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ABSTRACT 

This thesis presents a theoretical study of blood flow and heat transfer in the 

cardiovascular system of humans undergoing tumor treatment under the action of an 

externally applied magnetic field. The fluid (blood) medium is assumed to be porous in 

nature. The variable viscosity of blood depending on hematocrit is taken into account in 

order to improve the resemblance to the real situation. The temperature-dependent blood 

thermal conductivity is considered. The transient governing equations for laminar, 

incompressible and Newtonian fluid and heat transfer are solved by using the 

Generalized Polynomial Approximation Method (GPAM). The solutions are obtained 

for flow velocity and heat transfer in both tissue and blood. The computations were 

done using the Computer Symbolic Algebraic Package MAPLE 17 version and the 

results are presented graphically. It is observed that the influence of hematocrit, 

magnetic field, permeability parameter, Reynolds number and Pressure gradient have an 

important impact on the velocity profile. Moreover, the effect of Peclet number, 

pressure gradient and perfusion mass flow rate on the tissue and blood temperature 

profiles has been significantly observed. From the results obtained, it was observed that 

the flow velocity is at maximum value ( , ) 3.1t  =  when 0 =  while blood 

temperature attained maximum values when 0 =  and 0.5t = . The research revealed 

that the blood flow velocity tends to zero ( )( ), 0t  →  as the Hartmann number varies 

from 0  to 4.0 . This implies that the strength of Lorentz force produced become stronger 

with an increase in Hartmann number that leads to retardation on the blood’s motion 

and this indicates that to ensure the flow along the artery region is properly controlled, a 

certain strength of magnetic intensity is required. The research also revealed that at a 

temperature ratio, ( )0 =  the blood temperature was minimal while the temperature 

ratio ( )1.0, 1.0 = − =  resulted in a maximal high blood temperature. This implies 

that the heat required for tumor treatment can be boosted when blood thermal 

conductivity depends on tissue temperature. It can be concluded that the flow of blood 

can be controlled by the application of an external magnetic field.  
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CHAPTER ONE 

1.0           INTRODUCTION 

1.1 Background to the Study 

The cardiovascular system is the blood transport mechanism that enables the nutrient 

transport to the tissues and organs of the body and the removal of various waste and 

toxic substances (Urquiza et al., 2005). It consists of three major components listed as 

the heart (the system’s pump that pump blood around the body), the blood vessel (the 

delivery routes) and the blood (a fluid that contains the needed oxygen and nutrients for 

the body and carries the wastes that needed to be removed). Generally, the 

cardiovascular system comprises of two connected distinct systems: The systemic 

circulation that provide organs, tissues and cells with blood so that they can get oxygen 

and other vital substances (Taura et al., 2012), the pulmonary circulation where the 

fresh oxygen we breathe in flows into the blood. Simultaneously, carbon dioxide is 

being released from the blood. 

The major function of cardiovascular system is to support blood flow to all parts of the 

body for its survival. The function of the arteries is to carry blood away from the heart 

while the veins take it back to the heart. Used blood is being delivered through the veins 

from the body back to the heart (Tripathi et al., 2017). The blood in the veins has a low 

content of oxygen as a result of the fact that it has been taken out by the body and a high 

content of carbon dioxide because the body has absorbed it back into the blood 

(Bessonov et al., 2016). All the veins flow into the superior and inferior vena cava 

which then flow into the right atrium. The right atrium pushes blood into the right 

ventricle, and then the right ventricle pushes blood to the pulmonary trunk via the 

pulmonary arteries into the lungs. Right in the lungs, the blood collects the oxygen that 
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is breathe in and removes the carbon dioxide that is breathe out (Malatos et al., 2016). 

Away from the lungs, blood flows into the left atrium and is then drives into the left 

ventricle which then moves this oxygenated blood into the aorta and it is distributed 

through the other arteries to the rest of the body in order for the body to perform its 

usual functions. Again, this blood will go back to the heart via the veins and the 

circulation continues (Gumez et al., 2017). Arterioles are the smallest vessels of the 

arterial system. They serve as the major factor of blood pressure as blood flow to the 

individual organs. Arterioles have a much smaller diameter than arteries and it provides 

important opposition to the blood flow (Mohan et al., 2012). This opposition creates 

pressure in circulatory system. Pressure is needed to give adequate flow of blood to all 

parts of the body. Blood flow to individual organs can be monitored by controlling the 

diameter of the arterioles (Bali and Awasthi, 2011). Vasodilatation (dilation or 

relaxation of the arterioles to allow more blood to the area) of an arteriole lowers the 

opposition and results to an increase in flow through that particular arterioles (Labadin 

and Ahmadi, 2006). 

The examination of heat transfer and blood flow in biological processes demands exact 

or careful mathematical models. The biological processes normally involve two stages 

namely solid and liquid (fluid). Thermal ablation therapy is an application of heat 

transfer and fluid flow in biological processes. Temperature plays an important role 

with tissue interactions (Aiyesimi and Salihu, 2016). The blood flow in a tissue mainly 

has a direction from artery to vein passing through the capillary bed, the blood and its 

surrounding tissues are not in thermal equilibrium when the blood vessel diameter is 

larger which means the energy equations for tissue and blood in large vessels must be 

treated one at a time. One of the crucial issues of thermal treatments is blood flow. 

Blood flow usually drains the free heat from the heating region, which causes 
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inadequate thermal dose in the targeted volume. This is an important factor needing to 

be treated carefully in thermal treatments (Shih et al., 2006). 

Blood exhibits anomalous viscous properties. The uncertain behavior of blood is 

normally due to the suspension of particles in plasma. The plasma content in the blood 

obeys the linear Newtonian model for viscosity (Liu et al., 2022). Nevertheless, blood 

in its totality is frequently considered as Non-Newtonian fluid, especially when the 

characteristic dimension of the flow is close to the cell dimension. The practical 

observations and theoretical analysis of blood flow are very important for the diagnosis 

of a number of cardiovascular diseases and development of pathological categories in 

animal and human physiology (Srivastava and Rivastava, 2009). The flow of blood via 

small diameter tubes is of physiological and clinical significance. As a result of its 

complexity and uncertainty behaviour, it is always difficult to analyze it. The two types 

of anomaly are due to low shear and high shear effects (Muhammad and Zuhaila, 2019). 

When blood flows via larger diameter arteries at high shear rates, it acts like a 

Newtonian fluid. 

1.2 Statement of the Research Problem 

The effects of blood flow and heat transfer in the cardiovascular system has not been 

adequately and mathematically studied to date. One of the motivations to study the 

blood flow is to understand the conditions that may contribute to cardiovascular 

diseases (Tripathi et al., 2017). The practical observations and mathematical study of 

these blood flow and heat transfer are very important for the diagnosis of a number of 

cardiovascular diseases (Khushboo et al., 2017). Hence, the needs for this research. 
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1.3 Significance of the Study 

Many cardiovascular diseases like the arterial blockage is one of the leading causes of 

death worldwide (Perez et al., 2017). The partial obstructions of the arteries due to 

stenosis not only restrain the regular flow of blood but also associated with hardening 

and thickening of the arterial wall. However, the major cause of this formation of 

narrowing in a blood vessel is still unknown but it is well confirmed that the fluid 

dynamical factors play a significant role as to further development of this narrowing in 

the blood vessel. In the time immemorial, the observation of heat transfer and fluid flow 

in biological processes demands correct mathematical models. To meet these criteria, 

many researchers around the world have proposed mathematical models in various 

dimensions in an attempt to properly describe the heat transfer and fluid flow in 

biological processes in a heated, vascularized, finite tissue by making a few simplifying 

assumptions. One of the key issues of thermal treatments is blood flow. Blood flow 

usually drains the delivered heat from the heating region, which now causes insufficient 

thermal dose in the targeted volume. This is an important factor to be considered 

carefully in thermal treatments (Shih et al., 2006). In fact, the differential therapeutic 

effects of thermal treatments between malignant and normal tissue may primarily 

depend on the vascular characteristics of the tumor (Song et al., 1984). There is need for 

more research in this area. Therefore, the need for this research work. 

1.4 Scope and Limitation of the Study 

This research work focus on the mathematical modeling of blood flow and heat transfer 

impacts in the human cardiovascular system with pulsation and time dependent thermal 

conductivity. The research is limited to the mathematical study alone. 
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1.5 Aim and Objectives of the Study 

 

1.5.1 Aim of the Study 

 

The aim of this research is to mathematically analyze the effects of unsteadiness, 

variable viscosity and variable thermal conductivity on the blood flow and heat transfer 

in the human cardiovascular system. 

1.5.2 Objectives of the Study 

The objectives of the study are to: 

i. Present mathematical equations governing blood flow and heat transfer in the 

cardiovascular system of a body undergoing hyperthermia. 

ii. Solve the model equations using Olayiwola’s Generalized Polynomial 

Approximation Method (OGPAM). 

iii. Provide graphical summaries of the system responses. 

iv. Validate the result obtained with the existing literature. 

1.6 Definition of Terms 

Artery: A stream blood vessel from the heart carrying blood away from the heart 

paying no attention to oxygenation status. 

Axisymmetric Flow: A flow is said to be axisymmetric if the pressure and the 

cylindrical velocity components are independent of the angular variable. 

Boundary Value Problem: This is a differential equation that has all of the conditions 

specified at different values or more than one value of the independent variable in the 

equation. The problem ( ) ( ) 11,10;2 ===+ yyeyy x
 is a boundary value problem 

because the two subsidiary conditions are given as 0=x  and 1=x  

Blood Flow: This is the movement of blood through a vessel, tissue, or organ. 
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Blood Vessel: An elastic passage through which blood circulates in the body. The three 

major types of blood vessel are: the arteries, the capillaries and the tissues/veins. 

Cardiovascular System: This is the blood transport mechanism that enables the 

nutrient transport to the tissues and organs of the body and the removal of various waste 

and toxic substances. 

Capillary: This is any of the small blood vessels that join arteries to veins. 

Deoxygenated Blood: This is the blood which has a low level of oxygen saturation in 

the lung. It is also known as venous blood. 

Heat Transfer: This is the movement of thermal energy from one point to another point 

of different temperature by means of conduction (through direct contact), convection 

(through fluid movement) or radiation (through electromagnetic waves). 

Hematocrit: This is an instrument for analyzing/measuring the percentage by volume 

of red blood cells and plasma in the blood. 

Hyperthermia: The condition of having a body temperature greatly above normal. 

Initial Value Problem: This is a differential equation that has all of the conditions 

specified at the same value of the independent variable in the equation (and that value is 

at the lower boundary of the domain). The problem ( ) ( ) 2,1;2 ===+  yyeyy x
 is 

an initial value problem because the two subsidiary conditions are given at =x . 

Incompressible Flow: An incompressible flow is flow in which the fluid flow density 

remain unchanged when the pressure changes. 

Laminar Flow: This is a flow in which the fluid travels smoothly in regular paths that 

never interfere with one another. The velocity of the fluid is always constant at any 

point of the fluid. 

Lesion: This is any abnormal change in the tissue of an organism generally caused by 

disease or trauma including tumours, ulcers, sores and wound. 
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Mathematical Model: This is a description of a system using mathematical concepts 

and language. 

Mathematical Modeling: This is the process of developing a mathematical model. 

Newtonian Fluid: This is a fluid whose viscosity does not change with rate of flow. It 

is a fluid in which some viscous stresses from its flow at every point in time are linearly 

proportional to the local strain rate (the rate of change of its deformation over time). 

No-slip Boundary Condition: The no-slip boundary condition for viscous fluids 

assumes that at a solid boundary, the fluid will have zero velocity relative to the 

boundary. 

Nutrient: This is an important substance such as food needed to keep a living thing 

alive and grow. 

