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A B S T R A C T

In order to understand the dynamics of the Ebola virus disease (EVD), this research developed a mathematical
model that includes quarantine and public education campaigns as control measures. The model’s equilibrium
points are displayed and the effective basic reproduction number 𝑅𝑒𝑓𝑓 is estimated. Bifurcation theory is
used for the stability analysis of endemic equilibrium state and general bifurcation theory is used to prove
the existence of endemic equilibrium state. We evaluated the nature of the endemic equilibrium state of the
model’s equation near the disease-free equilibrium, 𝑅𝑒𝑓𝑓 = 1 and introduce a bifurcation parameter. The results
of the centre manifold theory are used to demonstrate that there is nontrivial endemic equilibrium near the
disease-free equilibrium. We demonstrated the characteristics of the endemic equilibrium state that is close
to the disease-free equilibrium as well as the fact that there is a potentially unstable endemic equilibrium
condition. In other words, the sickness is slowly declining and will eventually disappear, as in the case of
West Africa. Finally, we simulated the model developed to study the dynamics of the diseases with varying
parameters using Homotopy Perturbation Method (HPM) to validate the qualitative analysis of the model. The
result confirmed the hypothesis of our research that if quarantine and public enlightenment is properly used
for the mitigation of the disease, the disease outcomes will drastically reduced. The results presented in this
research will be useful for public health experts to contain the Ebola disease spread most especially in Africa.
1. Introduction

Named after a river in the old Zaire (now known as the Democratic
Republic of the Congo) where it was originally discovered in 1997, the
Ebola virus disease (EVD) is an acute viral hemorrhagic fever that is
extremely contagious (CDC, 2004). It belongs to the Filovirus family
of RNA (ribonucleic acid) viruses. The Ebola virus disease spreads
through personal contact with bodily fluids, tissues, or semen from
infected individuals who are either dead or alive, [1] and WHO, [2].
People who have contracted the virus becomes contagious after an
incubation time of 21 days [3], EVD has flu-like symptoms at first, but
quickly develops into internal and external bleeding, vomiting, rash
and diarrhoea. After entering the body, the virus starts attacking the
liver and blood cells, which are immune system cells that ordinarily
guard the body against infection. As the fever worsens, the virus attacks
the liver and kidneys, two key organs, which causes major bleeding,
tissue damage, shocks, respiratory arrest, and eventually death. Most
affected people pass away within 10 days after contracting the dis-
ease [4], at about 50%–90% mortality WHO, [5]. In 2003, twelve Ebola
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outbreaks were recorded in Sudan, Gabon, Congo and Uganda [6],
as a result of two different strains of the Ebola virus (Ebola Zaire
and the Ebola Sudan) that were reported in those areas. The largest
outbreaks were reported in these countries, including Nigeria, Guinea,
Sierra Leone, Liberia, Senegal, Mali, Spain, the United States, and the
United Kingdom. There was a total of 26,724 instances of infections
and 11065 fatalities throughout this time period. Mali, Senegal, Nigeria,
Spain, the United Kingdom, and the United States are the six of these
nations that have been deemed clear of the Ebola virus disease but have
previously reported a case or cases that were imported from a nation
with widespread and active transmission. [7].

The Uganda Ministry of Health in September 2022, WHO and AFRO,
confirmed the breakout of EVD in Mubende District, Uganda, the strain
known as confirmed was Sudan virus disease (SVD) and a fatal case. It
was a case of a 24-year-old man, residing in Ngabano village, a sub-
county of Madudu in the District of Mubende which was noticed that
he had experienced the following symptoms like high fever, abdom-
inal pain, diarrhoea, and vomiting of blood. In total, 142 cases were
vailable online 30 December 2023
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confirmed, 87 recovered, and 55 died (CFR: 39%). Additionally, other
robable cases were 22 deaths reported which were those who died
efore their samples were taken (overall CFR: 47%). Also, among some
ealthcare workers, 19 were infected and 7 died. Up to 21 days, about
000 contacts had been followed up, (WHO, AFRO, News). 9 Ugandan
istricts had been affected by the outbreak namely, Mubende, Kagadi,
yegegwa, Masaka, Jinja, Kampala, Wakiso, Bunyangabu, and Kas-
anda. The Ministry of Health of Equatorial Guinea has now identified
ight additional Marburg cases, increasing the total number of cases
hat have been identified since the viral hemorrhagic fever outbreak
as notified in February 2023 to nine.

Kermack et al. [8] contributed a great deal to modelling infectious
isease categories and transmission. They named their model the SIR
odel and this model has been extended by many researchers and

pplied to several infectious diseases.
The dynamics of Ebola fever disease transmission have drawn a

ot of interest from researchers [9–11]. Astacio et al. [12] used the
𝐼𝑅 and 𝑆𝐸𝐼𝑅 models, which simulated two Ebola outbreaks; the
nes that occurred in Yambuku, Zaire, in 1976, and Kikwit, Zaire, in
995. The per-capita mortality rate of infected people and the per-capita
ffective contact rate of a person catching the disease were used to
stimate the dynamics of these models. The disease’s contagiousness is
etermined by the fundamental reproductive number 𝑅0. The authors
laimed that Ebola is not as contagious as was previously believed,
nd that the outcomes of their simulations will provide researchers
ith knowledge that will help them reduce the number of fatalities

hat could follow from future epidemics. Abdulrahman et al. (2014)
eveloped a model on the stability analysis of Disease-Free Equilibrium
tate for the transmission dynamics and control of Ebola and as well
s Monkeypox optimal control strategies [13,14]. They obtained the
asic reproduction number and analysed the disease-free equilibrium
tate for stability. Their finding reveal that once Ebola Fever disease
s introduced into a population, the disease morbidity and mortality
ontinue to rise, until high surveillance is put in place to quarantine
nd treat the infected individuals and proper burial for those that died
ue to the disease.

It is important to note that aside Ebola, there are other infectious
isease such as Monkeypox [15,16], COVID-19 [17–19], and Tubercu-
osis [20,21]. However EVD have been considered in relation to other
orm of impact in terms of stigmatization; such as Juga et al. [22]. A
athematical model was created to explore the impact of stigmatiza-

ion on the dynamics of the disease as the work’s unique examination.
he approach takes into account both external stigmatization (forced
n survivors by their communities) and internal stigmatization (experi-
nced by infected individuals who witness survivors being stigmatized).
he results imply that both types of stigma can raise burden by in-
ucing concealment of infection among those who already have it and
ncouraging improper funeral practises for those who have already
assed away. The authors contend that measures to stop stigmatization
nd encourage proper funerals could greatly lessen the burden of EVD.
ased on the above, we develop a mathematical model that takes into
onsideration public campaign and awareness to reduce stigmatization
hich will also help in proper funeral and burial arrangements. We
resented some mathematical theoretical analysis and also utilize nu-
erical approaches to explore this process. The main reason for using
omotopy Perturbation Method (HPM) for numerical simulation is

hat, in contrast to other methods, it allows for greater flexibility in the
election of basis functions for the solution and does not require linear
nversion operators. It also maintains a level of simplicity that makes
he method easily understandable from the perspective of broader
erturbation methods which shows the novelty of our work to tack the
2

pread of Ebola virus.
. Model formulation

The dynamics of EVD using mathematical modelling and using quar-
ntine and public awareness as controls was developed. Susceptible
(𝑡), Latent 𝐿(𝑡), Infectious 𝐼(𝑡), Quarantined 𝑄(𝑡), Recovered 𝑅(𝑡), and
ead 𝐷(𝑡) are the six compartments that make up the population. A

otal population is given in (2.1)

(𝑡) = 𝑆(𝑡) + 𝐿(𝑡) + 𝐼(𝑡) +𝑄(𝑡) + 𝑅(𝑡) +𝐷(𝑡) (2.1)

Individuals who have not had direct contact with the virus typically
ake up disease models for the Ebola virus and the individual are

nown to Susceptible 𝑆(𝑡). When susceptible people come into contact
ith infectious people, they become infected but do not immediately
ecome contagious, therefore they enter the Latent 𝐿(𝑡) class. Once
he latency period is over, these people are contagious and the in-
ected move to the Infectious 𝐼(𝑡) class. To mitigate the EVD spread,
he infected individuals are separated into Quarantine 𝑄(𝑡) class for
reatment. In the event of the treatment period, some persons in the
uarantine class recover completely and move into the Recovered 𝑅(𝑡)
lass. Some persons as a result of the EVD dies and move from 𝐼(𝑡) and
(𝑡) into the Dead 𝐷(𝑡) class; however, due to unsafe burial procedures,

his class exists. Individuals known as 𝑆(𝑡) are those who have not
ctually been exposed to the Ebola virus sickness but are nonetheless
t risk of contracting it through contact with the 𝐼(𝑡) and 𝐷(𝑡) at the
ate 𝛼1 and 𝛼2(1 − 𝜍), where 𝛼1 and 𝛼2(1 − 𝜍) the actual contact rate. It
s inevitable that natural death would occur and this happens at rate of

while natural birth rate occurs with 𝛽 from the compartment of 𝑆(𝑡),
(𝑡) and 𝑅(𝑡). There are individuals who are within the time frame of

ncubation (i.e not shown symptoms) but after the 21 there is possibility
f showing traits which means there high chances of showing weak
mmunity strength to fight back the virus, hence, they are moved to
he 𝐼(𝑡) class at rate 𝛾.

The schematic diagram is represented in Fig. 1
The model representation is given in (2.2)–(2.7) and the assump-

ions follows below:
In developing the model, the following assumptions holds::

1. Everyone has an identical probability of contracting an infection
if they come into touch with enough contagious persons because
of the homogeneous mixing of people.

2. People in 𝑆(𝑡) get infected by coming into contact with 𝐼(𝑡) and
𝐷(𝑡).

3. Since 𝐿(𝑡) only become infectious when they exhibit symptoms,
they are infected but not yet contagious (i.e symptomatic).

4. The isolation of 𝐼(𝑡) to 𝑄(𝑡) cause the spread of Ebola Fever to
be very low due to treatment rate 𝜏.

5. 𝛿2 < 𝛿1 because Q(t) was managed at the rate 𝑡𝑎𝑢.
6. Natural birth do not exist 𝐼(𝑡) and 𝑄(𝑡) classes.
7. If persons in 𝑄(𝑡) recover, they recover permanently due to the

treatment rate 𝜏.
8. The 𝐷(𝑡) class exist as a result of people who are infected and

died or died while at the quarantine.

