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Abstract

A numerical method is proposed in this paper to directly solve third order boundary value
problems that could be coupled with second order boundary value problem(s). The
Modified Boundary Value Methods (MBVMSs) with continuous coefficients are applied.
These are referred to as Block unification multi-step methods (BUMMSs) which are derived
and used to obtain methods applied through the block unification approach. The computed
results are compared with some numerical results to show efficiency and accuracy
advantages.
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1. Introduction

Mathematical models developed in science, engineering and technology help understand
physical phenomena in these fields. These models are expressed in equations in which a
function and its derivatives play significant roles. These equations arise not only in fields
like physical science but also in fields like operation research, psychology, medicine,
economics, engineering, etc., ranging from models that describe neural works to the
deflection of a curved beam that has a constant or varying cross section and as a result
faster and more accurate numerical methods are required since most of them defy analytical
solutions (Jikantoro et al., 2018).

Steady flow of viscous incompressible fluids has attracted considerable attention in recent
years due to its crucial role in numerous engineering applications. Numerical analysts
encounter actually a wide variety of challenges in obtaining suitable algorithms for
computing flow and heat transfer of viscous fluids (Bataller, 2010). The most common
approach for problems in unbounded domains is to apply polynomials that are orthogonal
over unbounded domains, other direct method is based on rational approximation (Parand
etal., 2011).

Boundary layer flow problems in ordinary differential equations have been discussed in
many papers in recent years. The paper of (Akdi and Sedra, 2014) combined the standard
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adomian decomposition method and a finite difference scheme, while taking note of their
respective advantages and disadvantages, to solve the Blasius problem. This way the
coupled method offset the limitations of the individual methods.

Collocation approximation was applied in deriving schemes that were applied as a block
method to solve special third order initial value problems in (Olabode, 2009). Other
researches include the works of Abdullah et al. (2013:2013) who had developed a fifth
order block method using constant step size with shooting technique to solve third order
non-linear boundary value problems and developed a fourth order two-point block method
for solving non-linear third order boundary value problems respectively. A continuous
linear multistep method was used in Jator (2008) to generate multiple finite difference
methods that were assembled into a single block matrix that was used to solve third order
BVPs. Multiple Finite Difference Methods from a linear multistep method of step 4
obtained in Jator (2009) were used to solve third order boundary value problems directly.
A family of three step hybrid methods independent of first and second derivative
components using Taylor approach were proposed to solve special third order ODEs in
Jikantoro et al. (2018) directly. In the work of Ahmed (2017), the variational iteration
method was used to get numerical solutions to third order ordinary boundary value
problems after reducing them to a system of first order ODEs. The paper of Bhatti et al.
(2018) solved the resulting coupled differential equations from stagnation point flow over
a permeable shrinking sheet by applying successive linearisation method and spectral
collocation method.

Boundary Value Methods in Block Unification Approach have been considered recently in
the solution of ordinary differential equations. These methods are developed from the linear
multistep method in which a main method is developed and additional methods are derived
from the main method. Boundary value methods applied as block unification method to
solve second order boundary value problems were implemented in the work of Biala and
Jator (2017).

2. Derivation of Method

In this section, the construction of the block unification multistep method through the
interpolation and collocation approach is discussed. This method will be used to produce
several discrete schemes for solving third order ordinary differential equations.

The starting point is to construct the modified boundary value method (MBVM), for third
order ordinary differential equations, which has the form
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k
U (X) = av (X) yn+v + av—l(x) yn+v—l + aO (X) yn + hgzﬂj (X) fn+j + h3ﬂw(x) fn+w’ (l)
j=0
k
Wh 5 for evenk
EV=1k31 for odd K
2

a,(x), a4 (x),a,, B;, B, are continuous coefficients and v is chosen to be half the step
number so that the formula derived from (1) satisfies the root condition.

