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Abstract—Cloud Computing has witnessed tremendous growth in the last decades. Security and privacy of cloud data are two major concerns that have limited the growth and researches witnessed in the area of cloud computing. With Artificial Intelligence and Deep Learning taking prominent role in the decade, individuals and organizations are becoming more uneasy to the issues of security and privacy of cloud data. This article aims to provide an introduction to Fully Homomorphic Encryption as an antidote to the challenges of security and privacy of cloud data computation. The milestones and review of related works in the area of Homomorphic Encryption was discussed. An insight into future research direction in the field of Fully Homomorphic Encryption was specified.
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I. Introduction 
Cloud Computing has been described as one of the novel innovation and approach to computing in the last decades. Cloud Computing enables resources such as storage servers, software and computer network devices to be offered to the customers over the internet in which a fee is charged for the usage of the resources. A formal definition for cloud computing was given by The National Institute of Standards and Technology (NIST) as “a model for enabling ubiquitous, convenient, on-demand network access  to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction” [1]. As business parties and individuals entrust their data and outsource computational tasks to cloud facilities (servers) owned by third-party, concerns for security and privacy of such information is being raised. These concerns are genuine since the data owner does not have control over the infrastructure and the data residing on the cloud server. Security threat to the data stored is in the area of integrity, confidentiality and availability [2]. Privacy concerns entail that the confidentiality of such data is no longer guaranteed on the third party cloud servers and also results of computations (data mining operations, machine learning and deep learning) on such data leaks the sensitive information on the data. While endless examples of areas for such privacy concerns exist, one area of utmost privacy concerns that deserve special attention is Medical Computing [3]. One solution to the security and privacy of data stored in the cloud server is data encryption. That is, the security and privacy of the data is only guaranteed if prior to being uploaded to a third party (cloud service) server, the data is traditionally encrypted by the owner using standard encryption methods. Through this process, only the legitimate data owner should have access to the data using their private decryption key to decrypt the ciphertext before having access to the data. However, traditional encryption methods which requires the need to decrypt the ciphertext prior to carrying out computations on it limits the intents to outsource computations on the externally stored information because this private decryption key does not reside with the data centres [4]. These standard encryption methods restrict data utility-malleability, but recent state of the art and cryptography advancement is geared towards carrying out operations on encrypted data without decrypting it [5].
One potent antidote to cloud data security and privacy issues is the method of Homomorphic encryption (HE) [6], [7] The Homomorphic encryption tool comes in the form of Partially Homomorphic Encryption (PHE) and Fully Homomorphic Encryption (FHE).
PHE schemes are encryption schemes that are homomorphic with respect to only one type of operation: addition or multiplication but not both.
FHE is a public key encryption which allows for arbitrary operations on ciphertext. An evaluation algorithm can evaluate functions over ciphertexts that are homomorphicaly encrypted and the output resulting from the evaluation is contained in the ciphertext space. FHE implements strong security called semantic security. The semantic security does not allow any adversary holding only the public key and ciphertext to grasp any information about the underlying plaintext, other than its length.
II. cloud security and privacy challenges
Security and privacy of data are the two major challenges facing the growth of cloud computing. This section takes a brief look at these challenges. 
A. Cloud Security Challenges 
As earlier stated in section I, data security threats on the cloud is categorized into three classes; integrity, confidentiality and availability. Integrity implies that unauthorized entity should not be able to modify or delete the data. Confidentiality implies that the data or information should not be exposed to any unauthorized users. Availability is a critical requirement that the data or information should be provided and there should not be denial of access to the data at any point in time. The cloud provider should always ensure the security of the data in the cloud. [8].
[9] [10] identified the following types of cloud security risks:
1. Abuse and nefarious use of cloud computing