We define variables and parameters in Table 1:
The flow chart is described Eqs. (2.2)–(2.7):

𝑑𝑆
𝑑𝑡

= 𝛽(𝑆 + 𝐿 + 𝑅) −
(

𝛼1𝐼
𝑁

+
𝛼2 (1 − 𝜍)𝐷

𝑁

)

(1 − 𝜉)𝑆 − 𝜇𝑆 (2.2)

𝑑𝐿
𝑑𝑡

=
(

𝛼1𝐼
𝑁

+
𝛼2 (1 − 𝜍)𝐷

𝑁

)

(1 − 𝜉)𝑆 − (𝛾 + 𝜇)𝐿 (2.3)

𝑑𝐼
𝑑𝑡

= 𝛾𝐿 − (𝜑 + 𝜇 + 𝛿1)𝐼 (2.4)
𝑑𝑄
𝑑𝑡

= 𝜑𝐼 − (𝜏 + 𝜇 + 𝛿2)𝑄 (2.5)
𝑑𝑅
𝑑𝑡

= 𝜏𝑄 − 𝜇𝑅 (2.6)
𝑑𝐷 = (𝜇 + 𝛿 )𝐼 + (𝜇 + 𝛿 )𝑄 − 𝜍𝐷 (2.7)

𝑑𝑡 1 2
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Fig. 1. Flow chart of EVD transmission and Control model.
Table 1
Definition of parameters.
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛

𝛽 Rate of birth
𝜇 Rate of death
𝛿1 Disease induced death rate of 𝐼(𝑡)
𝛿2 Disease induced death rate of 𝑄(𝑡)
𝛼1 Effective contact rate between 𝐼(𝑡) and 𝑆(𝑡)
𝛼2 (1 − 𝜍) Effective contact rate between D(t) and 𝑆(𝑡)
𝛾 Progression rate from 𝐿(𝑡) to 𝐼(𝑡)
𝜑 Rate of quarantine
𝜏 Treatment rate
𝜉 The rate to which public campaigns effective
𝜍 Rate of decontamination and burial of the deceased
(1 − 𝜉) The percentage of those who disregarded public awareness campaigns and are nonetheless susceptible to EVD.
Where in Eq. (2.1), 𝑁 is represented as

𝑁(𝑡) = 𝑆(𝑡) + 𝐿(𝑡) + 𝐼(𝑡) +𝑄(𝑡) + 𝑅(𝑡)

Total population changes at rate 𝑑𝑁(𝑡)
𝑑𝑡 , and given by Eq. (2.8)

𝑑𝑁(𝑡)
𝑑𝑡

= 𝛽𝑁 − 𝜇(𝑆 + 𝐿 + 𝑅) (2.8)

The model in Eq. (2.1) to Eq. (2.8) is epidemiological and mathemati-
cally well posed in the domain 𝛺 with the initial conditions.

As seen in Eq. (2.9);

𝛺 = (𝑆, 𝐿, 𝐼, 𝑄, 𝑅, 𝐷) ∈ 𝑅6 (2.9)

𝑆 ≥ 0, 𝐿 ≥ 0, 𝐼 ≥ 0, 𝑄 ≥ 0, 𝑅 ≥ 0, 𝐷 ≥ 0

𝑆 + 𝐿 + 𝐼 +𝑄 + 𝑅 ≤ 𝑁

3. Properties of the model

Analysing model Eq. (2.1) to Eq. (2.8), we consider theorems:

Theorem 3.1. The solutions of the model Eqs. (2.1) to (2.8) is positive ∀
time 𝑡 ≥ 0, given the initial conditions are positive.
3

Proof.
Using the assumptions, the initial conditions are positive, i.e., 𝑆(0) >

0, 𝐿(0) > 0, 𝐼(0 > 0, 𝑄(0) > 0, 𝑅(0) > 0, and 𝐷(0) > 0
We have by contradiction, the solutions of Eq. (2.1) to Eq. (2.8) are

positive if it is supposed that a contradiction exists for the first time,
𝑡1 ∶ 𝑆(𝑡1) = 0 and

𝑆(𝑡) > 0, 𝐿(𝑡) > 0, 𝐼(𝑡) > 0, 𝑄(𝑡) > 0, 𝑅(𝑡) > 0, 𝐷(𝑡) > 0 (3.1)

for 0 < 𝑡 < 𝑡1 or there exists 𝑡2 ∶ 𝐿(𝑡2) = 0, such that

𝑆(𝑡) > 0, 𝐿(𝑡) > 0, 𝐼(𝑡) > 0, 𝑄(𝑡) > 0, 𝑅(𝑡) > 0, 𝐷(𝑡) > 0 (3.2)

for 0 < 𝑡 < 𝑡2 or there exists 𝑡3 ∶ 𝐼(𝑡3) = 0, such that

𝑆(𝑡) > 0, 𝐿(𝑡) > 0, 𝐼(𝑡) > 0, 𝑄(𝑡) > 0, 𝑅(𝑡) > 0, 𝐷(𝑡) > 0 (3.3)

for 0 < 𝑡 < 𝑡3, or there exists 𝑡4 ∶ 𝑄(𝑡4) = 0

𝑆(𝑡) > 0, 𝐿(𝑡) > 0, 𝐼(𝑡) > 0, 𝑄(𝑡) > 0, 𝑅(𝑡) > 0, 𝐷(𝑡) > 0 (3.4)

for 0 < 𝑡 < 𝑡4 or there exists 𝑡5 ∶ 𝑅(𝑡5) = 0

𝑆(𝑡) > 0, 𝐿(𝑡) > 0, 𝐼(𝑡) > 0, 𝑄(𝑡) > 0, 𝑅(𝑡) > 0, 𝐷(𝑡) > 0 (3.5)

for 0 < 𝑡 < 𝑡5 or there exists 𝑡6 ∶ 𝐷(𝑡6) = 0

𝑆(𝑡) > 0, 𝐿(𝑡) > 0, 𝐼(𝑡) > 0, 𝑄(𝑡) > 0, 𝑅(𝑡) > 0, 𝐷(𝑡) > 0 (3.6)
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for 0 < 𝑡 < 𝑡6.
Now, in the case where 𝑆(𝑡) = 0, we obtain Eq. (3.7)

𝑑𝑆(𝑡1)
𝑑𝑡

= lim
𝑡=𝑡1

𝑆(𝑡1) − 𝑆 (𝑡)
𝑡1 − 𝑡

< 0 (3.7)

and similarly, it resulted to Eq. (3.8)

𝑑𝐿(𝑡2)
𝑑𝑡

< 0,
𝑑𝐼(𝑡3)
𝑑𝑡

< 0,
𝑑𝑄(𝑡4)
𝑑𝑡

< 0,
𝑑𝑅(𝑡5)
𝑑𝑡

< 0,
𝑑𝐷(𝑡6)
𝑑𝑡

< 0

(3.8)

However, from Eqs. (2.1) to (2.6) gives,

𝑑𝑆(𝑡1)
𝑑𝑡

= 𝛽(𝑆(𝑡1) + 𝐿 + 𝑅) −
(

𝛼1𝐼
𝑁

+
𝛼2 (1 − 𝜍)𝐷

𝑁

)

(1 − 𝜉)𝑆(𝑡1) − 𝜇𝑆(𝑡1)

(3.9)

i.e.

𝑆 𝑖(𝑡1) = 𝛽(𝐿 + 𝑅) > 0 (3.10)

Which contradicts Eq. (3.7). Therefore, 𝑆(𝑡1) ≠ 0, and 𝑆 is positive for
all 𝑡.

Similarly, for the remaining variables gives

𝐿𝑖(𝑡2) =
(

𝛼1𝐼
𝑁

+
𝛼2 (1 − 𝜍)𝐷

𝑁

)

(1 − 𝜉)𝑆 > 0 (3.11)

𝐼 𝑖(𝑡3) = 𝛾𝐿 > 0 (3.12)

𝑄𝑖(𝑡4) = 𝜑𝐼 > 0 (3.13)

𝑅𝑖(𝑡5) = 𝜏𝑄 > 0 (3.14)

𝐷𝑖 = (𝜇 + 𝛿1)𝐼 + (𝜇 + 𝛿2)𝑄 > 0 (3.15)

These are contradictions with what was predicted for each of the
variables, which means that𝐿(𝑡2) ≠ 0, 𝐼(𝑡3) ≠ 0, 𝑄(𝑡4) ≠ 0, 𝑅(𝑡5) ≠ 0,
and 𝐷(𝑡6) ≠ 0, hence, 𝑆,𝐿, 𝐼,𝑄,𝑅 and 𝐷 is non-negative for all 𝑡. From
this, it evidently shows that all the solutions of Eq. (2.1) to Eq. (2.6)
are in 𝑅6, provided that the initial conditions are positive. The feasible
region is positively-invariant, hence, it is sufficient to ponder on the
dynamics of Eq. (2.1) to Eq. (2.6) in the region 𝛺.

3.1. Existence of equilibrium states 𝐸

Let 𝐸(𝑆(𝑡), 𝐿(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝑄(𝑡), 𝐷(𝑡)), be the equilibrium states of the
system. At equilibrium state, Each variable’s rate of change is equal to
zero, i.e.,
𝑑𝑆
𝑑𝑡

= 𝑑𝐿
𝑑𝑡

= 𝑑𝐼
𝑑𝑡

= 𝑑𝑄
𝑑𝑡

= 𝑑𝑅
𝑑𝑡

= 𝑑𝐷
𝑑𝑡

= 0 (3.16)

Consider Eq. (3.17) to Eq. (3.18)

(𝑆(𝑡), 𝐿(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐷(𝑡)) = (𝑟, 𝑣,𝑤, 𝑥, 𝑦, 𝑧) (3.17)

𝑁(𝑡) = 𝑛, (3.18)

where 𝑛 = 𝑟 + 𝑣 +𝑤 + 𝑥 + 𝑦,hence, Equations ((2.1) to (2.8)) become

𝛽(𝑟 + 𝑣 + 𝑥) −
(

𝛼1𝑤
𝑛

+
𝛼2(1 − 𝜍)𝑧

𝑛

)

(1 − 𝜉)𝑟 − 𝜇𝑟 = 0 (3.19)
(

𝛼1𝑤
𝑛

+
𝛼2(1 − 𝜍)𝑧

𝑛

)

(1 − 𝜉)𝑟 − (𝛾 + 𝜇)𝑣 = 0 (3.20)

𝛾𝑣 − (𝜑 + 𝜇 + 𝛿1)𝑤 = 0 (3.21)

𝜑𝑤 − (𝜏 + 𝜇 + 𝛿2)𝑥 = 0 (3.22)

𝜏𝑥 − 𝜇𝑦 = 0 (3.23)

(𝜇 + 𝛿1)𝑤 + (𝜇 + 𝛿2)𝑥 − 𝜍𝑧 = 0 (3.24)

𝛽𝑛 − 𝜇(𝑟 + 𝑣 + 𝑦) = 0 (3.25)

Equations ((3.19) to (3.25)) must then be solved to get the equilibrium
4

states.
3.2. Disease-free equilibrium 𝐸0

At 𝐸0, depicts absence of infection, where the infected classes are
zero. The population at this stage comprises of the susceptible class.