Organ: This is a part of the body that performs similar and particular function. 

Oxygenated Blood: This is the blood which has been exposed to the high level of 

oxygen in the lung. It is also called arterial blood. 

Porous Medium: This is a medium or material containing pores that are typically filled 

with a fluid. 

Pulmonary Circulation: This is the part of the cardiovascular system which transports 

deoxygenated blood away from the heart to the lungs and brings back oxygenated blood 

to the heart. 

Pulsatile Flow: This is a flow where the pressure gradient varies periodically with time. 

Pulsatile flow is also known as womersley flow. 

Pulsation: This is a periodically recurring alternate increase and decrease of a quantity 

(such as pressure, volume, or voltage) 

Stenosis: This is an abnormal constriction or narrowing of the diameter of a blood 

vessel. 
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Systematic Circulation: This is the part of the cardiovascular system which transports 

oxygenated blood away from the heart to the body and brings back deoxygenated blood 

to the heart. 

Thermal Conductivity: This is the rate at which heat passes through a specified 

material, expressed as the amount of heat that flows per unit time through a unit area 

with a temperature gradient of one degree per unit distance. 

Thermal Energy: This is the energy possessed by an object or system due to the 

movement of particles within the object or the system. 

Thermal Lesion: This is defined as tissue injury as a result of application of heat in any 

form to the internal or external body surfaces. 

Tissue: A collection of similar cells that work together to do a unique job. 

Vein: A blood vessel that conveys blood from the capillaries back to the heart. 
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CHAPTER TWO 

2.0    LITERATURE REVIEW 

2.1 Blood Flow Model 

Most of the models such as Haik et al. (2001), Womersley (1955), Lightfoot (1974), 

Sud and Sekhon (1985) and Chaturani and Palanisamy (1991) on blood flow deal with 

one phase model. Thus, for the fact that blood is a suspension, a two phase model seems 

to be more suitable. Wagh and Wagh (1992) used Saffman (1962), a model of dusty gas 

to analyze the effects of the magnetic nature of red blood cells of the blood flow. The 

reason being that, blood is a liquid suspension having mass and volume concentrations 

almost the same, however, for dusty gas, the mass and bulk concentrations are quite 

different. Nayfeh (1966) and Sanyal et al. (2007) said two phase model seems to be 

more suitable for blood flow. 

Pries et al. (1992) studied the effects of the tube diameter and the hematocrit ratio on 

the blood viscosity and discovered that for tube diameters greater than 1 mm, the blood 

viscosity does not depend on the diameter while for tube diameter less than 1 mm, the 

blood viscosity is highly dependent on the tube diameter. They also recounted that the 

viscosity increases non-linearly with the hematocrit. Srivastava and Rivastava (2009), 

Sharan and Popel (2001), Srivastava et al. (2007) and Sankar and Lee (2008) have 

conveyed that for blood flowing through narrow blood vessels, there is an auxiliary 

layer of plasma and a center region of suspension of all the erythrocytes. Also, the red 

blood cell is a major bio-magnetic substance and the blood flow may be affected by the 

magnetic field (Mishra and Verma, 2007). The impact of magnetic field on the blood 

flow has been studied theoretically by treating blood as an electrically conductive fluid 
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(Chen, 1985). Believing blood as a magnetic fluid, it may be possible to control the 

blood pressure and its flow behavior by using a suitable magnetic field. Therefore, such 

studies have potential for therapeutic use in the diseases of heart, blood and blood 

vessels (Srivastava et al., 2012) 

Several researches were carried out by Young (1979), Young and Tsai (1973) to 

understand the impacts of abnormal narrowing (stenosis) on the flow of blood through 

arteries. Tu and Deville (1996) studied the pulsatile flow of blood in stenosed arteries. 

For the fact that blood has complicated rheological qualities, it acts like different fluid 

model under different biological and structural state. As a result of this condition, 

MacDonald (1979) observed that vessels of radius greater than 0.025 cm can be 

considered as a homogeneous Newtonian fluid and in contrary, Caro et al. (1978) and 

Caro (2001) remarked that normal arterial blood flow at high shear rates, blood acts like 

a Newtonian fluid. Misra and Chakravorty (1986) and Shit and Roy (2012) formulated a 

mathematical model of the unsteady flow of blood through arteries having abnormal 

narrowing (stenosis) where blood was handled as a Newtonian viscous incompressible 

fluid. Some experimental analysis of Liepsch (1986) and Liepsch (2002) discovered that 

at a low shear rates blood may acts as non-newtonian fluid in large arteries. It is a well-

known fact that blood being a suspension of red blood cells in plasma act like a non-

Newtonian fluid at a low shear rates as reported in Buchanan et al. (2000) and 

Whitemore (1959). Misra and Shit (2006) and Misra and Shit (2007) studied in two 

different conditions on the flow of blood through the abnormal narrowing of arteries 

(stenosis) by handling blood as a non-Newtonian fluid model with or without 

considering slip effects. Tian et al. (2013) investigated on the pulsatile non-Newtonian 

flow through a stenosed artery with atherosclerosis. Chen et al. (2006) studied the non-
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Newtonian impacts of blood flow in hemodynamics on distal vascular graft 

anastomoses. The hemodynamics linked with a single stenotic lesion is seriously 

affected by the presence of a second lesion. In most conditions, there are observations of 

the presence of the multiple stenoses such as the patients of angiogram. Misra et al. 

(2008a) performed a theoretical study of the impacts of overlapping stenosis. An 

experimental analysis of blood flow via an arterial part having overlapping stenoses was 

made by (Talukder et al. 1977). The impacts of multiple stenoses via an arterial stenosis 

have been efficaciously carried out analytically and numerically by Chakravarty and 

Mondal (1994) and Layek et al. (2009) respectively. Hence, all these analyses are 

limited to the condition of both the externally applied magnetic field and the porous 

medium. The impact of magnetic field on the flow of blood has been studied 

theoretically and practically by many researchers like Varshney et al. (2010), Haik et al. 

(2001), Chakeras et al. (2003) and Kinouchi et al. (1996) on various conditions. Shit 

and Roy (2017), Misra et al. (2011), Misra and Shit (2009) and Misra et al. (2008b) 

studied various flow behaviour of blood in arteries by analysing a Newtonian/non-

Newtonian model with a uniform magnetic field. The studies of blood flow via a porous 

medium have gained serious attention to the medical practitioners as a result of its 

massive changes in the flow conditions. The capillary endothelium is wrapped by a thin 

layer lining of the alveoli which has been treated as a porous medium. Dash et al. 

(1996) studied the Brinkman equation to model the flow of blood when there is an 

accumulation of fatty plaques in the lumen of an arterial part. They treated the clogged 

segment as a porous medium. Bhargava et al. (2007) analysed the transport of 

pharmaceutical species in laminar, homogeneous, incompressible, magneto-

hydrodynamic, pulsating flow via two dimensional channels with a porous wall 

containing non porous materials. Misra and Shit (2007) and Misra et al. (2011) 
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considered a mathematical model and numerical model for analyzing blood flow via a 

porous vessel with a magnetic field where the viscosity varies in the radial direction. 

Shit and Roy (2017) presented a paper on a theoretical study of blood flow through a 

tampered and overlapping stenosed artery under the action of an externally applied 

magnetic field with the blood medium assumed to be porous in nature. The variable 

viscosity of blood depending on hematocrite (percentage volume of erythrocytes) is 

taken into account with the equation: 

( )
( )2

0

1
0

du
r r

rp dr
B u u

z r r k






 
   

− + + =
 

                                                            (2.1) 

2.2 Bioheat Transfer Models 

Many researchers have worked on temperature treatments with tissue in order to predict 

temperatures in a perfuse tissue and they are all very much concerned about a thermal 

model that can satisfy the following three criteria: the model that satisfy the 

conservation of energy; the model of heat transfer rate from blood vessels to tissue 

without following a vessel path; and the model applied to any unheated and heated 

tissue. To meet these criteria, many researchers around the world have suggested 

mathematical models in order to properly explain the heat transfer and fluid flow in 

biological processes in a heated, vascularized, finite tissue by making a few simple 

assumptions. We will now discuss some key models for considering the impact of large 

blood vessels. 

For more than half a century Pennes (1948) bioheat transfer equation has been a 

standard model for predicting temperature distributions in living tissues. The model was 

formed by conducting a sequence of experiments in measuring temperatures of tissue 

and arterial blood flow in the resting human forearm. The equation has a special term 
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that explains the heat exchange between blood flow and solid tissues. The blood 

temperature is assumed to be constant arterial blood temperature. Tissue thermal 

equations can be explained concisely by considering the Pennes Bioheat Transfer 

Equation in its general formulation written as: 

( )
t

T
cTTWcqqTk pabmp




=−−++ .                                   (2.2) 

Where, 

T  is the local tissue temperature 

aT
 
is the arterial temperature 

bc  is the blood specific heat 

pc  is the tissue specific heat 

W  is the local tissue blood perfusion rate 

k  is the tissue thermal conductivity 

  is the tissue density 

pq  is the energy deposition rate 

mq  is the metabolism 

The term mq  in equation (2.2) is always very small compared to the external power 

deposition term pq (Roemer et al., 1988). The term ( )ab TTWc −  accounts for the effects 

of blood perfusion and can be the dominant form of energy removal whenever you are 

considering heating processes. It authenticates that the blood enters the control volume 

at some arterial temperature and comes to the equilibrium at the tissue temperature. 

Therefore, as the blood is being carried away from the control volume, it carries away 

the energy and act as an energy sink in hyperthermia treatment. Pennes equation does 
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not have a physically dependable theoretical basis because it is an approximation 

equation. Indeed, this mathematical model predicts temperature fields very well in most 

applications. Pennes Bioheat Transfer Equation is widely used in the hyperthermia 

modeling because: it can predict the temperature field very well in applications and it is 

mathematically simple. The limitations of  Pennes Bioheat Transfer Equation is that, it 

does not handle most physical effects, it does not put into consideration the direction of 

blood flow and does not portly any convective heat transfer mechanism. 

Many researchers have developed alternative models to predict temperatures in living 

tissues. Chen and Holmes (1980) formulated another model with a very strong physical 

and physiological basis. The model equation can be written as: 

( ) ( )
t

T
cTucTTWcqqTkk pbbabmpp




=−−−+++  ..    (2.3) 

Comparing equation (2.2) with equation (2.1), you will observe that additional terms 

have been added as follows: the term Tucbb − .  is the convective heat transfer term 

which takes care of the thermal interactions between tissues and blood vessels and the 

term Tk p.  which takes care of the enhanced tissue conductive heat transfer due to 

blood perfusion term in tissues, where pk  is the perfusion conductivity which is a 

function of the blood perfusion rate. The blood perfusion term ( )ab TTWc −− in the Chen 

and Holmes Model takes care of the effects of the large number of capillary structures 

with small dimensions relative to the macroscopic phenomenon under their study. 

Therefore, it needs detailed knowledge of the vascular anatomy and blood flow pattern 

to provide solution to it with increase in the accuracy. 

Weinbaum and Jiji (1985) proposed an alternative mathematical model of the Bioheat 

Transfer Equation. Their model is based on their observations from the vascular 
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network of rabbit thighs; they observed that blood vessels that are important for heat 

transfer in tissues always happen in countercurrent pairs. Therefore, the main heat 

transfer mechanism between tissues and blood is the incomplete countercurrent heat 

exchanger between thermal arteries and veins. They used tensor notation in their model 

which can be written as: 
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
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Where, 

   is the local temperature 

  is the volume of average tissue density 

c  is the specific heat product 

a  is the local blood vessel radius 

  is the shape factor for the thermal conduction resistance between adjacent counter 

current vessels 

n  is the number density of blood vessels 

bk  is the blood thermal conductivity 

pe  is the local peclet number 

u   is the average blood flow velocity in the vessels 

il  is the direction cosine of the pair of countercurrent vessels 

The conductivity tensor element ( )
effijk  is given as: 

( ) 







+= ji

b
ijeffij llpe

k

kna
kk 2

2

222

4


        (2.5) 

Where, 

ij  is the kronecker delta function 
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k  is the tissue thermal conductivity. 

