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Abstract 

The use of various types of wave energy as a probe is an increasingly promising non destructive 

means of detecting objects and of diagnosing the properties of quite compl 

icated materials. An analysis of this technique requires a detailed understanding of how signals 

evolve in the medium of interest in the absence of inhomogeneities (obstructions or perturbation) 

and the nature of the emerging signal when the original signal is perturbed by obstructions that 

might exist in the medium. Properties of the signal are then used to estimate the level of 

inhomogeneity in the medium. In this study, Magnetic Resonance Imaging (MRI) is used to 

detect partial blockage of fluid in a cylindrical pipe. The Bloch NMR flow equation is solved 

analytically in cylindrical coordinates for flow of fluid in a radially symmetric cylindrical pipe. 

Based on the appropriate boundary conditions, the radial axis was varied to depict free flow and 

partial blockage in the pipe. The Nuclear Magnetic Resonance (NMR) signals obtained were 

then analyzed and used to provide information on the type of blockage in the cylindrical pipe. 

 

Keywords: Bloch NMR diffusion equation, Cylindrical pipe, Plaque. 

Correspondence author:*Email- shakirudeen.yusuf@futminna.edu.ng  

 

1.0 Introduction 

Magnetic resonance imaging is a recent approach adopted in the diagnosis of ailments and 

diseases in humans without surgical invasion. It can also be used to determine problems 

associated with blockage in cylindrical pipes. It provides accurate assessment of the individual 

component or multi-component systems in a matter of minutes whereas traditional radioactive 

tracer techniques may take weeks for each component [1]. This is possible because fluids exhibit 

random molecular motion of spins. Through magnetic resonance coupled with the fact that the 

molecules of fluids carry magnetic moments with them, the rate of their signal loss or signal 

attenuation could be easily detected. This goes a long way to signify whether or not a problem 

exists at any point in any cylindrical pipe.  

Many works have been done in the area of fluid flow and blockage in fluid pipeline. Yuan used 

time splitting algorithms and Godunov mixed format to simulate the pulse propagation in the 
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blocked pipelines.  He stated that by using pulse launched at the pipeline inlet, the characteristic 

data of pipeline blockages could be identified through its propagation characteristics in multiple 

non-completely blocked natural gas pipeline segments [2]. Another technique used by Sattar is 

by the system frequency response. This is a technique whereby the frequency response is used in 

the detection of partial blockages in a pipeline. By this method, a partial blockage increases the 

amplitude of the pressure oscillations at even harmonics. Such an increase in amplitude has an 

oscillatory pattern, the frequency and amplitude was then used to predict the location and size of 

a partial blockage [3]. Similar to this is the method adopted by Mohapatra for the detection of 

partial blockages in single pipelines by the frequency response method [4]. Wang also 

investigated analytically the effects of a partial blockage on pipeline transients. A partial 

blockage is simulated using an orifice equation, and the influence of the blockage on the 

unsteady pipe flow is considered in the equation using a Dirac delta function [5]. 

Diffusion Magnetic Resonance Imaging (DMRI), being a viable alternative, is one of the most 

rapidly evolving techniques in the MRI field. Diffusion and flow can be measured very 

delicately and accurately using Magnetic Resonance Imaging [6]. Coefficient of diffusion of a 

substance defined as the amount of material that diffuses in a certain time plays a vital role in the 

detection of blockage in a pipe using MRI. Random diffusion motion of water molecules has 

intriguing properties depending on the physiological and anatomical environment of the 

organisms being studied. This is the principle being exploited by the method of DMRI.  Though 

not widely known, it has been noted for long that nuclear magnetic resonance is capable of 

quantifying diffusion movement of molecules.  

The same principle has been applied to a cylindrical water pipe under the influence of 

radiofrequency field as a probe to perturb the water molecules. This causes the nuclei to absorb 

energy from the applied electromagnetic (EM) pulse(s) and radiate this energy at a specific 

resonance frequency which depends on the strength of the magnetic field and other factors. This 

allows the observation of specific magnetic properties of an atomic nucleus. A Radio Frequency 

(RF) transmitter is needed to transmit energy into the fluid under consideration in the cylinder in 

order to “activate” the nuclei so that they emit a signal [7]. 

