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ABSTRACT 

In this paper, a class of two-step second derivative numerical method is developed by incorporating one or more 

function evaluation at collocation with carefully selected off-grid points. The continuous formulations of the methods 

are derived through the interpolation and collocation technique with Hermite polynomial as basis function.  The two 

numerical schemes derived are of higher order of accuracy with relatively small error constants. The methods are 

consistent and zero stable and hence convergent. The stability properties of the methods are carried out via the linear 

system. Both methods are A-stable as their regions of absolute stability contain the entire left-hand plane of the 

stability region. Furthermore, the two methods were implemented as block forms in other to simultaneously produce 

approximate solutions to some standard stiff problems (both linear and nonlinear) found in the literature. Hence our 

methods are self-starting and do not require separate methods to start the implementation. The errors incurred in our 

methods on the problems considered, are relatively lower than the methods found in the literature. 
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INTRODUCTION  

Numerical methods for ordinary differential equations 

(ODEs) are very significant in scientific computation, 

as they are generally used for solving real life 

problems. In numerous applications modeled by 

ordinary differential equations, there exist some 

problems that exhibit a behavior known as stiffness. 

Stiff problems are usually difficult to obtain their 

numerical solutions because certain numerical 

methods such as explicit methods designed for stiff 

problems are used with very small step sizes or do not 

converge at all. The idea of stiffness, occurring in 

differential equations came as a result of some 

spearheading works done by the two physicists, 

Curtiss and Hirschfelder (1952). Shampine and Watt 

(1969) in their text, explained the characteristics of 

numerical methods used for solving problems 

associated with stiffness and examined the diverse 

realistic objectives when solving stiff problems which 

includes methods with strong stability properties for 

solving stiff problems. 

Numerical methods for approximating the solution of 

stiff problems are required to possess good stability 

properties such as having wide region of absolute 

stabilities which contain the entire or large enough left 

half of the complex plan (Akinfenwa et al., 2014;  

 

Muka and Obiorah, 2016; Abhulimen and Ukpebor, 

2019). Methods of which region of absolute stability 

contains the entire left half of the complex plane are 

known as A-stable methods (Butcher, 2008; Ngwane 

and Jator, 2012; Athe and Muka, 2017). However, A-

stable methods are implicit and cannot exceed order 

p=2 (Lambert, 1991; Hairer, et al., 2002; Butcher, 

2008; Athe and Muka, 2017). This restriction is 

generally known as the second Dahlquist order barrier 

(Hairer et al., 2002). In a bid to address this barrier, 

various research attempts have been proposed which 

include multi-derivative terms in the derivation 

process (Enright, 1974; Akinfenwa et al., 2017; Bakari 

et al., 2018; Abhulimen and Ukpebor, 2019), and 

inclusion of off-grid points (Mehdizadeh et al., 2012; 

Sahil et al., 2012; Yakubu et al., 2017). Abdelrahim 

and Omar (2015) adopted the method of interpolation 

and collocation method in developing a new one step 

hybrid block method (with two off step points) for 

solving third order initial value problem of ordinary 

differential equations. Their method which is of order 

4 and zero stable successfully solved third order IVPs. 

Omar and Abdelrahim (2016) developed an order 4 

zero stable one step hybrid block method for solving 

second order IVPs using collocation and interpolation 

approach.  In deriving their method, the power series 
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used as basis function to approximate the solution is 

interpolated at the off step points while its second 

derivative is collocated at all points in the selected 

interval. 

In this research, the continuous formulation of a class 

of two-step implicit linear multistep method 

incorporating second derivatives in the derivation 

process and imposing some suitable off-step points is 

proposed. The continuous scheme derived is expected 

to generate a number of sufficient schemes in order to 

solve stiff ODEs as a block method, hence overcoming 

the problem associated with starting values and 

predictor-corrector. 