This equation is one of the most important contributions to the bioheat transfer model. 

Though, in practical conditions, this equation requires detailed understanding of the 

sizes, orientations and blood flow velocities in the countercurrent vessels in order to 

solve it which requires a difficult task. Moreover, there are several issues connected to 

the Weinbaum and Jiji model listed as follows: the comparisons for both predicted 

temperatures and macroscopic experiments are needed; the formulation was developed 

for superficial normal tissues in which counter-current heat transfer happens. When 

considering tumors, the vascular anatomy is different from the superficial normal 

tissues, and therefore a new model should be formulated for tumors. Wissler (1987) has 

questioned the two basic assumptions of the Weinbaum and Jiji model as follows: the 

arithmetic mean of the arteriole and blood temperature can be approximated by the 

mean tissue temperature and there is negligible heat transfer between the thermal 

arteriole-venule pairs and its surrounding tissue. 

Weinbaum et al. (1984) tried to portray the effect of blood flow in the heat transfer 

process when it is limited to small vessels. Keller and Seiler (1971) described the 

effective conductivity of the non-isothermal region which is ascertained under different 

blood flow conditions. The Weinbaum, Jiji and Lemons model’s approach is similar to 

that of Keller and Seiler(1971) mathematically in its use of three equations, but the 

Weinbaum, Jiji and Lemons model is basically on entirely different vascular 

generations, the Weinbaum, Jiji and Lemons equations apply to thermally important 

small vessels but not to major supply blood vessels. 

Baish et al. (1986) believed that one of the noted assumptions in deriving the 

Weinbaum and Jiji model was that, as a result of the closeness of the vessels in a 
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countercurrent pair, most of the heat conducted through the arterial wall get to the 

venous wall. They criticised this hypothesis by assuming that some of the heat going out 

of the wall of a small arteriole will still remain within the tissue. They recommended 

that the heat transfer between the countercurrent vessels does not depend only on va TT −  

but also depend on the difference between the tissue temperatures T  and the average 

blood temperature 
2

va TT +
 , where aT  is the arterial temperature and vT   is the venous 

temperature. 

Going by the publication of the Chen and Holmes Model, Weinbaum and Jiji models, 

many researches were performed to know the authenticity of these new approaches. 

Here, we present some arguments and approximations in order to study the blood flow 

impacts on bio thermal modeling. 

Wissler (1987) strongly faults the Weinbaum and Jiji model because of the assumption 

made on the blood temperature at the arterial and venous vessels as well as the nearby 

tissue temperature. He proposed a new model that described tissue-blood vessels heat 

exchange that differs from the equations in the Weinbaum, Jiji and Lemons model by 

adding more perfusion term such as temperature profiles along the artery-vein which is 

approximated as
2

va TT
T

+
  in the Weinbaum and Jiji model. He denied the hypothesis 

that blood and tissue temperatures are closely joined which was mainly used for the 

formulation of the thermal conductivity tensor earlier defined in the Weinbaum, Jiji and 

Lemons equation. The thermal conductivity tensor formed in the Weinbaum, Jiji and 

Lemons equation is to eliminate the blood flow term. Charny et al. (1990) modified the 

Weinbaum, Jiji and Lemons model for the blood vessels by changing the governing 

equation with the tissue energy conservation equation. Based on their analysis of both 
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the steady state and transient temperature fields in the limb under hyper thermic and 

normothermic conditions, the tissue temperature profiles predicted by the model were 

very similar to those predicted by Penne’s model in the tissue regions with large vessels. 

Craciunescu and Clegg (2001) solved the fully coupled Navier-Stokes and energy 

equations in order to secure the temperature distribution of pulsatile blood flow within a 

rigid blood vessel. They were able to found that the reversed flow improves as the 

Womersley number becomes larger which results to a smaller temperature difference 

between forward and reverse flows. However, in their model equations, they only 

concentrated on the temperature distribution in blood vessels without putting into 

cognizance the surrounding tissue. Khanafer et al. (2007) and Horng et al. (2015) 

further studied the effect of pulsatile blood flow on temperature distributions during 

hyperthermia by considering the pulsatile blood flow in a blood vessel with the model 

equation given as: 
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                             (2.6) 

2.3 Hyperthermia 

This is a highly interesting topic in medicine. Several studies have been conducted on 

the use of heat transmission to living tissues for cancer treatment (Andreozzi et al., 

2019) as well as to enhance treatment procedures and create more sophisticated and 

precise technologies for forecasting temperature in biological tissues. Such studies have 

led to the development and use of hyperthermia therapy, also known as “thermal 

medicine” or “thermotherapy,” a kind of treatment in which the body’s immunity and 

ability to self-heal are stimulated by exposing the body to high temperatures. 
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Hyperthermia can be used to treat a specific area of the body or the entire body. It is 

used in conjunction with standard treatments and is available only through referral and 

under the supervision of a healthcare practitioner (Das et al., 2019). In recent years, 

hyperthermia therapy has been shown to be useful in treating cancer. Its goal is to 

increase the heat of diseased tissues to beyond cytotoxic levels (41 ◦C to 45 ◦C) while 

avoiding overexposure of healthy tissues (Fan et al., 2017). In the treatment of some 

kinds of cancer, like liver metastases, radiation combined with traditional hyperthermia 

is more successful than radiation alone (Hooshmand et al., 2015). Several studies have 

been conducted on the use of heat transmission into living tissues, particularly for 

cancer treatment Lin and Li (2016). In addition, various studies have been applied over 

the years with the goal of forecasting temperature in biological tissues. One 

hyperthermia technique for treating tumors is Magnetic Fluid Hyperthermia (MFH). It is 

a non-invasive approach in which magnetic nano particles are injected into the tumor as 

heat mediators, after which the tumor is exposed to an external Alternating Magnetic 

Field (AMF) Zhang et al. (2021). MFH has various advantages. Its magnetic targeting 

method for cancer therapy achieves greater magnetic field penetration into tissues and 

increased accumulation of magnetic nano particles in tumors (Fan et al., 2017). Its most 

important advantages are that magnetic fluid hyperthermia-based multimodal cancer 

treatments are more successful for cancer treatment due to their synergistic action, 

particularly when combined with chemotherapy (Fan et al., 2017). Hyperthermia 

treatment can also be performed using a radiofrequency (RF) generator with electrodes 

and antennas (Lagendijk, 2000) as well as ultrasonic, microwave, and laser irradiance 

Hooshmand et al. (2015). These diverse techniques highlight the complexity of heat 

transmission in biological systems because many physiological functions rely on the 

spatiotemporal temperature differences in live biological tissues Zhang et al. (2021). 



  

20 

  

Thus, the success of the treatment is determined not only by the technology used but 

also by a thorough examination of the complex bio heat transfer process and the pattern 

of temperature increase in biological tissues during hyperthermia treatment Gupta et al. 

(2013). 

An accurate explanation of the thermal relationships between blood vessels and tissues 

is required for the use of medical technology to be used in the treatment of deadly 

diseases such as cancer Andreozzi et al. (2019). To provide a therapeutic temperature 

while avoiding overheating and damage to surrounding healthy tissue, the temperature 

distribution within and outside the target area must be understood as a function of the 

exposure duration (Lagendijk 2000). The study of temporal and geographical variations 

in temperature is required while investigating bioheat transportation concerns because 

many physiological functions rely on the spatiotemporal temperature differences in live 

biological tissues (Roemer et al., 1988). Many biologists, physicians, mathematicians, 

and engineers have developed mathematical models of heat transfer in biological tissues 

Mathematical models are now often used in the study of hyperthermia in tumor 

treatment, oncology, cryosurgery, and many other applications (Gupta et al., 2013). 

There have been several models developed to regulate such heat transfer (Sarkar et al., 

2015). An empirical law of thermal conductivity known as “Fourier’s law” describes 

heat transfer in a continuous medium. Unfortunately, since the Fourier formula 

produces an infinite speed of heat spread due to the parabolic form of the diffusion 

equation, it has not been used in cases of fast transient heat transfer such as pulsed laser 

irradiation. As a result, a finite heat diffusion velocity must be determined. The Pennes 

model of bioheat transfer is widely used in modern engineering and medical therapy 

because of its simplicity, although it must be adjusted to account for the particular 
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characteristics of the tissue under investigation. It is based on the Fourier equation for 

thermal conductivity, which predicts the propagation of thermal disturbances at an 

infinite rate. As a result, a restricted heat transfer rate must be established. The Pennes 

bioheat equation incorporates the effects of diffusion, advection, volumetric heat 

production from metabolism, and spatial heating on heat transfer in a biological 

organism. The thermo physical characteristics of tissues, such as thermal conductivity, 

density, and specific heat, determine the diffusion and transitory thermal impacts. 

According to Kundu (2016), Pennes’ explanation of the vascular contribution to heat 

transmission in perfused tissues fails to explain the real thermal equilibration process 

between streams of flowing blood. Consequently, for effective hyperthermia treatment, 

accurate thermal modeling is required. Khanafer et al. (2008) used physiological 

velocity waveforms to compute and analyse how the pulsatile laminar flow and heating 

protocol affect temperature variation in a single blood artery and tumor tissue that are 

undergoing hyperthermia therapy. They found that the existence of big vessels has an 

important impact on temperature variations, which must be considered when planning 

hyperthermia therapy. They further found that a uniform heating system has a wider 

temperature spread than the pulsed heating scheme, which may cause overheating in 

areas that may damage normal tissues. Several computational and experimental 

approaches have been developed to solve the bio thermal equation since it is critical to 

make an accurate calculation of the temperature range across the entire affected region. 

