Irfan et al., 2017), harmonics index (Sapena-
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Bano et al., 2018; Sapena-Bano et al., 2016), eccentricity property (Sadeghi et al., 2017) 

have been successfully used in past researches to diagnose faults in induction machine. 

The common diagnostic techniques used in monitoring machine parameters to diagnose 

the common types of faults are; vibration monitoring, acoustic emission monitoring, 

motor current signature analysis, air-gap torque monitoring, infrared thermography, 

artificial neural network, fuzzy logic, adaptive neuro-fuzzy inference system and support 

vector machines (Choudhary et al., 2019; Malla and Panigrahi, 2019; Wang et al., 2019). 

A few of these techniques are briefly discourse below. 

2.3.1 Vibration monitoring 

All IMs have vibration signatures external or internal to the machine during operation 

(Gangsar and Tiwari, 2019). Vibration monitoring is based on the vibration analysis of 

the vibration signature of the motor as it operates. This monitoring technique has been 

reviewed as one of the best and most effective techniques in monitoring mechanical-

related faults (De Sousa et al., 2019; Salameh et al., 2018). This technique uses vibration 

sensors to capture raw vibration signals as the motor is in operation. To extract the fault 

vibration signal, signal processing analyses such as Short Time Fourier Transform 

(STFT), Discrete Wavelet Transform (DWT), and Fast Fourier Transform (FFT) are used 

(Ali et al., 2019). The signals are used to generate vibration spectrum. Vibration signal 

are manifested as frequency, acceleration or phase displacement. For healthy motor, the 

IM produces weak vibration and for faulty motor, the IM generate high vibration signal. 

The limitation of using this monitoring technique is the cost associated with the purchase 

of vibration sensors. This makes this technique one of the most costly condition-

monitoring techniques (Li et al., 2019; Ostachowicz et al., 2019). 
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2.3.2 Acoustic emission monitoring 

The sounds produced by IM as the result of the vibration of the machine have been used 

in diagnosing a fault in the motor (AlShorman et al., 2021). This process is called 

Acoustic Emission (AE) monitoring. The process of diagnosing faults using AE 

monitoring requires transducers to sense emitted sounds (Appana et al., 2018). These 

acquired sound data are combined with audible frequency monitoring techniques to 

produce high frequencies (about 100 kHz to 1MHz) which can be analysed for faults 

(Salameh et al., 2018).  Therefore, AE monitoring requires a good understanding of 

acoustics and frequency processing techniques.  

The limitation of this method is that background noise is part of the noise components 

captured by the transducers and this affects the accuracy of this technique (AlShorman et 

al., 2021; Beale et al., 2020). Compared with other techniques, AE monitoring is regarded 

as less efficient (Choudhary et al., 2019). 

2.3.3 Motor current signature analysis 

Motor Current Signature Analysis (MCSA) is a current signal-based technique. It is the 

most popular technique for diagnosing windings faults. In most industrial IM 

applications, current and voltage data are constantly and easily measured. These data are 

used as parameters to diagnose faults in the IM. MCSA monitoring technique is therefore 

easy to implement and cost-effective. The current and voltage data are used to develop a 

power spectrum which can be analysed for fault. MCSA has been combined with many 

signal-processing techniques for further improvement in efficiency (Drakaki et al., 2020). 

It is also a good technique that has been combined with other machine-learning techniques 

to develop automated diagnosing techniques (Quabeck et al., 2021; Sunal et al., 2022). 
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As reported by Marzebali et al., (2018) mechanical faults do appear as electrical signals 

and can be used to diagnose the corresponding mechanical faults in the machine using 

MCSA (Marzebali et al., 2018). MCSA is now used in monitoring mechanically 

developed faults like bearing faults, broken rotor faults and misalignment. 

2.3.4 Machine learning monitoring techniques 

In modern IM monitoring techniques, a more computational technique that involves 

machine learning models (or algorithm) are used to automate the diagnostic process 

(Burriel-Valencia et al., 2018b). Machine learning techniques rely on other techniques to 

acquire data on IM parameters. Then the system is trained to learn patterns within the 

data and act when the pattern is abnormal. Such machine learning techniques that are 

commonly used are Artificial Neural Networks (ANN), Fuzzy Logic (FL), Adaptive 

Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machines (SVM) (Altaf et 

al., 2018; Chouidira et al., 2021; Mohamed et al., 2021; Wang et al., 2020). Each of these 

learning techniques has its advantages and disadvantage which affects the effectiveness 

and accuracy of their implementations. 

2.4 Diagnostic–Based Maintenance Operation 

One major goal of carrying out fault diagnosis is to optimize the maintenance stage of 

condition monitoring. Formerly, industrial machine maintenance was based on schedule 

maintenance (which is periodically carried out at a stipulated time) and maintenance due 

to an abrupt system failure (Kumar et al., 2018). 

These two ways of system maintenance result in larger costs if the system is allowed to 

fail or develop a serious stage of faults before they are addressed. Therefore, to reduce 

the cost of repairs associated with scheduled maintenance and prevent total failure of the 
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system, it is needful as a matter of necessity, to always carry out constant fault diagnosis 

on the machine to help in the early detection of emerging faults within the machine 

framework or components. Therefore, IM maintenance based on diagnosis is a 

recommendation to prevent failure and reduce losses and costs as shown in Figure 2.7. 

Furthermore, the choice of diagnostic techniques largely depends on the simplicity, cost, 

effectiveness and accuracy of the technique. EPVA as widely reported is the second best 

widely used fault diagnostic technique and the best for diagnosing low-level faults 

(Gyftakis and Marques-Cardoso, 2019). Therefore, for emerging faults, the EPVA proves 

to be an acceptable choice. In this research, the EPVA technique is adopted to develop 

computational indices that appropriately check for the level of fault severity. 

2.5 Related Works on EPVA Techniques 

Alaoui et al., (2015), worked on an extended Park vector for the detection of inter-turns 

faults in an induction motor. The research was based on the detection of inter-turn faults 

in IM during the transient operation of the motor. According to the report, most diagnostic 

techniques detect faults during steady-state operation, however, induction motors do not 

Figure 2.7: Induction motor maintenance (Choudhary et al., 2019) 
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always operate completely under steady-state conditions. The research, therefore, used 

the EPVA to detect inter-turn faults in the induction motor during transients operation. 

The study was conducted both simulation-based and experimental-based. To achieve the 

simulation, the induction motor was modelled mathematically in the stationary reference 

frame with an insulation failure resistance, depicting the insulation breakdown during 

inter-turn fault occurrence. The stator currents were extracted from the stator frame 

reference (stationary reference frame) and were converted to the rotor frame reference 

using the Park transformation equations. These Park transformed stator currents were 

plotted in MATLAB to study the Lissajous forms (PVP) for inter-turn faults of 5% and 

10%. The experimental test rig was set up for the same machine parameters used for the 

simulation. The stator inter-turn fault was created on one of the stator windings by 

shorting it at 5% and 10% of the turns. And the stator currents were extracted through 

measurement for further analysis. 

The results of the Lissajous form for both simulation and experimental studies show that 

the plot is circular when there is no fault. For 5% fault, the shape of the Lissajous (PVP) 

form has a thick circumference. And for 10% shorted turns, the thickness is greater. To 

demonstrate the severity of each shorted inter-turn fault, a comparison between the 5% 

and 10% shorted turns was obtained by plotting the stator currents of the stator reference 

frame. The result shows that at 10%, the Lissajous shape is more elliptical and wider in 

magnitude than the 5% inter-turn fault (Alaoui et al., 2015).  

The research proved that the EPVA technique can be used to study inter-turn faults in the 

transient states by observing the Lissajous form. However, the research did not provide 

any numerical computation or data to help compute the fault severity. Also, it fails to 
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prove the effectiveness of using insulation breakdown resistance in the machine model in 

diagnosing faults at a lower percentage of shorted turns. 

Oliveira and Cardoso, (2016), conducted a study on transformer turn-to-turn faults 

protection methods. The study compared the performance of the negative sequence 

component method and the performance of the space vector protection algorithms in 

detecting several internal and/or external fault conditions. The authors highlighted the 

limitation of the conventional differential protection scheme used for transformer 

protection as unable to detect low-level turn-to-turn faults since such protection schemes 

only operate at pre-set values of about 20-25 % rated currents. The solution is to use 

protection schemes that can detect inter-turn faults at lower magnitudes and this study 

compared the negative sequence component and the space vector protection algorithms. 

The negative sequence was based on the theory that during inter-turn faults, there is an 

asymmetry in the three-phase currents that manifest as the negative sequence 

components. By monitoring this manifestation, the detection of fault was achieved. In the 

space vector method, the monitoring of the second harmonic frequency (2f) that occurred 

during faults was used to achieve the detection of faults. As executed by the authors, in 

both methods turns ratio compensation, vector group adaption and zero-sequence 

component filtering were applied to the primary- and secondary sides for differential 

current computation. In the negative sequence method, Discrete Fourier Transform (DFT) 

was used to extract the fundamental components and the Fortescue transformation was 

used to determine the symmetric components. Under this method, the negative sequence 

of the primary or secondary is compared to a predefined threshold of about 4% of rated 

currents. If they exceed this threshold, the angle between them was used to determine if 

the resulting fault is an external or internal fault. In the space vector algorithm, the EPVA 
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was used to extract the Park vector current components and the DFT algorithm was used 

to transform the Park modulus into a frequency spectrum. For this method, the spectra 

were analysed for AC signals that occurred at 2f of the fundamental frequency. And in 

the case of no fault, a pure DC signal was seen.  

Both methods were tested in simulation using a derived transformer model and by 

experiment using a three-phase, two-winding, core-type, 10.3 kVA, 230/132 V 

transformer connected to a current transformer (CT) for winding currents extraction and 

protection. The shorted turn was achieved by connecting a short resistor to the fault 

windings. This system was tested under varying conditions: balanced load with turn-to-

turn fault, unbalanced load with turn-to-turn fault, external fault with turn-to-turn and 

unbalanced supply voltage with turn-to-turn fault. 

The result shows that both methods have similar sensitivity to highly severe inter-turn 

faults. However, the EPVA is about 14% more sensitive in detecting low-level turn-to-

turn faults in the transformer. It also revealed that EPVA has a better advantage in 

discriminating between external and internal faults (Oliveira and Cardoso, 2016). The 

research proved very successful, however, no numerical computation was given to 

compute the severity of the faults in the transformer using EPVA. Also, the use of DFT 

has more lagging time than other signal processing algorithms like Fast Fourier 

Transform (FFT). It is indicative that the result of this research can be further improved. 

To reduce the high number of frequency spectrum computations employed in the EPVA 

for the detection of faults in induction motors, Hameed et al, 2016, suggested the 

combined use of Park’s Vector Approach (PVA) and Principle Component Analysis 

(PCA) for detection of faults in a synchronous machine. 
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The research was simulation-based using real datasets of a synchronous machine. The 

misalignment of the rotor shaft was studied as the reference fault. To use the PVA, the 

two phase currents obtained from the datasets were averaged to get the third phase current. 

Fault currents obtained from the datasets were injected at the 100,000th sample. The Park 

transformation was applied to obtain the Lissajous pattern of the currents. The shapes of 

the Lissajous pattern were observed. In the case of no fault, the shape formed a perfectly 

circular pattern and during faults, the shape observed was distorted. The PCA was further 

used to create a standard model and then process monitoring statistics were used to check 

any deviation from the standard model. The result of the PCA shows that when there is 

no fault in the motor, the principal value is within the threshold of the standard model. 

And when fault data are injected into the model, the principal value exceeded the model 

threshold (Hameed et al., 2016). 

The combined methods significantly improved computational time. However, studies 

have shown that the EPVA yields better results in differentiating broken bar faults from 

load oscillation and is also a better technique in fault detection under low load operation 

(Pezzani et al., 2010). Therefore, it employed a higher number of frequency spectrum 

computations (Hameed et al., 2016). The use of a calculated third-phase current does not 

give a realistic approach to the research. Also, the research failed to estimate the severity 

of the misalignment and the sensitivity of the method to low-level misalignment could 

not be ascertained. 

