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Some new results on a free boundary value problem 
related to autoignition of combustible fluid in 

insulation materials 
 

R.O. Olayiwola*†, J.T. Fadepo*, A.S. Gimba*, A.W. Abubakar‡, A.B. Zhiri*, 
and F.E. Okoosi* 

 

 

 

Abstract 
 

     Autoignition of combustible fluids in insulation materials is one of the major problems 
facing the processing industries and many developing nations because it leads to serious 
environmental problem. This paper presents an analytical solution to a free boundary value 
problem related to autoignition of combustible fluids in insulation materials. The aim is to 
ascertain whether such a system is safe or if it will undergo ignition for a particular set of 
conditions. The conditions for the existence of unique solution of the model is established 
by actual solution method. The properties of solution is examined. The analytical solution 
is obtained via polynomial approximation method, which show the influence of the 
parameters involved on the system. The effect of changes in parameters such as the Frank-
Kamenetskii number, Lewis number, Nusselt number, condensed reactant diffusion 
coefficient and the endothermicity are presented graphically and discussed.  

 
Keywords: autoignition; combustible fluids; free boundary; heat transfer; insulation materials; 
polynomial approximation method 

 
1      Introduction 
 

The fuel’s autoignition is usually caused by a leaking of a combustible liquid into insulation material 
surrounding a hot pipe. Leakage of flammable liquids into isolation layer during a transportation or 
technological process can lead to spontaneous fire of the fuel. Since the insulation is a porous medium 
containing an oxidizer, the exothermic oxidation reaction can lead to a substantial self-heating of the 
fuel and its ignition and, as a result, to destruction of the pipeline [10].  
Models of combustion are characterized by two phenomena; ignition and explosion [2, 5].  
 

The investigation of the autoignition process has been carried out by many authors. McIntosh 
et al. [7] presented a mathematical model for the autoignition of combustible liquid in an inert porous 
material. The simple model takes a spatially uniform approach to both the energy equation and the 
liquid equation for the fluid and predicts a watershed temperature and thermal runaway. McIntosh 
and Griffiths [6] presented the mathematical foundations for a simple theory for investigating the 
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phenomenon of ignition of flammable fluids in lagging material that are used for insulation of hot 
pipework, for transport of heat transfer fluids, or other similar situations. A theory to explain these 
findings was presented which shows that there is a watershed temperature beyond which substantial 
self-heating will take place. Although the theory does not take account of diffusion, it simulates the 
main physics of the phenomenon. Truscott et al. [12] examined an initial value problem related to 
autoignition of combustible fluids in insulation materials and investigated the effect of diffusion on 
the system. Brindley et al. [3] developed the theoretical background and the limiting criteria for safe 
operation on autoignition of combustible fluids in insulation materials and discussed the magnitudes 
of the parameters that may be used to compare theory with experiment.  

 

Popoola and Ayeni [8] extended the model in [12] to a free boundary value problem by 
assuming that the reactant is not confined to a fixed space. Shchepakina [11] investigated the critical 
conditions for autoignition of combustible fluids in porous insulation materials. This work 
concentrated on the critical case which is concerned with the phenomenon of delayed loss of stability 
in the dynamical model. The realizability conditions for the critical regime are obtained. Shchepakina 
[10] investigated an autoignition of liquid fuel due to leaking into insulation porous material 
surrounding a pipeline. By application of the geometric theory of singular perturbations, he described 
all possible scenarios of the process, reveal the critical condition for the autoignition, and calculate the 
maximal safe temperature of fuel’s heating.  

 

In this paper, an approximate analytical solution capable of predicting the temperature 
distribution in a process of autoignition of combustible fluids in insulation materials is presented. For 
this we shall follow the method proposed in [9]. 