Kundu (2016) used the variable separation method to express exactly the temperature 

sensitivity in biological tissues based on the Fourier and non-Fourier heat transfer 

conditions during therapeutic settings. Kumar et al. (2015) studied the Dual-Phase-Lag 

(DPL) concept of bio heat transport with a Gaussian distribution source term under the 

most generalized boundary condition during hyperthermia treatment. To approximate an 
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analytical solution to the current problem, the finite element wavelet Galerkin approach, 

which uses the Legendre wavelet as a basic function, was employed. Liu et al. (2012) 

developed the bio heat transfer equation based on the DPL model to address the effect 

of micro structural interaction. They investigated the bio heat transfer problem in the 

skin, which was considered a three-layer composite, using the appropriate equation. Lin 

and Li (2016) proposed an analytical solution to bio heat transport in skin tissue with 

broad boundary conditions using the Pennes, Cattaneo-Vernotte, and DPL models. They 

looked at the heat transfer of skin that has been subjected to pulse laser heating and fluid 

cooling. Jaunich et al. (2008) investigated the temperature change and the heat-affected 

area after treating a skin tissue medium with a collimated or focused laser beam from a 

pulsed laser source. Experiments were conducted on multilayer tissue phantoms that 

resembled skin tissue, and on freshly excised mouse skin tissue samples with implanted 

heterogeneities that simulated subsurface tumors. Maamoun et al. (2021) described their 

use of microwave antennas for microwave imaging of tumors inside the liver and 

predicted the temperature profile in the liver and inside and outside the tumor 

throughout hyperthermia with and without nano particles, using a computer simulation 

of a genuine human model. Majchrzak and Stryczyski (2021) investigated the heat 

transmission between blood vessels and biological tissue using the DPL theory. The 

impact of the heating method is described by maintaining a consistent temperature for 

the tumor that is higher than the blood and tissue temperatures. To evaluate a Local 

Thermal Non-Equilibrium (LTNE) bio heat model, Dutta and Kundu (2021) presented 

an analytical hybrid scheme that consisted of a shift of variables and a finite integral 

transform. This system may be used to improve transient temperature prediction in the 

treatment of cancer patients using Localized Hyperthermia Treatment (LHT). The use of 

frameworks based on extended irreversible thermodynamics provides correspondences 
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of the proposed model with experimental models characterized by matching reduced 

computational loads. In the context of Extended Irreversible Thermodynamics (EIT), 

Chen and Yeh (2001) proposed a phenomenological theory for MR fluids that connects 

the dynamics of flows to a non-equilibrium-state equation and naturally includes the 

elasticity of Magnetic Resonance (MR) fluids. Versaci and Palumbo (2020) confirmed 

the association of the underlying shear flow and dilution behavior of the Herschel-

Buckley plastic component from a known experimental model with elasto-viscoplastic 

generalization under the generalised standard materials. Magnetic nano particles have 

the potential to be magnetic contrast agents in biomedical magnetic imaging. Their 

interference in cellular biological systems such as those of a cell (10–100 nm), virus 

(20–450 nm), protein (5–50 nm), or gene (2 nm wide-ranging and 10–100 nm) due to 

their size can be adjusted from a few nanometers to tens of nanometers (Blanc-Beguin 

et al., 2009). Their existence in the biological systems under investigation may be 

determined using appropriate sensitive components (biosensors), which are attractive 

for magnetic bio-detection due to their high sensitivity, compact size, low power 

consumption, rapid response, and low cost (Blanc-Beguin et al.,2009). The potential of 

magnetic nano particle internalization has been illustrated by different in vitro studies. 

Internalization of magnetite (Fe2O3) or magnetite (Fe3O4) nano particles by cells have 

been demonstrated for diverse cellular types (Jiang et al., 2016). Nanotechnology has 

the potential to improve the selectivity and efficacy of chemical, physical, and 

biological methods of killing cancer cells while reducing damage to noncancerous cells. 

Magnetic nano particles have also been used in numerous biomedical applications, such 

as hyperthermia treatment, radio immunotherapy, and magnetic resonance imaging. 

Nanotechnology can detect changes in a small number of cells due to their small size. It 

can distinguish between cancerous and normal cells. It can do these in the early stages 
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of cancer when the cancer cells are just starting to divide, and thus when the disease is 

easier to treat. Nanotechnology may also make it easier to detect tumors in imaging 

tests. Tumor targeting is one of the main potential advantages of nanotechnology for 

cancer treatment. The ability to distinguish between malignant and nonmalignant cells 

and selectively eliminate malignant cells is critical to the purpose of nanotechnology in 

cancer treatment. Malignant and non-malignant cell differentiation procedures fall into 

two categories: passive and active targeting (Chen et al., 2019). Nano particles coated 

with antibodies or other chemicals are likely to identify and stick to cancer cells. If the 

particles come into contact with cancer, they can be coated with compounds that send a 

signal (Blyakhman et al., 2018). Nano materials are increasingly being targeted at 

highly sensitive cancer cells, both actively and passively (Grossman and McNeil 2012). 

Cancer treatments can be made safer and more accurate with nanotechnology. Specially 

designed nano particles administer chemotherapy directly to tumors. Their small size 

enables them to transport drugs to hard-to-reach parts of the body. They only give drugs 

after they reach their destination. This prevents the drugs from causing damage to 

healthy tissue around the tumor, or other side effects as a result of injury. The design, 

safety, and extraction of geothermal energy from deep subterranean areas are based on 

research into the interaction of fluids and heat in the surrounding deep fissured rock. To 

generate an unstable 3D model of fluid-heat coupling heat transfer in the surrounding 

fractured rock, fractured media and heat transfer hypotheses were used (Kennedy et al., 

2018). 

Ragab et al. (2021) presented a paper on Heat Transfer in Biological Spherical Tissues 

during Hyperthermia of Magnetoma. His model examines heat transport in biological 

tissues as forming an infinite concentric spherical region during magnetic fluid 



  

25 

  

hyperthermia. This model was able to explain the effects of different therapeutic 

approaches such as cryotherapy sessions, laser therapy, and physical occurrences, 

transfer, metabolism support, and blood perfusion with the following equation 
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2.4 Olayiwola’s Generalized Polynomial Approximation Method (OGPAM) 

Polynomial approximation methods are in wide use today for approximately solving 

partial differential equations of mathematical physics. An evolution of the polynomial 

approximation methods has led to the development of generalized polynomial 

approximation method, which can be applied to solve parabolic equations with constant 

or variable coefficients in the cases of considering slab, cylindrical or spherical 

geometries (Olayiwola, 2022). Different problems have been solved using the OGPAM. 

The generalized polynomial approximation method is one of the simplest, and in some 

cases, accurate methods used to solve parabolic equations. The method involves five 

steps. The steps are applied to the dimensionless governing equation as follows: 

The parabolic equations are defined by 
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with the initial condition 

( ) ( )rfr =0,                                                                                                             (2.9) 

and the boundary conditions 
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where ( ),,trF  are the other terms in equation (2.8), 0=n for a slab, 1=n for cylinder, 

2=n for sphere, ( ) ( ) ( )tgtgrf 21 ,,  are three known functions, 2121 ,,,,, kn  are 

constants, and bra   is the boundary of . 

To obtain an approximate solution of the partial differential equation (2.8) satisfying 

(2.9) and (2.10), the following steps are involved: 

Step 1: Compare the equation to be solved with equations (2.8) – (2.10) and obtain 

CBA ,,  and ( ),,trF , where 

( )
( ) ( )

( )( )
( )( ) ( ) ( ) ( )

( )( )
( )( ) ( ) ( ) ( ) 
































































−
++

+−
−

−−+

−+

+




































−
++

+−
−

−
+

−+

−+

−





















−
++

+−

−

=

++

++

++

++

1

1

2

1

1

11

33

1

1

2

1

1

1

1

11

22

1

1

2

2
11

2

1

23

1

2
11

2

2

2

2

2

1

2
11

2

2


















ab

aa

aabbababn

abn

ab

aa

aabb

a

ab

a

abn

abn

ab

aa

aabb

abb

A

nn

nn

nn

nn

   

(2.11) 

 

(2.12) 

 

( )( )
( )( )
( )( ) ( ) ( )( )

( )( )
( )( ) ( ) ( )( ) 





























+−
−

−−+

−+

+








+−
−

−−+

−+
−

+−
=

++

++

++

++

2

2

2

11

33

2

2

2

11

22

2

2

2
1

2

1

3

1

2
1

2

2

2

1

2

aabb

a

abbabn

abn

aabb

a

abb

a

abn

abn

aabb

a

C

nn

nn

nn

nn




   (2.13) 

( )
( )( ) ( )

( )( )
( )( ) ( ) ( )( ) ( )

( )( )
( )( ) ( )( ) ( ) ( ) 










































−
−








−
+

+−−+

−+

+





















−
+

+−
−

−
+

−+

−+

+








−
+

+−

−
−

=

++

++

++

++

11

211

33

1

2

2

11

11

22

1

2

2

1

2
1

23

1

2
1

2

2

2

21

2

1

2
1

2

2







abab

a

aabb

a

abn

abn

ab

a

aabb

a

ab

a

abn

abn

ab

a

aabb

abab

B

nn

nn

nn

nn



  

27 

  

Step 2: Assumed generalized polynomial solution: 
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Step 3: By using (2.14), evaluate 
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and express the result in the form: 
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Step 4: Obtain 1p  and ( )tq1  
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Step 5: Obtain 
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2.5  Summary of Review and Gaps to fill 

In reviewing the literatures, several works have been carried out on a theoretical study 

of blood flow through arteries (stenosis). Some authors worked on blood flow through a 

tampered and overlapping stenosed artery under the action of an externally applied 

magnetic field and steady state condition with the blood medium assumed to be porous 

in nature and considered variable viscosity of blood without considering heat transfer. 

Most authors that considered heat transfer, considered the effect of pulsatile blood flow 

on temperature distributions during hyperthermia but do not take into account the 

temperature dependent blood and tissue thermal conductivities. In view of these, the 

present study aimed at establishing an approximate analytical solution capable of 

predicting effect of unsteadiness, variable viscosity and variable thermal conductivity 

on blood flow and heat transfer in the human cardiovascular system. 
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CHAPTER THREE 

3.0           MATERIALS AND METHODS 

3.1 Mathematical Formulation 

We extend the work of Shit and Roy (2017) with the equation governing the blood flow 

under a closed watch of an external magnetic field via blood as follow: 
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We assumed that blood is incompressible and has uniform dense throughout but the 

viscosity )(r  varies in the radial direction. According to Einstein’s formula for the 

variable viscosity of blood taken to be 

( ) ( )( )rhr  += 10          (3.2) 

Where 0  is the coefficient of viscosity of plasma,   is a constant whose value for 

blood is equal to 2.5 and )(rh  stands for hematocrit. The analysis will be carried out by 

using the following empirical formula for hematocrit given by 
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Where 0R  represents the radius of a normal arterial segment, H  is the maximum 

hematocrit at the center of the artery and 2m  a parameter that determines the exact 

shape of the velocity profile for blood. 
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We also extend the work of Horng et al. (2015) with the governing equations of the 

temperature evolution for the tissue and the energy transport for the blood vessels as: 

( ) ( )
1

, ,t t t
t t t t b b t a t

T T T
c k r k W c T T Q r z t

t r r r z z


      
= + − − +   

       
  (3.4) 

( )
1

, ,b b b b
b b b b b

T T T T
c w k r k Q r z t

t z r r r z z


          
+ = + +      

           
  (3.5) 

( )

( )






















=











=

h

t

bb

h

t

tt

t
QtzrQ

t
QtzrQ





sin
2

,,

sin
2

,,

0

0

                                                                           (3.6) 

The dependence of blood thermal conductivity on tissue temperature is given by the 

expression: 

0
t

b b

a

T
k k

T

 
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 
         (3.7) 

To solve equations (3.1) – (3.7), we adopt no-slip boundary condition at the vessel wall 

and we put into consideration the axis-symmetric boundary condition of axial velocity 

at the mid line of the vessel with the assumptions that the blood vessel segment is 

straight, that the vessel wall is rigid and porous. Also, we assume that the flow is 

laminar, incompressible and Newtonian. Thus, the initial and boundary conditions are 

formulated as: 
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Where, 

z  is the axial distance 

r is the radial distance 

  is the density 

w  is the axial velocity of blood flow 

0w  is the initial axial velocity of blood flow 

p  is the blood pressure 

( )r  is the blood viscosity at a radial distance r 

( )rh  is the hematocrit at a distance r 

H  is the maximum hematocrit at the center of the artery 

0  
is the coefficient of viscosity of plasma 

0R  is the radius of a normal arterial segment 

  is a constant whose value for blood which is equal to 2.5 
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  is the electrical conductivity 

0B  is the applied magnetic field strength 

k  is the permeability of the porous medium 

tk  is the thermal conductivity of tissue 

bk  is the thermal conductivity of blood 

tc  is the specific heat capacity of tissue 

bc  is the specific heat capacity of blood 

tT  is the tissue temperature 

bT  is the blood temperature 

aT  is the ambient temperature that is normally assumed to be C037  

bW
 
is the perfusion mass flow rate 

( )tzrQt ,,
  
is the tissue power of heat added axis symmetrically 

( )tzrQb ,,   is the blood power of heat added axis symmetrically 

  is the ratio of blood temperature to that of tissue temperature 

  is the new space variable introduced 
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L  is the length of vessel wall 