Gyftakis et al, (2017), introduced the Filtered Park’s Vector Approach (FPVA) and the 

Filtered Extended Park’s Vector Approach (FEPVA) to resolve the unreliability of the 

PVA in detecting broken rotor bars in IM. The study reported that the conventional PVA 

uses the thickness of the Park circumference in diagnosing broken rotor bars faults and is 
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unreliable because PVA depends on the magnetic poles and the number of rotor slots. 

The study proposed the combined use of FPVA and FEPVA to resolve this issue and 

provide a low computational diagnostic method for broken rotor bars detection. 

The FPVA implemented involves monitoring the three-phase currents of the windings. 

The currents are used to calculate the Park Vector current components. The elliptic filter 

was used to filter frequencies greater than 370 Hz and the notch filter was used to filter 

the fundamental frequency at 50 Hz leaving the fundamental fault components along with 

other harmonics. The result obtained from this process was used as the first indication of 

faults. The output of the notch filter was used to compute the Park modulus. And the 

spectral of the Park modulus was analysed using FFT to further diagnose the severity of 

the fault by measuring the amplitude of the higher harmonics. This study was investigated 

using Finite Element Method (FEM) simulation and through experimental testing on a 3-

phase, 4-pole, 4 kW, 400 V induction motor with 24, 28, 30, 40, 41 and 48 rotor slots 

each having one broken rotor bar. 

The results show that due to the use of elliptic and notch filters, only faults harmonics 

and other harmonics were observed on the circumference when there is a fault. And in 

the absence of fault, the circumference of the Park plot only indicated other harmonics 

with hollowed centres making this method to be able to discriminate between fault 

conditions and other conditions that produce harmonic signals. Also, the applied filters 

made the frequency spectral clearer for better analysis. The results satisfactorily proved 

the reliability and effectiveness of the combined FPVA and FEPVA over PVA  (Gyftakis 

et al., 2017). However, the results were still dependent on the number of rotor slots and 

to measure severity, there must be complex FFT computation. 
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Sharma et al, (2017), proposed a novel Park’s vector approach for the investigation of 

incipient stator fault in three-phase squirrel cage induction motors. The study was an 

experimentally based research using a 0.75 horsepower modified squirrel cage induction 

motor. The inter-turn fault was created in the motor by shorting the modifiable phase at 

the 13th, 23rd and 30th turn corresponding to 2.2%, 4% and 5.1% turn. The mechanical 

loading system was loaded at 40% and 80%. The three-phase currents were measured 

using a setup of CT and a current measurement module. The entire setup was connected 

to a PC through the NI-DAQ card. The measured phase currents were transformed to Park 

current components using LabVIEW graphical program. The obtained values were 

normalized and plotted using the XY graph. 

The observed XY graph corresponded to the Lissajous pattern. The results show that the 

graph is perfectly circular when there is no fault and elliptical when a fault occurs in the 

motor. The shape produced similar results when the motor was loaded at 40% and 80%.  

The research further developed an index based on the ratio of the distance from the centre 

to the circumference in the xy axes of the Lissajous pattern. The sine inverse of this ratio 

was plotted and used to estimate the fault severity of the inter-turn fault in the motor. It 

was reported that during faults, this value decreases as the fault percentage increases. 

Also, the loading of the motor further decreases the value of this index (Sharma et al., 

2017). 

Although the applied PVA technique used was able to diagnose the inter-turn fault and 

estimate the fault severity level based on the developed index, it still could not resolve 

the original challenges of PVA in terms of insensitivity to low-level faults and is unable 

to differentiate between load oscillation and transient conditions. 
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Corne et al, (2018), studied the reflection of bearing faults on the stator currents in an 

induction machine using EPVA.  

The research was experimental-based using a test rig of an 11kW induction machine. To 

model mechanical faults in the machine, the mechanical drive-end-side bearing was 

replaced by an Active Magnetic Bearing (AMB). By adjusting the AMB, different rotor 

movements were achieved to demonstrate the case of single-point outer race bearing, 

single-point inner race bearing and bearing cage problems. The relation between the 

mechanical fault severity and the spectral signature of the Park modulus was studied. 

The result shows that bearing faults of any type result in the presence of all bearing fault 

characteristic frequencies in the spectrum of the Park modulus. The study proved 

successful and confirmed that evolving bearing faults are reflected in the stator current, 

and stator current analysis of faults in IM can become the most effective condition 

monitoring technique in investigating mechanical faults (Corne et al., 2018). However, 

the research did not provide further information on how to estimate fault severity in the 

machine. Also, the research used complex spectral computation which is a limitation in 

terms of quick and easy diagnosis. 

Bouras et al, (2018) worked on the prediction of the mass unbalance of a variable speed 

induction motor by carrying out the analysis of the stator currents using multiple 

combined techniques. The authors experimented to check for the reliable detection of 

mass unbalance and changes in its severity if, by the necessity of service, the induction 

motor is subjected to a speed variation. 

The multiple techniques reported involved the use of Park orbit to identify the distortion 

and the use of Fourier transforms (STFT and FFT) to help identify the type of degradation. 

The authors reported that external mechanical faults create torque oscillation that affects 
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the sinusoidal wave pattern of the stator currents. These currents were measured from an 

experimental test rig on a 270W, 220/380V induction motor using current sensors. The 

motor was also attached to a speed aviator to regulate the speed at a lower frequency of 

35 – 25 Hz. The stator currents were captured and using MATLAB, the spectra were 

analysed with FFT and STFT. Also, the experimental test rig was tested with unbalanced 

load of 50g. The characteristic frequency induced for such case of unbalanced load were 

studied. 

The results show that the presence of an unbalanced mass induced frequencies that 

appeared on either side of the fundamental frequency (50 Hz). The research also reported 

that the amplitude of these frequencies measured in dB increases as the speed were 

reduced to 35 – 25 Hz (Bouras et al., 2018). The research has shown that the combined 

use of Park Vector and Fourier transforms was able to successfully identify faults at low 

frequency and minimal load. However, the research failed to compute the severity 

associated with the diagnosed faults and there was no further report on the criticality of 

the faults diagnosed. 

Many other studies have been carried out in detecting turn-to-turn faults (TTF) in 

transformer windings using negative sequence components and EPVA (Farzin et al., 

2019; Meira et al., 2018; Mostafaei et al., 2018). 

Farzin et al, (2019) carried out an experimental study to evaluate the performance of 

negative sequence and space vector-based methods in detecting transformer turn-to-turn 

faults. The transformer under different operating conditions such as normal operation, no-

load operation, external phase faults and open conductor faults was studied. 

To investigate the performance of NSPD and EPVA-based methods, some experimental 

tests were carried out on a three-phase 2kVA, 400/400 V, 50 Hz, three-leg core 
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transformer, with designed resistor taps on both HV and LV sides. By taping through 1-

25% of the turns, different turn-to-turn faults were introduced. The currents were 

measured using 6 CTs and digital storage scope. DFT was further used to extract the 

current phasors. 

The results show that to prevent fault trip of the NSDP- and EPVA-based methods for 

external faults, a proper and fixed security count of the TTF detection characteristic curve 

has to be determined. It also stated that this security count is difficult to have a fixed 

setting and it can endanger the reliability and secure performance of the protection 

scheme. For a low-level fault at 1%, the NSPD and EPVA-based methods were able to 

identify the fault after 16.2ms and 19.4ms, respectively (Farzin et al., 2019). The research 

was very successful, however, the use of DFT required complex computation. 

Gyftakis and Marques-Cardoso, (2019), proposed a method for the detection of inter-turn 

stator faults in induction machines at a very low severity level, which other classical 

methods have proved incapable and unreliable in detecting. 

The author has reported that most conventional techniques diagnose fault at level high 

enough to cause the failure of the machine. The research proposed the detection of faults 

less than 1% (that is, at 0.25%, 0.50% and 0.75%). The proposed method relied on the 

measurement of stray flux in the machine when a short circuit fault occurs. An 

experimental test bed was set up using a 4kW 380V induction machine. One of the 

windings was modified to allow for the injection of shorted turns using switches. Three 

stray flux sensors positioned at 120 degrees were used to accurately capture the stray flux 

data. For each shorted turn, the stray flux was captured and the stator and short circuit 

current were measured using multimeters and current clamps. The PVA was applied to 

calculate the Park flux components of the stray flux. 
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The author reported that the Park plots of the raw calculated Park flux components were 

blurry and unreliable. To filter these results, an elliptic filter was used at 60 Hz and 160 

Hz cut-off frequencies. The result shows that the Park flux components with filtered 

frequencies, was elliptical in cases of fault. And better visualize elliptical shapes are seen 

for 160 Hz. This technique proved that the PVA detected faults at lower fault severity 

(less than 1%). However, the use of filters and the need for accurate placement of flux 

sensors at 120 degrees makes it highly susceptible to inaccuracies. Also, the experimental 

set up needed for data capturing makes the system cumbersome for application. 

From the foregoing review, it becomes obvious that the EPVA technique has recorded 

many successes in the field of fault diagnosis. However, these methods rarely comprise 

computation of the severity of these faults. Hence, there is a need to compute the severity 

of these faults as indicative of the extent to which the faults have caused a deviation from 

the normal healthy state of the IM. This research is targeted towards the computation of 

the fault severity corresponding to occurring faults by maximizing the advantage of the 

visualized PVP using EPVA. This entails the diagnosis of faults using the shape of the 

PVP and the measurement of the PVM corresponding to each diagnosis. These values 

were used to compute the deviation, dispersion and correlation of the PVM as the 

measured fault severity. 
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CHAPTER THREE 

3.0 RESEARCH METHODOLOGY 

This chapter presents the methodology adopted for this research in the diagnosis of faults 

in IM using the EPVA technique. Detailed descriptions of the methodological steps were 

presented and the flow chart was also presented. Figure 3.1 presents the overview of the 

research methodology. 

Figure 3.1: Block diagram of research methodology framework. 
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3.1  Mathematical Modelling of an ITSC Fault in a Three-phase Induction Motor 

The mathematical model of a three-phase IM is described by the voltages, currents, flux 

linkages, speed and torque equations. Mathematical modelling is best required to 

accurately analyse the dynamic and steady-state performances of the motor such that a 

variation of any of its characteristics properties can accurately reveal its impact on the 

performance of the motor. 

Normally, IM is modelled in the ABC reference frame system, however, for research 

using the EPVA which is built on the conventional Park Vector Approach, there is a need 

to transform the modelling to the Park vector reference frames systems. The sequence of 

transformation is illustrated in Figure 3.2. 

An ITSC fault is a fault condition as a result of insulation breakdown leading to contacts 

of the stator windings. For this research, it is assumed: 

i. The three-phase system is a balance and uniform system. 

ii. The induction motor has identical sinusoidal distributed windings displaced from 

each at 120 degrees. 

iii. The ideal state of the motor is considered, that is, the effect of saturation, eddy 

current, friction and winding losses are neglected. 

Figure 3.2: Transformation sequence from 𝑎𝑏𝑐 to 𝑑𝑞0 system 
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iv. The motor has a uniform air gap between the stator and the rotor cores. 

v. Higher harmonics are neglected. (Ratnani and Thosar, 2014; Samir et al., 2008) 

3.1.1 Mathematical modelling of an ITSC fault in ABC reference frame system 

Consider a three-phase squirrel cage induction motor with an ITSC fault on the a-phase 

stator windings supplied by a three-phase voltage, 𝑣𝑎, 𝑣𝑏 and 𝑣𝑐 as shown in Figure 3.3. 

Where, 

𝑁𝑎𝑠𝑢, numbers of shortened a–phase stator windings, 

𝑁𝑎𝑠ℎ, numbers of unshortened a–phase stator windings, 

𝑖𝑓, the circulating fault currents flowing in the shorted resistive path. 

𝑖𝑎𝑠, the current flowing through the healthy stator windings of the a–phase. 