Derivation of the Methods 

The proposed two-step hybrid block method with 

second derivative that produces approximations n ky 

to the first order ordinary differential equations 

(ODEs)  

 ,x f t x            (1) 

 is given as follows: 

2 2
2

0 1 0 1

k k

j n j vj n vj j n j vj n vj k n k

j j j j

x x h f f h f        

   

 
    

 
         (2) 

,j jv    
j  and 

vj  are constant coefficients.  

In order to obtain (2), we approximate the solution by the orthogonal function  X t  of the form  

   
1

0

r s

j

j

X t a t
 



           (3) 

where  

(i)  ,t a b   

(ii)  t  is an orthogonal function defined by the Hermit polynomial 

(iii) 
ja  are unknown coefficients to be determined  

(iv) r is the number of interpolations for 1 r k   and  

(v) s is the number of distinct collocation points with 0s   

The continuous approximation is constructed by imposing the following conditions  

   1 2, , , , 0,1,...,k 1n nX t x j v v j            (4) 

   1 2, , , , 0,1,...,kn nX t f j v v j  
           (5) 

  ,n j n jX t f j k 
           (6) 

where 1v  and 2v  are not integers. Equations (4) – (6) 

form a system of nonlinear equations in 'ja s  which 

is solved using the matrix inversion technique via 

Maple software. The values of  'ja s  obtained are 

then substituted back into (3) to yield the continuous 

formulation of our proposed method in the form  

         
2 2

2

0 1 0 1

k k

j n j vj n vj j n j vj n vj k n k

j j j j

t x t x h t f t f h t f        

   

 
    

 
    , (7) 

which upon evaluation at , 2n kt t k   gives the 

discrete two-step second derivative hybrid method. 

However, we intend to implement our methods in a 

block form, which shall simultaneously generate 

approximate solutions to (1). In view of this, 

evaluating the second derivative of (7) at some 

required points gives a number of discrete schemes 

necessary to implement the methods in block form. In 

what follows, two separate block methods for two-step 

second derivative block hybrid method will be derived 

following the above procedures. The distinguishing 

factor in the two proposed block methods is the choice 

of  , 1,2iv i      
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Two-step second derivative hybrid block method with 

1

1

2
v   and 2

3

2
v   (TSDHBM1) 

To derive this method, (3) is interpolated at 

1 3
2 2

1, , ,n nn n
t t t t t 
  and (4) is collocated at 

1 3
2 2

1 2, , , ,n n nn n
t t t t t t  
  while (5) is also collocated 

at 2nt t  .  These of course are done using the 

Hermit polynomial of degree 

1 4 6 1 9r s       as follows: 

 

         

   

   

2 3 4 2 5 3

0 1 2 3 4 4

6 4 2 7 5 3

6 7

8 6 4 2 9 7 5 3

8 9

2 8 4 8 12 16 48 12 32 160 120

64 480 720 120 128 1344 3360 1680

256 358 13440 13440 1680 512 9216 48384 80640 30240

X t a ta t a t t a t t a t t t a

t t t a t t t t a

t t t t a t t t t t a

           



        


         

  (8) 

 

The above procedure leads to a system of nonlinear equations in the form 

AU B            (9) 

 

where  

 0 1 2 3 4 5 6 7 8 9, , , , , , , , ,
T

A a a a a a a a a a a  , 

1 3 1 3
2 22 2

1 1 2 2, , , , , , , , ,
T

n n n n n nn nn n
B x x x x f f f f f f     

 
 

    

and U are the coefficients of 'ja s  in (8). Using the 

matrix inversion technique, (9) is solved for the vales 

of  'ja s   and then substituted into (8) which gives the 

continuous scheme in the form 

 

         

           

1 1 1 1 3 3

2 2 2 2

2

1 1 1 1 3 3 2 2 2 2

2 2 2 2

o n n
n n

o n n n n
n n

x t t x t x t x t x

h t f t f t f t f t f h t f

   

     


 

  
 