3.2 Dimensional Analysis 

 Equations (3.1) – (3.8) are non–dimensionalized using the following dimensionless 

variables: 
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Then equation (3.1) becomes 
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Dropping prime, we have, 
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Where, 
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Also, equation (3.4) becomes
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Dropping prime, we have 
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        
= + − +     

         
                                            (3.16)

 

0 00 0
1 12

1 0 0 2 0 0 0 0

1 1
, , ,

tt t b b

t t t t t t t t a

Q Rk k R w c R

Pe c R w Pe c w L c R w c T w
 

    
= = = =                       (3.17) 

Also, equation (3.5) becomes 

( )

( )

0

0

0

0 0

1 2

0 0

2

1
1

1 sin
2

b ab b a b b a

b a t
b

h

k Tc T w c T w
r

R L z R r r r

k T
Q

L z z t

     
 



  


    
+ = + +       

   
+ +        

                    (3.18) 

i.e 
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( ) ( )0 0

0

00

1 2

0 0 0

0

0

1
1 1

sin
2

b b

b b b b

b t

b b a h

k k RR
r

L z c R w r r r c w L z z

Q R

c T w t

   
  

  



 

        
+ = + + + +              

 
 
 

(3.19) 

Dropping prime, we have 

( ) ( ) 2

3 4

1 1 1
1 1 sin

2

t

h

a r
z Pe r r r Pe z z t

    
  



         
+ = + + + +     

          
  (3.20) 

where 

0

0 0

2
00 0 0

3 4 2

0 0

, ,
bb b b b

b b b b a

Q Rc R w c w H
Pe Pe

k k R c T w

 


 
= = =                                             (3.21) 

Also, equation (3.8) can be expressed as 

( ) ( ) ( ) 00,,00,,0,, 0 === zrzrwzrw                                                              (3.22) 

0
0

0
00

0 =
=


=

=


=

=



rrrrR

w

rr

w 
                                                            (3.23) 

0 0 0
0 0 0

ww

z z zz L z z

   
= =  =

= = =  
                                                           (3.24) 

( ) ( ) ( ) 0,,10,,1,, 00 === tztzwtzRw                                                                 (3.25) 

( ) ( ) ( )0, , ,1, 0 ,1, 0w r L t w r t r t  = =  =                                                               (3.26) 

( ) ( ) ( ) 00,,0,,0,, ==+= zrTTzrTzrT aaat                                                   (3.27) 

0
0

0
00

=
=


=

=


=

=



rrrrR

T

rr

T at 
                                                       (3.28) 
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0 0
0 0 0

t aT T

z z zz L z z

    
= =  =

= = =  
                                                       (3.29) 

( ) ( ) ( ) 0,,1,,1,,0 ==+= tzTTtzTtzRT aaat                                                  (3.30) 

( ) ( ) ( ) 0,1,,1,,, ==+= trTTtrTtHrT aaat                                                    (3.31) 

( ) ( ) ( ) 00,,0,,0,, ==+= zrTTzrTzrT aaab 
                                              

(3.32) 

0
0

0
00

=
=


=

=


=

=



rrrrR

T

rr

T ab 
                                                   (3.33) 

0 0
0 0 0

b aT T

z z zz L z z

    
= =  =

= = =  
                                                      (3.34) 

( ) ( ) ( ) 0,,1,,1,,0 ==+= tzTTtzTtzRT aaab                                                 (3.35) 

( ) ( ) ( ), , ,1, ,1, 0b a a aT r L t T r t T T r t   = + =  =                                                 (3.36) 

Therefore, the dimensionless equations with their initial and boundary conditions are 

( )( ) ( )( )
21 1

1 1 1 1
Re Re Re

pm m
kM

D r H r H r
r r r

 
   



   
= + + − − − + − 

   
          (3.37) 

( ) 1 1

1 2

1 1 1
1 sin

2

t

h

r
Pe r r r Pe z z t

   
   



        
= + + + − +     

         
                   (3.38) 

( ) ( ) 









+












+




+












+




=




+





h

t

tzzPer
r

rrPez
a
















sin

2
1

1
1

11
2

43

  (3.39) 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
































===
=


=

=


=

===
=


=

=


=

===
=


=

=


=

0,1,,0,,1,0
0

,0
0

,00,,

0,1,,0,,1,0
0

,0
0

,00,,

0,1,,0,,1,0
0

,0
0

,00,,

trtz
zzrr

zr

trtz
zzrr

zr

trtz
zzrr

zr
















     (3.40) 

3.3 Method of Solution 

We introduce a new space variable as 

2 r z = +                                                                                                              (3.41) 

Then 

2r z = − =                                                                                                       (3.42) 

2 z  = +                                                                                                        (3.43) 

Then 

1 1

2 2
and

r z 

   
= =

   
                                                                            (3.44) 

Therefore, equations (3.37) – (3.40) reduce to 

( )( ) ( )( )
21 1

1 1 1 1
4Re Re Re

pm m
kM

D H H
 

      
   

   
= − + + − − − + − 

   
(3.45) 

1 1

1 2

1 1 1
sin

4 4 2

t

hPe Pe t

   
   

     

        
= + − +     

         
                          (3.46) 

( ) ( )
3 4

2

1 1 1
1 1

2 4 4

sin
2

t

h

a

Pe Pe

t

   
   

      




        
+ = + + + +   

        

 
 
             

(3.47) 
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( ) ( )

( ) ( )

( ) ( )

, 0 0, 0, 1, 0
0

, 0 0, 0, 1, 0
0

, 0 0, 0, 1, 0
0


   




   




   




= = = 

= 
 

= = = 
= 


= = =

=                                                             

(3.48) 

Here, equations (3.45) – (3.48) will be considered in two forms as follows: 

Case 1: When .00   and  

When .00   and Then equations (3.45) – (3.48) reduced to: 

( )( )

( )( )

2 2

2 2

2

1 1 1
1 1

4Re 4Re 4Re

1 1
Re Re

m m

p m

H H
H

kM
H D

     
   

     

   

  +    
= − + + − − 

     

− + − −
                

(3.49) 

2

1 12

1 2 1

1 1 1 1
sin

4 4 4 2

t

hPe Pe Pe t

   
  

   

    
= + + + +   

                                         (3.50) 

( )

2 2

2 2

3 4 3 4 3 4

2

3

1 1 1 1 1 1

4 4 4 4 4 4

1 1
1 sin

4 2 2

t

h

Pe Pe Pe Pe Pe Pe

a

Pe t

    
  

    

  
  

  

         
= + + + + + +     

         

  
+ − +  

   

 

(3.51) 

Case 2: When .00 ==  and

 

When .00 ==  and Then equations (3.45) – (3.48) reduced to: 

2 2

2

1 1 1

4Re 4Re Re Re

pkM
D

  
 

   

  
= + − − −

                                                      

(3.52) 

2

1 12

1 2 1

1 1 1 1
sin

4 4 4 2

t

hPe Pe Pe t

   
  

   

    
= + + + +   

                                         

(3.53) 
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2

22

3 4 3

1 1 1 1
sin

4 4 4 2 2

t

h

a

Pe Pe Pe t

    
 

    

      
= + + − +   

                                  

(3.54) 

3.3.1 Solution of Case 1 via OGPAM 

Consider (3.49) satisfying (3.48) and compare with equations (2.8) – (2.10), we have 

1
, 0, , ,

4Re

H
k n t r


   

+
= = = = =                                                                     (3.55) 

( ) ( )( )( )

( )( )

2 2

2

1 1
, , 1 1

4Re 4Re Re

1 1
Re

m m

p m

H M
F r t H

k
H D

  
     

   

  

  
= − + + − − −

  

+ − −

              (3.56) 

( ) ( ) ( )1 1 1 2 2 20, 1, 0, 0, 0, 1, 0, 0, 1f r g t g t a b   = = = = = = = = =                       (3.57) 

Then 

1 2 2 1 1
1 , 1 ,

3 3 3 3 3
A B C

   
= − = = − = =   
   

                (3.58) 

Assumed a polynomial solution of the form (2.14) as: 

( ) 2,
0 0

t    
 

= −
= =

                                                                                    (3.59) 

Then  

( )

( )
( )

( ) ( )( )( )( )

( )( )( )

1

0

2

2
1

0 2

, ,

1 1
2 2 1 1 2

4Re 4Re 2

1 1 2
Re Re

n

m m

mp

r F r t dr

H
z z H z

z
d

kM
H z D



  
   

   


   

=

  −   
− + − + − − −    −    

 
 − + − − − 
 





(3.60) 
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( ) ( )

( )

( )
( )

( ) ( ) ( )

( ) ( )

1

1

1

20
2

2 2

2 4
2 2

0 04 Re 4 Re

4 1 4
2

0 04 Re 2 4 Re

1 1 2
0 0 0Re Re Re
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0 0Re Re
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m
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mp p

H m H
z z

H H
z

z
d

k kM
D H H z

k k
H H z

 
    
 

  
   
 



      
  

      
 

−

−

 
− + − 

= = 
 +
 − + −

= =− 
 
 − − − − + + − +
 = = =
 
 

+ − − 
= = 

   (3.61)

( )

( ) ( )

( )

( ) ( )
( )

( )

( )

( )

1 1
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3 21

2
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2 1 2 1 4Re Re 4Re 2 4
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2 2 4

1 1 1
3Re 3 Re 4Re

2 2

2 12 2

Re 3 2 1
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p
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p

m
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p

z
z
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H

m m

m z
kM H

H m m m
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k m m zmz
H

m m m









+ +

−−

−

−−

  −  
    − +     − + − + −   + +      

 
  −

− + = − + + + −+ 
 − 

 −
− +  + + + 



0
D











  −
  =
 
 
 
 
 
 



   (3.62) 

  
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( )

( ) ( )

( )

( ) ( )
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( )

1 1

21
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H
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z
z
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k m m zmz
H

m m m










+ +

−−

−

−−

 −  
 − + −   + +   


 −   
  +   + −

 
 
 

 −
− + 

= − + + + −+ 
 − 

 −
− +  + + + 



0B







 
 
 
 
 
 
 

=
 
 
 
 
 
 
 
 
 
 
 
 


          (3.63) 

( )1q t D= −           (3.64) 

Then, 

( ) ( ) ( )0 0 1

3 1 3
2 2

2 4 Re 2

H
P t B B B

+ 
= − + − = − = − 

 
                                                       (3.65) 

( ) ( ) 2

3 3

2 2

D
q t D B= − = − = −         (3.66) 

Then, 

1 1 1

2
0

0
0

t
B t B x B t

e B e dx e


−
= − + 

=         (3.67) 

1 12

0
1

0
t

B t B xB
e e

B

− 
= + 

 
         (3.68) 
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( ) ( )1 1 12 2

1 1

1 1
B t B t B tB B

e e e
B B

− − 
= − = − 

 
(3.69) 

Thus, 

( ) ( )( )1 22

1

, 1 1
B tB

t e
B

  = − −         (3.70) 

Consider (3.50) satisfying (3.48), let 
1 2

1 1

4 4
p

Pe Pe

 
= + 
 

 and compare with equations 

(2.8) - (2.10), we have, 

( )

( ) ( ) ( )

1 1

1

1 1 1 2 2 2

1 1
, 0, , , , , , sin ,

4 2

0, 1, 0, 0, 0, 1, 0, 0, 1

t

h

k p n t r F r t
Pe t

f r g t g t a b

 
       

 

   

  
= = = = = = + +  

   
 = = = = = = = = = 

    (3.71) 

Then, 

2 1 1
, ,

3 3 3
A B C= = =                   (3.72) 

Assume a polynomial solution of the form (2.14) as: 