 

2    Model formulation  
 

The work in [8] is extended by considering the model geometry which may be represented by a single 
characteristic dimension to be sphere. The model variables expressed as a function of spatial co-

ordinate r , 0 r R  , and time t , 0t , are the matrix temperature ( )trT , , the concentration of 

condensed reactant ( ),fC r t and the concentration of oxygen ( ),oxC r t .The formulation of our 

model is guided by the following assumptions:  
 

1 Initially, a known amount of fluid is soaked uniformly within the block of insulation and 
there is air present throughout the porous structure. 

2 The initial temperature of the system is known. 
3 The reactant is adsorbed in the liquid state on the pore surface within the insulation matrix. 

It may react in this condensed state or it may evaporate. 
4 The exothermic oxidation occurs by reaction between gaseous oxygen in the pores and the 

condensed reactant. 
5 The order of reaction with respect to the gas-phase oxygen concentration and the 

condensed fluid concentration is greater than one. 
6 The vaporization is related to the condensed fluid concentration and its temperature 

dependence is expressed in an Arrhenius-like exponential form. 
7 The convective heat transport of gaseous components is ignored, as are pressure gradients 

within the matrix. 
 

Based on the above assumptions, the respective conservation equations in spherical coordinate system 
are thus: 
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with the initial and boundary conditions: 
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where oxC  is the concentration of Oxygen, 
fC  is the concentration of condensed reactant, 0D  is the 

Oxygen diffusion coefficient, 
fD  is the condensed reactant diffusion coefficient,   is the density of 

the reactant, k  is the thermal conductivity of the medium, c  is the heat capacity of the medium, Q  

is the enthalpy of oxidation (exothermicity), vQ  is the enthalpy of vaporization (endothermicity), R  

is the universal gas constant, T  is the temperature of the medium, E  is the activation energy 

(reaction), vE  is the activation energy (vaporization), 0T  is the initial temperature of the medium, v  

is the stoichiometry coefficient, 0oxC  is the initial oxygen concentration within the insulation block, 

0fC  is the initial concentration of the uniformly distributed fluid, t  is the time, A  is the pre-

exponent factor (reaction), F  is the pre-exponent factor (vaporization),   and   are the order of 

reaction, r  is the spatial coordinate, ( )ts  is the moving boundary, *

0D  is the effective Oxygen 

diffusion coefficient, 
*

fD  is the effective condensed reactant diffusion coefficient, 
*k  is the effective 

thermal conductivity of the medium, 
mfk  is the condensed reactant convective mass transfer 

coefficient, moxk  is the Oxygen convective mass transfer coefficient, h  is the convective heat 

transfer coefficient, ( )tshT 
0  is the heat energy released per unit time by the reaction, 

( )
( )tsTh

tsr


=
 is 

the energy flux induced by the motion of the boundary preserve energy conservation, ( )tsCk fmf


0  is 

the number of moles per unit time of condensed fluid, 
( )

( )tsCk
tsrfmf


=
 is the mass flux of 

condensed fluid induced by the motion of the boundary preserve mass conservation, ( )tsCk oxmox


0  is 

the number of moles per unit time of oxidizer that diffused into the system for the reaction, 

( )
( )tsCk

tsroxmox


=
 is the mass flux of oxidizer.  
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3    Method of solution 
3.1 Dimension analysis 
 

Dimensionless variables for space and time is been introduced as: 

( )

2

f

r
r

D s t
 = ,                   

( )2

4
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t
t = .                                                                                       (5) 

 
Dimensionless variables for medium temperature, condensed fluid concentration and oxygen 
concentration is been introduced as follows: 
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where ( ) ( )
1 11s t t 
− −= −  is moving boundary. Here, we choose 

1
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 =  as in [8]. 

 
Using (5) and (6), and after dropping the prime, equations (1) - (4) become 
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where 
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3.2    Existence and uniqueness of solution 

Theorem 3.1:  Let 11211 ======== oxf ShShNuLe   and 
2
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 −= . Then there 

exists a solution of (7) – (9) which satisfies (10). 
 