     


 
     
  

 (10) 

The continuous coefficients    j jt t   and  2 t  are given in the appendix. Evaluating (10), at 2nt t  , 

gives the first discrete scheme as 

2 1 1 3 1 1

2 2 2

2

3 2 2

2

53 512 432 512 6 128 432

485 485 485 485 485 485 485

384 20 6

485 97 485

n n n n n
n n n

n n
n

x x x x x hf hf hf

hf hf h f

  
  

 


      

  

         (11) 

The discrete Scheme in (11) is however not sufficient 

to implement the numerical solution for any initial 

value problem. Therefore, in order to obtain other 

necessary and sufficient schemes we take the second 

derivative of the continuous scheme (10) and evaluate 

1

2
n

t t


 , 1nt   and 
3

2
n

t


 to generate the following 

schemes are generated. 

 

1 1 3 1 1

2 2 2

2 2

3 2 1 2

2 2

1939 503 5729 503 4706 449

21249 787 21249 56664 21249 1574

341 415 485 1

7083 169992 14166 3148

n n n n
n n n

n n
n n

x x x x hf hf hf

hf hf h f h f

 
  

 
 

     

    

      (12) 
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1 1 3 1 1

2 2 2

2 2

3 2 1 2

2

1883 1216 29248 541 6268 56

63963 2369 63963 170568 63963 2369

1492 1345 485 7

21321 511704 9476 21321

n n n n
n n n

n n n
n

x x x x hf hf hf

hf hf h f h f

 
  

  


     

    

    (13) 

3 1 1 1 1

2 2 2

2 2

3 2 3 2

2 2

751 8289 14769 671 1951 567

23809 23809 23809 190472 23809 1642

6338 1645 1455 93

23809 190472 47618 95236

n n n n
n n n

n n
n n

x x x x hf hf hf

hf hf h f h f

 
  

 
 

     

    

  (14) 

Two-step second derivative hybrid block method 

with 1

5

17
v   and 2

29

17
v  (TSDHBM2) 

Similar to (TSDHBM1), (4) is interpolated at 

5 29
17 17

1, , ,n nn n
t t t t t 
  and (5) is collocated at 

5 29
17 17

1 2, , , ,n n nn n
t t t t t t  
  while (6) is also 

collocated at 2nt t   and following similar 

procedure, the continuous formulation is given as 

         

           

5 5 1 1 29 29

17 17 17 17

2

5 5 1 1 29 29 2 2 2 2

17 17 17 17

o n n
n n

o n n n n
n n

x t t x t x t x t x

h t f t f t f t f t f h t f

   

     


 

  
 

     


 
     
  

 (15) 

The following schemes are generated from (15) and its second derivative: 

5 29
17 17

5
17

1

1

51737727016894464 365653970000 3049889375

64986068469543839 2664564700051 45769446127

7321612861440 72319104240 230661720000

131817583102523 778080584159 2664564700051

686

n nn n

n nn

x x x x

hf hf hf

 



  

  

 29 5
17 17

2

2

2

2

710200 447626970316800 14805079200

26830364971 64986068469543839 456116204507

1668169728000

2240898912742891

nn n

n

hf hf h f

h f

 



 



   (16) 

5 29
17 17

5
17

1

1

46340865220608 24137569 626200952567

85184079170875 6985450750 1362945266734

26778428928 301624482081 779520

587476408075 1174952816150 27941803

171860911137

1174952816150

n n n n

n nn

x x x x

hf hf hf

h

  



  

  

 29
17

2

2 1

2

2

19581958656 2387916

587476408075 27941803

13934592

4051561435

n nn

n

f hf h f

h f

 



 



          (17) 
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29 29
17 17

5
17

1

64377523990167552 13495628761 526897739917904

111077878514198375 78231736375 888623028113587

65702903169024 64386092088 410549393010624

1306798570755275 265987903675 888623028

n nn n

n n

x x x x

hf hf

 