Using Kirchhoff Current Law (KCL), the current flowing through the shorted-turns, 𝑖𝑎𝑠𝑢, 

is expressed as: 

𝑖𝑎𝑠𝑢 = 𝑖𝑎𝑠 − 𝑖𝑓  (3.1) 

Figure 3.3: ITSC fault on a stator winding 
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By symmetrical three-phase winding, the number of windings on each phase is equal. 

Therefore, the stator and rotor resistances are respectively equal.  

The total number of turns, 𝑁𝑠 on the stator a–phase winding is expressed in terms of 

shortened turns, 𝑁𝑎𝑠𝑢, and unshortened turns, 𝑁𝑎𝑠ℎ as: 

 𝑁𝑠 = 𝑁𝑎𝑠ℎ + 𝑁𝑎𝑠𝑢  (3.2) 

Similarly, the total resistance, 𝑅𝑠 on the stator a-phase winding is expressed in terms of 

the resistance, 𝑅𝑎𝑠𝑓 on the shortened winding and the resistance, 𝑅𝑎𝑠ℎ on the unshortened 

winding as: 

 𝑅𝑠 = 𝑅𝑎𝑠ℎ + 𝑅𝑎𝑠𝑓 (3.3) 

During ITSC faults, the current in the a-phase circulates in the shortened turns, creates 

hot-spot and causes further insulation breakdown. 

Let m represent the ratio of shortened turns to the total number of turns 

(that is, 𝑚 =
𝑁𝑎𝑠𝑢 

𝑁𝑠
) then, the ratio of unshortened turns to the total turns is expressed as: 

 
𝑁𝑎𝑠ℎ 

𝑁𝑠
=

𝑁𝑠 − 𝑁𝑎𝑠𝑢

𝑁𝑠
= 1 − 𝑚 (3.4) 

By interpolation, the resistance of the shortened and unshortened turns expressed in terms 

of m are 𝑚𝑅𝑠 and (1 −  𝑚)𝑅𝑠 respectively. 

3.1.1.1 Voltage equations 

As described by Krause et al., (2013), the general voltage equations for a three-phase 

squirrel-cage IM under normal operating condition is expressed as (Krause et al., 2013): 

 𝑣𝑎𝑏𝑐𝑠 = 𝑅𝑠𝑖𝑎𝑏𝑐𝑠 + 𝜌𝜓𝑎𝑏𝑐𝑠  (3.5) 
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 0 = 𝑅𝑟𝑖𝑎𝑏𝑐𝑟 + 𝜌𝜓𝑎𝑏𝑐𝑟  (3.6) 

where 𝑣𝑎𝑏𝑐𝑠 is a matrix of supplied voltages on the stator abc windings, 𝑖𝑎𝑏𝑐𝑠 is the matrix 

of the corresponding stator abc windings currents, 𝜓𝑎𝑏𝑐𝑠 is the matrix of the 

corresponding flux linkages of the stator abc windings, 𝑖𝑎𝑏𝑐𝑟 is the matrix of the rotor 

currents on its corresponding abc windings, 𝜓𝑎𝑏𝑐𝑟 is the matrix of the corresponding flux 

linkages of the rotor abc windings, 𝑅𝑟 is the rotor windings resistance and 𝜌 is the 

derivative with respect to time. 

In the case of ITSC fault, the voltage equation is expressed as:

  𝑣′𝑎𝑏𝑐𝑠 = 𝑅′𝑠𝑖′𝑎𝑏𝑐𝑠 + 𝜌𝜓′𝑎𝑏𝑐𝑠  (3.7) 

 0 = 𝑅𝑟𝑖𝑎𝑏𝑐𝑟 + 𝜌𝜓′𝑎𝑏𝑐𝑟  (3.8) 

where 𝑣′𝑎𝑏𝑐𝑠 is the matrix of supplied voltages on the stator abc winding during ITSC 

fault, 𝑖′𝑎𝑏𝑐𝑠 is the matrix of the stator currents on its corresponding abc windings during 

ITSC fault, 𝜓′𝑎𝑏𝑐𝑠 is the corresponding flux linkage matrix during ITSC fault on the stator 

abc windings and 𝑅′𝑠 is the stator resistance during ITSC fault. 

The matrices of voltages, currents and flux linkage can be defined as: 

  𝑣′𝑎𝑏𝑐𝑠 = [𝑣𝑎𝑠ℎ 𝑣𝑎𝑠𝑢 𝑣𝑏𝑠 𝑣𝑐𝑠]𝑇  (3.9) 

  𝑖′𝑎𝑏𝑐𝑠 = [𝑖𝑎𝑠 𝑖𝑎𝑠 − 𝑖𝑓 𝑖𝑏𝑠 𝑖𝑐𝑠]
𝑇  (3.10) 

  𝑖𝑎𝑏𝑐𝑟 = [𝑖𝑎𝑟 𝑖𝑏𝑟 𝑖𝑐𝑟]
𝑇  (3.11) 

  𝜓′𝑎𝑏𝑐𝑠 = [𝜓𝑎𝑠ℎ 𝜓𝑎𝑠𝑢 𝜓𝑏𝑠 𝜓𝑐𝑠]
𝑇  (3.12) 

   𝜓′𝑎𝑏𝑐𝑟 = [𝜓𝑎𝑟 𝜓𝑏𝑟 𝜓𝑐𝑟]
𝑇  (3.13) 

   𝑅′𝑠 = 𝑅𝑠diag[1 −  𝑚 𝑚 1 1]  (3.14) 
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   𝑅𝑟 = 𝑅𝑟diag[1 1 1]  (3.15) 

where,  

𝑣𝑎𝑠ℎ , 𝑣𝑎𝑠𝑢 are voltages across shortened turns and unshortened turns of the a-

phase of the stator winding respectively, 

 𝑣𝑏𝑠, 𝑣𝑐𝑠 are voltages across the b- and c-phase of the stator windings respectively, 

𝑖𝑏𝑠, 𝑖𝑐𝑠 are currents flowing through the b- and c-phase stator windings 

respectively, 

𝑖𝑎𝑟 , 𝑖𝑏𝑟 , 𝑖𝑐𝑟 are currents flowing through the a-, b- and c-phase of the rotor 

windings respectively, 

𝜓𝑎𝑠ℎ, 𝜓𝑎𝑠𝑢 are flux linkages in the shortened and unshortened turns of the a-phase 

of the stator windings respectively. 

𝜓𝑏𝑠, 𝜓𝑐𝑠 are flux linkages in the b- and c-phase of the stator windings respectively. 

𝜓𝑎𝑟, 𝜓𝑏𝑟 and 𝜓𝑐𝑟 are flux linkages in the a-, b- and c-phase of the rotor windings 

respectively. 

Substituting (3.9) – (3.15) in (3.7) 

   [

𝑣𝑎𝑠ℎ

𝑣𝑎𝑠𝑢
𝑣𝑏𝑠

𝑣𝑐𝑠

] = 𝑅𝑠 [

1 − 𝑚 0
0         𝑚

0 0
0 0

0          0
0          0

1 0
0 1

] [

𝑖𝑎𝑠

𝑖𝑎𝑠 − 𝑖𝑓
𝑖𝑏𝑠

𝑖𝑐𝑠

] + 𝜌 [

𝜓𝑎𝑠ℎ

𝜓𝑎𝑠𝑢

𝜓𝑏𝑠

𝜓𝑐𝑠

]  (3.16) 

Adding row (1) and (2) of equation (3.15), the voltage equations of the IM with a shorted 

a-phase are expressed as: 

   𝑣𝑎𝑏𝑐𝑠 = 𝑅𝑠𝑖𝑎𝑏𝑐𝑠 + 𝜌𝜓𝑎𝑏𝑐𝑠 + 𝑚𝑈1𝑖𝑓  (3.17) 

   0 = 𝑅𝑟𝑖𝑎𝑏𝑐𝑟 + 𝜌𝜓𝑎𝑏𝑐𝑟   (3.18) 
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where the matrix 𝑈1 is expressed as: 

   𝑈1 = [−𝑅𝑠 0 0]𝑇  (3.19) 

3.1.1.2 Flux linkages 

The matrix expression for the stator and rotor flux linkages under an ITSC fault is given 

as (Tallam et al., 2002): 

   [
𝜓′𝑎𝑏𝑐𝑠

𝜓𝑎𝑏𝑐𝑟
] = [

𝐿′𝑠𝑠 𝐿′𝑠𝑟
𝐿′𝑟𝑠 𝐿𝑟𝑟

] [
𝑖′𝑎𝑏𝑐𝑠

𝑖𝑎𝑏𝑐𝑟
]  (3.20) 

Where 𝐿′𝑠𝑠  and 𝐿𝑟𝑟 are the stator and rotor winding self-inductances matrices due to their 

respective winding currents. 𝐿′𝑠𝑟 and 𝐿′𝑟𝑠 are the stator and rotor winding mutual 

inductances matrices due to the corresponding current flowing in other windings. 

As given by (Sang-Hoon, 2017), the expression for the inductance between two windings 

𝑥 and 𝑦 can be described by the expression: 

   𝐿𝑥𝑠𝑦𝑠 =
𝑁𝑥𝑠𝑁𝑦𝑠𝐿𝑚𝑠𝑐𝑜𝑠𝛼

𝑁𝑠
2   (3.21) 

Where 𝐿𝑥𝑠𝑦𝑠 is the inductance between the xs and ys windings, 𝑁𝑥𝑠 and 𝑁𝑦𝑠 are the 

number of turns in the xs and ys windings respectively, 𝛼 is the angular displacement 

between the two windings, and 𝐿𝑚𝑠 is the mutual flux linkage between the windings. 

When 𝑥 = 𝑦, it results in a self-inductance and 𝛼 = 0° and when 𝑥 ≠ 𝑦, it results in 

mutual inductance and 𝛼 is shifted through angle 0°, 120° or 240° depending on the axis 

of the corresponding winding. 

Using equation (3.21) to solve for the self-inductances and mutual inductances, 

𝐿′𝑠𝑠, 𝐿𝑟𝑟 , 𝐿′𝑟𝑠 and 𝐿′𝑠𝑟 is given in equations (3.22), (3.23) and (3.24).  
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𝐿′
𝑠𝑠 = 𝐿𝑙𝑠 [

1 − 𝑚 0 0 0
0 𝑚 0 0
0
0

0
0

1
0

0
0

] + 𝐿𝑚𝑠

[
 
 
 

(1 − 𝑚)2 𝑚(1 − 𝑚) −0.5(1 − 𝑚) −0.5(1 − 𝑚)

𝑚(1 − 𝑚) 𝑚2 −0.5𝑚               −0.5𝑚
−0.5(1 − 𝑚)

−0.5(1 − 𝑚)
−0.5𝑚
−0.5𝑚

1
−0.5

               −0.5
               1 ]

 
 
 

       (3.22) 

   𝐿𝑟𝑟 = [

𝐿𝑙𝑟 + 𝐿𝑚𝑠 −0.5𝐿𝑚𝑠 −0.5𝐿𝑚𝑠

−0.5𝐿𝑚𝑠 𝐿𝑙𝑟 + 𝐿𝑚𝑠 −0.5𝐿𝑚𝑠

−0.5𝐿𝑚𝑠 −0.5𝐿𝑚𝑠 𝐿𝑙𝑟 + 𝐿𝑚𝑠

]  (3.23) 

  𝐿′
𝑠𝑟 = 𝐿′

𝑟𝑠
𝑇

= 𝐿𝑚𝑠

[
 
 
 
 
 
 (1 − 𝑚)𝑐𝑜𝑠𝜃𝑟 (1 − 𝑚)𝑐𝑜𝑠 (𝜃𝑟 +

2𝜋

3
) (1 − 𝑚)𝑐𝑜𝑠 (𝜃𝑟 −

2𝜋

3
)

𝑚𝑐𝑜𝑠𝜃𝑟 𝑚𝑐𝑜𝑠 (𝜃𝑟 +
2𝜋

3
) 𝑚𝑐𝑜𝑠 (𝜃𝑟 −

2𝜋

3
)

𝑐𝑜𝑠 (𝜃𝑟 −
2𝜋

3
)

𝑐𝑜𝑠 (𝜃𝑟 +
2𝜋

3
)

𝑐𝑜𝑠𝜃𝑟

𝑐𝑜𝑠 (𝜃𝑟 −
2𝜋

3
)

𝑐𝑜𝑠 (𝜃𝑟 +
2𝜋

3
)

𝑐𝑜𝑠𝜃𝑟 ]
 
 
 
 
 
 

  (3.24) 

Where 𝐿𝑙𝑠 and 𝐿𝑙𝑟 are the self-inductance due to the corresponding self-currents flowing 

in the stator and rotor windings respectively. 𝐿𝑚𝑠 is the mutual inductance in the stator 

windings due to currents flowing in adjacent windings and 𝜃𝑟 is the rotor winding angular 

displacement. 