From Eq. (3.24) gives

𝑧 =
(𝜇 + 𝛿1)𝑤 + (𝜇 + 𝛿2)𝑥

𝜍
(3.26)

From Eq. (3.20) gives

𝑣 =
(1 − 𝜉)𝑟
(𝛾 + 𝜇) 𝑛

(

𝛼1𝑤 + 𝛼2(1 − 𝜍)𝑧
)

(3.27)

ubstituting Eq. (3.26) in Eq. (3.27), we obtain Eq. (3.28)

=
(1 − 𝜉)𝑟

𝜍 (𝛾 + 𝜇) 𝑛
[

𝛼1𝜍𝑤 + +𝛼2(1 − 𝜍)
(

𝜇 + 𝛿1
)

𝑤 + 𝛼2(1 − 𝜍)
(

𝜇 + 𝛿2
)

𝑥
]

(3.28)

rom Eq. (3.22), it resulted into Eq. (3.29)

=
𝜑

(

𝜏 + 𝜇 + 𝛿2
)𝑤 (3.29)

Substituting Eq. (3.29) in Eq. (3.28), we obtain

𝑣 =
(1 − 𝜉)𝑟

𝜍 (𝛾 + 𝜇) 𝑛
(

𝛼1𝜍𝑤 + 𝛼2(1 − 𝜍)
(

𝜇 + 𝛿1
))

𝑤

+ 𝛼2(1 − 𝜍)
(

𝜇 + 𝛿2
) 𝜑
(𝜏 + 𝜇 + 𝛿2)

𝑤 (3.30)

ubstituting Eq. (3.30) in Eq. (3.21), we obtain Eq. (3.31)

(1 − 𝜉)𝑟
𝜍 (𝛾 + 𝜇) 𝑛

(

𝛼1𝜍 + 𝛼2(1 − 𝜍)
(

𝜇 + 𝛿1
)

+
𝜑𝛼2(1 − 𝜍)

(

𝜇 + 𝛿2
)

(

𝜏 + 𝜇 + 𝛿2
)

)

− (𝜑 + 𝜇 + 𝛿1)𝑤 = 0 (3.31)

s

= 0

r

(1 − 𝜉)𝑟
𝜍 (𝛾 + 𝜇) 𝑛

(𝛼1𝜍+𝛼2(1−𝜍)
(

𝜇 + 𝛿1
)

+
𝜑𝛼2(1 − 𝜍)

(

𝜇 + 𝛿2
)

(

𝜏 + 𝜇 + 𝛿2
) )−(𝜑+𝜇+𝛿1) = 0

(3.32)

rom (3.32) gives

(1 − 𝜉)𝑟
𝜍 (𝛾 + 𝜇) 𝑛

(𝛼1𝜍 + 𝛼2(1 − 𝜍)
(

𝜇 + 𝛿1
)

+
𝜑𝛼2(1 − 𝜍)

(

𝜇 + 𝛿2
)

(

𝜏 + 𝜇 + 𝛿2
) ) = (𝜑 + 𝜇 + 𝛿1)

(3.33)

Multiplying both sides by 𝜍(𝛾+𝜇)𝑛
(1−𝜉) gives Eq. (3.34)

(𝛼1𝜍 + 𝛼2(1 − 𝜍)
(

𝜇 + 𝛿1
) (

𝜏 + 𝜇 + 𝛿2
)

+ 𝜑𝛼2(1 − 𝜍)
(

𝜇 + 𝛿2
)

𝑟)
(

𝜏 + 𝜇 + 𝛿2
)

=
𝜍 (𝛾 + 𝜇) (𝜑 + 𝜇 + 𝛿1)𝑛

(1 − 𝜉)
(3.34)

From Eq. (3.34), we obtain Eq. (3.35)

=
𝜍
(

𝜏 + 𝜇 + 𝛿2
)

(𝜑 + 𝜇 + 𝛿1) (𝛾 + 𝜇) 𝑛

𝛼1𝜍 + 𝛼2(1 − 𝜍)
(

𝜇 + 𝛿1
) (

𝜏 + 𝜇 + 𝛿2
)

+ 𝜑𝛼2(1 − 𝜍)
(

𝜇 + 𝛿2
) (3.35)

ubstituting Eq. (3.31) in Eq. (3.22), and the value of 𝑥 into Eq. (3.23),
e obtain 𝑥 = 0&𝑦 = 0.

Substituting Eq. (3.31) and the value of 𝑥 into Eq. (3.26), and Eq.
3.31) into Eq. (3.21), it gives 𝑧 = 0&𝑣 = 0. Furthermore, Substituting
= 0&𝑣 = 0 into Eq. (3.21), we obtain Eq. (3.36)

=
𝛽
𝜇
𝑛 (3.36)

Consequently, the equilibrium condition that is free of disease is pro-
vided by:

𝐸0 = (𝑟, 𝑣,𝑤, 𝑥, 𝑦, 𝑧) =
(

𝛽
𝑛, 0, 0, 0, 0, 0

)

(3.37)

𝜇
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𝑦

𝑣

𝑔

𝜆

𝜆

3.3. Endemic equilibrium

When the disease is persistent and conditions are met, an endemic
equilibrium exist.

𝐸𝑒 = (𝑆(𝑡), 𝐿(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐷(𝑡))

Such that

𝑆(𝑡) > 0, 𝐿(𝑡) > 0, 𝐼(𝑡) > 0, 𝑄(𝑡) > 0, 𝑅(𝑡) > 0, 𝐷(𝑡) > 0 (3.38)

and

𝑆(𝑡) + 𝐿(𝑡) + 𝐼(𝑡) +𝑄(𝑡) + 𝑅(𝑡) +𝐷(𝑡) ≤ 𝑁

Adding (3.19) and (3.20) gives

(𝛽 − 𝜇)𝑟 + 𝛽𝑦 − (𝛾 + 𝜇)𝑣, (3.39)

from (3.21) gives

𝑣 =
(𝜑 + 𝜇 + 𝛿1)𝑤

𝛾
, (3.40)

Considering Eq. (3.22), it gives

𝑤 =

(

𝜏 + 𝜇 + 𝛿2
)

𝑥
𝜑

, (3.41)

then from Eq. (3.23) gives

𝑦 = 𝜏
𝜇
𝑥. (3.42)

Substituting Eq. (3.40) and Eq. (3.42) in Eq. (3.39), we obtain

𝜇 (𝛽 − 𝜇) 𝑟 + 𝛽𝜏𝛾𝑥 − 𝜇(𝜇 + 𝛾 − 𝛽)(𝜑 + 𝜇 + 𝛿1)𝑤 = 0, (3.43)

Substituting Eq. (3.41) in Eq. (3.43), we obtain

𝜇𝜑 (𝛽 − 𝜇) 𝑟+ 𝛽𝜏𝛾𝜑𝑥− 𝜇(𝜇 + 𝛾 − 𝛽)(𝜑+ 𝜇 + 𝛿1)
(

𝜏 + 𝜇 + 𝛿2
)

𝑥 = 0, (3.44)

Substituting Eq. (3.35) in Eq. (3.44) gives

𝑥 = 𝐴
𝐵
. (3.45)

Where

𝐴 = 𝜇𝛾𝜑𝜍(𝛽 − 𝜇)(𝜑 + 𝜇 + 𝛿1)(𝜏 + 𝜇 + 𝛿2) (𝛾 + 𝜇) 𝑛 (3.46)

𝐵 =
(

((1 − 𝜉)
(

𝛼1𝜍 + 𝛼2(1 − 𝜍)𝜇 + 𝛿1
)

(𝜏 + 𝜇 + 𝛿2)) + 𝜑
(

𝜇 + 𝛿2
))

(

(𝛾 + 𝜇 − 𝛽)
(

𝜑 + 𝜇 + 𝛿1
)

(𝜏 + 𝜇 + 𝛿2) − 𝛽𝛾𝜑𝜏
)

(3.47)

Substituting Eq. (3.45) into Eq. (3.41), gives

𝑤 =

(

𝜏 + 𝜇 + 𝛿2
)

𝐴
𝜑𝐵

(3.48)

Substituting Eq. (3.45) into Eq. (3.42), gives

= 𝜏𝐴
𝜇𝐵

(3.49)

Substituting Eq. (3.48) into Eq. (3.45), gives

=

(

𝜑 + 𝜇 + 𝛿1
) (

𝜏 + 𝜇 + 𝛿2
)

𝐴
𝛾𝜑𝐵

(3.50)

Substituting Eqs. (3.45) and (3.48) in Eq. (3.26) gives

𝑧 =
(𝜇 + 𝛿1)𝐵 + (𝜇 + 𝛿2)𝐴 (3.51)
5

𝜍𝐵
Hence Eqs. (3.35) and (3.45) to (3.51) give the endemic equilibrium
state of the model.

𝐸𝑒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑟

𝑣

𝑤

𝑥

𝑦

𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜍(𝜏+𝜇+𝛿2)(𝜑+𝜇+𝛿1)(𝛾+𝜇)𝑛
𝛼1𝜍+𝛼2(1−𝜍)(𝜇+𝛿1)(𝜏+𝜇+𝛿2)+𝜑𝛼2(1−𝜍)(𝜇+𝛿2)

(𝜑+𝜇+𝛿1)(𝜏+𝜇+𝛿2)𝐴
𝛾𝜑𝐵

(𝜏+𝜇+𝛿2)𝐴
𝜑𝐵

A
B

𝜏𝐴
𝜇𝐵

(𝜇+𝛿1)𝑤𝐵+(𝜇+𝛿2)𝐴
𝜍𝐵

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.52)

Where

𝐴 = 𝜇𝛾𝜑𝜍(𝛽 − 𝜇)(𝜑 + 𝜇 + 𝛿1)(𝜏 + 𝜇 + 𝛿2) (𝛾 + 𝜇) 𝑛

𝐵 =
(

(1 − 𝜉)(𝛼1𝜍 + 𝛼2(1 − 𝜍)𝜇 + 𝛿1)(𝜏 + 𝜇 + 𝛿2) + 𝜑(𝜇 + 𝛿2)
)

(

((𝛾 + 𝜇 − 𝛽)𝜑 + 𝜇 + 𝛿1)(𝜏 + 𝜇 + 𝛿2) − 𝛽𝛾𝜑𝜏
)

The Jacobian of the model (3.18) to (3.22) is given by Eq. (3.53) (see
Box I).

At disease free, (3.53) becomes

𝑗
(

𝐸0
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛽 − 𝜇 𝛽 −𝑐 0 𝛽 −𝑑
0 𝛾 − 𝜇 𝑔 0 0 ℎ
0 𝛾 𝑗 0 0 0
0 0 𝜑 −𝑙 0 0
0 0 0 𝜏 −𝜇 0
0 0 𝑝 𝑟 0 𝜁

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3.54)

Where,

𝑐 =
𝛼1(1 − 𝜉)𝑟

𝑁
, 𝑑 =

𝛼2 (1 − 𝜍) (1 − 𝜉)𝑟
𝑁

,

=
𝛼1(1 − 𝜉)𝑟

𝑁
, ℎ =

𝛼2 (1 − 𝜍) (1 − 𝜉)𝑟
𝑁

,

𝑗 =
(

𝜑 − 𝜇 − 𝛿1
)

, 𝑙 =
(

𝜏 − 𝜇 − 𝛿2
)

,

𝑝 =
(

𝜇 + 𝛿1
)

, 𝑟 =
(

𝜇 + 𝛿2
)

Using reduced row echelon form gives Eq. (3.55)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛽 − 𝜇 𝛽 −𝑐 0 𝛽 −𝑑
0 𝛾 − 𝜇 𝑔 0 0 ℎ
0 𝛾 𝑔𝛾+𝛾𝑗+𝑗𝜇

𝛾+𝜇 0 0 𝛾ℎ
𝛾+𝜇

0 0 0 −𝑙 0 − 𝜑𝛾ℎ
𝑔𝛾+𝛾𝑗+𝑗𝜇

0 0 0 0 −𝜇 − 𝜏𝜑𝛾ℎ
𝑙(𝑔𝛾+𝛾+𝑗𝜇)

0 0 0 0 0 𝑔𝛾𝑙𝜍−𝛾ℎ𝑙𝑝−𝛾ℎ𝑟𝜑+𝛾𝑗𝑙𝜍+𝑗𝑙𝜇𝜍
𝑙(𝑔𝛾+𝛾+𝑗𝜇)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3.55)

Thus, the eigenvalues are:

1 = 𝛽 − 𝜇 < 0 (3.56)

2 = −𝛾 − 𝜇 < 0 (3.57)

𝜆3 =
𝑔𝛾 + 𝑗𝛾 + 𝑗𝜇

𝛾 + 𝜇
< 0 (3.58)

𝜆4 = −
(

𝜏 − 𝜇 − 𝛿2
)

< 0 (3.59)

𝜆 = −𝜇 < 0 (3.60)
5



Franklin Open 6 (2024) 100066R.T. Abah et al.

