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Abstract 
In this paper, a 𝑘 −step (𝑘 = 2,3,4), order 2𝑘  Fuzzy-structured block hybrid backward 
differentiation formulae were formulated for the approximate solution of fuzzy differential 
equations (FDE’s). 𝑘 off step points were incorporated at interpolation in the process of 
formulation. The methods were developed using interpolation and collocation techniques. 
Convergence of the methods were analyzed and established. The methods were found to be 
of uniform order 2𝑘  . The methods were implemented as a block method, combining the 
main method with some additional methods obtained from the same continuous form. 
Numerical experiments were carried out and the results obtained were found to be effective, 
efficient and accurate in comparison with the exact solutions and approximations obtained 
with existing methods. 
 
Introduction 
In mathematical modelling, situations arise where variables with certain level of uncertainty 
or vagueness are involved. Such as materials used in terms of corrosion, thermal expansion 
or some other measurable materials in electrical engineering, estimating the service life of a 
given piece of equipment in industrial engineering, to mention but a few. Differential 
equations associated with such models are called fuzzy differential equations (FDE’s). They 
play important role in many fields of science, engineering, technology and even finance 
(Dass, 2014). 
 
Several approaches to dealing with FDE’s exist in literature. First of which was using H-
derivative or its generalization, the Hukuhara differentiability which is introduced by Puri and 
Ralescu (1983). 
 
However, this approach suffers certain set back that leads to solutions with increasing 
support since the diameter of the solution is unbounded as time increases (Chalco-Cano et 
al., 2008). In an attempt to overcome this set back, Bede and Gal (2005) introduced the 
generalized differentiability by enlarging the class of fuzzy valued function. Bede et al. 
(2007) also asserted that under certain appropriate conditions, FDEs are equivalent to a 
system of ordinary differential equations (ODEs) which can be solved by any suitable 
numerical method.  
 
Several numerical methods for solving FDEs has been presented by various researchers such 
as Abbasbandi and Viranloo, (2002), Ahmad and Hasan (2011), Balooch-Shahryari and 
Salahshour (2012), Shokri (2007), Zawawi and Ibrahim (2016), Mehrkanoon et al (2009) 
and Ivaz et al. (2013). In this paper, a formulation of  𝑘 −Step order 2𝑘 Fuzzy-structures 
Block Hybrid Backward Differentiation Formulae were derived for the approximate solution 
of Fuzzy differential equations with the approach of collocation techniques which 
incorporated 𝑘 −off-step points 
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FDE’s in a flash 
Definition 1 (Fuzzy set) Let 𝑋 be a non-zero set. A fuzzy set A of this set 𝑋 is defined by 
the following set of pairs. 
𝐴 = {(𝑥: 𝜇𝐴(𝑥))}: 𝑥 ∈ 𝑋          (1) 

 
where 𝜇𝐴: 𝑋 → {0, 1} is a function called the membership function of A and 𝜇𝐴 is the grade of 

membership of degree of fuzziness of 𝑥 ∈ 𝑋 in A. 

Symbolically, 𝐴 =
𝑥1

𝜇𝐴(𝑥1)
 ,

𝑥2

𝜇𝐴(𝑥2)
 , … ,

𝑥𝑛

𝜇𝐴(𝑥𝑛)
.  

 
Operations that apply to set theory also apply to fuzzy set theory (Dass ,1998). 
Definition 2 (Fuzzy number) A fuzzy number 𝑢 is a fuzzy subset of the real line with a 

normal, convex and semi upper continuous membership function of bounded support. It is 
completely determined by any pair 
 

𝑢 = (𝑢(𝛼), 𝑢̅(𝛼)) , 0 ≤ 𝛼 ≤ 1, which satisfy the conditions: 

i. 𝑢(𝛼) is a bounded left continuous monotonic increasing function ∨  𝛼 ∈ (0,1] 

ii. 𝑢̅(𝛼) is a bounded left continuous monotonic increasing function ∨  𝛼 ∈ (0,1] 
iii. 𝑢(𝛼) ≤ 𝑢̅(𝛼), 0 ≤ 𝛼 ≤ 1. 

Then the 𝛼 −level set [𝓋]𝛼 = {𝑠|𝓋(𝑠) ≥ 𝛼}, 0 ≤ 𝛼 ≤ 1is a closed, bounded interval 

denotedby [𝓋]𝛼 = [𝓋1(𝛼),𝓋2(𝛼)] (Mehrkanoon et al. 2009) 

 
Derivation of the methods 
The solution of the differential equation  
𝑦̃′ = 𝑓(𝑡, 𝑦̃(𝑡, 𝑟))                      (2) 

 
where 𝑓 is a fuzzy valued function, can be approximated by a polynomial of the form, 

( )tpy j

ci

j

j
−+

=

=
1

0




                      (3) 

 
where 𝑖 and 𝑐 are respectively, number of interpolation and collocation points,𝛼𝑗′𝑠 are 

coefficient to be determined and 𝑝𝑗(𝑥)can be any orthogonal polynomial.  