Proof: Multiply (8) and (9) by 
2


 and adding the resulting equations, we obtain 
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Assuming a polynomial solution of the form (see, [9]): 

( ) ( ) ( ) ( ) 2

0 1 2,r t c t c t r c t r = + + ,                                                                             (13) 

 
we obtain the approximated solution of equations (11) and (12) as 
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Hence, there exists a solution of problem (7) – (10). This completes the proof. 
 

3.3   Properties of solution 
 

Following thermal ignition theory, it is necessary to assume that there is always sufficient oxygen and 
fuel present in subcritical conditions so that the behaviour of the system is then governed solely by 

the energy conservation equation (7). That is  and   are assumed constant. 

 
Lemma 3.1: Let 0→ . Then the parabolic differential equation (7) with initial and boundary 
conditions (10) has a unique solution. 
 
Proof: It suffices to show that the Lipschitz condition is satisfied. That is if we are able to show that 

( ) ( ) 2121 ,,,,  −− ktrftrf . 

 
From (7), 
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                                            ( )   neetrf 1,, −= . 

 
By mean value theorem 
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Therefore, 

                    ( ) ( ) 2121 ,,,,   −− trftrf . 

 
Since the Lipschitz condition is satisfied, equation (7) has a unique solution. This completes the proof. 
 
For a well stirred reaction when the activation energy for reaction is the same as activation energy for 
vaporization, i.e. 1=n  and in a high activation energy situation 0→ , equation (7) reduces to 
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Solving (18), we obtain 
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( ) 

1

1

−
=t , ( ) →t .                                                  (19) 

 

Hence, ( ) →t  is thermal runaway and 
( ) 

1

1

−
=t  is actually the time of thermal 

runaway. 
 

3.4    Analytical solution via polynomial approximation method 
 

In the presence of diffusion, assuming constant   and  , equation (7) can be solve analytically in 

the limit 0→ . Follow the idea in [1], we assume the expression for ( )exp , that is, 

( ) ( ) 21exp −+ e  .                                                                           (20) 

 
 
 
Then (7) and (10) can be written as: 
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( )( ) ( )( )nee
r

r
rr

Le

t


  2121 1

2

2
−+−−++
















=




                                            (21) 

( )
f

f

D
r

D
rr

Nu
rr

r 2
2

0

,0,00,
=

==

−=



=




= 


                                          (22) 

 
Here, we assume polynomial solution of the form (see, [9]): 
 

( ) ( ) ( ) ( ) 2

0 1 2,r t a t a t r a t r = + + .                                                                                            (23) 

 
Applying the boundary conditions as given in (22), we obtain 
 

( ) ( ) ( )2 21 2 00, , 1
4 4

f f

f f

r r
D D

Nu D Nu D
a t a t a t 

= =

 
 = = − = +
 
 

                            (24) 

 
Then, equation (23) becomes 
 

( ) 2
2 2, 1

4 4
f f

f f

r r
D D

Nu D Nu D
r t r  

= =

 
 = + −
 
 

                                                              (25) 

 
For long spherical shape (see, [4]), we have 
 

1
2

0
3 r dr =                                                                                                                             (26) 

where   is the average temperature.  
 
Equations (26) gives the relations 
 

2
2

8 96
1

4 20
f

f

r
Dff f

Nu D Nu

DD D
 

=

  
  = + −

  
  

                                                                            (27) 

 
And 
 

2
2

8 96
1

4 20
f

f

rff f
D

Nu D Nu

t D tD D
 

=

   
  = + −

   
  

.                                                                (28) 

 
Integrating (21) with respect to x , yield the following equation 
 

2
2

f

f

r
Dr

D

p q
t
 

=
=


+ =


.                                                                                                          (29) 
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Solving (29) gives 
 

( )2 1
f

pt

r
D

q
e

p
 −

=
= − .                                                                                                                (30) 

 
Substituting equation (30) into equation (25) gives 
 

( ) ( ) ( ) 2, 1 1 1
4 4

f fpt pt
Nu D qNu Dq

r t e e r
p p

 − −
 
 = + − − −
 
 