2. Insecure application programming interface

3. Malicious agent
4.  Shared technologies

5. Data loss or leakages

6. Account or service hijacking

7. Unknown risk profile
B. Privacy Challenges in the cloud
An elaborate definition for privacy means more than just confidentiality of information. Privacy is the right to liberty, this implies the right of individual to know what is known about them, to be aware of the stored information about them, and control the communication of such information to third parties in order to prevent its abuse [11]. The confidentiality of private ssensitive personal data in the cloud is of utmost concerns because it is easier to manipulate, share and easier to lose control of such data.  There are several of such sensitive private data with privacy concerns but areas that deserve special attention is financial and medical data used in Medical Computing [12]. Also, there are local or international laws governing data regulations in some countries, such as Health Insurance Portability and Accountability Act (HIPPA) in America, on medical data privacy.
Some of the privacy issues in cloud computing and ways in which they are being tackled includes:
1. Data protection which plays a major role in cloud computing environment. The issue of data protection is being addressed by data encryption.
2. User control over the data stored in the cloud. There are regulations put in place to guide accessing of the data in the cloud.
3. Unauthorized usage and sale of the data. Certain agreements are put in place between the customer and cloud service providers on unauthorized usage of the data so as to enhance the trust between them.
4. Loss of Legal protection over certain categories of data. Some certain categories of data may lose legal protection of privacy once they are on the cloud. It is therefore very important to be abreast of legislation on cloud computing both locally and internationally.
III. Homomorphic Encryption
Homomorphic Encryption (HE) allows for computation on encrypted data. HE is a potent antidote to data security issues in the cloud because data in an encrypted form can be stored, and computations can be carried out on them without the need to first decrypt them. The problem of performing operations on encrypted data was first defined in 1978 by [13] who suggested the construction of secret homomorphisms–privacy homomorphism’s –as a way of providing a technique that meets this demand. In the literatures on homomorphic encryption, researchers have come up with several terminologies in describing types of HE schemes. Therefore it is very important to give the definitions of these terms so as to have a clear cut meaning of such terms.

Definition 1: (Partially Homomorphic Encryption (PHE) are encryption schemes that are homomorphic with respect to only one type of operation: addition or multiplication. 
Definition 2: (Some What Homomorphic Encryption); Let ϲ be the set of allowed binary circuits. then, a ϲ evaluation scheme (Gen, Enc, Eval, Dec) that has (i) correct decryption and (ii) correct evaluation is called a somewhat homomorphic encryption scheme (SWHE).
Definition 3: (Levelled Homomorphic Encryption); Let ϲ be the set of allowed binary circuits., then, a ϲ -evaluation scheme (Gen, Enc, Eval, Dec) is called a levelled homomorphic scheme if it has (i) correct decryption, (ii) correct evaluation, (iii) takes an auxiliary input d to Gen which specifies the maximum depth of circuits that can be evaluated, (iv) is compact, and finally requires that the length of the output of Eval  does not depend on d.
Definition 4:  (Fully Homomorphic Encryption (FHE)); Let ϲ be the set of allowed binary circuits, then, a ϲ-evaluation scheme (Gen, Enc, Eval, Dec) is fully homomorphic if it allows an unbounded number of homomorphic operations by bootstrapping. This step can only be done (currently) by evaluating the decryption circuit inside a SWHE schemes.

However,[6] defined the operations of addition and multiplication on encrypted blocks as:
Definition 5: (FHE): given that  E(m) is the application of the encryption algorithm to a message m, a cryptographic scheme is fully Homomorphic iff:
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For any m1 and m2  block of the messages to be encrypted and the same applies to any number of consecutive operations performed on a single block.

A. Practical Application Areas of Homomorphic Encryption
Apart from it usage in the area of cloud computing security, some of the selected application areas of Homomorphic Encryption as spelt out by [14], [15] is presented in Table I. 
B. Homomorphic Encryption Schemes 

Homomorphic Encryption Schemes provide a systematic plan or arrangement to compute over ciphertext. 
1) Partially Homomorphic Encryption schemes

The early Homomorphic Encryption Schemes (Partially homomorphic encryption schemes) allow for addition or multiplication operations of ciphertexts but they do not simultaneously support both operations [16] Those schemes that supported modulo N addition are said to be additively homomorphic. [17] and [18] scheme supported Modulo N addition operations and [19] scheme was multiplicatively homomorphic. The problem then was that none of these techniques were able to undertake concurrent addition and
TABLE I.  Some  application areas of 
Homomorphic Encryption 

	S/No
	Homomorphic Applications
	Descriptions/Features

	1
	Electronic Voting and Voting over the Internet
	In e-voting, the tally given the encrypted individual votes is provided by the homomorphic property of the tool without decrypting the votes. 

	2
	Checking the Integrity of private Data
	HE can be used to confirm the integrity of data outsourced to untrusted cloud 

	3
	HE applications in Genomics 
	In medical institutions, FHE is used to carry out private genomics analysis and matching 

	4
	FHE  applications in HealthCare 
	FHE assist in computation over private medical data of patients. Also, Homomorphic encryption (HE) can help to address the balance of risk and utility in information sharing for some applications in the healthcare industry. Billing and report generation are two of such applications

	5
	Watermarking and fingerprinting schemes
	Homomorphic Encryption is used to add a mark to encrypted data. Watermarks are used to determine the owner/seller of digital materials to ensure the copyright. Fingerprinting schemes enable the identification of the rightful buyer of data by the merchant so that data is not illegally redistributed.

	6
	Oblivious transfer 
	HE is used in oblivious transfer protocol. A type of protocol where a sender transfers  potentially many pieces of information to a destination but the sender remains oblivious.