Incorporating k off-grid points for every k-step method requires that the following conditions 
must be satisfied: 
𝑦̃(𝑡𝑛, 𝑟) = 𝑦̃𝑛         

𝑦̃(𝑡𝑛+𝑗, 𝑟) = 𝑦̃𝑛+𝑗, 𝑗 = 0, (
1

2
) , 1, . . . , 𝑘 −

1

2
,                                  (4) 

𝑓(𝑡𝑛+𝑘) = 𝑓𝑛+𝑘         

where 𝑓 implies the derivative of 𝑦̃. 
 
(4) result in (𝑖 + 𝑐) system of equations which is solved through matrix inversion algorithm 

to obtain values for 𝛼𝑗and 𝛽𝑘. These were then substituted into the continuous form of the 

method which is expressed as;  

( ) ( ) ( ) kkjn

k

j

j fthytrty  += +

−

=


 2

1

0

,           (5) 
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2-Step Fuzzy-structured Block Hybrid Backward Differentiation formula with 2 
off-grid points (2SBHBDF) 
To derive a 2-step backward differentiation formula with two off-grid points, the following 
specifications were considered; 𝑘 = 2, 𝑖 = 4, 𝑐 = 1 and 𝑥 ∈ [𝑡𝑛, 𝑡𝑛+2]. This results in a 

system of equations 
𝑌𝜔 = 𝑀Ψ𝜔−𝑛                 (6) 
 
where 𝑌̃𝜔 = (𝑦̃𝑛, 𝑦

𝑛+
1

2

, 𝑦𝑛+1, 𝑦
𝑛+

3

2

, 𝑓𝑛+2)
𝑇, Ψ𝜔 = (𝛼0, 𝛼1

2

, 𝛼1, 𝛼3

2

, 𝛽2)
𝑇and 

𝑀 =

[
 
 
 
 
 
 
 
 1 𝑡𝑛

1

2
(3𝑡𝑛

2 − 1)
1

2
(𝑡𝑛

3 − 3𝑡𝑛)
1

8
(35𝑡𝑛

4 − 30𝑡𝑛
2 + 3)

1 𝑡
𝑛+

1

2

1

2
(3𝑡

𝑛+
1

2

2 − 1)
1

2
(𝑡

𝑛+
1

2

3 − 3𝑡𝑛)
1

8
(35𝑡

𝑛+
1

2

4 − 30𝑡
𝑛+

1

2

2 + 3)

1 𝑡𝑛+1
1

2
(3𝑡𝑛+1

2 − 1)
1

2
(𝑡𝑛+1

3 − 3𝑡𝑛+1)
1

8
(35𝑡𝑛+1

4 − 30𝑡𝑛+1
2 + 3)

1 𝑡
𝑛+

3

2

1

2
(3𝑡

𝑛+
3

2

2 − 1)
5

2
(𝑡

𝑛+
3

2

3 − 3𝑡
𝑛+

3

2

)
1

8
(35𝑡

𝑛+
3

2

4 − 30𝑡
𝑛+

3

2

2 + 3)

0 1 3𝑡𝑛+2
1

2
(𝑡𝑛+2

2 − 3)
1

8
(140𝑡𝑛+2

3 − 60𝑡𝑛+2) ]
 
 
 
 
 
 
 
 

. 

 
Using matrix inversion technique with the aid of maple software, the values of 𝛼0, 𝛼1

2

, 𝛼1, 𝛼3

2

 

and 𝛽2 were obtained  

substituted into (5)and setting 𝑘 = 𝑡 − 𝑡𝑛and evaluating at 𝑡 = 𝑡𝑛 + 2ℎ resulted in the main 

method 

𝑦̃𝑛+2 = −
3

25
𝑦̃𝑛 +

16

25
𝑦̃

𝑛+
1

2

−
36

25
𝑦̃𝑛+1 +

48

25
𝑦̃

𝑛+
3

2

+
6

25
ℎ𝑓𝑛+2(7) 

 
To obtain the additional schemes that combine with the main method to form a block, the 
first derivative of (5)was obtained and evaluated at 𝑡 = 𝑡