𝜆

𝛾

i

3
n

i
d
t
a
𝑅
l
p
s
𝑅
i
i
i
𝑅
n
t
i
a

b
e
t

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(𝛽 − 𝜇)
−
(

𝛼1𝑤
𝑛 + 𝛼2(1−𝜍)𝑧

𝑛

)

(1 − 𝜉) 𝛽 − 𝛼1(1−𝜉)𝑟
𝑛 𝛽 0 − 𝛼2(1−𝜍)(1−𝜉)𝑟

𝑛

(

𝛼1𝑤
𝑛 + 𝛼2(1−𝜍)𝑧

𝑛

)

(1 − 𝜉) − (𝛾 + 𝜇) 𝛼1(1−𝜉)𝑟
𝑛

𝛼2(1−𝜍)(1−𝜉)𝑟
𝑛 0 0

0 𝛾
(

𝜑 − 𝜇 − 𝛿1
)

0 0 0

0 0 𝜑 −
(

𝜏 − 𝜇 − 𝛿2
)

0 0

0 0 0 𝜏 −𝜇 0

0 0
(

𝜇 + 𝛿1
) (

𝜇 + 𝛿2
)

0 −𝜍

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3.53)

Box I.
m

𝐹

𝑉

T
p

𝑉

𝐹

w

𝛶

6 =
𝑔𝛾𝑙𝜍 − 𝛾ℎ𝑙𝑝 − 𝜑𝛾ℎ𝑟 + 𝛾𝑗𝑙𝜍 + 𝑗𝑙𝜇𝜍

𝑙(𝑔𝛾 + 𝑗𝛾 + 𝑗𝜇)
< 0 (3.61)

Therefore 𝜆1 is negative if 𝛽 < 𝜇
𝜆2 is negative since 𝜆2 = −𝛾 − 𝜇 < 0
𝜆4 is negative if 𝜏 > 𝜇 + 𝛿2
𝜆5 is negative since 𝜆5 = −𝜇 < 0
For 𝜆3 to be negative, 𝑔𝛾 + 𝑗𝛾 + 𝑗𝜇 must be negative and so from
𝜆3 =

𝑔𝛾+𝑗𝛾+𝑗𝜇
𝛾+𝜇 < 0 we must have 𝛾 + 𝑗𝛾 + 𝑗𝜇 < 0

Also, for 𝜆6 =
𝑔𝛾𝑙𝜍−𝛾ℎ𝑙𝑝−𝜑𝛾ℎ𝑟+𝛾𝑗𝑙𝜍+𝑗𝑙𝜇𝜍

𝑙(𝑔𝛾+𝑗𝛾+𝑗𝜇) < 0 to be negative, then 𝑔𝛾𝑙𝜍 −
ℎ𝑙𝑝−𝜑𝛾ℎ𝑟+𝛾𝑗𝑙𝜍+𝑗𝑙𝜇𝜍 < 0. From −[

(

𝜏 − 𝜇 − 𝛿2
)

𝑔𝛾𝜍−
(

𝜏 − 𝜇 − 𝛿2
)

𝛾ℎ𝑝+
𝜑𝛾ℎ𝑟+

(

𝜏 − 𝜇 − 𝛿2
)

𝛾𝑗𝜍+
(

𝜏 − 𝜇 − 𝛿2
)

𝑗𝜇𝜍] < 0 and 𝑙 = −
(

𝜏 − 𝜇 − 𝛿2
)

< 0,
t implies that 𝜏 > 𝜇 + 𝛿2, .

.4. The basic reproduction number 𝑅0 and the effective basic reproduction
umber, 𝑅𝑒𝑓𝑓

Any infectious disease’s capacity to spread throughout a population
s one of the most significant causes for concern and as such, there is a
isease-free equilibrium (DFE) in many epidemiological models, where
he population continues to be healthy. Typically, these models have
threshold parameter, also known as the basic reproduction number,
0 such that if 𝑅0 < 1, then the disease free equilibrium (DFE) is

ocally asymptotically stable, and the disease is unable to spread among
eople, but if 𝑅0 > 1, then the disease free equilibrium (DFE) is un-
table and invasion is always possible. The basic reproduction number
0 [23], represents the average number of secondary cases that an

nfected person would produce over the course of the infection period
f they were introduced into a susceptible population without disease
mmunity in the absence of interventions to control the infection. If
0 < 1, then an infected person would typically produce fewer than one
ewly infected person. If so, the infection might eventually go away. On
he other hand, the virus may spread throughout a population if 𝑅0 > 1
s more than one and each infected person (primary case) develops, on
verage, more than one new infection.

The approach of Diekmann et al. [24] is employed and analysed
y Driessche et al. [25] known as the spectral radius. This approach is
mployed in finding the effective basic reproduction number, 𝑅𝑒𝑓𝑓 of
he system (2.1) to (2.6) which represent the spectra radius (𝜌) in using

the next generation matrix, 𝐾, i.e. 𝑅𝑒𝑓𝑓 = 𝜌𝐾, where 𝐾 = 𝐹𝑉 −1.
𝐹 and 𝑉 are obtained from the Jacobian (3.53), about the disease-

free equilibrium. 𝐹 represents the matrix for the new infection terms
and 𝑉 the matrix for the transition terms. The matrices 𝐹 and 𝑉 are
6

formed from the coefficient of the infected classes.
𝐹 =

⎛

⎜

⎜

⎜

⎜

⎝

0 𝑆
𝑁 𝛼1(1 − 𝜉) 0 𝑆

𝑁 𝛼2(1 − 𝜉)
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

For easy simplification, let 𝑀 = 𝑆
𝑁 𝛼1(1 − 𝜉) and 𝑁 = 𝑆

𝑁 𝛼2(1 − 𝜉) and
atrix 𝐹 becomes

=

⎛

⎜

⎜

⎜

⎜

⎝

0 𝑀 0 𝑁
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

= −

⎛

⎜

⎜

⎜

⎜

⎝

− (𝛾 + 𝜇) 0 0 0
𝛾

(

𝜑 + 𝜇 + 𝛿1
)

0 0
0 𝜑 −

(

𝜏 + 𝜇 + 𝛿2
)

0
0 𝜇 + 𝛿1 𝜇 + 𝛿2 −𝜍

⎞

⎟

⎟

⎟

⎟

⎠

o obtain matrix 𝑉 −1, the Gauss–Jordan elimination method is em-
loyed, with the applied operations, we obtain 𝑉 −1 as seen Eq. (3.62)
−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝛾+𝜇

0 0 0
𝛾

(𝛾+𝜇)(𝜑+𝜇+𝛿1)
1

𝜑+𝜇+𝛿1
0 0

− 𝛾𝜑
(𝛾+𝜇)(𝜑+𝜇+𝛿1)(𝜏+𝜇+𝛿2)

− 𝜑
(𝜑+𝜇+𝛿1)(𝜏+𝜇+𝛿2)

1
(𝜏+𝜇+𝛿2)

0

𝛾((𝜏+𝜇+𝛿2)(𝜇+𝛿1)−𝜑(𝜇+𝛿2))
(𝛾+𝜇)(𝜑+𝜇+𝛿1)(𝜏+𝜇+𝛿2)𝜍

(𝜇+𝛿1)(𝜏+𝜇+𝛿2)−𝜑(𝜇+𝛿2)
(𝜑+𝜇+𝛿1)(𝜏+𝜇+𝛿2)𝜍

(𝜇+𝛿2)
(𝜏+𝜇+𝛿2)𝜍

1
𝜍

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.62)

Employing the next generation matrix, we obtain Eq. (3.63)

𝑉 −1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛶1 𝛶2 𝛶3 𝛶4
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

(3.63)

here

1 =
𝛾𝑀1

(𝜑 + 𝜇 + 𝛿1)
+

𝛾𝑀2((𝜑 + 𝜇 + 𝛿1)(𝜏 + 𝜇 + 𝛿2) − 𝜑
(

𝜇 + 𝛿2
)

)
(𝜑 + 𝜇 + 𝛿1)(𝜏 + 𝜇 + 𝛿2)𝜍

𝛶2 = 𝑀2((𝜑 + 𝜇 + 𝛿1)(𝜏 + 𝜇 + 𝛿2) −
𝜑
(

𝜇 + 𝛿2
)

(𝜑 + 𝜇 + 𝛿1)(𝜏 + 𝜇 + 𝛿2)𝜍
+

𝑀1
𝐵

)

𝛶3 =
𝛾𝑀2

(𝜑 + 𝜇 + 𝛿1)𝜍

𝛶4 =
𝑀2
𝜍

We compute the eigenvalues to obtain the effective reproduction num-
ber 𝑅 taking the spectral radius of the matrix 𝐹𝑉 −1. In doing, we
𝑒𝑓𝑓



Franklin Open 6 (2024) 100066R.T. Abah et al.

𝜆

v

(

𝑣

w

𝑎

𝐴

𝑣

𝑣

𝑣

a
e

[

employed by Eq. (3.63), we obtain Eq. (3.64),

𝐹𝑉 −1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛶1 𝛶2 𝛶3 𝛶4
0 0 − 𝜆 0 0
0 0 0 − 𝜆 0
0 0 0 0 − 𝜆

⎤

⎥

⎥

⎥

⎥

⎦

(3.64)

Eigenvalues 𝜆𝑖 where 𝑖 = 1, 2, 3, 4were obtained and are given by:

1 =
𝛾𝛼1(1 − 𝜉)
(𝜑 + 𝜇 + 𝛿1)

+
𝛾𝛼2(1 − 𝜉)((𝜑 + 𝜇 + 𝛿1)(𝜏 + 𝜇 + 𝛿2) − 𝜑

(

𝜇 + 𝛿2
)

)
(𝜑 + 𝜇 + 𝛿1)(𝜏 + 𝜇 + 𝛿2)𝜍

𝜆1 is the eigenvalue, which follows the effective basic reproduction
number 𝑅𝑒𝑓𝑓 is given as:

𝑅𝑒𝑓𝑓 =

𝛾𝛼1(1 − 𝜉)(𝜏 + 𝜇 + 𝛿2)𝜍 + 𝛾𝛼2(1 − 𝜉)((𝜑 + 𝜇 + 𝛿1)(𝜏 + 𝜇 + 𝛿2) − 𝜑
(

𝜇 + 𝛿2
)

)
(𝜑 + 𝜇 + 𝛿1)(𝜏 + 𝜇 + 𝛿2)𝜍

(3.65)

It imperative to note that Eq. (3.65) is the effective basic reproduction
number.

3.5. Stability analysis of endemic equilibrium state

Bifurcation theory is used in the stability analysis of endemic equi-
librium state. We consider the nature of the endemic equilibrium state
of the model (3.19)–(3.25) near DFE (bifurcation point), 𝑅𝑒𝑓𝑓 = 1.
Let 𝛼 be the bifurcation parameter such that 𝑅𝑒𝑓𝑓 < 1 for 𝛼 < 0 and
𝑅𝑒𝑓𝑓 > 1 for 𝛼 > 0 such that the disease free equilibrium exists for
all values of 𝛼. The results of the centre manifold theory are used to
show that there is nontrivial endemic equilibrium near the disease-free
equilibrium. To state these results, the partial derivatives of 𝑓 with
respect to 𝑥 is evaluated at DFE, 𝛼 = 0. Let 𝑢 and 𝑣 be the left and
right eigenvectors chosen such that 𝑢𝑣 = 1.

We Let 𝑎 and 𝑏 be the following:

𝑎 =
𝑛
∑

𝑘,𝑖,𝑗=1
𝑣𝑘𝑢𝑖𝑢𝑗

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0, 0) (3.66)

𝑏 =
𝑛
∑

𝑘,𝑖,𝑗=1
𝑣𝑘𝑢𝑖

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝛼𝑗

(0, 0) (3.67)

We then demonstrate that the nature of the endemic equilibrium near
the disease-free region depends on the sign.