Substituting equations (3.22) (3.24) in equation (3.20) and adding row (1) and (2) of the 

resulting equations. 

   𝜓𝑎𝑏𝑐𝑠 = 𝐿𝑠𝑠𝑖𝑎𝑏𝑐𝑠 + 𝐿𝑠𝑟𝑖𝑎𝑏𝑐𝑟 + 𝑚𝑈2𝑖𝑓  (3.25) 

   𝜓𝑎𝑏𝑐𝑟 = 𝐿𝑟𝑠𝑖𝑎𝑏𝑐𝑠 + 𝐿𝑟𝑟𝑖𝑎𝑏𝑐𝑟 + 𝑚𝑈3𝑖𝑓  (3.26) 

Where, 

   𝑈2 = [−(𝐿𝑙𝑠 + 𝐿𝑚𝑠) 0.5𝐿𝑚𝑠 0.5𝐿𝑚𝑠]
𝑇  (3.27) 

   𝑈3 = −𝐿𝑚𝑠 [𝑐𝑜𝑠𝜃𝑟 𝑐𝑜𝑠 (𝜃𝑟 +
2𝜋

3
) 𝑐𝑜𝑠 (𝜃𝑟 −

2𝜋

3
)]

𝑇

  (3.28) 
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3.1.2 Mathematical modelling of ITSC fault in stationary DQ reference frame 

system 

The flux linkages of the 𝑎𝑏𝑐 IM model contain time-varying mutual inductances seen in 

the alternating values of 𝜃𝑟 in equation (3.24). The DQ reference frame transformation 

reduces the complexity of the IM model by transforming the time-varying parameters into 

an orthogonal system (Sang-Hoon, 2017). 

For any three-phase system, the transformation to an orthogonal stationary DQ reference 

frame is given by the generic equation: 

[
𝑣𝛼

𝑣𝛽
] =

2

3
[
1 −

1

2
−

1

2

0
√3

2
−

√3

2

] [

𝑣𝑎

𝑣𝑏

𝑣𝑐

]                                    (3.29) 

where 𝑣𝛼 and 𝑣𝛽 are the two orthogonal dq stationary alpha- and beta-phase systems 

respectively, and 𝑣𝑎, 𝑣𝑏 and 𝑣𝑐 are the three-phase abc corresponding system. 

Applying the stationary 𝑑𝑞 reference frame (Clarke transformation), equations (3.16) and 

(3.17) become: 

   𝑣𝛼𝛽𝑠 = 𝑅𝑠𝑖𝛼𝛽𝑠 + 𝜌𝜓𝛼𝛽𝑠 −
2

3
𝑚𝑅𝑠𝑖𝑓  (3.30) 

   0 = 𝑅𝑟𝑖𝛼𝛽𝑟 + 𝜌𝜓𝛼𝛽𝑟 + 𝜔𝑟 [
0 1

−1 0
]𝜓𝛼𝛽𝑟  (3.31) 

Where  

𝑣𝛼𝛽𝑠 is a matrix of alpha- and beta-phase supplied voltage of the stator winding 

of the stationary dq orthogonal system. 

𝑖𝛼𝛽𝑠 and 𝑖𝛼𝛽𝑟 are the currents matrices of the stator and rotor windings in the 

stationary dq orthogonal system respectively. 
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𝜓𝛼𝛽𝑠 and 𝜓𝛼𝛽𝑟 are the flux linkage matrices of the stator and rotor in the stationary 

dq orthogonal system respectively. 

𝜔𝑟, is the rotor speed. 

From equation (3.16), the voltage drop across the shorted windings, 𝑣𝑎𝑠𝑢 in stationary 𝑑𝑞 

is expressed as: 

   𝑣𝛼su = 𝑚𝑅𝑠(𝑖𝛼𝑠 − 𝑖𝑓) + 𝜌𝜓𝛼su  (3.32) 

where 𝑖𝛼𝑠 is the alpha-phase current and 𝜓𝛼su is the flux linkage in the alpha-phase 

shorted turns. 

However, the voltage across a short circuit is zero, therefore, 𝑣𝛼su = 0. Hence, 

   𝜌𝜓𝛼su = −𝑚𝑅𝑠(𝑖𝛼𝑠 − 𝑖𝑓)  (3.33) 

Solving for the value of flux linkages in equations (3.30), (3.31) and (3.33) 

   𝜓𝛼𝑠 = ∫( 𝑣𝛼𝑠 − 𝑅𝑠𝑖𝛼𝑠 +
2

3
𝑚𝑅𝑠𝑖𝑓)𝑑𝑡  (3.34) 

   𝜓𝛽𝑠 = ∫( 𝑣𝛽𝑠 − 𝑅𝑠𝑖𝛽𝑠)𝑑𝑡  (3.35) 

   𝜓𝛼𝑟 = ∫( − 𝜔𝑟𝜓𝛽𝑟 − 𝑅𝑟𝑖𝛼𝑟)𝑑𝑡  (3.36) 

   𝜓𝛽𝑟 = ∫(𝜔𝑟𝜓𝛼𝑟 − 𝑅𝑟𝑖𝛽𝑟)𝑑𝑡  (3.37) 

   
1

𝑚
𝜓𝛼su = ∫−𝑅𝑠(𝑖𝛼𝑠 − 𝑖𝑓) 𝑑𝑡  (3.38) 

Where 𝜓𝛼𝑠 and 𝜓𝛽𝑠, are respective alpha- and beta-phase flux linkages in the stator 

windings of the stationary dq system, 𝜓𝛼𝑟 and 𝜓𝛽𝑟 are respective alpha- and beta-phase 

fluxes linkages in the rotor windings of the stationary dq system. 𝑖𝛽𝑠, 𝑖𝛼𝑟 and 𝑖𝛽𝑟 are the 
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beta-phase current in the stator winding, alpha-phase current in the rotor winding and 

beta-phase current in the rotor winding in the stationary dq system respectively. 

Applying the stationary 𝑑𝑞 reference frame transformation to equations (3.25) and (3.26) 

to eliminate time-varying mutual inductances, the expressions become: 

   𝜓𝛼𝛽𝑠 = 𝐿𝑠𝑖𝛼𝛽𝑠 + 𝐿𝑚𝑖𝛼𝛽𝑟 −
2

3
𝑚𝐿𝑠𝑖𝑓  (3.39) 

   𝜓𝛼𝛽𝑟 = 𝐿𝑟𝑖𝛼𝛽𝑟 + 𝐿𝑚𝑖𝛼𝛽𝑠 −
2

3
𝑚𝐿𝑚𝑖𝑓  (3.40) 

Where  𝐿𝑚 =
3

2
𝐿𝑚𝑠, 𝐿𝑠 = 𝐿𝑙𝑠 + 𝐿𝑚 and 𝐿𝑟 = 𝐿𝑙𝑟 + 𝐿𝑚 

Also, the flux linkage of the shorted windings is described by the equation (Dongare et 

al., 2020). 

   𝜓𝛼su = 𝑚𝐿𝑠𝑖𝛼𝑠 + 𝑚𝐿𝑚𝑖𝛼𝑟 − 𝑚 (𝐿𝑙𝑠 +
2

3
𝑚𝐿𝑚) 𝑖𝑓  (3.41) 

Solving for the value of 𝑖𝛼𝑠, 𝑖𝛽𝑠, 𝑖𝛼𝑟, 𝑖𝛽𝑟 and 𝑖𝑓 in equation (3.39) – (3.41). 

   𝑖𝛼𝑠 =
𝐿𝑟𝜓𝛼𝑠 − 𝐿𝑚𝜓𝛼r

𝐿𝑠𝐿𝑟 − 𝐿𝑚
2 +

2

3
𝑚𝑖𝑓  (3.42) 

   𝑖𝛽𝑠 =
𝐿𝑟𝜓𝛽s−𝐿𝑚𝜓𝛽𝑟

𝐿𝑠𝐿𝑟 − 𝐿𝑚
2   (3.43) 

   𝑖𝛼𝑟 =
𝐿𝑠𝜓𝛼𝑟 − 𝐿𝑚𝜓𝛼𝑠

𝐿𝑠𝐿𝑟 − 𝐿𝑚
2   (3.44) 

   𝑖𝛽𝑟 =
𝐿𝑠𝜓𝛽𝑟−𝐿𝑚𝜓𝛽𝑠

𝐿𝑠𝐿𝑟 − 𝐿𝑚
2   (3.45) 

   𝑖𝑓 =
𝐿𝑠𝑖𝛼𝑠+ 𝐿𝑚𝑖𝛼𝑟−

1

𝑚
𝜓𝛼su

(𝐿𝑠−𝐿𝑚)+
2

3
𝑚𝐿𝑚

  (3.46) 

The electromagnetic torque, 𝑇𝑒𝑚, in stationary 𝑑𝑞 system under ITSC fault in the IM is 

given by the expression (Dongare et al., 2020). 
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   𝑇𝑒𝑚 =
𝑃

2
𝐿𝑚 (

3

2
(𝑖𝛽𝑠𝑖𝛼𝑟 − 𝑖𝛼𝑠𝑖𝛽𝑟) − 𝑚𝑖𝑓𝑖𝛽𝑟)  (3.47) 

where 𝑃 numbers of poles 

3.1.3 Mathematical modelling of ITSC fault in rotating DQ reference frame system 

The transformation of the stationary DQ reference frame to the rotating DQ reference 

frame for any orthogonal system is generally given as: 

[
𝑣𝑑

𝑣𝑞
] = [

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] [
𝑣𝛼

𝑣𝛽
]                                      (3.48) 

where 𝑣𝑑 and 𝑣𝑞 are the two orthogonal dq rotating direct- and quadrature-phase systems 

respectively, while 𝑣𝛼 and 𝑣𝛽 are the corresponding dq stationary system and 𝜃 is the 

angular displacement between the rotating and stationary phases. 

Applying the rotating 𝑑𝑞 reference frame transformation to equation (3.30) – (3.31) and 

equation (3.39) – (3.40), the voltage and flux linkages can be expressed as: 

   𝑣𝑑𝑞𝑠 = 𝑅𝑠𝑖𝑑𝑞𝑠 + 𝜌𝜓𝑑𝑞𝑠 ± 𝜔𝜓𝑞𝑑𝑠 −
2

3
𝑚𝑅𝑠𝑖𝑓 [

𝑐𝑜𝑠𝜃
−𝑠𝑖𝑛𝜃

]  (3.49) 

   0 = 𝑅𝑟𝑖𝑑𝑞𝑟 + 𝜌𝜓𝑑𝑞𝑟 ± (𝜔 − 𝜔𝑟)𝜓𝑞𝑑𝑟  (3.50) 

   𝜓𝑑𝑞𝑠 = 𝐿𝑠𝑖𝑑𝑞𝑠 + 𝐿𝑚𝑖𝑑𝑞𝑟 −
2

3
𝑚𝐿𝑠𝑖𝑓 [

𝑐𝑜𝑠𝜃
−𝑠𝑖𝑛𝜃

]  (3.51) 

   𝜓𝑑𝑞𝑟 = 𝐿𝑟𝑖𝑑𝑞𝑟 + 𝐿𝑚𝑖𝑑𝑞𝑠 −
2

3
𝑚𝐿𝑚𝑖𝑓 [

𝑐𝑜𝑠𝜃
−𝑠𝑖𝑛𝜃

]  (3.52) 

Where  

𝑣𝑑𝑞𝑠 is a matrix of direct- and quadrature-phase supplied voltage of the stator 

winding of the rotating dq system. 
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𝑖𝑑𝑞𝑠 and 𝑖𝑑𝑞𝑟 are the currents matrices of the stator and rotor windings in the 

rotating dq system respectively. 