( ) 2,
0 0

t    
 

= −
= =

                                                                                     (3.73) 

Then, 

( )
1 1

1 1

10 0

1 1
, , sin

4 2

n t

h

r F r t dr d
Pe z t

 
    

 

  
= + +   −    

                                    (3.74) 

( )
( )

1

2

1 1

10

2
1 sin

0 04 2 2

t

h

d
Pe z t

 
     
 

  
− + − +   = =−   


                                 

(3.75) 
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1
1

1

2
ln

1 1
2 sin

04 2 4 3 2

t

h

z
z

z

Pe t

 
 


  −  
        = − + − +  

=    
  
  

                               (3.76) 

1
1 3

1

2
ln

1 1
2

4 2 4 3

z
z

z
P B

Pe



  −  
   

   = − + − = −
  

  
  

                                           (3.77) 

( )1 1 4sin
2

t

h

q t B
t




 
= = 

 
                                    (3.78) 

Then,  

( ) ( ) 3 5

3
2 2

2 2

p
P t B B

 
= − + + = 

 
             (3.79) 

( ) 4 6

3

2
q t B B= =                           (3.80) 

Then, 

5 5 5

6
0

0
0

t
B t B x B t

e B e dx e


− −
= + 

=               (3.81) 

5 56

0
5

0
t

B t B xB
e e

B

−  
= + 

 
               (3.82) 

( )56

5

1
0

B tB
e

B



−
= −

=
              (3.83) 
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Thus, 

( ) ( )( )5 26

5

, 1 1
B tB

t e
B

  −
= − −                      (3.84) 

Consider (3.51) satisfying (3.48), let 
3 4

1 1

4 4
q

Pe Pe

 
= + 
 

 and compare with equations 

(2.8)-(2.10), we have, 

( )

( )

( ) ( ) ( )

2

2

2

3

1 1 1 2 2 2

, 0, , , , , ,

1 1
1 sin ,

4 2 2

0, 1, 0, 0, 0, 1, 0, 0, 1

t

h

k q n t r F r t q

a
q

Pe t

f r g t g t a b


      



    
   

    

   

 
= = = = = = + 

 
     
 + + + +  

     
 

= = = = = = = = = 
 
 

       (3.85) 

Then, 

2 1 1
, ,

3 3 3
A B C= = =              (3.86) 

Assume a polynomial solution of the form (2.14) as: 

( ) 2,
0 0

t    
 

= −
= =

            (3.87) 

Then, 

( )

( )
( )

1

0

2

21
3

0

2

, ,

1 1
1

4 2 2

sin
2

n

t

h

r F r t dr

a
q q

Pe z
d

t



    
    

     





=

     
+ + + + + 

   −   
  
   

  





              (3.88) 
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( )

( )

( )
( )

( )

2 2

2
1

0
3 3

2

2

2 1 4
0 0 0 0

12 2

0 0 04 2 4 2

1 sin
0 0 2

t

h

q q

d
Pe z Pe z

a
t

       
   

 
   
   


    
 

  
− − + −  

= = = =  
 

− 
− −

 = = =− −
 
  

− +  
 = =   



             

(3.89) 

( ) ( )

( ) ( )

3 3

33

3

2

1 1 1 1 1

2 16 4 3 8 8

1 1 04
2 ln 2

16 4

02
ln

2 1

04 4 2 4

sin
2

t

h

ln z z zln z z z

Pe
ln z z z z

z
z

a z

Pe

t

 











    
− − − + − − −    

   − − 
 =   − + −        = +
  =  −  
    

    − +
=   

   
   

 
 
    

(3.90) 

  

( ) ( )

( ) ( )
( )

3 3

6 2

33

1 7 8

3

1 1 1 1 1

2 16 4 3 8 8

1 14 4
2 ln 2

16 4

2
ln

2 1

4 2 4

ln z z zln z z z
B aB

t
Pe

ln z z z z

P B t B
z

z
z

Pe



   
− − − + − − −   

  − + − 
   − + −     
 = = −
  −  

   
   +

  
  
        

(3.91) 

( )1 2 9sin
2

t

h

q t B
t




 
= = 

 

                    (3.92) 

Then,  

( ) ( ) ( )8 7 10 7

3 3
2 2

2 2 2

q
P t B B t B B t

  
= − − + + − = −  

  
                                        (3.93) 
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( ) 9 11

3

2
q t B B= =                (3.94) 

Then, 

( ) ( ) ( )10 7 10 7 10 7

3 3

2 2
11

0
0

0

tB B t dt B B x dx B B t dt

e B e dx e


− − − − −  = +
=                       (3.95) 

2 2
10 7 10 7

3 1 3 1

2 2 2 2

11
0

0
B t B t B x B xt

e B e dx

   
− − −   

   = +              (3.96) 

( )
2
102

10 7
7

33 1

4 7 102 2 10
11

7 7 7

33

0 3 2 2

B
B t B t

B B t BB
e B e erf erf

B B B





 
− − 

 

     −
  = +        =      

   (3.97) 

Thus,  

( ) ( )2, 1
0

t   


= −
=

                            (3.98) 

3.3.2       Solution of Case 2 via OGPAM 

Consider (3.52) satisfying (3.48) and compare with equations (2.8) – (2.10), we have 

1
, 0, , ,

4Re
k n t r   = = = = =                                                                        (3.99) 

( ) ( )
21 1

, ,
4Re Re Re

pkM
F r t D


   

  

 
= − − −

 
                                                   (3.100) 

( ) ( ) ( )1 1 1 2 2 20, 1, 0, 0, 0, 1, 0, 0, 1f r g t g t a b   = = = = = = = = =                     (3.101) 

Then, 
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1 2 2 1 1
1 , 1 ,

3 3 3 3 3
A B C

   
= − = = − = =   
   

              (3.102) 

Assumed a polynomial solution of the form (2.14) as: 

( ) 2,
0 0

t    
 

= −
= =

                                                                                   (3.103) 

Then,  

( )
( )

( )( )
1 2

1

0
0

1 1
, , 2

4Re 2 Re Re

pn
kM

r F r t dr z D d
z


    

  

   
= − − − −    −    

 
               

(3.104) 

( )
( )

2
1

2 2

0

1
1

0 0 0 0Re 2 Re Re Re

p pk kM
D d

z


      
   

 
= − − − − − +  = = = =− 
  (3.105)

2

2
ln

1 1 2 2

0Re 2 4 3Re 3 Re

p

z
z

kMz
D



  −  
   

   = − + − − −
=  

  
  

                                                    (3.106) 

  

2

1 12

2
ln

1 1 2 2

Re 2 4 3Re 3 Re

p

z
z

kMz
p B

  −  
   

   = − + − − =
  

  
  

                                               (3.107) 

( )1q t D= −                                                                                                                (3.108) 

Then, 

( ) ( ) ( )12 12 13

3 1 3
2 2

2 4 Re 2
P t B B B

 
= − + − = − = − 

 
                                                    (3.109) 
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( ) ( ) 2

3 3

2 2

D
q t D B= − = − = −                                                              (3.110) 

Then, 

13 13 13

2
0

0
0

t
B t B x B t

e B e dx e


−
= − + 

=                                        (3.111) 

13 132

0
13

0
t

B t B xB
e e

B

− 
= + 

 
                                                                        (3.112) 

( ) ( )13 13 132 2

13 13

1 1
B t B t B tB B

e e e
B B

− − 
= − = − 

 
(3.113) 

Thus, 

( ) ( )( )13 22

13

, 1 1
B tB

t e
B

  = − −                                                                                   (3.114) 

Consider (3.53) satisfying (3.48), let 
1 2

1 1

4 4
p

Pe Pe

 
= + 
 

 and compare with equations 

(2.8) - (2.10), we have, 

( )

( ) ( ) ( )

1 1

1

1 1 1 2 2 2

1 1
, 0, , , , , , sin ,

4 2

0, 1, 0, 0, 0, 1, 0, 0, 1

t

h

k p n t r F r t
Pe t

f r g t g t a b

 
       

 

   

  
= = = = = = + +  

   
 = = = = = = = = = 

  (3.115) 

Then, 

2 1 1
, ,

3 3 3
A B C= = =                                        (3.116) 

Assumed a polynomial solution of the form (2.14) as: 
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( ) 2,
0 0

t    
 

= −
= =

                                                                                 (3.117) 

Then, 

( )
1 1

1 1

10 0

1 1
, , sin

4 2

n t

h

r F r t dr d
Pe z t

 
    

 

  
= + +   −    

                                (3.118) 

( )
( )

1

2

1 1

10

2
1 sin

0 04 2 2

t

h

d
Pe z t

 
     
 

  
− + − +   = =−   


                             

(3.119) 

1
1

1

2
ln

1 1
2 sin

04 2 4 3 2

t

h

z
z

z

Pe t

 
 


  −  
        = − + − +  

=    
  
  

                                 (3.120) 

1
1 3

1

2
ln

1 1
2

4 2 4 3

z
z

z
P B

Pe



  −  
   

   = − + − = −
  

  
  

                                             (3.121) 

( )1 1 4sin
2

t

h

q t B
t




 
= = 

 
                                    (3.122) 

Then,  

( ) ( ) 3 5

3
2 2

2 2

p
P t B B

 
= − + + = 

 
             (3.123) 

( ) 4 6

3

2
q t B B= =                           (3.124) 

Then, 
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5 5 5

6
0

0
0

t
B t B x B t

e B e dx e


− −
= + 

=                  (3.125) 

5 56

0
5

0
t

B t B xB
e e

B

−  
= + 

 
                  (3.126) 

( )56

5

1
0

B tB
e

B



−
= −

=
                 (3.127) 

Thus, 

( ) ( )( )5 26

5

, 1 1
B tB

t e
B

  −
= − −                            (3.128) 

Consider (3.54) satisfying (3.48), let 
3 4

1 1

4 4
q

Pe Pe

 
= + 
 

 and compare with equations 

(2.8) - (2.10), we have, 

( )

( ) ( )

( )

3

2 1 1 1 2 2

2

1 1
, 0, , , , , ,

4 2

sin , 0, 1, 0, 0, 0, 1,
2

0, 0, 1

t

h

a
k q n t r F r t

Pe

f r g t
t

g t a b

 
     

  


    

  
= = = = = = + +  

 
  

= = = = = =  
  
 

= = =
 
 
 

                 (3.129) 

Then, 

2 1 1
, ,

3 3 3
A B C= = =                (3.130) 

Assumed a polynomial solution of the form (2.14) as: 

( ) 2,
0 0

t    
 

= −
= =

             (3.131) 
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Then, 

( )
( )

1 1

2

30 0

1 1
, , sin

4 2 2 2

n t

h

a
r F r t dr d

Pe z t

  
   

  

   
= + +   −     

                     (3.132) 

( )
( )

1
2

2
0

3

2
1 sin

0 0 04 2 2

t

h

a d
Pe z t

 
      
  

  
= − − +   = = =−   
         (3.133)  
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CHAPTER FOUR 

4.0    RESULTS AND DISCUSSION 

4.1 Analysis of Results 

In this analysis, we solved the equations governing the blood flow and heat transfer in 

the cardiovascular system of human undergoing tumor treatment analytically using 

OGPAM. This is to see the effect of parameters involved on the axial velocity of blood 

flow, tissue temperature and blood temperature. Two cases were considered. 

Finally, we examined the effect of the Reynolds number ( )Re , Permeability parameter

( )k , Peclet numbers ( )1 2,e eP P , Pressure gradient parameter ( )C , Hematocrit ( )H , 

Perfusion mass flow rate ( )1 , Temperatures ratio ( ) , Tissue power of heat added

( )1 , Blood power of heat added ( )2 , Hartman number ( )M on the velocity and 

temperatures. The computations were done using computer symbolic algebraic package 

MAPLE 17.  