The process undergoes the following four stages: (1) a magnetic field, 𝐵𝑜  is applied, (2) the 

sample responds to 𝐵𝑜 (3) a radio frequency pulse or a train of radio frequencies pulses is applied 

during a limited time and (4) the system relaxes. The Free Induction Decay (FID) is the name 

given to the time-domain signal obtained during the relaxation process. The relaxation process 

itself is referred to as the free induction decay. It is the observable NMR signal generated by 

non-equilibrium nuclear spin magnetization precessing about the magnetic field conventionally 

along z direction [8]. This time-domain signal is typically digitized and then Fourier transformed 

in order to obtain a frequency spectrum of the NMR signal i.e. the NMR spectrum [9]. 
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2.0 The Bloch NMR Equations 

The  components of magnetization of fluid flow are given by the Bloch equations which 

are fundamental to understanding Magnetic Resonance Images:  

dt

dM x
=

2T

M x−            (1) 

dt

dM y
= −)(1 xBM z

2T

M y
         (2) 

=
dt

dM z )(1 xBM y−
1T

MM zo −−         (3) 

where  

oM = equilibrium magnetization  

xM = component of transverse magnetization along the 𝑥-axis 

yM = component of transverse magnetization along 𝑦-axis 

zM = component of magnetization along the field (𝑧 -axis) 

  = gyro-magnetic ratio of fluid spins 

𝐵0 = static magnetic field 

),(1 txB = radio-frequency (RF) magnetic field       

1T   = Longitudinal or spin lattice relaxation time       

2T  = Transverse or spin-spin relaxation time        

V  =   the flow velocity 

From the fundamental Bloch equations stated in equations (1) – (3), the diffusion equation was 

evolved with the diffusion coefficient 𝐷 evolving intrinsically without any additional term as 

done by Torrey [10]. The NMR diffusion equation as derived by Awojoyogbe [11] is given as: 

 

( )trB
T

F

r

M
D

t

M

o

oyy
,12

2

+



=





         (4) 



4 
 

where the diffusion coefficient 𝐷 = −
𝑉2

𝑇𝑜
 was accurately defined in terms of MRI flow 

parameters fluid velocity,V , 1T  and 2T  relaxation rates (as 
21

0

11

TT
T += ) and 

1T

M
F o

o = .  

The above diffusion equation with 𝐷 = −
𝑉2

𝑇𝑜
 , called coefficient of diffusion was evolved as an 

intrinsic part of the Bloch Nuclear Magnetic Resonance (NMR) equations.  

 

3.0 Solution of the Diffusion Equation in Radially Symmetric Cylinder 

Since the cylinder under consideration is radially symmetric, then it is independent of 𝜃 . 

Therefore 𝑀𝑦  can be expressed as   

𝑀𝑦 = 𝑀𝑦 (𝑟, 𝑧, 𝑡)                                              (5) 

𝑀𝑦  is the transverse magnetization. 

In cylindrical coordinates, equation (4) transforms to 

𝜕𝑀𝑦

𝜕𝑡
= 𝐷 (

𝜕2𝑀𝑦

𝜕𝑟2
+

1

𝑟

𝜕𝑀𝑦

𝜕𝑟
+

𝜕2𝑀𝑦

𝜕𝑧2
) +

𝐹𝑜

𝑇𝑜
𝛾𝐵1(𝑡)                                                               (6) 

Equation (6) can be expressed in the form: 

     𝑀𝑦 = 𝐹(𝑟, 𝑧)𝑈(𝑡) + 𝑤𝑐(𝑡)    (7) 

with     𝑤𝑐(𝑡̇) =
𝐹𝑜

𝑇𝑜
𝛾𝐵1(𝑡)     (8) 

      𝑤𝑐(𝑡) = ∫
𝐹𝑜

𝑇𝑜
𝛾𝐵1(𝑡)

𝑡0

0
𝑑𝑡    (9)

 
 

Using the method of separation of variables (MSV),  

     𝑀𝑦 = 𝐹(𝑟, 𝑧)𝑈(𝑡)       (10) 