	7
	Multiparty computation 
	In SMC, many parties want to compute a joint public function on their individual inputs data but want to keep their individual inputs private. It is a problem of computing over encrypted data. FHE encryption ensures that the data are kept secret. 


multiplication operations. Table II shows the popular partially homomorphic encryption schemes and the operations that can be performed.
2) Somewhat Homomorphic Encryption Scheme

In 2005, [18] presented a scheme that supported more than one operations. The scheme allows unrestricted additions operations with one multiplication. [20], demonstrated how one can compute little-depth circuit, but their construction required enlargement in the size of ciphertext. The scheme presented by [21] was additively homomorphic and offered an efficiency guarantee. It can encrypt any size of plaintexts, and the ciphertext associated with a plaintext is larger than it.
TABLE II.  Some partially homomorphic encrypton schemes      and operations that can be performed on them 

	S/No
	PHE Scheme
	Year
	Homomorphic Operation that can be performed

	1
	Rivest Dertuzous Adleman (RSA)
	1978
	Addition

	2
	(Goldwasser and Micali) GM
	1982
	Multiplication

	3
	El-Gamal
	1985
	Multiplication

	4
	Benaloh
	1994
	Addition

	5
	Naccache and Sten (NS)
	1998
	Addition

	6
	Okamoto and Uchiyama (OU)
	1998
	Addition

	7
	Pallier
	1999
	Addition

	8
	Damgard and Jurik (DJ)
	2001
	Addition

	9
	Kawachi (KTX)
	2002
	Addition

	10
	Galbraith
	2003
	Addition


Source:  Acar et al., (2017)

The work of [22] demonstrated a way of using this property to build an HE scheme that could compute a branching program over ciphertext. These set of homomorphic encryption schemes described are referred to as Somewhat Homomorphic Encryption. There are SWHE schemes that were in operations before the Gentry’s scheme and those that were borne after Gentry’s breakthrough. Those after Gentry’s breakthrough are also a family of the FHE scheme – they are referred to in the literature as Levelled Homomorphic Schemes. Table III shows popular SWHE, before the Gentry’s scheme.
TABLE III.  Somewhat  homomorphic encrypton schemes    before the gentry’s scheme
	S/No
	SWHE Scheme
	Year
	Circuit Evaluation size

	1
	Yao 
	1982
	Arbitrary

	2
	Sander (SYY )
	1999
	Many AND and One OR/NOT

	3
	Boneh (BGN) 
	2005
	Unlimited ADD and One MULT

	4
	Ishai and Paskin(IP)
	2007
	Arbitrary


3) Fully Homomorphic Encryption Scheme
The work of [23] pioneered feasible proposal to a long-standing open problem, which is the realization of an encryption scheme that is fully Homomorphic [6], [24]. Not only was an FHE successfully constructed by Gentry’s original scheme, but it also provides a general framework to obtain an FHE scheme. Fully Homomorphic encryption is possible with certain encryption methodology and hardness assumptions. Gentry’s FHE scheme was based on ideal lattices.  A lattice could have an infinite number of base vectors and it is computationally hard to find the closest vector unless a proper set of basis vectors are known to be associated with it. Consequently, majority of researchers in FHE after Gentry’s breakthrough used the blueprint of Gentry’s work in attempted designs of secure and practical FHE schemes  [25].
Tremendous progress has been recorded after Gentry’s breakthrough. Schemes following the Gentry’s scheme were more practical and robust having improved parameters and security realizations; by taking the hardness problem to the Approximate-Greatest Common Divisor (AGCD) [26], Learning with Errors (LWE) and Ring learning with Errors (RLWE) which schemes and hardness assumptions are over the Learning with parity Error and Polynomial rings respectively. Not only is RLWE methodology suitable for building a robust FHE scheme, but it is also resistant against a quantum adversary [27]. The RLWE schemes based on polynomial rings greatly improved the efficiency of the FHE construction and therefore more attention have been focused on the RLWE schemes.[25][28] 
There are also NTRU-like FHE schemes which hardness assumptions is based on standard worst-case problems over ideal lattices [25]. Table IV shows the popular FHE after Gentry’s scheme.
4) Homomorphic Encryption Library

Currently researchers, majorly non cryptographers,  working in the area of applications of FHE, do so through the publicly available FHE libraries.
TABLE IV.  some publicly available fhe implementations 
	Library Name
	Scheme
	Language
	Documentation

	HElib

	[Brakerski et al.,  2011]
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	[Halevi and Shoup 2013]

	SEAL

	FV 2012
[Fan and Vercauteren 2012b]
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	[Chen et al. 2017]

