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Abstract 

A numerical method is proposed in this paper to directly solve third order boundary value 

problems that could be coupled with second order boundary value problem(s). The 

Modified Boundary Value Methods (MBVMs) with continuous coefficients are applied. 

These are referred to as Block unification multi-step methods (BUMMs) which are derived 

and used to obtain methods applied through the block unification approach. The computed 

results are compared with some numerical results to show efficiency and accuracy 

advantages. 
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1. Introduction 

Mathematical models developed in science, engineering and technology help understand 

physical phenomena in these fields. These models are expressed in equations in which a 

function and its derivatives play significant roles. These equations arise not only in fields 

like physical science but also in fields like operation research, psychology, medicine, 

economics, engineering, etc., ranging from models that describe neural works to the 

deflection of a curved beam that has a constant or varying cross section and as a result 

faster and more accurate numerical methods are required since most of them defy analytical 

solutions (Jikantoro et al., 2018). 

Steady flow of viscous incompressible fluids has attracted considerable attention in recent 

years due to its crucial role in numerous engineering applications. Numerical analysts 

encounter actually a wide variety of challenges in obtaining suitable algorithms for 

computing flow and heat transfer of viscous fluids (Bataller, 2010). The most common 

approach for problems in unbounded domains is to apply polynomials that are orthogonal 

over unbounded domains, other direct method is based on rational approximation (Parand 

et al., 2011). 

Boundary layer flow problems in ordinary differential equations have been discussed in 

many papers in recent years. The paper of (Akdi and Sedra, 2014) combined the standard 
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adomian decomposition method and a finite difference scheme, while taking note of their 

respective advantages and disadvantages, to solve the Blasius problem. This way the 

coupled method offset the limitations of the individual methods.  

Collocation approximation was applied in deriving schemes that were applied as a block 

method to solve special third order initial value problems in (Olabode, 2009). Other 

researches include the works of Abdullah et al. (2013:2013) who had developed a fifth 

order block method using constant step size with shooting technique to solve third order 

non-linear boundary value problems and developed a fourth order two-point block method 

for solving non-linear third order boundary value problems respectively. A continuous 

linear multistep method was used in Jator (2008) to generate multiple finite difference 

methods that were assembled into a single block matrix that was used to solve third order 

BVPs. Multiple Finite Difference Methods from a linear multistep method of step 4 

obtained in Jator (2009) were used to solve third order boundary value problems directly. 

A family of three step hybrid methods independent of first and second derivative 

components using Taylor approach were proposed to solve special third order ODEs in 

Jikantoro et al. (2018) directly. In the work of Ahmed (2017), the variational iteration 

method was used to get numerical solutions to third order ordinary boundary value 

problems after reducing them to a system of first order ODEs. The paper of Bhatti et al. 

(2018) solved the resulting coupled differential equations from stagnation point flow over 

a permeable shrinking sheet by applying successive linearisation method and spectral 

collocation method.  

Boundary Value Methods in Block Unification Approach have been considered recently in 

the solution of ordinary differential equations. These methods are developed from the linear 

multistep method in which a main method is developed and additional methods are derived 

from the main method. Boundary value methods applied as block unification method to 

solve second order boundary value problems were implemented in the work of Biala and 

Jator (2017). 

 

2. Derivation of Method 

In this section, the construction of the block unification multistep method through the 

interpolation and collocation approach is discussed. This method will be used to produce 

several discrete schemes for solving third order ordinary differential equations. 

The starting point is to construct the modified boundary value method (MBVM), for third 

order ordinary differential equations, which has the form 
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number so that the formula derived from (1) satisfies the root condition.  