In order to obtain solution that will not be identically zero,  the two expressions on the right hand 

side of (10) must be equal to a constant, say −𝜆2. Hence, the following two differential equations 

evolve:    

     
𝑑𝑈(𝑡)

𝑑𝑡
+ 𝜆2𝐷𝑈(𝑡) = 0     (11) 

    
𝜕2𝐹

𝜕𝑟2 +
1

𝑟

𝜕𝐹

𝜕𝑟
+

𝜕2𝐹

𝜕𝑧2 +𝜆2𝐹 = 0     (12) 
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By integrating equation (11), the general solution below is obtained: 

    𝑈(𝑡) = 𝐶1𝑒−𝜆2𝐷𝑡      𝜆 = 1, 2, … , …,    (13) 

where 𝐶1 is the arbitrary constant of integration 

In order to solve (12), the same method of separation of variables is followed:  

     𝐹 = 𝑄(𝑟)𝑍(𝑧)      (14) 

Again the two expressions on the right hand side of (14) must be equal to a constant, say−𝜇2, in 

order to obtain solutions that will not be identically zero. The following two differential 

equations evolve; 

      
𝜕2𝑄

𝜕𝑟2 +
1

𝑟

𝜕𝑄

𝜕𝑟
+ 𝜇2𝑄 = 0       (15) 

and       
𝜕2𝑍

𝜕𝑧2 −𝛽2𝑍 = 0        (16) 

where we have  

      𝛽2 = 𝜇2 − 𝜆2       (17) 

It could be noted that from equations (15), a Bessel differential equation evolves and its solution 

is given as 

    𝐹(𝑟) = 𝐶2𝐽0(𝜇𝑟) + 𝐶3𝑌𝑚(𝜇𝑟)       (18) 

where 𝐽0(𝜇𝑟) is the Bessel function of the first kind, of order zero and 𝑌𝑚(𝜇𝑟) is the Bessel 

function of the second kind, of order 𝑚. 𝐶2𝑎𝑛𝑑𝐶3 are constants. 

Also from (16),   𝑍(𝑧) = 𝐶4𝑒𝛽𝑧 + 𝐶5𝑒−𝛽𝑧        (19) 

Consequently, the solutions to the equations are: 

𝑈(𝑡) = 𝐶1𝑒−𝜆2𝐷𝑡             𝜆 = 1, 2, … , …,          (20) 

𝐹(𝑟) = 𝐶2𝐽0(𝜇𝑟) + 𝐶3𝑌𝑚(𝜇𝑟)           (21) 

𝑍(𝑧) = 𝐶4𝑒𝛽𝑧 + 𝐶5𝑒−𝛽𝑧            (22) 

Combining the solution to the diffusion equation (6), this gives the product of the quantities in 

(20), (21) and (22) plus ∫ 𝑤𝑐(𝑡̇)
𝑡0

0
𝑑𝑡 i.e.

 
𝑀𝑦 = 𝑀𝑦 (𝑟, 𝑧, 𝑡) = 𝐹(𝑟)𝑍(𝑧) 𝑈(𝑡) + ∫ 𝑤𝑐(𝑡̇)

𝑡0

0
𝑑𝑡         (23) 
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𝑀𝑦 (𝑟, 𝑧, 𝑡) = {𝐶2𝐽0(𝜇𝑟) + 𝐶3𝑌𝑚(𝜇𝑟)}{𝐶4𝑒𝛽𝑧 + 𝐶5𝑒−𝛽𝑧}{𝐶1𝑒−𝜆2𝐷𝑡} + ∫ 𝑤𝑐(𝑡̇)
𝑡0

0
𝑑𝑡    (24) 

The last function on the right hand side ∫
𝐹𝑜

𝑇𝑜
𝛾𝐵1(𝑡)

𝑡0

0
𝑑𝑡 = ∫ 𝑤𝑐(𝑡̇)

𝑡0

0
𝑑𝑡 is the radio-frequency 

field applied to perturb the molecules of the fluid. Therefore for the solution of  

𝑤𝑐(𝑡) = ∫
𝐹𝑜

𝑇𝑜
𝛾𝐵1(𝑡)