The main and additional methods are then obtained by evaluating (1) at x,,; where

j =1D)2v, j #v-1,v to obtain the formula of the following form:

k
yn+j + av yn+v + av—lymv—l + aO yn = hszﬂi fn+i + hsﬂw fn+w (2)

i=0

The approach above is applied to construct another block unification multi-step method
(BUMM), for second order ordinary differential equations, which has the form

U (X) = av(x)smv + av—l(x)snw—l + ao(x)sn + hziﬂj (X) mn+j + hzﬁw(x)anrw’ (3)

The first and second derivative formulas for (1) are used to generate additional methods by
evaluating U’(x) and U"(x) at X,,;, J =0@)k so also is the first derivative formula for (3)
used to generate its additional methods. The construction of (1) is discussed in the
following theorem.

Theorem 2.1 Let Tj(x), J=0(1)(k +4) be the Chebyshev Polynomial used as basis function

and W a vector given by W =(Y.,¥...4 You» s fig0eens T, )" Where T is the transpose.
Consider the matrix V defined as
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T(x)  T(x)
TO (Xn+v—1) Tl (Xn+v—1)
To()  Ti(Xow)

V=l Tx)  Tx)
TO” Xn+1) Tl’(Xn+l)
Toaa) %)

Tk+4 (Xn+v—1)

Tk+4 (Xn)

k+4 (Xn+v)
T (X))
Tkl:’—4 (Xn+1)

T (%)

and obtained by replacing the jth column of V by the vector W and let (2) satisfy

U(Xo,) = Yo j=0,v-1vand j=0,v-2,v-1v

U"(X,,;) = fo; j =0k 4)

then the continuous representation (1) is equivalent to
k+4
5
U= z I w) Ti( (5)
3. Numerical Method: Block Unification Multistep Method

To derive an implicit three step method for the third order ordinary differential equations
with one off-grid point, the following specifications were considered, r=3,s=5,k=3,v

zg , to give the continuous form as:

y(X) = 0‘0 yn + alyn+l + az yn+2 + h3[ﬂ0 fn + ﬂl fn+1 + ﬂz fn+2 + ﬂz fn+z + 183 fn+3] (6)
3

3

<
n% gives

Evaluating equation (6) at points X =X;,3,X=

MCLCTINE P PR LE ST I SR

1
-3y . +3y , +—h*f
yn+l yn+2 n 80 20 n+ 560 n+§ 40

yn+3 yn 140
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2 7 14 137 5, 2911 139 . 1067 169
y 7:_yn__yn+1+_yn+2+—h fn+—h fn+l+_h fn+2 f AR ——
el 97" g 9 76545 29160 1215 22680 el 43740
(7)
For n=0(3)(N -3)
The first derivative formulae are
3 167 577 101 793
hy =—>y, +2 207 pag (ST pog  I0pp By foa
I =TT y”+2 2040 71680 " 420 "2 73020 nl 420
hyr,1+1:_lyn+lyn+2_ = hgfn_ 173 I«|3fn+1+i ’ n+2_ih3f 7t _h f
2°" 2 1470 1120 105 1568  n+. 336
1 13 367 351
hy ., ==Y, =2+~ = h*f +——hf , IS f,——h’f AL s
Y2 =5 In " ha y”+2 2940 " 1680 140 3920 n+l 140
hy = g y 8y A1, 680 . 310450, 25679, ~ 38313
n+§

3 6 107163 "' 816480 ™ 51030 " 211680 nes

L3865 .
244944
3 5 9 2393 89 27 39
hy! ,=—y —4y . += +—h¥f +=—""h%f —h*f_,———h%f h3f
Ira =Tty e Tag0" 13360 " a4 "2 1568  nel ' 560
(8)
for n=0(3)(N -3)
And the second derivative formulae are
389 227 53 81 17
h2y" =y -2y _ + " h¥f — == hif —=h’f ,———h’f _+—hf
yn yn yn+1 yn+2 1260 n 240 71 60 n+2 112 m% 180
53 11 27
h2y" = 2y .+ —= _hf —h f  ——h’f ,+——h’f ——h3f
yn+1 yn yn+l yn+2 2520 n 12 40 n+2 140 n+z 45