The main and additional methods are then obtained by evaluating (1) at jnx + where  

vvjvj ,1,2)1(1 −=  to obtain the formula of the following form: 
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The approach above is applied to construct another block unification multi-step method 

(BUMM), for second order ordinary differential equations, which has the form 

2 2

1 1 0

0

( ) ( ) ( ) ( ) ( ) ( ) ,
k

v n v v n v n j n j w n w

j

U x x s x s x s h x m h x m    + − + − + +

=

= + + + +   (3) 

The first and second derivative formulas for (1) are used to generate additional methods by 

evaluating )(xU  and )(xU   at kjx jn )1(0, =+  so also is the first derivative formula for (3) 

used to generate its additional methods. The construction of (1) is discussed in the 

following theorem. 

Theorem 2.1 Let ( ), 0(1)( 4)jT x j k= +  be the Chebyshev Polynomial used as basis function 

and W a vector given by 
T

knnvnvnn fffyyyW ),...,,,,,( 11 ++−+= where T is the transpose. 

Consider the matrix V defined as 
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 and obtained by replacing the jth column of V by the vector W and let (2) satisfy 

jnjn yxU ++ =)(  vvj ,1,0 −=  and vvvj ,1,2,0 −−=  

jnjn fxU ++ = )(  kj )1(0=         (4) 

then the continuous representation (1) is equivalent to 
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3. Numerical Method: Block Unification Multistep Method 

To derive an implicit three step method for the third order ordinary differential equations 

with one off-grid point, the following specifications were considered,  r = 3, s= 5, k = 3, v 

=
3

7
, to give the continuous form as:  
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Evaluating equation (6) at points 
3

73 ,
+

+ ==
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3 3
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For )3)(3(0 −= Nn
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for )3)(3(0 −= Nn  

And the second derivative formulae are 
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for )3)(3(0 −= Nn  

To derive an implicit three step method for the second order ordinary differential equations 

with one off-grid point, the following specifications were considered,  r = 3, s= 5, k = 3, v 

=
3

7
, to give the continuous form as:  
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For )3)(3(0 −= Nn
 

The first derivative formulae are 
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4. Analysis of Basic Properties 

Theorem 4.1: Let ),,( iii yyy  be an approximation to the solution vector 

))(),(),(( iii xyxyxy  for the third order ordinary equations from boundary layer flow. If 

iii yxye −= )( , iii yxye −= )( , iii yxye −= )( , where the exact solution given by the 

vector ))(),(),(( xyxyxy  is several times differentiable and if YYE −= , then the BVMs 

are said to be convergent of order 3k + which implies that 3( )kE O h += , where k is the step 

number. 

Proof: Consider the exact form of the system formed from equations (7) to (9) given by 

0)()(3 =++− hLCYQFhPY         (13) 

where )(hL  is the truncation error vector obtained from the formulae (7) to (9). The 

approximate 

form of the system is given by 
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0)(3 =+− CYQFhYP          (14) 

where Y  is the approximate solution of vector Y . 

Using the mean value theorem after subtracting (13) from (14) and letting 
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From (15) and )(hL  

)()( 13 hLQBhPE −−=  

)(hSLE =  

)(hSLE =  

 
3 6( ) ( )kO h O h− +=  

 
3( )kO h +=  

Which show that the methods are convergent and the global errors are of order 
3( )kO h +

 

5. Numerical Examples and Results Discussion 

Here, numerical examples such as Blasius equation and Falkner-Skan equation are 

considered. Solutions in tables 1 and 2 were compared with solutions using Runge-Kutta 

method. Tables 3 and 4 have solutions being validated with solutions in other papers. 

Problem 1: Blasius Equation 
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02 =+ yyy  

1)(,0)0(,0)0( === yyy  

Table 1: Comparison of the Solutions from Proposed Methods and Runge-Kutta Method 

 Proposed Method Runge-Kutta 

x N )0(y   )( xy  )( 
 xy  )0(y   )( xy  )( 

 xy  

1.0 9 1.021157329 0.5063049940 0.9381906626 1.021157016 0.506305291 0.93810698 

2.0 17 0.5442717691 1.051664551 0.3810337080 0.5442717609 1.051664633 0.381033607 

3.0 25 0.4045496973 1.679698960 0.1689551177 0.4045497078 1.6796990467 0.168955073 

4.0 33 0.3527462516 2.432249676 0.06202511200 0.3527462779 2.432249926 0.0620251103 

5.0 41 0.33256595103 3.3170985421 0.0155692563 0.3325659529 3.3170985488 0.0155692560 

 

From Table 1 above, a comparison of the proposed method and Runge-Kutta shows a good 

performance of the method. 