𝑛+
1

2

, 𝑡 = 𝑡𝑛+1 and 𝑡 = 𝑡
𝑛+

3

2

 which 

produced three other discrete schemes given as 
 

𝑓
𝑛+

3

2

=
1

75ℎ
[9ℎ𝑓𝑛+2 − 17𝑦̃𝑛 + 99𝑦̃

𝑛+
1

2

− 279𝑦̃𝑛+1 + 197𝑦
𝑛+

3

2

]                                               (8) 

 

𝑓𝑛+1 = −
1

75ℎ
[3ℎ𝑓𝑛+2 − 14𝑦̃𝑛 + 108𝑦̃

𝑛+
1

2

− 18𝑦̃𝑛+1 − 76𝑦̃
𝑛+

3

2

]                         (9) 

 

𝑓
𝑛+

1

2

=
1

25ℎ
[ℎ𝑓𝑛+2 − 13𝑦̃𝑛 − 39𝑦̃

𝑛+
1

2

+ 69𝑦̃𝑛+1 − 17𝑦̃
𝑛+

3

2

]              (10) 

 
 
3-Step Fuzzy-structured Block Hybrid Backward Differentiation formula with 3 
off-grid points (3SFBHBDF) 
 
In this case,  𝑘 = 3, 𝑖 = 6, 𝑐 = 1 and𝑥 ∈ [𝑡𝑛, 𝑡𝑛+3]. Evaluating (5) at 𝑡 = 𝑡𝑛 + 3ℎ, the main 

method below was obtained. 

𝑦𝑛+3 = −
10

147
𝑦𝑛 +

72

147
𝑦

𝑛+
1

2

−
225

147
𝑦𝑛+1 +

400

147
𝑦

𝑛+
3

2

−
450

147
𝑦𝑛+2 +

360

147
𝑦

𝑛+
5

2

+
30

147
ℎ𝑓𝑛+3  

                       (11) 
and additional schemes were obtained in order to provide for the available number of 
unknown as 

𝑓
𝑛+

5

2

=
1

4410ℎ
[
300ℎ𝑓𝑛+3 − 394𝑦̃𝑛 + 2925𝑦̃

𝑛+
1

2

− 9600𝑦̃𝑛+1 + 18700𝑦̃
𝑛+

3

2

−26550𝑦̃𝑛+2 + 14919𝑦̃
𝑛+

5

2

] (12) 
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𝑓𝑛+2 = −
1

4410ℎ
[
60ℎ𝑓𝑛+3 − 167𝑦̃𝑛 + 1320𝑦̃

𝑛+
1

2

− 4860𝑦̃𝑛+1 + 12560𝑦̃
𝑛+

3

2

−6045𝑦̃𝑛+2 − 2808𝑦̃
𝑛+

5

2

] (13) 

 

𝑓
𝑛+

3

2

=  
1

4410ℎ
[
30ℎ𝑓𝑛+3 − 157𝑦̃𝑛 + 1395𝑦̃

𝑛+
1

2

− 6840𝑦̃𝑛+1 + 400𝑦̃
𝑛+

3

2

+6165𝑦̃𝑛+2 − 963𝑦̃
𝑛+

5

2

]           (14) 

 

𝑓𝑛+1 = −
1

2205ℎ
[
15ℎ𝑓𝑛+3 − 152𝑦̃𝑛 + 1800𝑦̃

𝑛+
1

2

+ 2460𝑦̃𝑛+1 − 5680𝑦̃
𝑛+

3

2

+1980𝑦̃𝑛+2 − 408𝑦̃
𝑛+

5

2

]             (15) 

 

𝑓
𝑛+

1

2

=       
1

882
[
12ℎ𝑓𝑛+3 − 298𝑦̃𝑛 − 2235𝑦̃

𝑛+
1

2

+ 4320𝑦̃𝑛+1 − 2780𝑦̃
𝑛+

3

2

+1290𝑦̃𝑛+2 − 297𝑦̃
𝑛+

5

2

]                 (16) 

 
4-Step Fuzzy-structured Block Hybrid Backward Differentiation formula with 4 
off-grid point (4SFBHBDF) 
 
In a similar way as in cases of 𝑘 = 2 and 𝑘 = 3 above, setting  𝑘 = 4, 𝑖 = 8, 𝑐 = 1 and𝑥 ∈
[𝑥𝑛, 𝑥𝑛+4], we obtained the block 
𝑓

𝑛+
1

2

=
1

22830ℎ
[
150ℎ𝑓𝑛+4 − 5745𝑦̃𝑛 − 72387𝑦̃

𝑛+
1

2

+ 158410𝑦̃𝑛+1 − 156450𝑦̃
𝑛+

3

2

− 127925𝑦̃𝑛+2

− 74305𝑦̃
𝑛+

5

2

+ 27762𝑦̃𝑛+3 −  5210𝑦̃
𝑛+

7

2

] (17) 