To begin, we make change of variables.

𝑥1 = 𝑟, 𝑥2 = 𝑣, 𝑥3 = 𝑤, 𝑥4 = 𝑥, 𝑥5 = 𝑦, 𝑥6 = 𝑧

Through the use of vector notation,

𝑋 =
(

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5
)𝑇

the model equations (3.19) to (3.25) now becomes,
𝑑𝑥
𝑑𝑡

=
(

𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5
)𝑇 (3.68)

such that:
𝑑𝑥1
𝑑𝑡

= 𝑓1 = 𝛽(𝑥1+𝑥2+𝑥4)−
(

𝛼1𝑥3
𝑛

+
𝛼2(1 − 𝜍)𝑥6

𝑛

)

(1− 𝜉)𝑥1−𝜇𝑥 (3.69)

𝑑𝑥2
𝑑𝑡

= 𝑓2 =
(

𝛼1𝑥3
𝑛

+
𝛼2(1 − 𝜍)𝑥6

𝑛

)

(1 − 𝜉)𝑥1 − (𝛾 + 𝜇)𝑥2 (3.70)

𝑑𝑥3
𝑑𝑡

= 𝑓3 = 𝛾𝑥2 − (𝜑 + 𝜇 + 𝛿1)𝑥3 (3.71)

𝑑𝑥4
𝑑𝑡

= 𝑓4 = 𝜑𝑥3 − (𝜏 + 𝜇 + 𝛿2)𝑥4 (3.72)

𝑑𝑥5
𝑑𝑡

= 𝑓5 = 𝜏𝑥4 − 𝜇𝑥5 (3.73)

𝑑𝑥6 = 𝑓 = (𝜇 + 𝛿 )𝑥 + (𝜇 + 𝛿 )𝑥 − 𝜍𝑥 (3.74)
7
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The Jacobian of the (3.69) to (3.74) at disease free region is ob-
tained as in Box II.

Showing that the Jacobian of (3.69)–(3.74) at 𝛼 has a right eigen-
ector, the following equations holds;

𝛽 − 𝜇)𝑣1 + 𝛽𝑣2 −
𝛼1(1 − 𝜉)𝑥1

𝑛
𝑣3 + 𝛽𝑣5 −

𝛼2 (1 − 𝜍) (1 − 𝜉)𝑥1
𝑛

𝑣6 = 0 (3.76)

− (𝛾 + 𝜇) 𝑣2 +
𝛼1(1 − 𝜉)𝑥1

𝑛
𝑣3 +

𝛼2 (1 − 𝜍) (1 − 𝜉)𝑥1
𝑛

𝑣6 = 0 (3.77)

𝛾𝑣2 +
(

𝜑 − 𝜇 − 𝛿1
)

𝑣3 = 0 (3.78)

𝜑𝑣3 −
(

𝜏 − 𝜇 − 𝛿2
)

𝑣4 = 0 (3.79)

𝜏𝑣4 − 𝜇𝑣5 = 0 (3.80)

(𝜇 + 𝛿1)𝑣3 + (𝜇 + 𝛿2)𝑣4 + 𝜍𝑣6 = 0 (3.81)

Solving (3.76) to (3.81) gives

1 =
⎡

⎢

⎢

⎣

𝐴1

𝐴2

⎤

⎥

⎥

⎦

𝑣4 (3.82)

here

1 = (𝛾 + 𝜇)
(

𝜑 − 𝜇 − 𝛿1
) (

𝜏 − 𝜇 − 𝛿2
)

𝑛 − 𝛼1𝛾
(

𝜏 − 𝜇 − 𝛿2
)

(1 − 𝜉)𝑥1

1 =
𝛼1(1 − 𝜉)𝑥1

(

𝜏 − 𝜇 − 𝛿2
)

+ 𝜑𝑛𝛽𝜏
𝜑𝑛𝜇 (𝛽 − 𝜇)

𝐴2 =
𝑎1 − 𝛽𝛼2

(

𝜑 − 𝜇 − 𝛿1
) (

𝜏 − 𝜇 − 𝛿2
)

(1 − 𝜍) (1 − 𝜉)𝑥1
𝛾𝜑𝛼2 (1 − 𝜍) (1 − 𝜉) (𝛽 − 𝜇) 𝑥1

2 =

(

𝜑 − 𝜇 − 𝛿1
) (

𝜏 − 𝜇 − 𝛿2
)

𝛾𝜑
𝑣4 (3.83)

3 =

(

𝜏 − 𝜇 − 𝛿2
)

𝜑
𝑣4 (3.84)

5 =
𝜏
𝜇
𝑣4 (3.85)

𝑣6 =

(

(𝛾 + 𝜇)
(

𝜑 − 𝜇 − 𝛿1
) (

𝜏 − 𝜇 − 𝛿2
)

𝑛 − 𝛼1𝛾
(

𝜏 − 𝜇 − 𝛿2
)

(1 − 𝜉)𝑥1
)

𝛾𝜑𝛼2 (1 − 𝜍) (1 − 𝜉)𝑥1
𝑣4

(3.86)

nd 𝑣4 > 0. Also, the Jacobian of (3.69)–(3.84) at 𝛼𝑖 = 𝛼 the left
igenvector 𝑈 =

[

𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6
]

(see Box III).
For easy simplification, let 𝑝 = 𝛼1(1−𝜉)𝑥1

𝑛 ; 𝑞 = 𝛼2(1−𝜍)(1−𝜉)𝑥1
𝑛 ; 𝑠 =

(

𝜑 − 𝜇 − 𝛿1
)

; 𝑡 =
(

𝜏 − 𝜇 − 𝛿2
)

[

𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6
]

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛽 − 𝜇 𝛽 −𝑝 0 𝛽 −𝑞
0 −(𝛾 + 𝜇) 𝑝 0 0 𝑞
0 𝛾 𝑠 0 0 0
0 0 𝜙 −𝑡 0 0
0 0 0 𝜏 −𝜇 0
0 0 (𝜇 + 𝛽) (𝜇 + 𝑑) 0 𝜍

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.88)

𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6
]

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 − 𝛾

𝛾+𝜇 1 0 0 0
0 0 𝜙(𝛾+𝜇)

𝛾𝑝+𝛾𝑠+𝜇𝑠 1 0 0
0 0 0 − 𝜏

𝑡 1 0
0 0 (𝜇+𝑏)(𝛾+𝜇)

𝛾𝑝+𝛾𝑠+𝜇𝑠 − 𝜇+𝑑
𝑡 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.89)
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𝑢

𝐽 (𝐸0) = −

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(𝛽 − 𝜇) 𝛽 − 𝛼1(1−𝜉)𝑥1
𝑛 0 𝛽 − 𝛼2(1−𝜍)(1−𝜉)𝑥1

𝑛

0 − (𝛾 + 𝜇) 𝛼1(1−𝜉)𝑥1
𝑛 0 0 𝛼2(1−𝜍)(1−𝜉)𝑥1

𝑛

0 𝛾
(

𝜑 − 𝜇 − 𝛿1
)

0 0 0

0 0 𝜑 −
(

𝜏 − 𝜇 − 𝛿2
)

0 0

0 0 0 𝜏 −𝜇 0

0 0
(

𝜇 + 𝛿1
) (

𝜇 + 𝛿2
)

0 𝜍

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3.75)

Box II.
𝑉 𝐽
(

𝐸0
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5
𝑢6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(𝛽 − 𝜇) 𝛽 − 𝛼1(1−𝜉)𝑥1
𝑛 0 𝛽 − 𝛼2(1−𝜍)(1−𝜉)𝑥1

𝑛

0 − (𝛾 + 𝜇) 𝛼1(1−𝜉)𝑥1
𝑛 0 0 𝛼2(1−𝜍)(1−𝜉)𝑥1

𝑛

0 𝛾
(

𝜑 − 𝜇 − 𝛿1
)

0 0 0

0 0 𝜑 −
(

𝜏 − 𝜇 − 𝛿2
)

0 0

0 0 0 𝜏 −𝜇 0

0 0
(

𝜇 + 𝛿1
) (

𝜇 + 𝛿2
)

0 𝜍

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.87)

Box III.
𝑎

F

w
d
a

4

p
a

𝑆

w
f

d

Considering Eq. (3.89), Eq. (3.90)–Eq. (3.94) holds the following

1 = 𝑢2 = 0 (3.90)

𝑢3 = 𝑢4 = 𝑢6 > 0 (3.91)

𝑢2 =
(𝛾 + 𝜇)

𝛾
𝑢3 (3.92)

𝑢4 = −
𝜑 (𝛾 + 𝜇)

𝛾𝑝 + 𝜆𝑠 + 𝜇𝑠
𝑢3 (3.93)

𝑢6 = −

(

𝜑
(

𝜇 + 𝛿2
)

(𝛾 + 𝜇) 𝑡 +
(

𝜇 + 𝛿1
)

(𝛾 + 𝜇)
)

(𝛾𝑝 + 𝛾𝑠 + 𝜇𝑠)𝑡
𝑢3 (3.94)

Where,

𝑝 =
𝛼1(1 − 𝜉)𝑥1

𝑛
,

𝑞 =
𝛼2 (1 − 𝜍) (1 − 𝜉)𝑥1

𝑛
,

𝑠 =
(

𝜑 − 𝜇 − 𝛿1
)

𝑡 =
(

𝜏 − 𝜇 − 𝛿2
)

From the above derived results, one can interpret that if the individ-
uals are quarantined and treated instead of taking home remedies for
treatment at asymptomatic or minor symptomatic stage, the spread of
the disease can be controlled to a greater extent. Moreover, effective
public campaigns, decontamination and proper burial of the deceased,
and isolation from infectious individuals are enough and more effective
to control the spread of the disease.

3.6. Computation of 𝑎 and 𝑏

The sign of 𝑎 is determined by computing the partial derivatives of
8

the system (3.69)–(3.84), associated with 𝑎.
Theorem 3. In considering Eq. (3.19)–(3.25), we defined 𝑎 and 𝑏 by
(3.85a) and (3.85b) and assume 𝑏 ≠ 0, ∃ 𝛿 > 0 such that

(1) if 𝑎 < 0, there is locally asymptotically stable endemic equilibrium
near the disease-free equilibrium for 0 < 𝛼 < 𝛿 and

(2) if 𝑎 > 0, there are unstable endemic equilibria near the DFE for
−𝛿 < 𝛼 < 0

=
𝑛
∑

𝑘,𝑖,𝑗=1
𝑣𝑘𝑢𝑖𝑢𝑗

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0, 0) (3.95)

or the first partial derivatives, refer to the appendix Appendix A.
This same procedure was computed for the second partial derivative

hich will not be computed here but we computed the associated at the
isease-free, the partial derivative is non-zero for 𝑎 and 𝑏, refer to the
ppendix Appendix B

. Sensitivity analysis

In this paper, we look at the sensitivity of the fundamental re-
roduction number 𝑅0 to each of its terms, which may be calculated
s

(⋅′) =
(⋅′)
𝑅𝑒𝑓𝑓

×
𝜕𝑅𝑒𝑓𝑓

𝜕(⋅′)

here (⋅′) represents each parameter. This is represented in Table 2 as
ollows.