Problem 2: Falkner-Skan Equation 

( )( )2

0( ) ( ) ( ) 1 0y y y y       + + − =  

(0) 0, (0) 0, lim ( ) 1f y y



→

 = = =  

Table 2: Comparison of the Errors from Proposed Methods and Runge-Kutta Method 

 Proposed Method Runge-Kutta Method 

x N )( 
 xy  )( xy  N )( 

 xy  )( xy  

0.1 9 0.5223955323 0.6065298823 27 0.522394253 0.606530550 

0.2 17 0.03825982349 1.510386946 51 0.0382595394 1.510388234 

0.3 25 0.0014085063 2.502848721 75 0.0014082032 2.502849911 

0.4 33 0.0000245898 3.502571462 99 0.0000245779 3.502571249 

 

The proposed method has a good performance compared with the existing Runge-Kutta 

method. This is shown in the table 2 above. 

Problem 3 
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2 1 ( 1) 0y y yy M y   − + + − − =  

0d yd y d Md  + − − =  

(0) , (0) , ( ) 1y k y y = =  =  

d(0) 1,d( ) 0=  =  

Table 3: Numerical comparison for the stretching case ( 0)  with the existing results 

for M = k = 0 . 

0  (0)f   (0)f   (0)d −  (0)d −  

 [14] Proposed Method [14] Proposed Method 

0 1.23258765 1.232583905 0.81130132 0.8113170417 

0.1 1.14656100 1.146557577 0.863451660 0.8634652926 

0.2 1.051129994 1.051127244 0.91330283 0.9133157941 

0.3 0.94681611 0.9468142651 0.96111587 0.30112933847 

0.5 0.71329495 0.7132950814 1.05145843 1.051476251 

1 0 0 1.25331413 1.253359472 

2 -1.88730667 -1.887402684 1.58956678 1.589740624 

3 -10.26474931 -10.26844767 2.33809899 2.3399380450 

 

Table 4: Numerical comparison for the shrinking case ( 0)  with the existing results for 

M = k = 0. 

0  (0)f   (0)f   (0)d −  (0)d −  

 Bhatti (2018) Proposed 

Method 

Bhatti(2018) Proposed Method 

-0.25 1.40224081 1.402238699 0.66857275 0.6686022783 

-0.5 1.49566976 1.495675888 0.50144758 0.5015139670 

-0.75 1.48929824 1.489330566 0.29376251 0.2939313809 

-1.0 1.32881688 1.328961913 0 0 

-1.15 1.08223117 1.082786939 -0.29799548 -0.2961961037 

-1.2465 0.58428167 0.6173065669 -0.94776590 -0.8869752488 

-1.2474  0.5741833003  -0.9561670930 
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In tables 3 and 4,which show the numerical comparison for Hartmann number, M, and 

suction/injection parameter, k, for different values of stretching and shrinking parameter, 

it can be observed that when M = k = 0 for both cases of  , the results from the proposed 

method are in good agreement with existing literature. 

CONCLUSION 

In this paper, BUMMs have been proposed using the boundary value technique to solve 

boundary layer flow problems in ordinary differential equations. This has been done by 

applying the method directly to the differential equations. The efficiency of the methods 

was given in the Tables 1 and 2. In the two tables, the accuracy of the results can be 

comparable as the proposed methods have a good performance in comparison to the Runge-

Kutta method. The methods were also applied to problem 3 and results were validated by 

comparing results with those from other literature. The results have a good agreement with 

the ones found in literature that comparison was made with. 
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