𝜓𝑑𝑞𝑠 and 𝜓𝑑𝑞𝑟 are the flux linkage matrices of the stator and rotor in the rotating 

dq orthogonal system respectively. 

Computing for the integral of the flux linkages, equations (3.49) – (3.52) becomes: 

   𝜓𝑑𝑠 = ∫( 𝑣𝑑𝑠 − 𝑅𝑠𝑖𝑑𝑠 − 𝜔𝜓𝑞𝑠 +
2

3
𝑚𝑅𝑠𝑖𝑓𝑐𝑜𝑠𝜃)𝑑𝑡  (3.53) 

   𝜓𝑞𝑠 = ∫( 𝑣𝑞𝑠 − 𝑅𝑠𝑖𝑞𝑠 + 𝜔𝜓𝑑𝑠 −
2

3
𝑚𝑅𝑠𝑖𝑓𝑠𝑖𝑛𝜃)𝑑𝑡  (3.54) 

   𝜓𝑑𝑟 = ∫( − (𝜔 − 𝜔𝑟)𝜓𝑞𝑟 − 𝑅𝑟𝑖𝑑𝑟)𝑑𝑡  (3.55) 

   𝜓𝑞𝑟 = ∫( (𝜔 − 𝜔𝑟)𝜓𝑑𝑟 − 𝑅𝑟𝑖𝑞𝑟)𝑑𝑡  (3.56) 

   
1

𝑚
𝜓𝛼su = ∫−𝑅𝑠(𝑖𝑑𝑠 − 𝑖𝑓) 𝑐𝑜𝑠𝜃𝑑𝑡  (3.57) 

where 𝜓𝑑𝑠 and 𝜓𝑞𝑠, are respective direct- and quadrature-phase flux linkages in the stator 

windings of the rotating dq system, 𝜓𝑑𝑟 and 𝜓𝑞𝑟 are respective direct- and quadrature-

phase flux linkages in the rotor windings of the rotating dq system. 𝑖𝑑𝑠, 𝑖𝑞𝑠, 𝑖𝑑𝑟 and 𝑖𝑞𝑟 are 

the direct-phase current in the stator winding, quadrature-phase current in the stator 

winding, direct-phase current in the rotor winding and quadrature-phase current in the 

rotor winding in the rotating dq system respectively. And 𝜔 is the electromagnetic speed. 

By solving for the currents in equations (3.49) – (3.50), the stator currents in rotating 𝑑𝑞 

become: 

   𝑖𝑑𝑠 =
𝐿𝑟𝜓𝑑𝑠 − 𝐿𝑚𝜓𝑑r

𝐿𝑠𝐿𝑟 − 𝐿𝑚
2 +

2

3
𝑚𝑖𝑓𝑐𝑜𝑠𝜃  (3.58) 

   𝑖𝑞𝑠 =
𝐿𝑟𝜓𝑞𝑠 − 𝐿𝑚𝜓𝑞r

𝐿𝑠𝐿𝑟 − 𝐿𝑚
2 +

2

3
𝑚𝑖𝑓𝑠𝑖𝑛𝜃  (3.59) 
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The rotor currents in stationary and rotating reference frames are the same for an ITSC 

fault on a stator winding of a squirrel cage IM. 

The electromagnetic torque in this rotating 𝑑𝑞 reference frame is given by: 

   𝑇𝑒𝑚 =
𝑃

2
𝐿𝑚 (

3

2
(𝑖𝑞𝑠𝑖𝑑𝑟 − 𝑖𝑑𝑠𝑖𝑞𝑟) − 𝑚𝑖𝑓(𝑖𝑞𝑟𝑠𝑖𝑛𝜃 − 𝑖𝑑𝑟𝑐𝑜𝑠𝜃))  (3.60) 

3.1.4 Mathematical equations of the speed 

The rotor speed, 𝜔r of the IM is given by the relationship: 

   𝜔r = P ∫
Tem − TL

2J
dt  (3.61) 

Where TL is the load torque in Nm, and J is the moment of inertia in kg.m2 

The angular displacement and electromagnetic speed are related as: 

   𝜃 =  ∫𝜔𝑑𝑡  (3.62) 

Where, 𝜔 = 2𝜋𝑓,  f is the frequency of the power network. 

The synchronous speed, 𝑁𝑠 is given as: 

   𝑁𝑠 =
120𝑓

𝑃
 (3.63) 

3.2 Simulation and Extraction of Torque, Speed and Currents Datasets 

The mathematical model of the three-phase IM, described by the equation of flux 

linkages, currents, voltages, speed and torque in section 3.1, was simulated on the 

MATLAB environment (precisely MATLAB version 9.6 R2019a) as shown in Figure 

3.4. 
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For the proper simulation of the IM, the values of winding resistances, inductances (self 

and mutual), the moment of inertia, and numbers of poles, motor operating frequency and 

voltages have to be given. These values can be extracted experimentally by performing a 

short circuit test. However, for this research, these parameters were obtained from the 

research done by Arunachalam and Arumugam (2018). Table 3.1 presents the values of 

the three-phase squirrel cage IM used (Arunachalam and Arumugam, 2018). 

Table 3.1: Parameter of a three-phase squirrel cage IM 

Machine Input Parameters Values 

Nominal Power, L-L Voltage, frequency 4kW, 400V, 50Hz 

Stator (Rs, Lls) 1.405Ω, 0.005839H 

Rotor (Rr, Llr) 
1.395Ω, 0.005839H 

Mutual Inductance, Lm 0.1722H 

Moment of Inertia, J and Poles, P 0.089kg.m2, 4 

 

To illustrate the condition of ITSC faults of varying degrees, the value of the ratio of 

shortened turns to total turns, m, was arbitrarily varied from 0 – 10 %. Under each 

variation of m, the datasets of torque, speed and Park vector currents components were 

obtained from the SIMULINK to the MATLAB workspace. These obtained data were 

further processed by programming to study and analyze the impact of ITSC faults on the 

torque, speed and Park current waveforms of the three-phase IM. The relevant MATLAB 

M-files are given in Appendices A, B, C and D. 
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3.3 Park Vector Plot (PVP) and Computation of PVM 

In other to obtain the PVP without transient harmonics or interference, the datasets of the 

Park currents were processed using matrix slicing to obtain the steady-state currents such 

that: 

   𝑖𝛼𝛽𝑠 = 𝑖𝑑𝑞𝑠 = {
0, 𝑡 ≤ 𝑡𝑡

𝑖𝑑𝑞𝑠, 𝑡 > 𝑡𝑡
  (3.64) 

where 𝑡, is the simulation time and 𝑡𝑡, transient time. 

The PVM is the modulus of Park vector currents components in a complex plane. 

Let the PVM be denoted as IM, then in a dq complex plane (Ids + 𝑗Iqs), the modulus is 

given as: 

   IM √Ids
  Iqs

  (3.65) 

   𝛿 = tan−1 (
𝑖𝑞𝑠

𝑖𝑑𝑠
)  (3.66) 

Where 𝛿 is the angle of displacement of the PVM as it rotates in the complex plane. 

The PVP on the XY plane is the plot of the stationary 𝑖𝛼𝑠 current versus the stationary 𝑖𝛽𝑠 

current or the plot of the PVM, IM  and angular displacement, 𝛿 in a complex plane. To 

simplify this, the former was used. Under each variation of m, the 𝑖𝛼𝑠 were plotted against 

𝑖𝛽𝑠 to obtain the PVP. The distortions of the shapes of the PVP were observed to vary 

proportionately to the values of m. This visualized distortion was used to diagnose the 

presence of ITSC fault in the three-phase IM. 
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3.4 Computation of Fault Severity 

A non-faulty IM operating in a steady state (after the transient noise has been removed) 

contains only DC components in the Park Vector reference transformation. However, 

under an ITSC fault, the introduction of a negative sequence into the IM as the result of 

the ITSC fault, causes it to have other AC signals along with the DC component. As 

reported by Cruz and Cardoso (2001), the AC signal varies with the degree of the fault. 

Many computation techniques involving the measurement of the peak of the AC 

spectrum, the maximum and minimum PVM and the angle of the PVM have been used 

to estimate fault severity in an IM. However, the characteristic of an IM under ITSC fault 

has shown that the PVM differs along its elliptical locus making it difficult to use only 

the extreme values to accurately judge the severity of the abnormality in the IM. 

In this research, to measure the severity of the ITSC fault in the IM, the variance, and 

standard deviation were used to measure the deviation, and dispersion of the PVM data 

on its elliptical loci, and Root Mean Square Error (RMSE) values were used to compare 

the correlation between faults PVM and the unfaulty PVM. 

The variance, Ivar for an N number of IM is given as: 

    Ivar =
∑ (IM  IM

̅̅ ̅)
2N

i = 1

N  1
  (3.67) 

Where, the mean PVM, IM̅̅̅ is given as: 

    𝐼𝑀̅̅̅  =
∑ 𝐼𝑀

N
i = 1

N 
  (3.68) 

The standard deviation, Istd for the same N number of IM datasets is given as: 

   Istd = √𝐼𝑣𝑎𝑟 = √∑ (𝐼𝑀− 𝐼𝑀̅̅ ̅̅ )2𝑁
𝑖 = 1

𝑁− 1
  (3.69) 
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The RMSE value denoted as IRMSE is given as: 

   IRMSE = √
∑ |(𝐼𝑀𝑚≠0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  − 𝐼𝑀𝑚=0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )|2𝑁

𝑖 = 1

𝑁
  (3.70) 

Where, 

 𝐼𝑀𝑚=0
̅̅ ̅̅ ̅̅ ̅̅  is the mean PVM when the IM is not faulty (that is, ITSC faults = 0%). 

 𝐼𝑀𝑚≠0
̅̅ ̅̅ ̅̅ ̅̅  is the mean PVM when the IM is faulty (ITSC faults ≠ 0%). 

The flow chart diagram for the methodology is shown in Figure 3.5. 
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Figure 3.5: Flowchart for the research methodology 
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CHAPTER FOUR 

4.0 RESULTS AND DISCUSSION 

This chapter presents the research results based on the simulation of the mathematical 

model of the three-phase squirrel cage IM described in chapter three. The simulation was 

done using MATLAB codes and SIMULINK blocks. The chapter concluded by 

presenting the safe allowable fault zone that the machine is allowed to operate beyond 

which, a total machine failure is imminent. 

4.1 Results 

As presented in section 3.2, the SIMULINK model of the IM was simulated with a 

varying winding parameter, m over a simulation time of 3 seconds. The results obtained 

are presented as follows. 

4.1.1 Supply voltage in ABC and stationary Park vector 

Figure 4.1: IM source voltages in (a) three-phase abc reference frame and (b) two-

phase alpha-beta reference frame 
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The three-phase IM was supplied with an ideal three-phase alternating voltage source 

with the waveform as shown in Figure 4.1a. Figure 4.1b shows the transformation of the 

ABC reference source voltage to the stationary Park reference frame, which is the applied 

voltage to the transformation equations of flux linkages, currents, speed and torque. 

4.1.2 Electromagnetic torque and speed 

A state of no ITSC fault was simulated in the three-phase IM by setting the ratio of faulty 

turns to total turn, m equals 0, under no load condition (that is, TL = 0). The 

electromagnetic torque under this condition is shown in Figure 4.2a. 

Figure 4.2: Graph of (a) electromagnetic torque and (b) rotor speed of the IM under 

healthy condition at no load. 
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Similarly, under no load condition and no ITSC fault, the rotor speed of the IM is as 

shown in Figure 4.2b. 