 

𝑓𝑛+1 = −
1

479430ℎ
[
1050ℎ𝑓𝑛+4 − 17385𝑦̃𝑛 + 276360𝑦̃

𝑛+
1

2

+ 901117𝑦̃𝑛+1 − 1894200𝑦̃
𝑛+

3

2

 +1161825𝑦𝑛+2 −  600040𝑦
𝑛+

5

2

+ 210315𝑦𝑛+3 −  37992𝑦
𝑛+

7

2

] (18) 

 

𝑓
𝑛+

3

2

=
1

31962ℎ
[
42ℎ𝑓𝑛+4 − 391𝑦̃𝑛 + 4662𝑦̃

𝑛+
1

2

− 32354𝑦̃𝑛+1 − 27825𝑦̃
𝑛+

3

2

+ 78435𝑦̃𝑛+2

−30394𝑦̃
𝑛+

5

2

+ 9478𝑦̃𝑛+3 −  1611𝑦̃
𝑛+

7

2

] (19) 

 
𝑓𝑛+2

= −
1

79905ℎ
[
105ℎ𝑓𝑛+4 − 597𝑦̃𝑛 + 6328𝑦̃

𝑛+
1

2

− 32942𝑦̃𝑛+1 + 130200𝑦̃
𝑛+

3

2

− 3675𝑦̃𝑛+2

−123928𝑦̃
𝑛+

5

2

+ 29033𝑦̃𝑛+3 −  4408𝑦̃
𝑛+

7

2

] (20) 

 
𝑓

𝑛+
5

2

=
1

479430ℎ
[
1050ℎ𝑓𝑛+4 − 368𝑦̃𝑛 + 36645𝑦̃

𝑛+
1

2

− 169610𝑦̃𝑛+1 + 502950𝑦̃
𝑛+

3

2

− 1235325𝑦̃𝑛+2

+ 470687𝑦̃
𝑛+

5

2

+ 450030𝑦̃𝑛+3 −  51690𝑦̃
𝑛+

7

2

] (21) 

 
𝑓𝑛+3

= −
1

159810ℎ
[
1050ℎ𝑓𝑛+4 − 2165𝑦̃𝑛 + 20664𝑦̃

𝑛+
1

2

− 89705𝑦̃𝑛+1 + 236600𝑦̃
𝑛+

3

2

− 436275𝑦̃𝑛+2

+ 678440𝑦̃
𝑛+

5

2

− 333039𝑦̃𝑛+3 −  74520𝑦̃
𝑛+

7

2

] (22) 

 
𝑓

𝑛+
7

2

=
1

159810ℎ
[
7350ℎ𝑓𝑛+4 − 7545𝑦̃𝑛 + 70070𝑦̃

𝑛+
1

2

− 292334𝑦̃𝑛+1 + 723975𝑦̃
𝑛+

3

2

− 1189475𝑦̃𝑛+2

+ 1393070𝑦̃
𝑛+

5

2

− 1324470𝑦̃𝑛+3 +  626709𝑦̃
𝑛+

7

2

] (23) 
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𝑦̃𝑛+4 = −
35

761
𝑦̃𝑛 +

320

761
𝑦̃

𝑛+
1

2

−
3920

2283
𝑦̃𝑛+1 +

3136

761
𝑦̃

𝑛+
3

2

−
4900

761
𝑦̃𝑛+2 +

15680

761
𝑦̃

𝑛+
5

2

−
3920

761
𝑦̃𝑛+3 +

2240

761
𝑦̃

𝑛+
7

2

+
140

761
ℎ𝑓𝑛+3                                                                                                         (24) 

 
 
 Analysis of Methods 
Order of accuracy and Error constant 

Following S𝑢̈li (2014), let 𝑦(𝑥𝑛+𝑗), the solution to 𝑦′(𝑥𝑛+𝑗)be sufficiently differentiable, then 

𝑦(𝑥𝑛+𝑗) and 𝑦′(𝑥𝑛+𝑗) can be expanded into a Taylor’s series about point 𝑥𝑛 to obtain  

𝑇𝑛 =
1

ℎ𝜎(1)
[𝐶0𝑦(𝑥𝑛) + 𝐶1ℎ𝑦′(𝑥𝑛) + 𝐶2ℎ

2𝑦′′(𝑥𝑛) + ⋯ ]                       (25) 

 
Where  

𝐶0 = ∑𝛼𝑗

𝑘

𝑗=0

 

𝐶1 = ∑𝑗𝛼𝑗 −

𝑘

𝑗=0

∑𝛽𝑗

𝑘

𝑗=0

, 

 .                                                                                                                            
 .              
 . 