4.1.1 Graphs of case 1 

Graphical illustrations of Case 1 problem are presented in Figures 4.1 to 4.24: 
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Figure 4.1: Graph of velocity profile against distance at M = 0, 2.5, and 4.0 

Figure 4.1 shows the graph of velocity profile ( ), t   against distance   with different 

values of Hartman number 

 

Figure 4.2: Graph of velocity profile against time at M = 0, 2.5, and 4.0 

Figure 4.2 shows the graph of velocity profile ( ), t  against time t for different values 

of Hartman number. 
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Figure 4.3: Graph of velocity profile against distance at k = 0.1, 0.15 and 0.25 

Figure 4.3 shows the graph of velocity profile ( ), t   against distance   for different 

values of permeability parameter. 

  

Figure 4.4: Graph of velocity profile against time at k = 0.1, 0.15 and 0.25 

Figure 4.4 shows the graph of velocity profile ( ), t  against time t for different values 

of permeability parameter.  
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Figure 4.5: Graph of velocity profile against distance at 
eR  = 1, 2 and 3 

Figure 4.5 shows the graph of velocity profile ( ), t   against distance   for different 

values of Reynolds number 

 

Figure 4.6: Graph of velocity profile against time at 
eR =1, 2 and 3 

Figure 4.6 shows the graph of velocity profile ( ), t   against time t for different values 

of Reynolds number  
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Figure 4.7: Graph of tissue temperature against distance at 
1eP  = 0.1, 0.2 and 0.3 

Figure 4.7 shows the graph of tissue temperature ( ),t   against distance   for 

different values of peclet number. 

 

Figure 4.8: Graph of tissue temperature against time at 
1eP  = 0.1, 0.2 and 0.3 

Figure 4.8 shows the graph of tissue temperature ( ),t   against time t for different 

values of peclet number 



  

58 

  

 

Figure 4.9: Graph of blood temperature against distance   at 
3eP  = 0.2, 0.4 and 0.6 

Figure 4.9 shows the graph of blood temperature ( ), t   against distance   for 

different values of peclet number. 

 

Figure 4.10: Graph of blood temperature against time at 
3eP  = 0.2, 0.4 and 0.6 

Figure 4.10 shows the graph of blood temperature ( ), t   against time t for different 

values of peclet number. 
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Fig 4.11: Graph of velocity profile against distance at C = 20, 40 and 60 

Fig 4.11 shows the graph of velocity profile ( ), t   against distance   for different 

values of pressure gradient parameter. 

 

  

Figure 4.12: Graph of velocity profile against time at C = 20, 40 and 60 

Fig 4.12 shows the graph velocity profile ( ), t  against time t for different values of 

pressure gradient parameter. 
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Figure 4.13: Graph of blood temperature against distance at C = 20, 40 and 60 

Figure 4.13 shows the graph of blood temperature ( ), t   against distance   for 

different values of pressure gradient parameter. 

 

 

Figure 4.14: Graph of blood temperature against time at C = 20, 40 and 60 

Figure 4.14 shows the graph of blood temperature ( ), t  against time t for different 

values of pressure gradient parameter.  
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Figure 4.15: Graph of velocity profile against distance at H = 0, 0.1 and 0.2 

Figure 4.15 shows the graph of velocity profile ( ), t  against distance   for different 

values of Hematocrit.      

 

Figure 4.16: Graph of velocity profile against time at H = 0, 0.1 and 0.2 

Figure 4.16 shows the graph of velocity profile ( ), t  against time t for different 

values of Hematocrit. 
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Figure 4.17: Graph of tissue temperature against distance at 
1 = 1, 2 and 3 

Figure 4.17 shows the graph of tissue temperature ( ),t   against distance   for 

different values of perfusion mass flow rate.   

 

Figure 4.18: Graph of tissue temperature against time at 
1 = 1, 2 and 3 

Figure 4.18 shows the graph of tissue temperature ( ),t   against time t for different 

values of perfusion mass flow rate.  
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Figure 4.19: Graph of blood temperature against distance at   = -1, 0 and 1 

Figure 4.19 shows the graph of blood temperature ( ), t   against distance   for 

different values of perfusion mass flow rate. 

 

Figure 4.20: Graph of blood temperature against time at  = -1, 0 and 1 

Figure 4.20 shows the graph blood temperature ( ), t   against time t for different 

values of perfusion mass flow rate.  
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Figure 4.21: Graph of tissue temperature against distance at
1 = 1, 2 and 3 

Figure 4.21 shows the graph of tissue temperature ( ),t   against distance   for 

different values of tissue power of heat added.  

 

Figure 4.22: Graph of tissue temperature against time at
1 = 1, 2 and 3 

Figure 4.22 is the graph of tissue temperature ( ),t   against time t for different values 

of tissue power of heat added. 
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Figure 4.23: Graph of blood temperature against distance at
2  = 1, 2 and 3 

Figure 4.23 is the graph of blood temperature ( ), t  against distance   for different 

values of blood power of heat added.  

 

Figure 4.24: Graph of blood temperature against time at
2 = 1, 2 and 3 

Figure 4.24 shows the graph of blood temperature ( ), t   against time t for different 

values of blood power of heat added. 
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4.1.2 Discussion of results of case 1 

Figure 4.1 displays the graph of velocity profile ( ), t   for different values of 

Hartmann number ( )M . It is observed that velocity decrease along the distance and this 

velocity decreases as Hartmann number increases. Figure 4.2 shows the graph of 

velocity profile ( ), t   for different values of Hartmann number ( )M . It is observed 

that velocity increase and later became steady with time and maximum velocity 

decreases as Hartmann number increases. Figure 4.3 depicts the graph of velocity 

profile ( ), t   for different values of permeability parameter ( )k . It is observed that 

velocity decrease along the distance and this velocity increases as the values of 

permeability parameter increases. Figure 4.4 shows the graph of velocity profile ( ), t   

for different values of permeability parameter ( )k . It is observed that velocity increase 

and later became steady with time and maximum velocity increases as the value of 

permeability parameter increases. Figure 4.5 displays the graph of velocity profile

( ), t   for different values of Reynolds number ( )eR . It is observed that velocity 

decrease along the distance and this velocity increases as Reynolds number increases. 

Figure 4.6 depicts the graph of velocity profile ( ), t   for different values of Reynolds 

number ( )eR . It is observed that velocity increase and later became steady with time 

and maximum velocity increases as Reynolds number increases. Figure 4.7 shows the 

graph of tissue temperature profile ( ),t   for different values of Peclet number ( )1eP . It 

is observed that tissue temperature decrease along the distance and this temperature 

increases as Peclet number increases. Figure 4.8 depicts the graph of tissue temperature 

profile ( ),t   for different values of Peclet number ( )1eP . It is observed that tissue 
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temperature increase with time and maximum temperature decreases as Peclet number 

increases. Figure 4.9 shows the graph of blood temperature profile ( ), t   for different 

values of Peclet number ( )3eP . It is observed that blood temperature decrease along the 

distance and this temperature decreases as Peclet number increases. Figure 4.10 depicts 

the graph of blood temperature profile ( ), t   for different values of Peclet number

( )3eP . It is observed that blood temperature increase reached maximum and later 

decrease with time and maximum temperature decreases as Peclet number increases. 

Figure 4.11 displays the graph of velocity profile ( ), t   for different values of pressure 

gradient parameter ( )C . It is observed that velocity decrease along the distance and this 

velocity increases as the values of pressure gradient parameter increases. Figure 4.12 

shows the graph of velocity profile ( ), t   for different values of pressure gradient 

parameter ( )C . It is observed that velocity increase and later became steady with time 

and maximum velocity increases as values of pressure gradient increases. Figure 4.13 

shows the graph of blood temperature profile ( ), t   for different values of pressure 

gradient parameter ( )C . It is observed that blood temperature decrease along the 

distance and this temperature decreases as values of pressure gradient increases. Figure 

4.14 depicts the graph of blood temperature profile ( ), t   for different values of 

pressure gradient parameter ( )C . It is observed that blood temperature increase reached 

maximum and later decrease with time and maximum temperature decreases as values 

of pressure gradient increases. Figure 4.15 displays the graph of velocity profile ( ), t   

for different values of hematocrit ( )H . It is observed that velocity decrease along the 

distance and this velocity decreases as the values of hematocrit increases. Figure 4.16 



  

68 

  

shows the graph of velocity profile ( ), t   for different values of hematocrit ( )H . It is 

observed that velocity increase and later became steady with time and maximum 

velocity decreases as values of hematocrit increases. Figure 4.17 shows the graph of 

tissue temperature profile ( ),t   for different perfusion mass flow rate ( )1 . It is 

observed that tissue temperature decrease along the distance and this temperature 

increases as perfusion mass flow rate increases. Figure 4.18 depicts the graph of tissue 

temperature profile ( ),t   for different perfusion mass flow rate ( )1 . It is observed 

that tissue temperature increase with time and maximum temperature increases as 

perfusion mass flow rate increases. Figure 4.19 shows the graph of blood temperature 

profile ( ), t  against distance for different values of temperature ratio ( ) . It is 

observed that we have positive blood temperature profile when 0   and 0  while 

we have negative blood temperature profile when 0 = . This by implication means that 

variable thermal conductivity brings about increase in blood temperature. Figure 4.20 

depicts the graph of blood temperature profile ( ), t  against time for different values 

of temperature ratio ( ) . It is observed that we have positive blood temperature profile 

when 0   and 0  while we have negative blood temperature profile when 0 = . 

This by implication means that variable thermal conductivity brings about increase in 

blood temperature. Figure 4.21 shows the graph of tissue temperature profile ( ),t   for 

different values of tissue power of heat added ( )1 . It is observed that tissue temperature 

decrease along the distance and this temperature increases as tissue power of heat added 

increases. Figure 4.22 depicts the graph of tissue temperature profile ( ),t   for 

different values of tissue power of heat added ( )1 . It is observed that tissue temperature 
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increase with time and maximum temperature increases as tissue power of heat added 

increases. Figure 4.23 shows the graph of blood temperature profile ( ), t   for 

different values of blood power of heat added ( )2 . It is observed that blood 

temperature decrease along the distance and this temperature increases as blood power 

of heat added increases. Figure 4.24 depicts the graph of blood temperature profile

( ), t   for different values of blood power of heat added ( )2 . It is observed that 

blood temperature increase reached maximum and later decrease with time and 

maximum temperature increases as values of blood power of heat added ( )2 increases. 

4.1.3 Graphs of case 2 

Graphical illustrations of Case 2 problem are presented in Figures 4.25 to 4.46 as: 
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Figure 4.25: Graph of velocity profile against distance at M = 0, 2.5 and 4.0 

Figure 4.25 shows the graph of velocity profile ( ), t   against distance   for different 

values of Hartmann number.  

 

Figure 4.26: Graph of velocity profile against time at M = 0, 2.5 and 4.0 

Figure 4.26 shows the graph of velocity profile ( ), t   against time t for different 

values of Hartmann number. 
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Figure 4.27: Graph of velocity profile against distance at k = 0.1, 0.15 and 0.25 

Figure 4.27 shows the graph of velocity profile ( ), t   against distance   for different 

values of permeability parameter 

 

Figure 4.28: Graph of velocity profile against time at k = 0.1, 0.15 and 0.25 

Figure 4.28 shows the graph of velocity profile ( ), t   against time t for different 

values of permeability parameter. 
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Figure 4.29: Graph of velocity profile against distance at 
eR = 1, 2 and 3 

Figure 4.29 shows the graph of velocity profile ( ), t   against distance   for different 

values of Reynolds number 

 

Figure 4.30: Graph of velocity profile against time at 
eR = 1, 2 and 3 

Figure 4.30 shows the graph of velocity profile ( ), t   against time t for different 

values of Reynolds number. 