The plot of the electromagnetic torque-speed characteristic under no-fault conditions is 

presented in Figure 4.3. 

Simulating the IM SIMULINK model for a no-load condition and at 1% ITSC fault (that 

is, m = 1%), the plot of the torque and speed parameters obtained are shown in Figure 

4.4. Similarly, the torque-speed characteristics of the IM under 1% ITSC fault is presented 

in Figure 4.5. 

 

 

 

 

Figure 4.3: Torque-speed characteristic under no ITSC fault (m = 0%) 
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Figure 4.4: Graph of (a) electromagnetic torque and (b) rotor speed of the IM under 1% 

ITSC fault at no load 

Figure 4.5: Torque-speed characteristic under 1% ITSC faults 
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Varying the value of m to 2%, 3%, 4%, 5%, 6%, and 7% to demonstrate the occurrence 

of higher ITSC faults, the electromagnetic torque and speed plots are presented in Figure 

4.6 and Figure 4.7 respectively. 

 

Figure 4.6: Torque for 2%, 3%, 4%, 5%, 6% and 7% ITSC fault respectively 
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Figure 4.7: Rotor speed for 2%, 3%, 4%, 5%, 6% and 7% ITSC faults respectively 

Figure 4.8: Torque for 8%, 9% and 10% ITSC faults respectively 
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The electromagnetic torque and speed waveforms under 8%, 9% and 10% ITSC faults 

are also presented in Figure 4.8 and Figure 4.9 respectively. 

A special scenario was observed for ITSC fault level equals to 9% and 10%. To better 

understand the behaviour of the IM under these higher percentage of fault, the torque-

speed characteristics of the IM at 9% ITSC fault was plotted as shown in Figure 4.10. 

Figure 4.9: Rotor speed for 8%, 9% and 10% ITSC faults respectively 

 

Figure 4.10: Torque-speed characteristics of IM for 9% ITSC Fault 



57 

 

4.1.3 Waveform of Park current components 

Simulating m = 0% in the SIMULINK model of Figure 3.5, and extracting the waveform 

of the stationary and rotating Park currents components using M-files given in Appendix 

B, the results are presented in Figure 4.11a and 4.11b respectively. 

The “X” dotted marked position is the same position marked on the torque and speed plot 

to indicate the end of the transient state in the IM. 

By simulating the model for an ITSC fault of 1%, the Park currents waveform in the 

stationary and rotating reference frame is shown in Figure 4.12a and Figure 4.12b 

respectively. 

Figure 4.11: Stator currents for ITSC = 0% in (a) Park stationary plane and (b) Park 

rotating plane 
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The wave patterns of the stationary and rotating Park currents for higher fault levels (2% 

- 7%) are presented in Figure 4.13 and Figure 4.14 respectively. Using the M-files in 

Appendix C, only the steady-state currents data were considered to better understand the 

impact of higher ITSC fault on the Park current waveform. 

 

 

 

 

 

Figure 4.12: Stator currents for ITSC = 1% in (a) Park stationary plane and (b) Park 

rotating plane 
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Figure 4.13: Steady – state stationary Park currents for 0%, 1%, 2%, 3%, 4%, 5%, 6% 

and 7% ITSC faults 
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4.1.4 Park vector plots 

From the datasets of stationary and rotating Park currents components extracted, the PVPs 

were obtained. The PVP is based only on the steady-state currents of the Park currents 

Figure 4.14: Steady – state rotating Park currents for 0%, 1%, 2%, 3%, 4%, 5%, 

6%, and 7% ITSC faults 
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component in other to remove the transient harmonics. Maintaining the same simulation 

time of 3 seconds and transient time of 0.7 seconds, the steady Park currents data were 

obtained using the M-file in Appendix C. The M-file in Appendix D was used to generate 

the PVP for each variation of m values. 

To demonstrate the effect of transient state data on the visualized PVP, the plot of m = 

0% (no fault in the IM) and m = 1% (that is, 1% ITSC fault) were compared as shown in 

Figure 4.15. 

The transient data were removed to obtain only the steady-state currents, and the PVPs at 

0% and 1%, in this case, were also presented as shown in Figure 4.16. 

The shortened-turn ratio, m, was increased to indicate higher percentages of ITSC fault 

in the IM. The transient time of 0.7s was maintained in removing transient state 

harmonics. The visualized PVP for each variation are shown in Figure 4.17, Figure 4.18 

and Figure 4.19. 

Figure 4.15: PVP for ITSC faults of (a) 0% and (b) 1% with transient harmonics 
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Figure 4.16: PVP for ITSC faults of (a) 0% and (b) 1% without transient harmonics 

Figure 4.17: PVP for 2%, 3%, 4% and 5% ITSC faults 
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Figure 4.18: PVP for 6% and 7% ITSC faults 

Figure 4.19: PVP for 8%, 9% and 10% ITSC faults  
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4.1.5 Computation of PVM 

Using the M-file in Appendix D, the PVM, which is the radius of the PVP along its 

circular or elliptical locus was computed and used to compute the mean, variance, 

standard deviation and RMSE as described by equation 3.67 – 3.70. Table 4.1 presents 

the results obtained. 

Table 4.1: Computation of mean, variance, standard deviation and RMSE values 

under no-load condition 

% of ITSC 

Fault 
Mean, IM̅̅̅ (A) 

Variance,  

Ivar (A) 

Standard 

Deviation,  

Istd (A) 

RMSE, 

IRMSE (A) 

0 5.5620 0 0 0 

1 5.9430 0.1028 0.3207 0.4980 

2 6.3556 0.4158 0.6448 1.0225 

3 6.7963 0.9444 0.9718 1.5709 

4 7.2621 1.6938 1.3014 2.1410 

5 7.7508 2.6686 1.6336 2.7312 

6 8.3141 4.1513 2.0375 3.4242 

7 11.5942 141.7204 11.9046 13.3455 

8 25.3598 786.9049 28.0518 34.3340 

9 83.1437 10.2628 3.2036 77.6478 

10 84.1568 12.1560 3.4866 78.6721 
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From Table 4.1 obtained above, by plotting the percentage (%) of ITSC faults versus the 

Mean PVM, IM̅̅̅ , and RMSE, IRMSE values, a graph as shown in Figure 4.20 was obtained. 

Similarly, the percentage of ITSC faults plotted against the variance, Ivar, and standard 

deviation, Istd, presented a graph as shown in Figure 4.21. 

Figure 4.20: No-load ITSC fault versus mean PVM and RMSE 

 

Figure 4.21: No-load ITSC faults versus variance and standard deviation 
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To further study how the severity of faults behaves under load conditions, a rated load 

with a torque of 5N.m (that is, 𝑇L = 5𝑁.𝑚) was simulated with varying m values (that is, 

0 – 10% ITSC faults) and the results of mean PVM, variance, standard deviation and 

RMSE are tabulated in Table 4.2. 

Table 4.2: Computation of mean, variance, standard deviation and RMSE values 

with rated load torque 

% of ITSC 

Fault 
Mean, IM̅̅̅ (A) 

Variance,  

Ivar (A) 

Standard 

Deviation,  

Istd (A) 

RMSE, 

IRMSE (A) 

0 6.0275 0 0 0 

1 6.4276 0.1130 0.3361 0.5225 

2 6.8462 0.4940 0.7028 1.0790 

3 7.3216 1.0370 1.0183 1.6467 

4 7.8076 1.8597 1.3637 2.2424 

5 8.3266 2.9404 1.7148 2.8681 

6 11.2075 118.9644 10.9071 12.0744 

7 25.3711 825.4171 28.7301 34.6346 

8 86.4447 8.9322 2.9887 80.4727 

9 87.4943 10.6923 3.2699 81.5324 

10 88.2946 13.0661 3.6147 82.3464 
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Under this load condition, a plot of ITSC faults versus the Mean PVM and the RMSE 

was obtained as shown in Figure 4.22. 

Similarly, a plot of ITSC faults versus variance and standard deviation under the load 

condition is shown in Figure 4.23. 

Figure 4.22: ITSC faults versus mean PVM and RMSE under a rated load torque 

 

Figure 4.23: ITSC faults versus variance and standard deviation under a rated 

load condition 
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The Mean PVM and RMSE under the no-load and the rated load conditions were 

combined in a single plot to observe the difference as shown in Figure 4.24a and Figure 

4.24b respectively. 

4.2 Discussion of Results 

To understand the behaviour of the IM under varying faults conditions, the elaborate 

discussion of the results presented in section 4.1 are given as follows: 

Figure 4.24: ITSC faults versus no-load and rated load (a) mean PVMs and (b) 

RMSEs 
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4.2.1 Voltage transformation 

As shown in Figure 4.1, the input source voltage to the IM is an ideal three-phase 

sinusoidal alternating voltage which is the ideal voltage source found in most power 

systems. 

Using the line-to-line voltage rating of the IM given in section 3.2, the SIMULINK model 

was fed with 230V line-to-neutral equivalent at 50 Hz. The voltage source waveform in 

the normal ABC reference frame system is given in Figure 4.1a. As stated earlier in 

section 3.1, EPVA uses Park current components, therefore, the need to transform the 

voltage source from the ABC reference frame to the Park reference frame as shown in 

Figure 4.1b. This transformed voltage source was applied to the stationary and rotating 

Park modelling of the flux linkage, currents, speed and torque to completely simulate the 

IM mathematical model done in section 3.1. 

4.2.2 Impact assessment of ITSC faults on electromagnetic torque and rotor speed 

As shown in Figure 4.2a, the electromagnetic torque of the IM at m = 0% (non-faulty IM) 

oscillated rapidly to its maximum value of 80. 9333Nm as the machine moves from its 

transient state to its steady state (where the Tem becomes approximately 0). This behaviour 

is expected because IMs have high starting torque which is normally experienced during 

its transient state operation and the torque becomes zero when maximum speed is reached 

and the IM has stabilized or is operating in its steady state. 

Also, as shown in Figure 4.2b, during the transient state of the machine, that is, before 

the torque becomes approximately 0, the rotor speed of the IM is seen to accelerate 

gradually to its maximum speed of 1480.4207 rpm as marked by the point “X” under no 

load condition. As the IM reaches stability, it maintains a steady speed of 1480.4407 rpm 
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(starting from the point marked “Y”) of which the waveform can be seen as a pure DC 

waveform under no load condition in steady state operation. 

The plot of the torque-speed characteristic of the IM as shown in Figure 4.3 indicates that 

it is operating in the motoring region (i.e., 0 < Nm < Ns) where the source voltage is 

converted into mechanical energy to drive the rotor of the machine. 

In the advent of 1% ITSC faults (that is, m = 1%) as shown in Figure 4.4a, the 

electromagnetic torque behaves partially normal, maintaining the same wave pattern. 

However, there can be seen to be some ripples in the waveform of torque. When the 

machine begins to transition to its steady state from point “X” and “Y”, the ripples persist 

as shown in the zoomed window indicating that an IM having ITSC faults experience 

continuous instability in the machine performance. Also, there can be seen some negative 

torque values of about -20 Nm in the machine as it transitions from transient to steady 

state. 

Similarly, the rotor speed of the IM under no load ITSC faults also contains ripples during 

both transient and steady-state operation as shown in Figure 4.4b experiencing instability 

in both transient and steady-state regions. 

As shown in Figure 4.5, the electromagnetic torque-speed characteristics for the IM under 

1% ITSC fault shows that the IM is acting as a motor majorly however, due to the negative 

torque, it will force the IM to transmit power contrary to the conventional behaviour of 

IM. 

As shown in Figure 4.6a – f and Figure 4.7a – f for 2%, 3%, 4%, 5%, 6%, and 7% 

respectively, the ripples in the electromagnetic torque and rotor speed increase 

significantly as the fault level increases in the machine under no load condition. These 
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show that an IM under ITSC fault will experience some irregularities in the speed and 

torque characteristics making it physically pulsate as it rotates and these effects increase 

with respect to the fault level. Comparing the points marked “X” and “Y” on each plot 

for each ITSC fault, it can be seen that the transient states are prolonged differently for 

each fault level. This shows that ITSC faults increase the transient time and delay the 

steady state. 