𝐶𝑞 =
1

𝑞!
∑ 𝑗𝑞𝛼𝑗 −𝑘

𝑗=0
1

(𝑞−1)!
∑ 𝑗𝑞−1𝛽𝑗

𝑘
𝑗=0                     (26) 

 
Definition 3 A Linear multistep method is said to be of order of accuracy p if 𝐶0 = 𝐶1 =
 .  .  . 𝐶𝑝 = 0, 𝐶𝑝+1 ≠ 0,𝐶𝑝+1 is called The error constants.  

 
From our calculations, we have that the block methods of step number 𝑘 has uniform order 

2𝑘 that is 4 6 and 8 for 2- step, 3- step and 4 -step respectively while the error constants 

are 

 (−
29

320
, −

31

160
, −

111

320
, −

3

40
) , (−

159

448
, −

81

224
, −

501

896
 , −

177

224
, −

1035

448
, −

15

224
)  

 

and(−
1335

1024
, −

12115

1536
, −

817

3072
, −

277

512
, −

12815

3072
, −

405

1536
, −

12145

1024
 , −

35

192
)  for 2- step, 3- step and 4 -

step methods. 
 
Consistency 
Definition 4 A linear multistep method is said to be consistent if the following conditions are 
satisfied. 
i. the order of accuracy 𝑝 > 1, 

ii. ∑ 𝛼𝑗
𝑘
𝑗=0 = 0, 

iii. 𝜌′(1) = 𝜎(1), where 𝜌(𝑟) and 𝜎(𝑟) are respectively, first and second characteristic 

polynomials of the methods. 
 

Conditions i and ii were taken care of in section 4.1 since the order 𝑝 > 1 and 𝐶0 = ∑ 𝛼𝑗
𝑘
𝑗=0 =

0 in all cases. 

For the third condition, the first and second characteristic polynomials are obtained and 
evaluated in what follows. 
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For all the methods, conditions for consistency are satisfied. Hence, they are consistent with 
uniform order of accuracy, 𝑝 = 2𝑘 > 0. 
 
Zero stability  
The derived Hybrid Backward Differentiation Formula can be written in a block form as 
follows. 
 

𝐴(1)𝑌𝜔+1 = 𝐴(0)𝑌𝜔−1 + ℎ𝐵𝐹𝜔+1              (27)          

whose first characteristics polynomial is given as  

𝜌(𝑅) = det[𝑅𝐴(1) − 𝐴(0)]              (28) 

 
Definition (Zero stability): The block method (27) is said to be zero stable if no root of the 

first characteristic polynomial 𝜌(𝑅) satisfies |𝑅𝑗| ≤ 1, 𝑗 = 1,2,3,… and for those roots with 

|𝑅𝑗| = 1, the multiplicity must not exceed 2. 

 
Zero stability of 2-step fuzzy-structured block hybrid backward differentiation 
formula with 2 off grid points. 
Expressing methods (7), (8), (9) and (10) in the form (27), we have   
        

𝐴(1) =

(

 
 
 

1 −
23

13

17

39
0

−6 1
38

9
0

99

197
−

279

197
1 0

−
16

25

36

25
−

48

25
1)

 
 
 

,  𝐴(0) =

(

 
 
 

0 0 0 −
1

3

0 0 0 −
7

9

0 0 0
17

197

0 0 0 −
3

25)

 
 
 

 and 𝐵 =

(

 
 
 
 

−
25

39
0 0

1

39

0
25

6
0

1

6

0 0
75

197
−

9

197

0 0 0
6

25 )

 
 
 
 

 

 

𝜌(𝑅) = −
1000

2561
𝑅3(𝑅 − 1) = 0        

𝑅 = {0, 0, 0, 1}. 
The method is zero stable since it satisfies |𝑅𝑗| ≤ 1. 

 
Zero stability of 3-step Block Hybrid Backward Differentiation Formula with 3 off 
grid points. 
Expressing methods (11), (12), (13), (14), (15) and (16) in the form (27),  
         

𝐴(1)=

(

 
 
 
 
 
 
 

1 −
288

149

556

447
−

86

149

99

745
0

30

41
1 −

284

123

33

123
−

34

205
0

279

80
−

171

10
1

1233

80
−

963

400
0

−
88

403

324

403
−

2512

1209
1

72

155
0

975

4973
−

3200

4973

18700

14919
−

8850

4973
1 0

−
24

49

75

49
−

400

147

150

49
−

120

497
1)

 
 
 
 
 
 
 

, 𝐴(0)=

(

 
 