We provide the sensitivity index of the parameters each to 𝑅0. This
can be seen in Fig. 2

From Fig. 2, it can be deduced that 𝛽 with a sensitivity value of 0,
oes not have much effect 𝑅0 within the model. With 𝛼1 and 𝛼2, they

seem to have a notable impact on 𝑅0. Higher sensitivity for 𝛼2 (0.93)
implies that small variations in 𝛼 lead to more significant changes in
2
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Fig. 2. 𝑅0 Sensitivity of each parameter.
Table 2
Sensitivity analysis of the parameters.
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒𝑠

𝛽 0
𝛼1 0.0705442476049881
𝛼2 0.929455752395012
𝜇 −0.0336194442093716
𝜑 −0.0565187672044668
𝛾 1
𝛿1 −0.0138318251654430
𝛿2 −0.000467961045640111
𝜏 0.0338937500199337
𝜉 −0.190476190476190
𝜍 −0.929455752395012

𝑅0 compared to 𝛼1 (0.07). These parameters might represent rates of
progression from one disease state to another (e.g., from exposed to
infected). The following parameters 𝜇, 𝜑, 𝛿1, 𝛿2, 𝜉, 𝜍 all have negative
sensitivity values, suggesting that changes in these parameters tend
to decrease 𝑅0. They might represent various factors like recovery
rates, interventions, or behavioural changes that reduce the disease’s
transmission potential. 𝛾: With a sensitivity value of 1, 𝛾 seems to
have a significant impact, directly influencing 𝑅0. 𝛾 often denotes the
recovery rate or the reciprocal of the infectious period. In summary,
parameters with higher positive sensitivity values, like 𝛼2 and 𝛾, have
more substantial effects on increasing 𝑅0, while those with negative
sensitivity values, like 𝜇, 𝜑, 𝛿1, 𝛿2, 𝜉, and 𝜍, tend to decrease 𝑅0 when
altered. Parameters with sensitivity values close to 0, like 𝛽, have
minimal influence on 𝑅0.

5. Numerical analysis

5.1. Analytical solution of the governing model via Homotopy Perturbation
Method (HPM)

Ji-Haun [26] made the initial discovery of the Homotopy Pertur-
bation Method (HPM). Numerous linear and non-linear equations can
be solved analytically approximatively using the Homotopy Perturba-
tion Method (HPM) and the series expansion method known as the
homotopy perturbation method (HPM) is used to solve nonlinear partial
differential equations.
9

5.2. Solution of the model equations

Given initial conditions

𝑆 (0) = 𝑆0, 𝐿(0) = 𝐿0, 𝐼(0) = 𝐼0, 𝑄(0) = 𝑄0,

𝑅(0) = 𝑅0, 𝐷(0) = 𝐷0 (5.1)

We consider the model of Eq. (5.2) - Eq. (5.7)

𝑑𝑆
𝑑𝑡

= 𝛽(𝑆 + 𝐿 + 𝑅) −
(

𝛼1𝐼
𝑁

+
𝛼2 (1 − 𝜍)𝐷

𝑁

)

(1 − 𝜉)𝑆 − 𝜇𝑆 (5.2)

𝑑𝐿
𝑑𝑡

=
(

𝛼𝐼
𝑁

+
𝛼1 (1 − 𝜍)𝐷

𝑁

)

(1 − 𝜉)𝑆 − (𝛾 + 𝜇)𝐿 (5.3)

𝑑𝐼
𝑑𝑡

= 𝛾𝐿 −
(

𝜑 +𝑁 + 𝛿1
)

𝐼 (5.4)
𝑑𝑄
𝑑𝑡

= 𝜑𝐼 −
(

𝜏 + 𝜇 + 𝛿2
)

𝑄 (5.5)
𝑑𝑅
𝑑𝑡

= 𝜏𝑄 − 𝜇𝑅 (5.6)
𝑑𝐷
𝑑𝑡

=
(

𝜇 + 𝛿1
)

𝐼 +
(

𝜇 + 𝛿2
)

𝑄 − 𝜍𝐷 (5.7)

From Eq. (5.1), We let,

𝑆 = 𝑎0 + 𝑝𝑎1 + 𝑝2𝑎2 +⋯

𝐿 = 𝑏0 + 𝑝𝑏1 + 𝑝2𝑏2 +⋯

𝐼 = 𝑐0 + 𝑝𝑐1 + 𝑝2𝑐2 +⋯

𝑄 = 𝑑0 + 𝑝𝑑1 + 𝑝2𝑑2 +⋯

𝑅 = 𝑒0 + 𝑝𝑒1 + 𝑝2𝑒2 +⋯

𝐷 = 𝑓0 + 𝑝𝑓1 + 𝑝2𝑓2 +⋯ (5.8)

Applying HPM (5.7) using (5.8) we obtain the following equations
which can be seen in Appendix C:

5.3. Visualization of results

In this section, provide the Table 3 with the parameters used for
the analysis and the visualization of the results in Figs. 3–10. In the
figures presented, we varied some of the parameters to understand the
dynamics of the disease.

The initial conditions are fixed as follows:
𝑆0 = 439652, 𝐿0 = 238650, 𝐼0 = 201000, 𝑄0 = 176000, 𝑅0 =

120000, and 𝐷 = 20000.
0
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Table 3
Parameter values.
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑉 𝑎𝑙𝑢𝑒𝑠 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠

𝛽 0.23632 [27]
𝛼1 3.92 [27]
𝛼2 3.36 [28]
𝜇 0.02 Assumed
𝜑 2.10 [28]
𝛾 4.10 [27]
𝛿1 1.42850 Assumed
𝛿2 0.00028 [29]
𝜏 0.30 [29]
𝜉 0.16 [28]
𝜁 0.2222 [29]

Fig. 3. Latent class against Time for varying values of 𝜍 (t - weeks).

The Table 3 shows the values for the parameters and references for
the values while other were assumed.

Visualization of the results is presented in Figs. 3–10

6. Discussion of results, conclusion and future work

6.1. Discussion of results and conclusion

To demonstrate the disease dynamics, we simulate the model we
developed and varied some of the parameters in order to validate our
model and also confirm our qualitative analysis results. Fig. 3 shows
that when we have large decontamination in the population and they
are removed from the population, it will help to decreasing the number
of persons exposed to diseases hence aiding in stopping the trans-
mission of the virus. Similarly, in Fig. 4, increasing public campaigns
and making it effective will help to reduce the exposed individuals in
the population and vice versa. Fig. 5 demonstrates the fact that if we
have more people moved from the exposed to the infected class, there
will be rapid spread in the disease in the population which makes it
unsafe for the locality considered. Increasing the rate at which people
are quarantine will aid to mitigate in reducing the disease’s spread as
shown in Fig. 6. Fig. 7 and Fig. 8 helps to demonstrate the importance
of recovery in our analysis. By varying the treatment rate shows that
10
Fig. 4. Latent class against Time for varying values of 𝜉 (t - weeks).

if it is increased, there will be increase in the number of recovery,
showing the importance of prompt treatment of those infected by the
virus and also having many deaths which are not properly handled will
affect the way at which people will recover. Finally, Fig. 9 and Fig. 10
only shows how important and vital is birth and death rates in the
susceptible class which will either make the population to grow or go
into extinction.

We have been able to provide some qualitative analysis of our result
and more importantly, we employed bifurcation theory to analyse the
stability of the endemic equilibrium state and the general bifurcation
theory is employed to demonstrate the endemic equilibrium state’s
existence. We investigate how the nature of the endemic equilibrium
state of the model (3.19)–(3.25) near the DFE, 𝑅𝑒𝑓𝑓 = 1. It is demon-
strated through the use of the centre manifold theory that a nontrivial
endemic equilibrium exists close to the disease-free equilibrium (bi-
furcation point). To state these results, the partial derivatives of 𝑓
with respect to 𝑥 is evaluated at disease free equilibrium (bifurca-
tion point). We have demonstrated that if the sign of 𝑎 is positive,
i.e., 𝑎 > 0, then an unstable endemic equilibrium state arises, as
the sign of the partial derivatives determines the sign of 𝑎. What we
have in West Africa is a situation like this, which indicates that the
disease is progressively declining and will be eradicated over time.
In comparing our work to [30], we provided sensitivity analysis to
show how our work give a better result. We also illuminated it is
not sufficient enough to create awareness and put in place public
campaign but also using public campaign to reduce the sting and
poking stigmatization infer on people. While [31] considered contact
tracing, we encourage the use of public campaigns which is aimed
at reducing stigmatization surrounding Ebola outbreak offer a more
effect than contact tracing. These initiatives educate the public on the
pivotal role of contact tracing in curbing the virus’s spread, fostering
increased cooperation and understanding among communities. By di-
minishing stigma, these campaigns encourage empathy and support for
individuals undergoing contact tracing, ensuring they receive necessary
medical attention without fear of social repercussions. Moreover, by
mitigating stigma, more individuals are likely to willingly participate
in contact tracing efforts, enhancing their effectiveness in identifying
and containing the virus. These campaigns also prevent discrimination,
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Fig. 5. Infectious class versus Time for varying values of 𝛾 (t - weeks).

Fig. 6. Quarantined class versus Time for varying values of 𝜑 (t - weeks).

promoting fair treatment and unbiased support for affected individuals
or communities. Additionally, by addressing stigma, such initiatives
alleviate the psychological burden on individuals and communities,
supporting mental health resilience amidst an outbreak. Ultimately,
these campaigns contribute not only to controlling the disease but also
to fostering a more compassionate and trusting community response
during a challenging public health crisis.

Conclusively, we have been able to show the importance of quaran-
tine, treatment and public enlightenment campaign as essential preven-
tative efforts to stop the disease’s spread. This has been investigated to
show the proper campaign will have a positive impact in reducing the
11
Fig. 7. Recovered class versus Time for varying values of 𝜏 (t - weeks).

Fig. 8. Recovered class versus Time for varying values of 𝜇 (t - weeks).

stigmatization which occurs at both internal and external phase of the
infected individual. It is crucial to understand that stigmatization is a
significant problem in society and that, if it is not well controlled, it can
make it difficult for someone who has recovered from an infection to
be accepted or included in society, as a result, effective campaigning is
required. The result in this article will be useful for proper management
of the Ebola virus disease.

6.2. Future work

In future, we do hope to expand the study to spatial modelling
of the disease at small spatial scale in order to localize response but
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Fig. 9. Susceptible class versus Time for varying values of 𝛽 (t - weeks).