For 8%, 9% and 10% ITSC faults, the ripple level of the electromagnetic torque and speed 

waveform as shown in Figure 4.8 and Figure 4.9 respectively becomes increasingly 

higher. Particularly, for the 9% and 10% ITSC faults, the IM is seen to experience a high 

magnitude of instability and developed an unusually negative and positive torque, which 

spanned through the simulation time of 3s without converging, contrarily to what is seen 

for the lower level of faults (less than 9% of ITSC fault). For these same fault levels, the 

rotor speed waveform started developing negative speed profiles with ripples. A close 

look at the torque-speed characteristics in Figure 4.10 for one of such fault levels (ITSC 

= 9%) shows that the IM is operating within the 2nd and 3rd quadrants where the machine 

is behaving alternatively as a prime mover and as a motor. This process is very fast, 

happening within microseconds, therefore, the physical behaviour of the rotor will appear 

to be standing still or jittering and may even produce heat signatures within the core. 

4.2.3 Current assessments of the three-phase IM 

As shown in Figure 4.11, for an IM with no ITSC fault in the stator winding, the Park 

currents components maintain high currents level during the transient phase and that is 

attributed to the effect of the high starting torque of the IM. During the steady state 

(marked by the region after the “X”), when the torque is approximately zero and the rotor 

speed is at maximum, the Park current components maintain a stable and lower current 
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level. The stationary Park current is an orthogonal two-phase AC (for a balance three-

phase IM) while the rotating Park current is an orthogonal two-phase DC as shown in 

Figure 4.11a and 4.11b respectively. 

In the advent of ITSC fault of 1%, the stationary and rotating Park currents components 

show some distortion and peak shift in their currents waveforms as shown in Figure 4.12. 

The stationary plot has a peak shift in the currents as shown in Figure 4.12a and has some 

distortion or AC ripples in the rotating current waveform as shown in Figure 4.12b. This 

is expected due to the introduction of faults in the IM. The theory of fault occurrence in 

an IM is that fault introduces some harmonics in the IM and using the EPVA techniques, 

these harmonics are seen as AC ripples in a rotating Park currents components that is 

conventionally a DC (Cruz and Cardoso, 2001).  

As observed for the waveform of the stationary Park currents component for lower faults 

(1% ITSC fault in Figure 4.12b), the difference of the waveform compared to the non-

faulty stationary Park currents (0% ITSC fault in Figure 4.11b) is not very visible. This 

is a major limitation of the stationary Park current waveform in studying faults of lower 

magnitude. Contrarily, when the comparison of the rotating Park currents waveform for 

0% (in Figure 4.11a) and 1% (in Figure 4.12a) was made, its pure DC wave pattern for 

no fault began having AC ripples for as low as 1% ITSC fault. Higher ITSC faults with 

increased ripples are shown in Figure 4.13 and Figure 4.14 for steady-state stationary and 

rotating Park currents components respectively. 

4.2.4 Visualized Park vector modulus 

The EPVA technique has the advantage of diagnosing fault more clearly since it is based 

on diagrammatic visualization of the locus of the Park vector Modulus described in 

section 3.3. This technique is an online technique (that is, is implemented while the 
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machine is in operation to capture the relevant current data even as the machine is 

operational). Hence, it is expected that the transient state of the IM must have been 

overcome since the machine is already in operation. 

As shown in Figure 4.15a, under no-fault condition (that is, ITSC fault = 0%), and without 

removing the transient or oscillating currents, the locus of the PVM contains multiple 

circular spiral patterns. Comparing the plot to a case of 1% ITSC faults as shown in Figure 

4.15b, there is no clear difference between the two plots. Hence, using these raw data 

(without removing the transient currents or other transient harmonics) makes it difficult 

to use the visualized PVP to diagnose faults since it contains transient currents and 

transient harmonics. 

When, by the means of matrix slicing, the oscillating or starting torque harmonics have 

been removed, the Park current components only contain steady-state current values (a 

state that suggests the machine is already functioning steadily before the fault occurs) and 

the PVP as shown in Figure 4.16a produced a perfectly circular pattern. Compared with 

the case of 1% ITSC fault as shown in Figure 4.16b, the deviation can be seen in the plot 

as a slight elliptical pattern. 

The PVP for a higher level of faults become more elliptical as the fault level increases. 

As shown in Figure 4.17a – d, the PVP distortion is directly proportional to the degree of 

ITSC fault in the IM. It also shows that the size of the PVP increases as the fault level 

increases. This is the result of increasing short-circuit currents in the IM. 

Some very unique PVP patterns begin to develop when the fault level increases to 6% 

and 7% as shown in Figure 18a – b respectively. The transient state begins to reappear 

significantly in the PVP plot. This indicates that for such a level of faults, the transient 
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currents have crossed the boundary point “Y” which was earlier selected as the signal 

point for steady-state operation. 

Beyond the 8% ITSC faults, and maintaining the same simulation time and transient time, 

the transient currents become more in the IM and the motor is no longer operating in a 

steady state as shown in Figure 4.19a and Figure 4.19b. The thickness of the PVP at 9% 

and 10% makes it impossible to differentiate between the two. 

4.2.5 Fault severity computation 

To compute the fault severity, the mean, variance, standard deviation and RMSE of the 

PVM were computed as shown in Table 4.1. 

The result of the computation shows that at 0% ITSC faults in the IM, the mean PVM, 

which measures the eccentricity of the circular pattern is 5.5620A. This value is constant 

as the shape of the PVP forms a perfectly circular pattern. As the percentage of the ITSC 

fault increases, the mean PVM begin to increase demonstrating the increase in fault 

current harmonic in the IM. 

To know for sure if a calculated mean value of the PVM is the mean when there is no 

fault in the IM, the variance and the standard deviation can be used to measure that. 

Variance measures the extent of a deviation of a set of data from their mean values and 

the standard deviation measure the dispersion of a set of data from their mean values. The 

result shows that for 0% ITSC fault, the variance and standard deviation are 0, meaning 

the set of PVM data used to compute the mean are all equal and have no deviation or 

dispersion from each other. That accounts for the perfect circular PVP, where the PVM 

(which is the radius of the plot) is constant as the IM operates. But for the case of other 

levels of faults, the variance and standard deviation begin to vary. This confirms that the 



75 

 

PVM values have some variations and as can be seen from the PVP, the shapes are 

elliptical instead of the perfect circular pattern seen in the case of no fault. 

The results of the variance and standard deviation validate the shape of the PVP but could 

not be used to finally pinpoint the exact percentage of faults within the system. As noticed 

from the 7% - 8% ITSC faults, these values increase rapidly and dropped lower for 9% 

and 10 % ITSC faults which are higher faults level. This is because variance and standard 

deviation only measure dispersion within the means PVM of each fault level. From the 

PVP shape of 9% and 10% ITSC faults shown in Figure 4.19b and c respectively, the 

PVM is within fairly circular patterns although the faults level and currents are high. So 

the system of variance and standard deviation cannot accurately compute the severity in 

terms of high fault currents. They only indicate that there are deviations in the PVM 

values and that shows the PVP plot is elliptical. 

To be able to compare any scenario of ITSC fault in the IM with the original state of no 

ITSC fault, so as to tell the level to which the ITSC has caused the machine to deviate 

from the original, the RMSE values were computed. The RMSE value is used to check 

the errors in the PVM data at a particular fault level against the PVM datasets at 0% ITSC 

fault. When the data set at 0% ITSC fault were compared to each other, it shows 0, 

meaning there is no error in the data as well as no error in the IM at that state. However, 

when other values of PVM were compared with the value of PVM at 0% ITSC, the RMSE 

values indicate errors which increase as the fault level increase. The more the deformity 

of the PVP, the more the RMSE values vary indicating the level of decorrelation the PVP 

has from the perfect circular PVP when there is no fault. 

A graph of mean PVM and RMSE versus ITSC faults is shown in Figure 4.20 under no-

load conditions. This plot shows that the mean PVM and RMSE are linear and there is no 
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massive deviation as the fault progresses from 1% - 5% ITSC faults. The plot of RMSE 

is linear and fairly low up to 6% ITSC faults at “A” where it begins to show a massive 

difference in the values of RMSE. However, the mean PVM still maintain linearity within 

fair values up to 7% ITSC faults at “B” before it shows a massive difference in the mean 

PVM values. This shows that while the mean PVM may be within close values like points 

“A” and “B”, the deviation in the IM is significant. What appears as not severe by the 

mean PVM plot is severe when the RMSE plot is considered. The RMSE plot is more 

sensitive to indicate points of massive differences which proves that it is more accurate 

to measure severity than using mean PVM values. 

In Figure 4.21, under the no-load condition, the plot of variance and standard deviation 

versus the percentage of ITSC faults shows similarities in behaviour. With the increase 

in fault level, the value of variance and standard deviation maintain a fairly low linear 

increment up to 6% of ITSC fault at point “A”. From point “A”, the variance is seen to 

deviate massively up to point “C” at 8% ITSC faults (also, the standard deviation has its 

peak value at point “C”) and then decline to lower values at point “D” and “E”. These 

plots show that the variance and standard deviation do not maintain linearity throughout 

the considered ITSC faults (that is, 0% - 10%) and the results cannot be used to measure 

severity rather is best used to confirm deviation and dispersion in the PVM values. 

As shown in Table 4.2, the IM mathematical model was simulated with a rated load of 

5Nm load torque. This value was selected as an arbitrary value to observe any changes in 

the mean PVM, variance, standard deviation and RMSE values when the IM is used to 

drive a load. As shown in the results, under load condition of 5Nm torque, at 0% ITSC 

fault, the mean PVM is 6.0275A which is slightly higher than what was obtained when 

there is no load on the IM (that is, mean PVM at 0%, and no-load is 5.5620A in Table 
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4.1). This increased value shows that the IM draws more currents when a load is 

connected to it and the circumference of the PVP will be wider since it is directly 

proportional to the PVM values. The values of variance, standard deviation and RMSE at 

0% ITSC faults are 0, which shows that there is no deviation or ITSC fault in the machine. 

However, the mean PVM shows the current in the IM has increased because the IM is 

doing more work and pulling a lot of current in driving the load. Such a higher current in 

the system will affect the IM more severely if an ITSC fault occurs in the IM than it would 

affect it when there is no load. This is shown in Figure 4.22. Using the RMSE plot, the 

point from which the massive deviation started is at “M” which is 5% ITSC faults under 

a rated load condition as compared to 6% under the no-load condition. This shows that 

with more current in the IM when it is driving a load, if an ITSC fault occurs, the massive 

breakdown is at a much lower ITSC fault. A comparison of the plots of the mean PVM 

and RMSE for no-load and load conditions as shown in Figure 4.24a and Figure 4.24b 

respectively, confirm that there is much more current in the IM during load condition, 

and the massive breakdown starts at a much earlier ITSC fault than what is experienced 

when no load is attached to the IM. 

The results of this simulation with rated load clearly show that load driven by the IM 

affects the severity of the ITSC fault in the motor. 

The plot of variance and standard deviation for the load condition is very similar to that 

of the no-load condition. It is linear and fairly low up to 5% ITSC fault, then, massively 

deviated from 5% to its peak at point “B” which is 7% before declining to point “C” at 

8% ITSC fault. 

In summary, in this chapter, the mathematical model of a three-phase IM was simulated 

with specified motor parameters and the results were presented. The IM model was 
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defective with ITSC fault of various percentages. The impacts of the fault on current, 

torque and speed characteristics were studied. It was observed that ITSC faults introduce 

harmonics or ripples in the current, torque and speed characteristics which completely 

affect the IM behaviour. To diagnose the fault, the PVP distortion was used. With PVP 

perfectly circular, the IM is normal, however, when the PVP is distorted the IM is faulty. 