𝑡0

0
𝑑𝑡            (25) 

The radio frequency field (rf) field is defined as  

𝐵1(𝑡) = 𝑏𝐵1(𝑡)𝑐𝑜𝑠𝑤𝑡             (26) 

which implies    

𝑤𝑐(𝑡) = ∫
𝐹𝑜

𝑇𝑜
𝑏𝛾𝐵1(𝑡)𝑐𝑜𝑠𝑤𝑡

𝑡0

0
𝑑𝑡                                            (27) 

∫
𝑏𝐹𝑜

𝑇𝑜
cos (𝑤𝑡)

𝑡0

0
𝑑𝑡 =

𝑏𝐹𝑜

𝑤𝑇𝑜
𝛾sin (𝑤𝑡)                                            (28) 

Consequently, 

𝑀𝑦 (𝑟, 𝑧, 𝑡) = {𝐶2𝐽0(𝜇𝑟) + 𝐶3𝑌𝑚(𝜇𝑟)}{𝐶4𝑒𝛽𝑧 + 𝐶5𝑒−𝛽𝑧}{𝐶1𝑒−𝜆2𝐷𝑡} +
𝑏𝐹𝑜

𝑤𝑇𝑜
𝛾sin (𝑤𝑡)    (29) 

 

3.1 Solution using the Initial and Boundary Conditions  

We shall examine the behaviour of diffusion or flow of fluid at the point of free flow and partial 

blockage as shown in Figures 1a and 1b: 

 

 

 

 

 

 

Figure 1a - Free flow in a cylinder 
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(b) 

 

 

 

 

 

 

Figure 1b - Partial flow in a cylinder 

The following conditions shall be imposed: 

                                                    𝑖)            𝑀𝑦 (𝑟, 𝑧, 0) = 𝑀𝑖(𝑟, 𝑧);  

𝑖𝑖)                           𝑀𝑦 (𝑟, 0, 𝑡) = 0; 

𝑖𝑖𝑖)                        𝑀𝑦 (𝑟, 𝐿, 𝑡) = 0;   

𝑖𝑣)                        𝑀𝑦 (𝑎, 𝑧, 𝑡) = 0; 

    𝑣)                       |𝑀𝑦(𝑟, 𝑧, 𝑡)| = 𝑀,   

where 𝑟 is the space depicting the blockage and 𝑧 is the direction of flow and both are defined as 

below -    

    0 ≤ 𝑟 < 𝑎;    0 < 𝑧 < 𝐿;    𝑡 > 0   

Firstly, from the boundedness condition, 𝑟 = 0, 𝑌𝑚(𝜇𝑟)  → −∞; to keep the solution finite, 𝐶3 

must be zero. Thus the solution becomes   

  𝑀𝑦 (𝑟, 𝑧, 𝑡) = {𝑒−𝜆2𝐷𝑡}{𝐶2𝐽0(𝜇𝑟)}{𝐶4𝑒𝛽𝑧 + 𝐶5𝑒−𝛽𝑧}       (31) 

From the second boundary condition, we see that  

𝑀𝑦 (𝑟, 0, 𝑡) = {𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑟)}{𝐶4 + 𝐶5} = 0          (32) 

So that we must have 𝐶4 + 𝐶5 = 0 𝑜𝑟 𝐶5 = −𝐶4 

then (31) becomes 

𝑀𝑦 (𝑟, 𝑧, 𝑡) = {𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑟)}{𝑒𝛽𝑧 − 𝑒−𝛽𝑧} = 0                                            (33) 

Partial Blockage 

 

Z = 10m 

r 

blockage 

(30) 
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From the third condition we have 

𝑀𝑦 (𝑟, 𝐿, 𝑡) = {𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑟)}{𝑒𝛽𝐿 − 𝑒−𝛽𝐿} = 0                                                                  (34) 

which can be satisfied with 

 𝑒𝛽𝐿 − 𝑒−𝛽𝐿 = 0 ,   𝑒𝛽𝐿 . 𝑒𝛽𝐿 = 𝑒−𝛽𝐿 . 𝑒𝛽𝐿 = 1 = 𝑒2𝑘𝜋𝑖                                (35)       

It follows that we must have 

 2𝛽𝐿 = 2𝑘𝜋𝑖  or  𝛽 =
𝑘𝜋𝑖

𝐿
   𝑘 = 0,1,2, … …                                                                                         (36) 

Using this in equation (34), it becomes 

𝑀𝑦 (𝑟, 𝐿, 𝑡) = {𝐶𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑟)}𝑠𝑖𝑛
𝑘𝜋𝑧

𝐿
= 0                     (37) 

where 𝐶 is a new constant.  