,                                                   (31) 

where      
    

( )
( )

( )

1 2

2

1

2

8 212 3 12
1 2 1

4 4 55
,

8 96
1

4 20

8

8 96
1

4 20

f f

f ff f f

f

ff f

f f

f

ff f

Nu D Nu DeLeNu Nu Nu
n e

D DD D D
p

Nu D Nu

DD D

D D
q

Nu D Nu

DD D

 

 

 


  

       −
       + − + + − + −

       
       =

  
  + −

  
  

−

=
  
  + −

  
  

      

       
The computation was done on equations (31) using computer symbolic algebraic package MAPLE 
2021 version. 
 

4     Results and discussion 
 

Simulation was carried out to show the impact of the model parameters by employing Polynomial 
Approximation Method (PAM) on the equation (7). The equation was solved over spatial co-ordinate 
and a specific period of time using Polynomial Approximation Method. The computation equation 
(31) was done using MAPLE 2021 version. The parameter values used in the simulations are 
 .  

Numerical simulation of Frank-Kamenetskii number, Lewis number, Nusselt number, condensed 
reactant diffusion coefficient and endothermicity number was conducted to see whether or not these 
parameters contribute significantly to the medium temperature. 

Figure 1 depicts the graph of medium temperature ( ),r t against spatial co-ordinate r  and time t  

for different values of Frank-Kamenetskii number  . It is observed that the temperature of the 
medium increases with time and decreases along spatial co-ordinate but this medium temperature 
decreases as Frank-Kamenetskii number increases.  

Figure 2 displays the graph of medium temperature ( ),r t against spatial co-ordinate r  and time t  

for different values of Lewis number Le . It is observed that the temperature of medium increases 
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with time and decreases along spatial co-ordinate but this medium temperature increases as Lewis 
number increases.  
 

Figure 3 shows the graph of medium temperature ( ),r t against spatial co-ordinate r  and time t  

for different values of Nusselt number Nu . It is observed that the temperature of medium increases 
with time and decreases along spatial co-ordinate but this medium temperature decreases as Nusselt 
number increases.  
 

Figure 4 displays the graph of medium temperature ( ),r t against spatial co-ordinate r  and time t  

for different values of condensed reactant diffusion coefficient fD . It is observed that the temperature 

of medium increases with time and decreases along spatial co-ordinate but this medium temperature 
increases as condensed reactant diffusion coefficient increases. 
 

Figure 5 depicts the graph of medium temperature ( ),r t against spatial co-ordinate r  and time t  

for different values of endothermicity number 1 . It is observed that the temperature of medium 

increases with time and decreases along spatial co-ordinate but this medium temperature increases as 
endothermicity number increases.  

 
Figure 1: Effects of Frank-Kamenetskii number on medium temperature 
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Figure 2: Effects of Lewis number on medium temperature 

 
Figure 3: Effects of Nusselt number on medium temperature 
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Figure 4: Effects of condensed reactant diffusion coefficient on medium temperature 

 
Figure 5: Effects of endothermicity number on medium temperature  
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It is worth pointing out that the effects observed in Figures 1 - 5, are important to guide insulation 
materials manufacturers so as to provide safety precautions during storage and usage. 
 

5    Conclusion 
 

For a well stirred reaction and in a high activation energy situation 0→ , we have found that thermal 
runaway could still occur when the activation energy for reaction is the same as activation energy for 

vaporization, i.e. 1=n . That is ( ) →t  as 
( ) 

1

1

−
→t . The existence of the unique 

solution of the problem implies that the problem represents a physical situation under specific 
conditions. In the presence of diffusion, the analytical simulations showed that increase in both Frank-
Kamenetskii and Nusselt numbers reduced the medium temperature while increase in Lewis number, 
condensed reactant diffusion coefficient and endothermicity number enhanced the medium 
temperature. Therefore, the established conditions and the results obtained are not expected to guide 
manufacturers of insulation materials but provide safety precautions during storage and usage. 
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