 
 
 
 
 

0 0 0 0 0 −
2

15

0 0 0 0 0
38

615

0 0 0 0 0
157

400

0 0 0 0 0 −
167

6045

0 0 0 0 0
394

14919

0 0 0 0 0 −
10

147 )

 
 
 
 
 
 
 

 and 
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B=

(

 
 
 
 
 
 
 

−
294

745
0 0 0 0

4

745

0 −
147

164
0 0 0 −

1

164

0 0
441

40
0 0 −

3

40

0 0 0
294

403
0

4

403

0 0 0 0
1470

4973
−

100

4973

0 0 0 0 0
10

49 )

 
 
 
 
 
 
 

 

 

𝜌(𝑅) = −
134481277728

12243162971
𝑅5(𝑅 − 1) = 0 

    𝑅 = {0, 0, 0, 0, 0, 1} 
The method is zero stable having it satisfied |𝑅𝑗| ≤ 1. 

 
Zero stability of 4-step block hybrid backward differentiation formula with 4 off 
grid points 
Expressing methods (17), (18), (19), (20), (21), (22) (23) and (24) in the form of (27), 
          

𝐴(1)=

(

 
 
 
 
 
 
 
 
 
 

1 −
22630

10341

7450

3447
−

18275

10341

10615

10341
−

1322

3447

5210

72387
0

39480

128731
1 −

270600

128731

165975

128731
−

85720

128731

30045

128731
−

37992

901117
0

−
222

1325

4622

3975
1 −

747

265

4342

3975
−

1354

3975

537

9275
0

−
904

525

3706

525
−

248

7
1

17704

525
−

1382

175

4408

3675
0

5235

67241
−

24230

67241

71850

67241
−

176475

67241
1

64290

67241
−

51690

470687
0

−
984

15859

12815

47577
−

33800

47577

20775

15859
−

96920

67241
1

24840

111013
0

70070

626709
−

292334

626709

241325

208903
−

1189475

626709

1393070

626709
−

441490

208903
1 0

−
320

761

3920

2283
−

3136

761

4900

761
−

15680

2283

3920

761
−

2240

761
1)

 
 
 
 
 
 
 
 
 
 

 

 

𝐴(0)=

(

 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 −
5

63

0 0 0 0 0 0 0
17385

901117

0 0 0 0 0 0 0 −
391

27825

0 0 0 0 0 0 0 −
199

1225

0 0 0 0 0 0 0
3687

470687

0 0 0 0 0 0 0 −
2165

333903

0 0 0 0 0 0 0
2515

208903

0 0 0 0 0 0 0 −
35

761 )
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B=

(

 
 
 
 
 
 
 
 
 
 

−
7610

24129
0 0 0 0 0 0

50

24129

0 −
68490

128731
0 0 0 0 0 −

150

128731

0 0 −
1522

1325
0 0 0 0

2

1325

0 0 0
761

35
0 0 0

1

35

0 0 0 0
68490

67241
0 0 −

150

67241

0 0 0 0 0
7610

15859
0

50

15859

0 0 0 0 0 0
53270

208903
−

2450

208903

0 0 0 0 0 0 0
140

761 )

 
 
 
 
 
 
 
 
 
 

 

 

𝜌(𝑅) = −
14319913469916750225408000

582119873111524796345333
𝑅7(𝑅 − 1) = 0 

𝑅 = {0, 0, 0, 0, 0, 0, 0, 1}.  

Having satisfied |𝑅𝑗| ≤ 1, the method is zero stable. 

 
Convergence 
Here, the convergence of the fuzzy-structured hybrid backward differentiation formula 
developed is considered in agreement with the fundamental theorem of Dahlquist which 
states that “The necessary and sufficient condition for a LMM to be convergent is for it to be 
consistent and zero stable” (Henrici, 1962). Following this theorem, the methods developed 
are convergent having satisfied the necessary and sufficient conditions of consistency and 
zero stability. 
 
Implementation of the methods and Numerical Experiments 
In this section, the self-starting method is implemented efficiently by combining the 
methods as simultaneous numerical integrator for IVPs for example, the method (7) - (10) 
are combined to obtain the initial conditions at 𝑡𝑛+2, 𝑛(𝑚𝑜𝑑2) ≠ 0 and 0 ≤ 𝑛 ≤ 𝑁 using 

computed values 𝑌(𝑡𝑛+2, 𝑟) over sub-interval [𝑡0, 𝑡2]. We consider 𝑌(𝑡𝑛+2, 𝑟) =
[𝑦̅(𝑡𝑛+2, 𝑟), 𝑦(𝑡𝑛+2, 𝑟)]. 