From the fourth condition, we obtain 

𝑀𝑦 (𝑎, 𝑧, 𝑡) = {𝐶𝑒−𝜆2𝐷𝑡}{𝐽0(𝜇𝑎)}𝑠𝑖𝑛
𝑘𝜋𝑧

𝐿
= 0          (38) 

which can be satisfied only if  {𝐽0(𝜇𝑎)} = 0           (39) 

                                                          𝜇𝑎 = 𝑠1, 𝑠2, ….                                                                     (40) 

                                                                        𝜇 =
𝑠1

𝑎
,
𝑠2

𝑎
, … ….                                                               (41) 

where 
𝑠𝑚

𝑎
(𝑚 = 1,2, … . ) is the positive root of the Bessel function {𝐽0(𝑥)} = 0. Now from (17), 

(36) and (41), it follows that:  

                                      𝜆2 = (
𝑠𝑚

𝑎
)2 − (

𝑘𝜋𝑖

𝐿
)2  = (

𝑠𝑚

𝑎
)2 + (

𝑘𝜋

𝐿
)2                                                     (42) 

so that a solution satisfying all the boundary conditions except the first is given by  

𝑀𝑦 (𝑟, 𝑧, 𝑡) = {𝐶𝑒−𝐷𝑡(
𝑠𝑚
𝑎

)2+(
𝑘𝜋

𝐿
)2

} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿
         (43) 

where 𝑘 = 1,2,3, … ..; 𝑚 = 1,2,3, …. 

Replacing 𝐶 𝑏𝑦 𝐶𝑘𝑚 and summing over 𝑘 𝑎𝑛𝑑 𝑚 we obtain by the superposition principle the 

solution 

𝑀𝑦 (𝑟, 𝑧, 𝑡) = ∑ ∑ {𝐶𝑘𝑚𝑒−𝐷𝑡(
𝑠𝑚
𝑎

)2+(
𝑘𝜋

𝐿
)2

} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿
∞
𝑚=1

∞
𝑘=1     (44) 
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The first condition in (30) now leads to 

𝑀𝑖 (𝑟, 𝑧) = ∑ ∑ {𝐶𝑘𝑚} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿
∞
𝑚=1

∞
𝑘=1       (45) 

 This can be written as 

𝑀𝑖 (𝑟, 𝑧) = ∑ [∑ {𝐶𝑘𝑚} {𝐽0 (
𝑠𝑚

𝑎
𝑟)}]𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿
= ∑ 𝑏𝑘𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞
𝑘=1

∞
𝑚=1

∞
𝑘=1    (46) 

where  𝑏𝑘 = ∑ {𝐶𝑘𝑚} {𝐽0 (
𝑠𝑚

𝑎
𝑟)}∞

𝑚=1         (47) 

It follows that 𝑏𝑘 are the Fourier coefficients obtained when 𝑀𝑖(𝑟, 𝑧) is expanded into a Fourier 

sine series in 𝑧 (𝑟 being kept constant).  

Thus  𝑏𝑘 =
2

1
∫ 𝑀𝑖(𝑟, 𝑧)𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

1

0
𝑑𝑧         (48) 

We now find 𝐶𝑘𝑚 from the expansion in equation (46). Since 𝑏𝑘 is a function of 𝑟 this is simply 

the expansion of 𝑏𝑘 into a Bessel series. 