Fig. 10. Susceptible class versus Time for varying values of 𝜇 (t - weeks).

one of the challenges is getting accurate and precise data in order to
develop a model that is driven by real data. This will enable us to
focus on developing predictive models that can forecast the potential
trajectory of the outbreak, enabling timely interventions and resource
allocation to mitigate the spread of the disease. However, we tend
to also investigate some pertinent determinants such as cross-border
between countries using the integration of real-time data and advanced
machine learning techniques to enhance the accuracy and timeliness
of these models, facilitating more effective public health responses to
future outbreaks of EVD.
12
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Appendix A. Computation of 𝒂

𝑓1 = 𝛽(𝑥1 + 𝑥2 + 𝑥4) −
(

𝛼1𝑥3
𝑛

+
𝛼2(1 − 𝜍)𝑥6

𝑛

)

(1 − 𝜉)𝑥1 − 𝜇𝑥,

𝜕𝑓1
𝜕𝑥1

(0, 0) = 𝛽 −
(

𝛼1𝑥3
𝑛

+
𝛼2(1 − 𝜍)𝑥6

𝑛

)

(1 − 𝜉) − 𝜇,

𝜕𝑓1
𝜕𝑥2

(0, 0) = 𝛽,

𝜕𝑓1
𝜕𝑥3

(0, 0) = −
𝛼1(1 − 𝜉)

𝑛
𝑥1,

𝜕𝑓1
𝜕𝑥4

(0, 0) = 𝛽,

𝜕𝑓1
𝜕𝑥5

(0, 0) = 0,

𝜕𝑓1
𝜕𝑥6

(0, 0) = −
𝛼2(1 − 𝜍)(1 − 𝜉)𝑥1

𝑛
. (A.1)

𝑓2 =
(

𝛼1𝑥3
𝑛

+
𝛼2(1 − 𝜍)𝑥6

𝑛

)

(1 − 𝜉)𝑥1 − (𝛾 + 𝜇)𝑥2,

𝜕𝑓2
𝜕𝑥1

(0, 0) =
(

𝛼1𝑥3
𝑛

+
𝛼2(1 − 𝜍)𝑥6

𝑛

)

(1 − 𝜉),

𝜕𝑓2
𝜕𝑥2

(0, 0) = −(𝛾 + 𝜇),

𝜕𝑓2
𝜕𝑥3

(0, 0) =
𝛼1
𝑛
,

𝜕𝑓2
𝜕𝑥4

(0, 0) = 0,

𝜕𝑓2
𝜕𝑥5

(0, 0) = 0,

𝜕𝑓2
𝜕𝑥6

(0, 0) =
𝛼2(1 − 𝜍)(1 − 𝜉)𝑥1

𝑛
. (A.2)

𝑓3 = 𝛾𝑥2 − (𝜑 + 𝜇 + 𝛿1)𝑥,
𝜕𝑓3
𝜕𝑥1

(0, 0) = 0,

𝜕𝑓3
𝜕𝑥2

(0, 0) = 𝛾,

𝜕𝑓3
𝜕𝑥3

(0, 0) = −
(

𝜑 + 𝜇 + 𝛿1
)

,

𝜕𝑓3
𝜕𝑥4

(0, 0) = 0,

𝜕𝑓3
𝜕𝑥5

(0, 0) = 0,

𝜕𝑓3
𝜕𝑥6

(0, 0) = 03. (A.3)

𝑓4 = 𝜑𝑥3 − (𝜏 + 𝜇 + 𝛿2)𝑥4
𝜕𝑓4
𝜕𝑥1

(0, 0) = 0,

𝜕𝑓4
𝜕𝑥2

(0, 0) = 0,

𝜕𝑓4
𝜕𝑥3

(0, 0) = 𝜑,

𝜕𝑓4
𝜕𝑥4

(0, 0) = −
(

𝜏 + 𝜇 + 𝛿2
)

,

𝜕𝑓4 (0, 0) = 0,

𝜕𝑥5
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𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝑝

𝜕𝑓4
𝜕𝑥6

(0, 0) = 0 (A.4)

𝑓5 = 𝜏𝑥4 − 𝜇𝑥5,
𝜕𝑓5
𝜕𝑥1

(0, 0) = 0,

𝜕𝑓5
𝜕𝑥2

(0, 0) = 0,

𝜕𝑓5
𝜕𝑥3

(0, 0) = 0,

𝜕𝑓5
𝜕𝑥4

(0, 0) = 𝜏,

𝜕𝑓5
𝜕𝑥5

(0, 0) = 𝜇,

𝜕𝑓5
𝜕𝑥6

(0, 0) = 0, (A.5)

𝑓6 = (𝜇 + 𝛿1)𝑥3 + (𝜇 + 𝛿2)𝑥4 − 𝜍𝑥6,
𝜕𝑓6
𝜕𝑥1

(0, 0) = 0,

𝜕𝑓6
𝜕𝑥2

(0, 0) = 0,

𝜕𝑓6
𝜕𝑥3

(0, 0) =
(

𝜇 + 𝛿1
)

,

𝜕𝑓6
𝜕𝑥4

(0, 0) =
(

𝜇 + 𝛿2
)

,

𝜕𝑓6
𝜕𝑥5

(0, 0) = 0,

𝜕𝑓6
𝜕𝑥6

(0, 0) = −𝜍 (A.6)

Appendix B. Computation of 𝒃
.

𝑎 =
𝑛
∑

𝑘,𝑖,𝑗=1
𝑣𝑘𝑢𝑖𝑢𝑗

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0, 0) ,
𝜕2𝑓2

𝜕𝑥1𝜕𝑥3
(0, 0) =

𝛼1(1 − 𝜉)
𝑛

,

𝜕2𝑓2
𝜕𝑥1𝜕𝑥6

(0, 0) =
𝛼2(1 − 𝜍)(1 − 𝜉)

𝑛
, (B.1)

Eq. (B.1) is represented further as follows

𝑎 =
𝑣1𝑢1𝑢3

𝑛
𝛼1(1 − 𝜉) +

𝑣1𝑢6𝑢1
𝑛

𝛼2(1 − 𝜍)(1 − 𝜉)

− [
𝑣1𝑢3𝑢1

𝑛
𝛼1(1 − 𝜉) +

𝑣1𝑢1𝑢6
𝑛

𝛼2(1 − 𝜍)(1 − 𝜉)]

+[
𝑣2𝑢1𝑢3

𝑛
𝛼1(1 − 𝜉) +

𝑣2𝑢1𝑢6
𝑛

𝛼2(1 − 𝜍)(1 − 𝜉) +
𝑣2𝑢6𝑢1

𝑛
𝛼2(1 − 𝜍)(1 − 𝜉)]

> 0 (B.2)

We can deduce (B.3) from Eqs. (B.1) and (B.2) and represented as

𝑎 =
𝑣2𝑢1𝑢3

𝑛
𝛼1(1 − 𝜉) +

𝑣2𝑢1𝑢6
𝑛

𝛼2(1 − 𝜍)(1 − 𝜉) +
𝑣2𝑢6𝑢1

𝑛
𝛼2(1 − 𝜍)(1 − 𝜉) > 0

𝑎 =
𝑣2𝑢1𝑢3

𝑛
𝛼1(1 − 𝜉) +

2𝑣2𝑢6𝑢1
𝑛

𝛼2(1 − 𝜍)(1 − 𝜉) > 0 (B.3)

Similarly, for 𝑏
𝑏 =

𝑛
∑

𝑘,𝑖,𝑗=1
𝑣𝑘𝑢𝑖

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝛼𝑗

(0, 0) (B.4)

The procedure for 𝑎 is repeated for 𝑏, the first partial derivative was
computed using Eq. (B.4). The computation of the partial derivatives
contained the value for 𝑏 in Eq. (B.5)

𝑏 =𝑣1𝑢3[
(1 − 𝜉) 𝑥1

𝑛
+ 𝑣1𝑢6

(1 − 𝜉) (1 − 𝜍) 𝑥6
𝑛

]

+ 𝑣2𝑢1[
(1 − 𝜉) 𝑥3

𝑛
+

(1 − 𝜉) (1 − 𝜍) 𝑥6
𝑛

]

+ 𝑣2𝑢3[
1
𝑛
+ 𝑣2𝑢6

(1 − 𝜉) (1 − 𝜍) 𝑥1
𝑛

]

− 𝑣 𝑢 [
(1 − 𝜉) 𝑥3 +

(1 − 𝜉) (1 − 𝜍) 𝑥6 ] > 0 (B.5)
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Appendix C. Applying HPM

.
𝑝0 ∶ 𝑎10 = 0

𝑝1 ∶ 𝑎′1 + 𝜇𝑎0 + 𝛼1𝐾𝑒0 + 𝛼2𝐾 (1 − 𝜍) (1 − 𝜁 ) 𝑓0𝑎0 − 𝛽
(

𝑎0 + 𝑏0 + 𝑒0
)

𝑝2 ∶ 𝑎′2 + 𝜇𝑎1 + 𝛼1𝐾𝑒1 + 𝛼2𝐾 (1 − 𝜍) (1 − 𝜁 ) 𝑓0𝑎1
+ 𝛼2𝐾 (1 − 𝜍) (1 − 𝜁 ) 𝑓1𝑎0 − 𝛽

(

𝑎1 + 𝑏1 + 𝑒1
)

(C.1)

𝑝0 ∶ 𝑏′0 = 0

𝑝1 ∶ 𝑏′1 + (𝛾 + 𝜇) 𝑏0 − 𝛼1𝐾𝑐0 − 𝛼2𝐾 (1 − 𝜍) (1 − 𝜁 ) 𝑓0𝑎0 = 0

𝑝2 ∶ 𝑏′2 + (𝛾 + 𝜇) 𝑏1 − 𝛼1𝐾𝑐1 − 𝛼2𝐾 (1 − 𝜍) (1 − 𝜉) 𝑓0𝑎1

+ 𝛼2𝐾 (1 − 𝜍) (1 − 𝜉) 𝑓1𝑎0 = 0 (C.2)

0 ∶ 𝑐10 = 0
1 ∶ 𝑐11 +

(

𝜑 + 𝜇 + 𝛿1
)

𝑐0 − 𝛾𝑏0 = 0
2 ∶ 𝑐12 +

(

𝜑 + 𝜇 + 𝛿1
)

𝑐1 − 𝛾𝑏1 = 0 (C.3)

𝑝0 ∶ 𝑑10 = 0

𝑝1 ∶ 𝑑11 +
(

𝜏 + 𝜇 + 𝛿2
)

𝑑0 − 𝜑𝑐0 = 0
2 ∶ 𝑑12 +

(

𝜏 + 𝜇 + 𝛿2
)

𝑑1 − 𝜑𝑐1 = 0 (C.4)

0 ∶ 𝑒10 = 0
1 ∶ 𝑒11 + 𝜇𝑒0 − 𝜏𝑑0 = 0
1 ∶ 𝑒12 + 𝜇𝑒1 − 𝜏𝑑1 = 0 (C.5)

𝑝0 ∶ 𝑓 ′
0 = 0

𝑝1 ∶ 𝑓 ′
1 +

(

𝜇 + 𝛿1
)

𝑐0 −
(

𝜇 + 𝛿2
)

𝑑0 = 0

𝑝2 ∶ 𝑓 ′
2 +

(

𝜇 + 𝛿1
)

𝑐1 −
(

𝜇 + 𝛿2
)

𝑑1 = 0 (C.6)

Solving (C.1)–(C.6) by direct integration method for 𝑝0 using (5.1) we
obtain the following:

𝑎0 = 𝑆0
𝑏0 = 𝐿0
𝑐0 = 𝐼0
𝑑0 = 𝑄0
𝑒0 = 𝑅0
𝑓0 = 𝐷0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(C.7)

Where 𝑆0, 𝐿0, 𝐼0, 𝑄0, 𝑅0, 𝑎𝑛𝑑 𝐷0 are all constants initial conditions.
Substituting (C.7) into (C.1)–(C.6) and solve by direct integration

method for 𝑝1, we obtain the following equations.