3
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1 39 49 27 1
h? -2 + +—h%*f +==ht f Zhif -2 hf —h3f
yn+2 yn yn+l yn+2 180 n 80 60 n+2 80 I’H—% 36
hey" =y =2y 4y O pog gy O T 29 g
g 68040 60 648 420 s 1215
1 31 79 81 11
h? -2 + +——h%f —h3f —hf  +—h*f —h3f
yn+3 Yo =eYna T Yoo 540 n 60 120 n+2 140 n+z 45

3

(9)
for n=0(3)(N -3)
To derive an implicit three step method for the second order ordinary differential equations
with one off-grid point, the following specifications were considered, r=3,5s=5, k=3, v
:g , to give the continuous form as:

d(X)=a,d, +ad, , +a,d, , + hz[ﬁogn + 51901+ 52090z +ﬁzgn+z + Bs9n.sl
3 3
(10)

Evaluating equation (10) at points x=x_.,x=x ,,x=x, gives

n+—
3

n+3?

1 29 41 81 7
d,,=-d ,+2d., —h? —p? h2 ——h? +—h?
n+l 140 gn 240 gn+1 gn+2 560 gn+% 120 gn+3
q :—Ed 4 313 h2a + 1093 h? 1817 , 527 h? 317 .,

+—d,., - — = hig, +-—=—h
el 3 "™ 37" 153000 920160 O 7200 92 7560 gn% 43740 O

I I

d =2d - h
w2 105" 9 T 940 In1 ™ 560 !

n n+l

-d hzgn+3

(11)
For n=0(3)(N —-3)

The first derivative formulae are
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"t =+ o * 2§§0h2g” 3937692)hg“*’%hzg”*”%hzgm; 71290hg”*3

hd ,=—d  +d 3i hg, + ﬂhngl 222 ng—%hzgm; 71290h Or.s

“%;=-dn+1+dn+z-6§32’o“29n LS §§i§“29w-f§%hzgn+;+%hzgm
(12)

for n=0(3)(N -3)
4. Analysis of Basic Properties

Theorem 4.1: Let (Y,,y;,Y¥/)be an approximation to the solution vector
(y(x,),y'(x;),y"(x,)) for the third order ordinary equations from boundary layer flow. If
e =|y(x)-vyi|.e =|y'(x)-vi|.el = , where the exact solution given by the
vector (y(x),y'(x),y"(x)) is several times differentiable and if | =|v — Y], then the BVMs

are said to be convergent of order k+3which implies that |E|=0(h**®), where k is the step
number.

Proof: Consider the exact form of the system formed from equations (7) to (9) given by
PY —h*QF(Y)+C +L(h)=0 (13)

where L(h) is the truncation error vector obtained from the formulae (7) to (9). The
approximate

form of the system is given by
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PY —h*QF(Y)+C =0 (14)

where Y is the approximate solution of vector Y .

Using the mean value theorem after subtracting (13) from (14) and letting
E=Y —Y|=(e,,...ey.6,...€},€],...e§)" , We get the error system

(P-h*QB)E = L(h) (15)

where B is the Jacobian matrix and its entries B, ,r,s =123, are defined as

afl(rfl) - 6f1(rfl)

(s-1) (s-1)
l. . afN-

B = (:r—l) : (:r—l)
of of

afl(sfl) of ,\(‘s—l)

From (15) and L(h)
E =(P-h°QB)™"L(h)
E = SL(h)
[Ell = [t
=0(h®*)0(h*"*)
=0(h"*)
Which show that the methods are convergent and the global errors are of order O(h**®)

5. Numerical Examples and Results Discussion

Here, numerical examples such as Blasius equation and Falkner-Skan equation are
considered. Solutions in tables 1 and 2 were compared with solutions using Runge-Kutta
method. Tables 3 and 4 have solutions being validated with solutions in other papers.

Problem 1: Blasius Equation
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ny!:O

y(0)=0,y'(0) =0, y'(x) =1

Table 1: Comparison of the Solutions from Proposed Methods and Runge-Kutta Method

Proposed Method

Runge-Kutta

X

1.0
2.0
3.0
4.0
5.0

N
9
17
25
33
41

y"(0)
1.021157329
0.5442717691
0.4045496973
0.3527462516

y(x.,)

y'(x,)

y"(0) y(x.)