Consequently,   

𝐶𝑘𝑚 =
2

𝐽1
2(

𝑠𝑚
𝑎

)
∫ 𝑟𝑏𝑘𝐽0 (

𝑠𝑚

𝑎
𝑟)

1

0
 𝑑𝑟                                          (49) 

Using (47),   

𝐶𝑘𝑚 =
4

𝐽1
2(

𝑠𝑚
𝑎

)
∫ ∫ 𝑟𝑀𝑖(𝑟, 𝑧)𝐽0 (

𝑠𝑚

𝑎
𝑟) 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

1

0
 𝑑𝑟𝑑𝑧

1

0
                             (50) 

The required solution is  

𝑀𝑦 (r, 𝑧, 𝑡) = ∑ ∑ {𝐶𝑘𝑚𝑒−𝐷𝑡(
𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2

} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑚=1

∞

𝑘=1

 

with 𝐶𝑘𝑚 in (49) as coefficient        (51) 

 

With the radio frequency (rf) field, the solution is 

𝑀𝑦 (𝑟, 𝑧, 𝑡) = ∑ ∑ {𝐶𝑘𝑚𝑒−𝐷𝑡(
𝑠𝑚
𝑎

)2+(
𝑘𝜋

𝐿
)2

} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿
∞
𝑚=1

∞
𝑘=1 +

𝑎𝐹𝑜

𝑤𝑇𝑜
𝛾sin (𝑤𝑡)

 

(52)

 

Assume 𝑀𝑖(𝑟, 𝑧) = 𝜎0, a constant. 

𝐶𝑘𝑚 =
4𝜎0

𝐽1
2(

𝑠𝑚
𝑎

)
∫ ∫ 𝑟𝐽0 (

𝑠𝑚

𝑎
𝑟) 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

1

0
𝑑𝑟𝑑𝑧

1

0
       (53) 
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𝐶𝑘𝑚 =
4𝜎0

𝐽1
2(

𝑠𝑚
𝑎

)
{∫ 𝑟𝐽0(

𝑠𝑚

𝑎
𝑟)𝑑𝑟

1

0
∫ 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

1

0
𝑑𝑧       (54) 

=
4𝜎0

𝐽1
2(

𝑠𝑚
𝑎

)
{

𝐽1(
𝑠𝑚
𝑎

)
𝑠𝑚
𝑎

} {
1−𝑐𝑜𝑠𝑘𝜋

𝑘𝜋
}         (55) 

=
4𝜎0(1−𝑐𝑜𝑠𝑘𝜋)

𝑘𝜋
𝑠𝑚
𝑎

𝐽1(
𝑠𝑚
𝑎

)
           (56) 

Substituting for 𝐶𝑘𝑚 in equation (51) 

𝑀𝑦 (𝑟, 𝑧, 𝑡) =
4𝜎0

𝜋
∑ ∑ {

(1−𝑐𝑜𝑠𝑘𝜋)

𝑘𝜋
𝑠𝑚
𝑎

𝐽1(
𝑠𝑚
𝑎

)
𝑒−𝐷𝑡(

𝑠𝑚
𝑎

)2+(
𝑘𝜋

𝐿
)2)} {𝐽0 (

𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿
∞
𝑚=1

∞
𝑘=1   (57) 

 

Finally, the solution for the magnetization of any molecule of the fluid at any point 𝑟  and time 𝑡  

is given as: 

𝑀𝑦 (𝑟, 𝑧, 𝑡) =
4𝜎0

𝜋
∑ ∑ {

(1 − 𝑐𝑜𝑠𝑘𝜋)

𝑘
𝑠𝑚

𝑎 𝐽1(
𝑠𝑚

𝑎 )
𝑒−𝐷𝑡(

𝑠𝑚
𝑎

)2+(
𝑘𝜋
𝐿

)2

} {𝐽0 (
𝑠𝑚

𝑎
𝑟)} 𝑠𝑖𝑛

𝑘𝜋𝑧

𝐿

∞

𝑚=1

∞

𝑘=1

+
𝑏𝐹𝑜

𝑤𝑇𝑜
𝛾sin (𝑤𝑡) 

            (58)        

4.0 Results and Discussion 

The fluid under consideration is water and its diffusion coefficient which is almost the same as 

cerebrospinal fluid is 2.33𝑥10−9 . 𝑇1 and 𝑇2  values of water were used and the following 

substitution made for both free flow and partial blockage of the pipe: 