𝑎1 =
(

𝛽
(

𝑆0 + 𝐿0 + 𝑅0
)

− 𝜇𝑆0 − 𝛼1𝐾𝐼0 − 𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0
)

𝑡
𝑏1 =

(

𝛼1𝐾𝐼0 + 𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0 − (𝛾 + 𝜇)𝐿0
)

𝑡
𝑐1 =

(

𝛾𝐿0 −
(

𝜑 + 𝜇 + 𝛿1
)

𝐼0
)

𝑡
𝑑1 =

(

𝜑𝐼0 −
(

𝜏 + 𝜇 + 𝛿2
)

𝑄0
)

𝑡
𝑒1 =

(

𝜏𝑄0 − 𝜇𝑅0
)

𝑡
𝑓1 =

((

𝜇 + 𝛿1
)

𝐼0 +
(

𝜇 + 𝛿2
)

𝑄0
)

𝑡

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(C.8)

Similarly, substituting (C.7) and (C.8) into (C.1)–(C.6) and solve by
2
direct integration for 𝑝 , we obtain the following equations.
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𝑏

𝑑

𝑒

𝑓

𝑄

R

𝑎2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛽

⎛

⎜

⎜

⎜

⎜

⎝

(

𝛽
(

𝑆0 + 𝐿0 + 𝑅0
)

− 𝜇𝑆0 − 𝛼1𝐾𝐼0
−𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0

)

+
(

𝛼1𝐾𝐼0 + 𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0
− (𝛾 + 𝜇)𝐿0

)

+
(

𝜏𝑄0 − 𝜇𝑅0
)

⎞

⎟

⎟

⎟

⎟

⎠

−𝜇
(

𝛽
(

𝑆0 + 𝐿0 + 𝑅0
)

− 𝜇𝑆0 − 𝛼1𝐾𝐼0−
𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0

)

−
𝛼1𝐾

(

𝛾𝐿0 −
(

𝜑 + 𝜇 + 𝛿1
)

𝐼0
)

−

𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0

⎛

⎜

⎜

⎝

𝛽
(

𝑆0 + 𝐿0 + 𝑅0
)

−
𝜇𝑆0 − 𝛼1𝐾𝐼0−
𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0

⎞

⎟

⎟

⎠

−𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)
((

𝜇 + 𝛿1
)

𝐼0 +
(

𝜇 + 𝛿2
)

𝑄0
)

𝑆0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑡2

2
(C.9)

2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0

⎛

⎜

⎜

⎝

𝛽
(

𝑆0 + 𝐿0 + 𝑅0
)

−
𝜇𝑆0 − 𝛼1𝐾𝐼0−
𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0

⎞

⎟

⎟

⎠

+

𝛼1𝐾
(

𝛾𝐿0 −
(

𝜑 + 𝜇 + 𝛿1
)

𝐼0
)

+𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)
( (

𝜇 + 𝛿1
)

𝐼0
+
(

𝜇 + 𝛿2
)

𝑄0

)

𝑆0

− (𝛾 + 𝜇)
(

𝛼1𝐾𝐼0 + 𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0 − (𝛾 + 𝜇)𝐿0
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑡2

2

(C.10)

𝑐2 =
(

𝛾
(

𝛼1𝐾𝐼0 + 𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0 − (𝛾 + 𝜇)𝐿0
)

−
(

𝜑 + 𝜇 + 𝛿1
) (

𝛾𝐿0 −
(

𝜑 + 𝜇 + 𝛿1
)

𝐼0
)

)

𝑡2

2
(C.11)

2 =
(

𝜑
(

𝛾𝐿0 −
(

𝜑 + 𝜇 + 𝛿1
)

𝐼0
)

−
(

𝜏 + 𝜇 + 𝛿2
)

.
(

𝜑𝐼0 −
(

𝜏 + 𝜇 + 𝛿2
)

𝑄0
)

)

𝑡2

2
(C.12)

2 =
(

𝜏
(

𝜑𝐼0 −
(

𝜏 + 𝜇 + 𝛿2
)

𝑄0
)

− 𝜇
(

𝜏𝑄0 − 𝜇𝑅0
)) 𝑡2

2
(C.13)

2 =
((

𝜇 + 𝛿1
) (

𝛾𝐿0 −
(

𝜑 + 𝜇 + 𝛿1
)

𝐼0
)

+
(

𝜇 + 𝛿2
) (

𝜑𝐼0 −
(

𝜏 + 𝜇 + 𝛿2
)

𝑄0
)) 𝑡2

2
(C.14)

But, from (5.8) we have,

𝑆 = 𝑎0 + 𝑝𝑎1 + 𝑝2𝑎2 +⋯
𝐿 = 𝑏0 + 𝑝𝑏1 + 𝑝2𝑏2 +⋯
𝐼 = 𝑐0 + 𝑝𝑐1 + 𝑝2𝑐2 +⋯
𝑄 = 𝑑0 + 𝑝𝑑1 + 𝑝2𝑑2 +⋯
𝑅 = 𝑒0 + 𝑝𝑒1 + 𝑝2𝑒2 +⋯
𝐷 = 𝑓0 + 𝑝𝑓1 + 𝑝2𝑓2 +⋯

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

then, we let,

lim
𝑝→1

𝑆(𝑡) = lim
𝑝→1

(𝑎0 + 𝑝𝑎1 + 𝑝2𝑎2 +⋯) = 𝑎0 + 𝑎1 + 𝑎2 +⋯

lim
𝑝→1

𝐿(𝑡) = lim
𝑝→1

(𝑏0 + 𝑝𝑏1 + 𝑝2𝑏2 +⋯) = 𝑏0 + 𝑏1 + 𝑏2 +⋯

lim
𝑝→1

𝐼(𝑡) = lim
𝑝→1

(𝑐0 + 𝑝𝑐1 + 𝑝2𝑐2 +⋯) = 𝑐0 + 𝑐1 + 𝑐2 +⋯

lim
𝑝→1

𝑄(𝑡) = lim
𝑝→1

(𝑑0 + 𝑝𝑑1 + 𝑝2𝑑2 +⋯) = 𝑑0 + 𝑑1 + 𝑑2 +⋯

lim
𝑝→1

𝑅(𝑡) = lim
𝑝→1

(𝑒0 + 𝑝𝑒1 + 𝑝2𝑒2 +⋯) = 𝑒0 + 𝑒1 + 𝑒2 +⋯

lim
𝑝→1

𝐷(𝑡) = lim
𝑝→1

(𝑓0 + 𝑝𝑓1 + 𝑝2𝑓2 +⋯) = 𝑓0 + 𝑓1 + 𝑓2 +⋯ (C.15)

This implies that,

𝑆 (𝑡) = lim𝑆 (𝑡) = lim
(

𝑎0 + 𝑝𝑎1 + 𝑝2𝑎2 +⋯
)

= 𝑎0 + 𝑎1 + 𝑎2 +⋯
14

𝑝→1 𝑝→1
𝑆 (𝑡) = 𝑆0 +
(

𝛽
(

𝑆0 + 𝐿0 + 𝑅0
)

− 𝜇𝑆0 − 𝛼1𝐾𝐼0
− 𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0

)

𝑡

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛽

⎛

⎜

⎜

⎜

⎜

⎝

(

𝛽
(

𝑆0 + 𝐿0 + 𝑅0
)

− 𝜇𝑆0 − 𝛼1𝐾𝐼0
− 𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0

)

+
(

𝛼1𝐾𝐼0 + 𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0
− (𝛾 + 𝜇)𝐿0

)

+
(

𝜏𝑄0 − 𝜇𝑅0
)

⎞

⎟

⎟

⎟

⎟

⎠

−𝜇
(

𝛽
(

𝑆0 + 𝐿0 + 𝑅0
)

− 𝜇𝑆0 − 𝛼1𝐾𝐼0−
𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0

)

−
𝛼1𝐾

(

𝛾𝐿0 −
(

𝜑 + 𝜇 + 𝛿1
)

𝐼0
)

−

𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0

⎛

⎜

⎜

⎝

𝛽
(

𝑆0 + 𝐿0 + 𝑅0
)

−
𝜇𝑆0 − 𝛼1𝐾𝐼0−
𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0

⎞

⎟

⎟

⎠

−𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)
((

𝜇 + 𝛿1
)

𝐼0 +
(

𝜇 + 𝛿2
)

𝑄0
)

𝑆0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑡2

2

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(C.16)

𝐿 (𝑡) = lim
𝑝→1

𝐿 (𝑡) = lim
𝑝→1

(

𝑏0 + 𝑝𝑏1 + 𝑝2𝑏2 +⋯
)

= 𝑏0 + 𝑏1 + 𝑏2 +⋯

𝐿 (𝑡) = 𝐿0 +
(

𝛼1𝐾𝐼0 + 𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0
− (𝛾 + 𝜇)𝐿0

)

𝑡+
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0

⎛

⎜

⎜

⎝

𝛽
(

𝑆0 + 𝐿0 + 𝑅0
)

−
𝜇𝑆0 − 𝛼1𝐾𝐼0−
𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0

⎞

⎟

⎟

⎠

+

𝛼1𝐾
(

𝛾𝐿0 −
(

𝜑 + 𝜇 + 𝛿1
)

𝐼0
)

+ 𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)
( (

𝜇 + 𝛿1
)

𝐼0
+
(

𝜇 + 𝛿2
)

𝑄0

)

𝑆0

− (𝛾 + 𝜇)
(

𝛼1𝐾𝐼0 + 𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0 − (𝛾 + 𝜇)𝐿0
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑡2

2

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(C.17)

𝐼 (𝑡) = lim
𝑝→1

𝐼 (𝑡) = lim
𝑝→1

(

𝑐0 + 𝑝𝑐1 + 𝑝2𝑐2 +⋯
)

= 𝑐0 + 𝑐1 + 𝑐2 +⋯

𝐼 (𝑡) = 𝐼0 +
(

𝛾𝐿0 −
(

𝜑 + 𝜇 + 𝛿1
)

𝐼0
)

𝑡+
(

𝛾
(

𝛼1𝐾𝐼0 + 𝛼2𝐾 (1 − 𝜍) (1 − 𝜉)𝐷0𝑆0 − (𝛾 + 𝜇)𝐿0
)

−
(

𝜑 + 𝜇 + 𝛿1
) (

𝛾𝐿0 −
(

𝜑 + 𝜇 + 𝛿1
)

𝐼0
)

)

𝑡2

2

⎫

⎪

⎬

⎪

⎭

(C.18)

(𝑡) = lim
𝑝→1

𝑄 (𝑡) = lim
𝑝→1

(

𝑑0 + 𝑝𝑑1 + 𝑝2𝑑2 +⋯
)

= 𝑑0 + 𝑑1 + 𝑑2 +⋯

𝑄 (𝑡) = 𝑄0 +
(

𝜑𝐼0 −
(

𝜏 + 𝜇 + 𝛿2
)

𝑄0
)

𝑡+
(

𝜑
(

𝛾𝐿0 −
(

𝜑 + 𝜇 + 𝛿1
)

𝐼0
)

−
(

𝜏 + 𝜇 + 𝛿2
)

.
(

𝜑𝐼0 −
(

𝜏 + 𝜇 + 𝛿2
)

𝑄0
)

)

𝑡2

2

⎫

⎪

⎬

⎪

⎭

(C.19)

𝑅 (𝑡) = lim
𝑝→1

𝑅 (𝑡) = lim
𝑝→1

(

𝑒0 + 𝑝𝑒1 + 𝑝2𝑒2 +⋯
)

= 𝑒0 + 𝑒1 + 𝑒2 +⋯

𝑅 (𝑡) = 𝑅0 +
(

𝜏𝑄0 − 𝜇𝑅0
)

𝑡+
(

𝜏
(

𝜑𝐼0 −
(

𝜏 + 𝜇 + 𝛿2
)

𝑄0
)

− 𝜇
(

𝜏𝑄0 − 𝜇𝑅0
)) 𝑡2

2

}

(C.20)

𝐷 (𝑡) = lim
𝑝→1

𝐷 (𝑡) = lim
𝑝→1

(

𝑓0 + 𝑝𝑓1 + 𝑝2𝑓2 +⋯
)

= 𝑓0 + 𝑓1 + 𝑓2 +⋯

𝐷 (𝑡) = 𝐷0 +
((

𝜇 + 𝛿1
)

𝐼0 +
(

𝜇 + 𝛿2
)

𝑄0
)

𝑡+
((

𝜇 + 𝛿1
) (

𝛾𝐿0 −
(

𝜑 + 𝜇 + 𝛿1
)

𝐼0
)

+
(

𝜇 + 𝛿2
) (

𝜑𝐼0 −
(

𝜏 + 𝜇 + 𝛿2
)

𝑄0
)) 𝑡2

2

⎫

⎪

⎬

⎪

⎭

(C.21)
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