 
Problems 
The following fuzzy problems were considered. 

1. 𝑦′̃ = 𝑦̃(𝑡), 𝑦̃(0) = (0.75 + 0.25𝛼, 1.125 − 0.125𝛼) 
Exact solution at 𝑡 = 1.0 is given by 

 

𝑌(1, 𝛼) = [
(0.75 + 0.25𝛼)𝑒,

(1.125 − 0.125𝛼)𝑒
] , 𝛼 ∈ [0,1] 

 
Reduced to the system of ODE 

 
𝑑

𝑑𝑡
(𝑦1

𝛼(𝑡)) = 𝑦1
𝛼(𝑡), 𝑦1

𝛼(0) = 0.75 + 0.25𝛼 

  
𝑑

𝑑𝑡
(𝑦2

𝛼(𝑡)) = 𝑦2
𝛼(𝑡), 𝑦2

𝛼(𝛼) = 1.125 − 0.125𝛼 

 
2. 𝑦̃′ = −𝑦̃(𝑡), 𝑦̃(0) = (0.96 + 0.04𝛼, 1.01 − 0.01𝛼) 

Exact solution: 

𝑌(0.1, 𝛼) = [
(0.985 + 0.015𝛼)𝑒−0.1 − (1 − 𝛼)0.025𝑒0.1,   

(0.985 + 0.015𝛼)𝑒−0.1 + (1 − 𝛼)0.025𝑒0.1 ] , 𝛼 ∈ [0,1] 

Reduced to the system of ODE 
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𝑑

𝑑𝑡
(𝑦1

𝛼(𝑡)) = −𝑦2
𝛼(𝑡), 𝑦1

𝛼(0) = 0.96 + 0.04𝛼 

  
𝑑

𝑑𝑡
(𝑦2

𝛼(𝑡)) = −𝑦1
𝛼(𝑡), 𝑦2

𝛼(𝛼) = 1.01 − 0.01𝛼 

 
3.  𝑦̃′ = −𝑦̃(𝑡) + 𝑡 + 1, 𝑦̃(0) = (0.96 + 0.04𝛼, 1.01 − 0.01𝛼) 

Exact solution: 

𝑌(0.1, 𝛼) = [
0.1 + (0.985 + 0.015𝛼)𝑒−0.1 − (1 − 𝛼)0.025𝑒0.1,

0.1 + (0.985 + 0.015𝛼)𝑒−0.1 + (1 − 𝛼)0.025𝑒0.1] , 𝛼 ∈ [0,1] 

Reduced to the system of ODE 

 
𝑑

𝑑𝑡
(𝑦1

𝛼(𝑡)) = −𝑦2
𝛼(𝑡) + 𝑡 + 1, 𝑦1

𝛼(0) = 0.96 + 0.04𝛼 

  
𝑑

𝑑𝑡
(𝑦2

𝛼(𝑡)) = −𝑦1
𝛼(𝑡) + 𝑡 + 1, 𝑦2

𝛼(𝛼) = 1.01 − 0.01𝛼 

 
Results and Discussions 
Problems 1, 2 and 3 were taken from Mehrkanoon et al.(2009), Ivaz et al. (2013). Results 
obtained with the proposed methods were compared with the exact solution and shown in 
Figure 1 while the absolute error in the methods is depicted in figure 2 respectively. 

 
Figure 1:  Exact and Numerical approximation of Problem 1 

 
Figure 1 shows the agreement between the exact solution and approximate solution using 
the formulated methods. Y(t), y2SFBHBDF, y3SFBHBDF and y4SFBHBDF represents exact 
solution, approximate solution of the respective 𝑘-step method developed for the solution of 

the upper 𝑟 −cut 𝑦̅(𝑡, 𝑟) while W(t), w2SFBHBDF, w3SFBHBDF and w4SFBHBDF give the 

solution of the lower 𝑟 −cut 𝑦(𝑡, 𝑟) for Problem 1 with𝑡 ∈ [0,1],𝑟 = 0.8 and ℎ = 0.1. 
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Figure .2: Absolute error in 𝑦1𝑛

 (left) and 𝑦2𝑛
 (right) using the proposed methods for problem 1  

 
From Figure 2, we represent the upper 𝑟 −cut 𝑦̅(𝑡, 𝑟)as 𝑦1𝑛 and the lower 𝑟 −cut 𝑦(𝑡, 𝑟)as 

𝑦2𝑛 for Problem 1.It is observed that as the number of step k increases, the absolute error 

in the solution obtained with the proposed methods reduces.  
 