	LibScarab

	SV
[Smart and Vercauteren 2010]
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	[Perl et al,2011]

	FHEW

	DM 2014
[Ducas and Micciancio, 2015]
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	[Ducas and Micciancio, 2015]

	TFHE

	CCGI16
[Chilloti et al, 2016]
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	[Chilloti et al, 2016]

	(F-NTRU)

	
[Doroz and Sunar 2017]
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	[Doroz, 2017] 


FHE libraries are low-level implemetations of the various FHE schemes. The computations involved in order to achieve FHE such as; ciphertext packings, bootstrapping, multi-threading, re-linearization and Single Inline Multiple Data (SIMD), are very complex and therefore there is  need for special design libraries. Although there are numerous FHE implementations as published in the literature, unfortunately, only a few of them are publicly available to researchers [25]. Amongst the publicly available implementations, Helib[32]  and Simple Encrypted Arithmetic Library (SEAL) [33] are both open source libraries for implementing the (levelled) Fully-homomorphic encryption. HElib implemented the Brakerski, Gentry and Vaikuntanathan (BGV) scheme; SEAL implemented the Fan and Vercauteren (FV) scheme. There has been an improvement in Helib and SEAL in the works  of [34] and thereby enabling it to efficiently carry out arbitrarily computation on ciphertexts that implemented recryption and without being a levelled implementation..
HElib [35] is more popular  and widely used library by researchers [25]. HElib implemented the BGV scheme with Smart-Vercauteren ciphertext packing techniques and added some new optimizations techniques. The design and implementation documentation of HElib are in [35] and documented algorithms used in Helib are in [34]. Some of the difficulties in the usage of HElib and most FHE libraries are; researchers will have to model their data to a format that will be workable and also tailor their algorithms to a form that can be evaluated homomorphically. Algorithms needs to be converted to a format which is devoid of other operators except addition and multiplication and any other type of operators  provided by the libraries.

Though HElib might be more popular, Simple Encrypted Arithmetic Library (SEAL) [33] is an efficient and a more simpler FHE library. The developer of SEAL claimed that the goal of providing the library was to provide a well-documented FHE library that can be easily used by both crypto experts and non-experts with no crypto background, especially researchers’ in bioinformatics [36]. SEAL is easier to use because it does not have external dependencies like others but included are; automatic selection of parameters and  noise estimator tools.

The F-NTRU library provides homomorphic encryption scheme implementation by Doröz and Sunar. F-NTRU scheme adopts the flattening technique proposed in GSW [37] to the Stehlé and Steinfeld NTRU variant [38]. Similar to GSW, the scheme does not require evaluation keys or key switching. Also, the scheme uses wide key distributions, and hence is immune to the Subfield Lattice Attack. The scheme has a competitive timing compared to other schemes requiring about 5.8 ms for homomorphic multiplications (5 levels) [39].
IV. FHE challenges and outlook
This section takes a brief look at the challenges and future prospects of FHE.
A. FHE  Computation Challenges 

Although FHE allows for performing arbitrary computations on ciphertext which endear it to computation on the cloud, it has limitations that manifest on multiple fronts; Cryptographic overheads and functions of computations performance issues. The time taken to perform operations for each gate of the circuits as well as other maintenance operations constitute the cryptographic overhead and this makes FHE slow for running arbitrary functions. For example, multiplication which takes one cycle time on regular numbers requires an indefinite but emphatically large number of cycles. 

The functions of computations of FHE are the function or algorithm that is being evaluated by the FHE. Usual data formats, such as integer and floating-point number types does not naturally support the FHE design, by that making the use of any function untrivial. To evaluate a program with FHE, it must be compiled into a Boolean circuit with nontrivial multiplication depth. Therefore, in using FHE, the computations must be easily expressed in addition and multiplication over a finite field. In addition, the multiplicative depth is small and values encrypted are bits or otherwise they maintain a small plaintext domain [7]. The key to solving the performance problem of FHE is specialization. This entails the use or designing of a model with customized encryption scheme or building a particular or functional model of the system setting of interest to plug into an existing generic FHE scheme.
B. Future Outlook 

Researches into FHE computation will continue to gather momentum into the future. Identified challenges and bottlenecks will be tackled to improve on the time it takes to compute on cipher texts.
V. conclusion and future works

In this work, Fully Homomorphic Encryption (FHE) was discussed as an antidote to cloud security and privacy concerns.  The study started with an x-ray of the security and privacy challenges facing cloud computing, this was followed with a detailed discussion on Fully Homomorphic Encryption and how it is being used to tackle cloud security and privacy issues. Future works will dwell on tackling the computational overhead involve in the deployment of Fully Homomorphic Encryption to achieving secure cloud data computing
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