0.5063049940 0.9381906626 1.021157016 0.506305291
1.051664551 0.3810337080 0.5442717609 1.051664633
1.679698960 0.1689551177 0.4045497078 1.6796990467
2432249676  0.06202511200 0.3527462779 2.432249926
0.33256595103 3.3170985421 0.0155692563 0.3325659529 3.3170985488

y"(X..)

0.93810
0.38103
0.16895
0.06202
0.01556

From Table 1 above, a comparison of the proposed method and Runge-Kutta shows a good
performance of the method.

Problem 2: Falkner-Skan Equation

Y"()+ oYy () + 51y (7)) =0

F(0)=0,y(0)=0.limy'(n) =1

Table 2: Comparison of the Errors from Proposed Methods and Runge-Kutta Method

Proposed Method

Runge-Kutta Method

X
0.

1

0.2
0.3
0.4

N y(x.)
9 0.5223955323

y(x..)
0.6065298823

17 0.03825982349 1.510386946

25 0.0014085063
33 0.0000245898

2.502848721
3.502571462

N

27
o1
75
99

y'(x.) y(x.)
0.522394253 0.606530550
0.0382595394 1.510388234
0.0014082032 2.502849911
0.0000245779 3.502571249

The proposed method has a good performance compared with the existing Runge-Kutta

method. This is shown in the table 2 above.

Problem 3
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y" =y +1+yy' -M(y'-1)=0
d"+yd' —y'd-Md=0

y(0) =k, y'(0) =, y'(e0) =1
d(0) =1,d(e0) =0

Table 3: Numerical comparison for the stretching case (« = 0) with the existing results
forM=k=0.

a>=0 1) f"(0) —d’(0) —d’(0)

[14] Proposed Method [14] Proposed Method
0 1.23258765 1.232583905 0.81130132 0.8113170417
0.1 1.14656100 1.146557577 0.863451660 0.8634652926
0.2 1.051129994 1.051127244 0.91330283 0.9133157941
0.3 0.94681611 0.9468142651 0.96111587 0.30112933847
0.5 0.71329495 0.7132950814 1.05145843 1.051476251
1 0 0 1.25331413 1.253359472
2 -1.88730667 -1.887402684 1.58956678 1.589740624
3 -10.26474931 -10.26844767 2.33809899 2.3399380450

Table 4: Numerical comparison for the shrinking case (« < 0) with the existing results for
M=k=0.

a=<0 f"(0) f"(0) —d’(0) —d’(0)
Bhatti (2018)  Proposed Bhatti(2018) Proposed Method
Method

-0.25 1.40224081 1.402238699 0.66857275 0.6686022783
-0.5 1.49566976 1.495675888 0.50144758 0.5015139670
-0.75 1.48929824 1.489330566 0.29376251 0.2939313809
-1.0 1.32881688 1.328961913 0 0

-1.15 1.08223117 1.082786939 -0.29799548 -0.2961961037
-1.2465 0.58428167 0.6173065669 -0.94776590 -0.8869752488
-1.2474 0.5741833003 -0.9561670930
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In tables 3 and 4,which show the numerical comparison for Hartmann number, M, and
suction/injection parameter, k, for different values of stretching and shrinking parameter,
it can be observed that when M = k = 0 for both cases of «, the results from the proposed
method are in good agreement with existing literature.

CONCLUSION

In this paper, BUMMS have been proposed using the boundary value technique to solve
boundary layer flow problems in ordinary differential equations. This has been done by
applying the method directly to the differential equations. The efficiency of the methods
was given in the Tables 1 and 2. In the two tables, the accuracy of the results can be
comparable as the proposed methods have a good performance in comparison to the Runge-
Kutta method. The methods were also applied to problem 3 and results were validated by
comparing results with those from other literature. The results have a good agreement with
the ones found in literature that comparison was made with.
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