𝑠𝑚 = 𝛾𝐺𝛿 𝑎𝑛𝑑 𝐹𝑜 =
𝑀𝑜

𝑇1
 

Based on our computational algorithm, Figures 2a and 2b were obtained for free flow and partial 

blockage respectively. 
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Figure 2a: Free flow of fluid (no blockage) inside the cylinder 

 

 

Figure 2b: Partial blockage of fluid inside the cylinder 
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5.0 Conclusion 

The simple analytical expression obtained contains very important magnetic resonance flow 

parameters which can be useful for the non invasive analysis of fluid flow or blockage. The 

parameters are 1T , 2T  relaxation rates which are unique to each fluid. Also, the introduction of 

radio frequency (rf) pulse into the diffusion equation to make the fluid particles precess thereby 

giving off signal in a matter of microseconds is a great advantage of this study. For example, for 

free flow condition, the free induction decay (FID) curve is demonstrated signifying no blockage 

and the magnetization is between 0.0 – 0.006. However, during partial blockage, the 

magnetization reduces (signal loss) in value (0.0001 – 0.00004). Interestingly, both readings 

were registered between 0.0 and 0.0005 seconds! Unlike other methods that are slow and may 

take longer time, this quick identification of problems whenever it arises allows for immediate 

control and elicitation of appropriate solution before much damage is done. The analysis can also 

be useful in process industries where different network of pipes are used. 

 

References 

[1] Awojoyogbe O.B., Faromika O.P., Dada M., & Dada O.E. (2011) Mathematical 

Concepts of the Bloch Flow Equations for General Magnetic Resonance Imaging: A 

Review Part A, 05/2011 Vol. 38A (3) 85-101. 

[2] Yuan Tian, Xuefen Zhao, Dan Tian, Rui Wu and Huan Tang Applied Mechanics and 

Materials Vols 490-491 (2014) pp 490-497. Trans Tech Publications, Switzerland 

Doi:10.4028/www.scientific.net/AMM.490-491.490. 

 

[3] Sattar, A., Chaudhry, M., and Kassem, A. (2008). ”Partial Blockage Detection in 

Pipelines by Frequency Response Method.” J. Hydraul. Eng., 134(1), 76–89.  

[4] Mohapatra, P., Chaudhry, M., Kassem, A., and Moloo, J. (2006). ”Detection of Partial 

Blockage in Single Pipelines.” J. Hydraul. Eng., 132(2), 200–206.  

[5] Wang, X., Lambert, M., and Simpson, A. (2005). ”Detection and Location of a Partial 

Blockage in a Pipeline Using Damping of Fluid Transients.” J. Water Resour. Plann. 

Manage., 131(3), 244–249.  

[6] Hazlewood C.F., Chang D.C. & Nichols B.L. (1974). Nuclear Magnetic Resonance 

Relaxation Times of Water Protons in Skeletal Muscle, Biophys J 14: 583-606. 

[7] Waldo S. Hinshaw & Arnold H. Lent (1983) An Introduction to NMR Imaging: From the 

Bloch Equation to the Imaging Equation proceedings of the ieee, vol. 71, no. 3.  



13 
 

[8] Hopf F. A., Shea R.F. & Scully M. O. (1973) "Theory of Optical Free-Induction Decay 

and Two-Photon Super radiance". Adsabs.harvard.edu 7 (6): 2105–2110. Bibcode: 1973 

PhRvA 7.2105H. doi:10.1103/PhysRevA.7.2105.  

[9] Duer M. J. (2004) Introduction to Solid-State NMR Spectroscopy. Blackwell Publishing, 

p. 43-58.  

[10] Torrey H.C. (1956) Bloch equations with diffusion terms. Physical Review; 104 (3): 563-

565. 

 [11] Awojoyogbe, O. B., Faromika, O. P., Dada, M., & Dada, O. E. (2011). Mathematical 

Concepts of the Bloch Flow Equations for General Magnetic Resonance Imaging: A 

Review. 38A (3) 85-101. 

 

 

(NAMP 2016) 