 
Figure 3:  Exact and Numerical approximation of Problem 2 

 
Figure 3 shows the agreement between the exact solution and approximate solution using 
the formulated methods. Y(t), y2SFBHBDF, y3SFBHBDF and y4SFBHBDF represents exact 
solution, approximate solution of the respective 𝑘-step method developed for the solution of 
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the upper 𝑟 −cut 𝑦̅(𝑡, 𝑟) while W(t), w2SFBHBDF, w3SFBHBDF and w4SFBHBDF give the 

solution of the lower 𝑟 −cut 𝑦(𝑡, 𝑟) for Problem 2 with𝑡 ∈ [0,1], ℎ = 0.1 with 𝑟 = 0.2. 

 

Figure 4:  Absolute error in the proposed methods for problem 2  
 

From Figure 4, we represent the upper 𝑟 −cut 𝑦̅(𝑡, 𝑟)as 𝑦1𝑛 and the lower 𝑟 −cut 𝑦(𝑡, 𝑟)as 

𝑦2𝑛 for Problem 2.It is observed that as the number of step k increases, the absolute error 

in the solution obtained with the proposed methods reduces.  
 

 
Figure 5:  Exact and Numerical approximation of Problem 3 

 
Figure 5 shows the agreement  between the exact solution and approximate solution using 
the formulated methods. Y(t), y2SFBHBDF, y3SFBHBDF and y4SFBHBDF represents exact 
solution, approximate solution of the respective 𝑘-step method developed for the solution of 
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the upper 𝑟 −cut 𝑦̅(𝑡, 𝑟) while W(t), w2SFBHBDF, w3SFBHBDF and w4SFBHBDF give the 

solution of the lower 𝑟 −cut 𝑦(𝑡, 𝑟) for Problem 3 with 𝑡 ∈ [0,1], ℎ = 0.1 with 𝑟 = 0.8. 

 

 
Figure 6: Absolute error in the proposed methods for problem 3 

 
We also solved Problem 3 for different values of 𝑟 and the results obtained are presented in 

Figures 7. 

 
Figure 7:  Exact and Numerical approximation of Problem 3 for different values of r 

 
Figure 7 shows the agreement in between the exact solution and approximate solution using 
the formulated methods. Y(r), y2SFBHBDF, y3SFBHBDF and y4SFBHBDF represents exact 
solution, approximate solution of the respective 𝑘-step method developed for the solution of 
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the upper 𝑟 −cut 𝑦̅(𝑡, 𝑟) while W(r), w2SFBHBDF, w3SFBHBDF and w4SFBHBDF give the 

solution of the lower 𝑟 −cut 𝑦(𝑡, 𝑟) for Problem 3 at 𝑡 = 0.1 with  𝑟 ∈ [0,1], ℎ = 0.01. 

We also compared the absolute error in the one of the formulated methods (2SFBHBDF) 
with the methods used in Ivaz et al. (2013) for Problem 3 as shown in Table 1. It is 
observed that the formulated methods perform better than existing methods. 
 

Table 1: Comparing the absolute error in the new method for 𝒌 = 𝟐 with the 

methods in Ivaz et a.l (2013) varying 𝒓 for problem 6 at 𝒕 = 𝟎. 𝟏 𝐚𝐧𝐝 𝒓 ∈ [𝟎, 𝟏]. 
 

𝒓 Ivaz et al 
(2013) 

𝑦 

(Trapezoidal) 

Ivaz et al 
(2013) 

𝑦 

(Midpoint) 

New 
method 

 
𝑦 

(2SFBHBDF) 

Ivaz et al 
(2013) 

𝑦 

(Trapezoidal) 

Ivaz et al 
(2013) 

𝑦 

(Midpoint) 

New 
method 

 
𝑦 

(2SFBHBDF) 

0.0 8.00E-07 5.06E-03 4.43E-12 7.00E-07 5.06E-03 4.15E-12 

0.2 7.00E-07 4.05E-03 4.39E-12 7.00E-07 4.05E-03 4.18E-12 

0.4 7.18E-07 3.04E-03 4.38E-12 7.00E-07 3.03E-03 4.25E-12 

0.6 7.84E-07 2.02E-03 4.36E-12 8.00E-07 2.02E-03 4.27E-12 

0.8 7.51E-07 1.01E-03 4.35E-12 7.00E-07 1.01E-03 4.27E-12 

1.0 7.18E-07 1.48E-06 4.34E-12 7.00E-07 1.50E-06 4.32E-12 

 
Conclusion 
We now have at our disposal, three different methods having good consistency properties 
for the approximation of Fuzzy differentia equations, accuracy of which improves as the step 
number increases. Efficiency and accuracy of the methods have been tested and established 
from the results. 
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