To measure the level of distortion, the deviation, dispersion and correlation of the PVM 

corresponding to each PVP were computed. The combined results of PVP, variance, 

standard deviation and RMSE better help diagnose and tell the severity. 
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CHAPTER FIVE 

5.0   CONCLUSION AND RECOMMENDATION 

5.1 Conclusions 

Based on the results of this research, the following conclusions were drawn: 

The mathematical equations of dynamic behaviours of an IM provided the means for the 

IM behaviour to be effectively studied by varying the winding properties from 0% - 10% 

shorten turns. 

The behaviour of the IM in terms of its torque, rotor speed and winding current when 

subjected to different ITSC fault levels shows that the ITSC faults prolonged the transient 

state of the IM (or delay its steady state) from 0.7s to more than 3s, increased the torque 

values and created AC ripples in the torque, speed and current wave patterns. 

The diagnosed ITSC faults proved that observing the shape of the visualized PVP was 

effective in diagnosing ITSC faults. 

Fault severity in the IM measured in terms of means, variance and standard deviation of 

the PVM proved to be inaccurate yet confirmed there is a fault. However, the RMSE 

effectively compared the state where there is a fault with a state where there is no fault. 

The combined use of these tools (means, variance, standard deviation and RMSE) gives 

a more sophisticated analysis. 
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5.2 Recommendations 

Based on the findings of this research, the following recommendations were made. 

In this research, the ratio of shortened turns to the total number of turns was applied. 

Further study should be conducted to include the actual number of shortened turns in 

other to improve on the accuracy. 

This research was based on simulation. The methodology adopted should be extended to 

fault diagnosis on a practical three-phase induction motor. 

5.3 Contribution to Knowledge  

This thesis has contributed the following knowledge to the field of research: 

The dynamic performance of a three-phase Induction Motor was successfully modelled 

and simulated using SIMULINK and MATLAB environment. 

The Enhanced Park Vector Approach applied enables diagnosis of inter-turn short circuit 

winding fault for as low as 1% shortened turns up to 10% indicating its effectiveness for 

faults diagnosis. 

The study has established that the presence of inter-turn short circuit fault diagnosed 

prolonged the transient state of the Induction Motor from 0.7s to more than 3s, increased 

the torque values and created AC ripples in the torque, speed and current wave patterns. 

5.4 Suggestions for Further Studies 

In line with this research methodology, the following suggestions were made for further 

studies: 
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The mathematical model derived from this research was simulated under no-load and 

rated load torque of 5Nm. Further study could include the diagnosis of fault in an IM with 

variable loads conditions to study the impact of ITSC on torque, speed, current and PVP. 

Machine learning EPVA-based techniques could be combined with pattern recognition 

features for quick and automated diagnosis of ITSC in a three-phase IM. 
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APPENDIX A 

M-FILE FOR PLOTTING TORQUE, SPEED AND TORQUE-SPEED 

CHARACTERISTICS 

%% CLEAR COMMAND WINDOW AND FIGURES 

clc; clf; 

 %% EXTRACT TORQUE AND SPEED TIMESERIES DATA at m = 0% ITSC Fault 

torque_m0 = out.get('Torque');      % m = 0% 

speed_m0 = out.get('speed');        % m = 0% 

 %% PLOT THE GRAPH OF TORQUE AND SPEED 

suplot(2,1,1);                %plot on row 1 

plot(torque_m0);             %plot torque at m = 0% 

hold on; 

xline(0.5851, '--');         %transient state at X 

hold on; 

xline(0.7, '--');            %transient state at Y 

ylim([0,120]);               %set y-axis range values 

xlim([0,1]);                 %set x-axis range values 

ylabel('Torque (N.m)');     %set y-axis label 

xlabel('Time (seconds)');    %set x-axis label 

  

subplot(2,1,2);              %plot on row 2 

plot(speed_m0);              %plot torque at m = 0% 

hold on; 

xline(0.5851, '--');         %transient state at X 

hold on; 
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xline(0.7, '--');             %transient state at Y 

ylim([0,1600]);              %set y-axis range values 

xlim([0,1]);                  %set x-axis range values 

ylabel('Speed (rpm)');      %set y-axis label 

xlabel('Time (seconds)');    %set x-axis label 

  

%Simulate the IM Model for m = 1, 2, 3,...,10% ITSC 

%change X in torque_mX and speed_mX, where X = each value of m 

%Repeat this code for each value of m 

  

%% PLOT TORQUE-SPEED CHARACTERISTICS 

% Comment the upper subplot and uncomment this code 

% plot(speed_m0.XData, torque_m0.XData); %torque-speed Xteristic at m = 0% 

% xlim([0,1600]); 

% ylim([0,120]); 

% xlabel('Speed (rpm)'); 

% ylabel('Torque (N.m)'); 

%% SAVE TORQUE and SPEED DATA 

% after running the code for m = 10%, uncomment and run the code to save 

% torque = [torque_m0, torque_m1, torque_m2, torque_m3, torque_m4, torque_m5, 

torque_m6, torque_m7, torque_m8, torque_m9, torque_m10]; 

% speed = [speed_m0, speed_m1, speed_m2, speed_m3, speed_m4, speed_m5, 

speed_m6, speed_m7, speed_m8, speed_m9, speed_m10]; 

% save(‘speed_torque.mat’, ’torque’, ‘speed’); 
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APPENDIX B 

M-FILE FOR PLOTTING STATIONARY AND ROTATING PARK CURRENTS 

%% CLEAR COMMAND WINDOW AND FIGURE 

clc; clf; 

%% EXTRACT STATIONARY PARK CURRENT COMPONENTS 

Idqss_m0 = out.get('Idqss'); 

%% EXTRACT ROTATING PARK CURRENT COMPONENTS 

Idqs_m0 = out.get('Idqs'); 

%% EXTRACT SIMULATION TIME 

t = out.get('tout'); 

%% PLOT STATIONARY PARK CURRENTS 

subplot(2,1,1);                                            %plot on row 1 

plot(t, Idqss_m0);                                         %plot at m = 0% 

ylim([0,120]);                                             %set y limit 

xlim([0,1]);                                             %set x limit 

hold on; 

xline(0.5851, '--');                                       %mark X point 

hold on; 

xline(0.7, '--');                                          %mark Y point 

xlabel('Simulation Time (seconds)');                      %x label 

ylabel('Stator Currents in 𝛼𝛽 Reference Frame (A)');     %y label 

 %% PLOT ROTATING PARK CURRENTS 

subplot(2,1,1);                                            %plot on row 1 

plot(t, Idqs_m0);                                         %plot at m = 0% 

ylim([0,120]);                                             %set y limit 
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xlim([0,1]);                                             %set x limit 

hold on; 

xline(0.5851, '--');                                       %mark X point 

hold on; 

xline(0.7, '--');                                          %mark Y point 

xlabel('Simulation Time (seconds)');                      %x label 

ylabel('Stator Currents in DQ Reference Frame (A)');     %y label 

  

%Simulate the IM Model for m = 1,2,3,...,10% ITSC 

%change X in Idqss_mX and Idqs_mX, where X = each value of m 

%Repeat this code for each value of m 

%% SAVE STATIONARY and ROTATING PARK CURRENTS 

% after running the code for m = 10%, uncomment this code and run the code to save 

the %variables 

% Idqss = [Idqss_m0, Idqss_m1, Idqss_m2, Idqss_m3, Idqss_m4, Idqss_m5, Idqss_m6, 

Idqss_m7, Idqss_m8, Idqss_m9, Idqss_m10]; 

% Idqs = [Idqs_m0, Idqs_m1, Idqs_m2, Idqs_m3, Idqs_m4, Idqs_m5, Idqs_m6, 

Idqs_m7, Idqs_m8, Idqs_m9, Idqs_m10]; 

% save(‘park_currents.mat’, ‘Idqss’, ‘Idqs’, ‘t’); 
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APPENDIX C 

M-FILE FOR EXTRACTING AND PLOTTING STEADY-STATE STATIONARY 

AND ROTATING PARK CURRENTS 

%% CLEAR COMMAND WINDOW, FIGURE, VARIABLES 

clc; clf; clear; 

%% LOAD PARK CURRENT DATA 

load park_currents.mat; 

%% EXTRACT THE STEADY STATE CURRENT AT 0.7SECS 

s_Idqss = Idqss(7000:end, :);  %steady-state stationary Park current at 0.7sec 

s_Idqs = Idqs(7000:end, :);     %steady-state rotating Park current at 0.7sec 

ts = t(7000:end, :);             %steady time 

%% MULTIPLE PLOT OF ALPHA_BETA CURRENTS 

row = 5; cols = 2; j=1; 

r = 1; c = 3; 

figure(1);                      %save this plot as Figure (1) 

for x=1:4 

    subplot(row,cols,j); 

    plot(ts,s_Idqss(:,r:c)); 

    ylim([-15,15]); 

    xlim([0.7,1]); 

    j=j+2; 

    r=r+3; 

    c=c+3; 

    hold on; 

end  
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j=2; 

for x=1:4 

    subplot(row,cols,j); 

    plot(ts,s_Idqss(:,r:c)); 

    ylim([-15,15]); 

    xlim([0.7,1]); 

    j=j+2; 

    r=r+3; 

    c=c+3; 

end 

xlabel('Time (seconds)'); 

ylabel('Stator Currents in  𝛼𝛽  (A)'); 

%% MULTIPLE PLOTS OF THE ROTATING PARK CURRENT 

row = 5; cols = 2; j=1; 

r = 1; c = 2; 

figure(2);                          %save this plot as Figure (2) 

for x=1:4 

    subplot(row,cols,j); 

    plot(ts,s_Idqs(:,r:c)); 

    ylim([-15, 15]); 

    xlim([0.7, 1]); 

    j=j+2; 

    r=r+3; 

    c=c+3; 

    hold on; 
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end  

j=2; 

for x=1:4 

    subplot(row,cols,j); 

    plot(ts,s_Idqs(:,r:c)); 

    ylim([-15, 15]); 

    xlim([0.7, 1]); 

    j=j+2; 

    r=r+3; 

    c=c+3; 

end 

xlabel('Time (seconds)'); 

ylabel('Stator Currents in dq0 (A)'); 

%% SAVE THE STEADY-STATE CURRENTS 

save('steady_state_current.mat', 's_Idqss', 's_Idqs'); 
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APPENDIX D 

M-FILE FOR PLOTTING PVP, COMPUTING PVM, MEAN, VARIANCE, 

STANDARD DEVIATION, AND RMSE 

%% CLEAR COMMAND WINDOW, VARIABLES, FIGURES 

clc; clear; clf; 

%% LOAD STEADY-STATE CURRENT DATA 

load steady_state_current.mat; 

%% EXTRACT stationary current at m = 0; 

r = 1; c = 2;              %set the columns for Idss and Iqss respectively 

s_Idss_m0 = s_Idqss(:,r);  %extract steady-state Idss at m = 0 

s_Iqss_m0 = s_Idqss(:,c);  %extract steady-state Iqss at m = 0 

%% PLOT THE PARK VECTOR PLOT (PVP) at m = 0% 

plot(s_Idss_m0, s_Iqss_m0); 

hold on 

plot(0,0, '+')             %plot a zero origin 

xlim([-15, 15]);   %set x limit 

ylim([-15, 15]);    %set y limit 

xlabel('Stator Stationary d-Current (Idss) in Ampere (A)'); 

ylabel('Stator Stationary q-Current (Iqss) in Ampere (A)'); 

%% CALC. PVM at m = 0 

[theta, PVM_m0] = cart2pol(s_Idss_m0, s_Iqss_m0); 

meanPVM = mean(PVM_m0);    %calculate mean 

varPVM = var(PVM_m0);       %calculate variance 

stdPVM = std(PVM_m0);        %calculate standard deviation 

RMSE = sqrt(mean((PVM_m0-PVM_m0).^2));  %Calculate RMSE 
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%Simulate the IM Model for m = 1,2,3,....,10% ITSC 

%change X in torque_mX and speed_mX, where X = each value of m 

%increment r and c by 3 for each value of m 

%except for RMSE at m = 1, RMSE = sqrt(mean((PVM_m1-PVM_m0).^2)); 

%Repeat this code for each value of m 

 