  

73 

  

 

Figure 4.31: Graph of tissue temperature against distance at 
1eP = 0.1, 0.2 and 0.3 

Figure 4.31 shows the graph of tissue temperature profile ( ),t   against distance   for 

different values of peclet number. 

 

Figure 4.32: Graph of tissue temperature against time at 
1eP = 0.1, 0.2 and 0.3 

Figure 4.32 shows the graph of tissue temperature profile ( ),t   against time t for 

different values of peclet number. 
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Figure 4.33: Graph of blood temperature against distance at 
3eP  = 0.2, 0.4 and 0.6 

Figure 4.33 shows the graph of blood temperature profile ( ), t   against distance   for 

different values of Peclet number 

 

Figure 4.34: Graph of blood temperature against time at 
3eP  = 0.2, 0.4 and 0.6 

Figure 4.34 shows the graph of blood temperature profile ( ), t   against time t for 

different values of Peclet number  
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Figure 4.35: Graph of velocity profile against distance at C = 20, 40 and 60 

Figure 4.35 shows the graph of velocity profile ( ), t  against distance   for different 

values of pressure gradient parameter 

 

Figure 4.36: Graph of velocity profile against time at C = 20, 40 and 60 

Figure 4.36 shows the graph of velocity profile ( ), t  against time t for different values 

of pressure gradient parameter 
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Figure 4.37: Graph of blood temperature against distance at C = 20, 40 and 60 

Figure 4.37 shows the graph of blood temperature profile ( ), t   against distance  for 

different values of pressure gradient parameter. 

 

Figure 4.38: Graph of blood temperature against time at C = 20, 40 and 60 

Figure 4.38 shows the graph of blood temperature profile ( ), t   against time t for 

different values of pressure gradient parameter. 
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Figure 4.39: Graph of tissue temperature profile against distance at 
1 = 1, 2 and 3  

Figure 4.39 shows the graph of tissue temperature profile ( ),t   against distance   for 

different values of perfusion mass flow rate 

 

 

Figure 4.40: Graph of tissue temperature profile against time at 
1 = 1, 2 and 3 

Figure 4.40 shows the graph of tissue temperature profile ( ),t   against time for 

different values of perfusion mass flow rate 
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Figure 4.41: Graph of tissue temperature profile against distance at 
1  = 1, 2 and 3 

Figure 4.41 shows the graph of tissue temperature profile ( ),t   against distance   for 

different values of tissue power of heat added 

 

 

Figure 4.42: Graph of tissue temperature profile against time t at 
1  = 1, 2 and 3 

Figure 4.42 shows the graph of tissue temperature profile ( ),t   against time t for 

different values of tissue power of heat added 
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Figure 4.43: Graph of blood temperature profile against distance at 
2  = 1, 2 and 3 

Figure 4.43 shows the graph of blood temperature profile ( ), t   against distance   for 

different values of blood power of heat added. 

 

Figure 4.44: Graph of blood temperature profile against time at 
2  = 1, 2 and 3 

Figure 4.44 shows the graph of blood temperature profile ( ), t   against time t for 

different values of blood power of heat added. 
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4.1.4 Discussion of results of case 2 

Figure 4.25 displays the graph of velocity profile ( ), t   for different values of 

Hartmann number ( )M . It is observed that velocity decrease along the distance and this 

velocity decreases as Hartmann number increases. Figure 4.26 shows the graph of 

velocity profile ( ), t   for different values of Hartmann number ( )M . It is observed 

that velocity increase and later became steady with time and maximum velocity 

decreases as Hartmann number increases. Figure 4.27 depicts the graph of velocity 

profile ( ), t   for different values of permeability parameter ( )k . It is observed that 

velocity decrease along the distance and this velocity increases as values of permeability 

parameter increases. Figure 4.28 shows the graph of velocity profile ( ), t   for 

different values of permeability parameter ( )k . It is observed that velocity increase and 

later became steady with time and maximum velocity increases as value permeability 

parameter increases. Figure 4.29 displays the graph of velocity profile ( ), t   for 

different values of Reynolds number ( )eR . It is observed that velocity decrease along 

the distance and this velocity increases as Reynolds number increases. Figure 4.30 

depicts the graph of velocity profile ( ), t   for different values of Reynolds number

( )eR . It is observed that velocity increase and later became steady with time and 

maximum velocity increases as Reynolds number increases. Figure 4.31 shows the 

graph of tissue temperature profile ( ),t   for different values of Peclet number ( )1eP . It 

is observed that tissue temperature decrease along the distance and this temperature 

decreases as Peclet number increases. Figure 4.32 depicts the graph of tissue 

temperature profile ( ),t   for different values of Peclet number ( )1eP . It is observed 
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that tissue temperature increase with time and maximum temperature decreases as 

Peclet number increases. Figure 4.33 shows the graph of blood temperature profile

( ), t   for different values of Peclet number ( )3eP . It is observed that blood 

temperature increases along the distance and this temperature increases as Peclet 

number increases. Figure 4.34 depicts the graph of blood temperature profile ( ), t   for 

different values of Peclet number ( )3eP . It is observed that blood temperature decrease 

reached minimum and later increase with time and minimum temperature decreases as 

Peclet number increases. Figure 4.35 displays the graph of velocity profile ( ), t   for 

different values of pressure gradient parameter ( )C . It is observed that velocity decrease 

along the distance and this velocity increases as the values of pressure gradient 

parameter increases. Figure 4.36 shows the graph of velocity profile ( ), t   for 

different values of pressure gradient parameter ( )C . It is observed that velocity increase 

and later became steady with time and maximum velocity increases as values of 

pressure gradient increases. Figure 4.37 shows the graph of blood temperature profile

( ), t   for different values of pressure gradient parameter ( )C . It is observed that 

blood temperature increase along the distance and this temperature increases as values 

of pressure gradient increases. Figure 4.38 depicts the graph of blood temperature 

profile ( ), t   for different values of pressure gradient parameter ( )C . It is observed 

that blood temperature increase reached minimum and later increase with time and 

minimum temperature increases as values of pressure gradient increases. Figure 4.39 

shows the graph of tissue temperature profile ( ),t   for different perfusion mass flow 

rate ( )1 . It is observed that tissue temperature decrease along the distance and this 
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temperature increases as perfusion mass flow rate increases. Figure 4.40 depicts the 

graph of tissue temperature profile ( ),t   for different perfusion mass flow rate ( )1 . It 

is observed that tissue temperature increase with time and maximum temperature 

increases as perfusion mass flow rate increases. Figure 4.41 shows the graph of tissue 

temperature profile ( ),t   for different values of tissue power of heat added ( )1 . It is 

observed that tissue temperature decrease along the distance and this temperature 

increases as tissue power of heat added increases. Figure 4.42 depicts the graph of tissue 

temperature profile ( ),t   for different values of tissue power of heat added ( )1 . It is 

observed that tissue temperature increase with time and maximum temperature increases 

as tissue power of heat added increases. Figure 4.43 shows the graph of blood 

temperature profile ( ), t   for different values of blood power of heat added ( )2 . It is 

observed that blood temperature increase along the distance and this temperature 

decreases as blood power of heat added increases. Figure 4.44 depicts the graph of 

blood temperature profile ( ), t   for different values of blood power of heat added

( )2 . It is observed that blood temperature decrease reached minimum and later 

increase with time and minimum temperature decreases as values of blood power of 

heat added ( )2 increases. 

4.2 Validation of Result 

To validate the present result, all introduced variable are made to be zero and compared 

to that of Shit and Roy (2017) results as shown in table 4.1. 
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Table 4.1: Comparison between present results and Shit and Roy (2017) results. 

 
  ( ), t  Polynomial Results ( ),y t Frobenius Results Fro Pol −  

0 3.089322110 3.096264762 6.94265 x10-3 

0.1 3.058428888 3.060160648 1.73176x10-3 

0.2 2.965749224 3.025482232 5.973301x10-2 

0.3 2.811283119 2.896357737 8.507462 x10-2 

0.4 2.595030572 2.707927454 1.128969x10-1 

0.5 2.316991582 2.456533594 1.395420x10-1 

0.6 1.977166150 2.136702629 1.595365x10-1 

0.7 1.575554276 1.741228948 1.656747x10-1 

0.8 1.112155960 1.261065303 1.489093x10-1 

0.9 0.586971200 0.685122417 9.815122x10-2 

1.0 0 0 0 

Table 4.1 shows comparison between the present results using generalized polynomial 

approximation method and Shit and Roy (2017) results using Frobenius method. 

Generally, the difference is of order 10−1, 10−2 and 10−3. 
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CHAPTER FIVE 

5.0          CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

To check the validity of the present work, the numerical results are compared with that 

of Shit and Roy (2017). Thus the results are in good agreement with the mentioned 

literature review with the difference of order 10−1, 10−2 and 10−3. For constant and 

variable viscosity and blood thermal conductivity, the equations governing the blood 

flow and heat transfer in the cardiovascular system of human undergoing tumor 

treatment have been solved analytically using OGPAM.  

The effects of the dimensionless parameters as shown on the graphs were analyzed. 

From the results obtained, all the parameters including Reynolds number, Peclet 

number, Hartman number, Hematocrit, Permeability parameter, Pressure gradient 

parameter, Temperature ratio, Perfusion mass flow rate, Tissue power of heat added and 

Blood power of heat added on the velocity and temperature have appreciable impact on 

the system. The main findings of the present study are listed as: 

(i) Hartmann number reduces the flow velocity. 

(ii) The flow velocity at the central region decreases gradually with the increase of 

magnetic field strength. 

(iii) The permeability parameter k has an enhancing effect on the flow characteristics 

of blood. 

(iv) Reynolds number and permeability parameter enhance flow velocity. 

(v) Peclet number reduces both blood and tissue temperatures. 

(vi) Pressure gradient enhances flow velocity while it reduces blood temperature. 



  

85 

  

(vii) Hematocrit reduces flow velocity. 

(viii) The hematocrit and the pressure has a linear relationship as reported. 

  

(ix) The lower range of hematocrit may leads to the further deposition of cholesterol 

 

at the endothelium of the vascular wall. 

 

(x) Hematocrit contributes to the regulation of blood pressure. 

 

(xi) Perfusion mass flow rate enhanced the tissue temperature. 

(xii) Variable blood thermal conductivity enhances the blood temperature. 

5.2 Recommendations  

The present study brings out many interesting results on blood flow and heat transfer in 

the human cardiovascular system with variable viscosity dependent on red blood cells 

concentration (hematocrit). Since high blood pressure is very dangerous for 

cardiovascular system, the present models may be used by cardiologist as a tool for 

reducing the blood pressure. Also, since the Hartman number and the externally applied 

magnetic field gradually reduces the flow velocity, the present study is useful for the 

reduction of blood flow during surgery and magnetic resonance imaging (MRI).  

In order to control blood pressure, it is suggested to vary viscosity of blood with red 

blood cell concentration (hematocrit). The results from this research work are 

recommended to form basis for further research on blood flow and heat transfer 

modeling. Since the hematocrit positively affects blood pressure, further study should 

examine the other factors such as diet, tobacco smoking, and overweight from a 

cardiovascular point of view. 
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5.3 Contributions to Knowledge 

From our findings, the following are the achievements: 

1. Model formulation by incorporating unsteadiness, variable viscosity and 

temperature-dependent blood thermal conductivity. 

2. Analytical solution via OGPAM. 

3. The flow velocity is at maximum value ( , ) 3.1t  =  when 0 = . 

4. Blood temperature attained maximum values when 0 =  and 0.5t = . 
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