  

  

29 29
17 17

1

2

2

2

2

113587

260006622864 23752029288185856 498042864288

1329939518375 111077878514198375 4521794362475

404713710157824

22215575702839675

n

nn n

n

hf

hf hf h f

h f



 



  



(18) 

5 29
17 17

5
17

29

2 1

1

160805 120687845 442050625 114098288663

2056261 4737625344 7994742768 127915884288

42050 1029396325 442050625

6168783 31978971072 7994742768

5970498685

31978971072

n n nn n

n nn

n

x x x x x

hf hf hf

hf

  





   

  


17

2

2 2

922780 42050

6168783 6168783
n nhf h f 

 

        (19) 

Analysis of the Methods 

In this  section, the local truncation error and order, 

consistency, zero-stability and convergence analysis 

of the derived methods are investigated and it is 

observed that the methods were zero stable, 

consistence and hence convergence. 

 

Local truncation error and order 

Following Nwachukwu and Okor (2018), we can rewrite each of the derived methods as: 

     2

0 0 0

;
k k k

j j n j j n j

j j j

L y x h y x jh h f h g   

  

   
         

   
      (20) 

Expanding (20) in Taylor series, the local truncation error associated with (1) is the linear difference operator 

        2

0 0 0

;
k k k

j j j

j j j

L y x h y x jh h y x jh h y x jh  
  

   
            

   
    (21) 

Assuming that  y x  is sufficiently differentiable, we can expand the terms in (21) as a Taylor series about the point 

x  to obtain the expression  

       ( )

0 1; ... ...q q

qL y x h C y x C hy x C h y x            (22) 

where the constant , 0,1,...qC q   are given as follows 

 

 
   

0

0

1

1 0

2

2

1 1 0

1 2

1 1 1

1

2!

1 1 1

q! 1 ! 2 !

k

j

j

k k

j j

j j

k k k

j j j

j j j

k k k
q q q

q j j j

j j j

C

C j

C j j

C j j j
q q



 

  

  



 

  

 

  


 




  



   





    





 

  

  

    (23) 
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A linear multistep method is said to be of order of 

accuracy p  if 

0 1 1 1... 0, 0.p p pC C C C C      is called the 

error constant (Akinfenwa et al., 2015) 

 

 

 

Table 1: Order and Error Constants for TSDBM1 

Equations Order p 
Error constants, 

1pC 
 

11 9 
1

65184000
 

12 9 
1

58060800
 

13 9 
557

182775398400
 

14 9 
199

91697356800
 

 

Table 2: Order and Error Constants for TSDBM2 

Equation Order p 
Error constants, 

1pC 
 

16 9 
129381561600

26483105889242188949
 

17 9 
5555352

408402282463525
 

18 9 
5583159518293248

220800584694947826985325
 

19 9 
17682025

4674102375082896
 

RESULTS AND DISCUSSIONS 

Numerical Experiments 

Problem 1: Consider the linear problem  

20,1)0(cossin2020  txttxx  

With exact solution  
tettx 20sin)(    

 (Mohamad et al., 2018). 

Problem 2: The circuit problem (Source: Musa et al., 

2013). 

 8 8 1; 0 2, 0 10.x x t x t         

Exact solution:   82 tx t t e   

Problem 3: We also consider a nonlinear highly 

stiffed problem. Source: (Mohamad et al. 2018). 

  
 

   
50

50 , 0 2, 0 1x t x t x t
x t

       

Exact solution:   1001 tx t e   

Problem 4. We consider the following linear stiff 

system of IVP on the range 0 1.x   Source: 

Mohammed (2022). 

 

95 , (0) 1

97 , 0 1

y y z y

z y z z

    

    
 

Exact solution:  
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 

 

2 96

96 2

95 48

47 47

48 1

47 47

x x

x x

y x e e

z x e e

 

 

 

 

 

Problem 5. We consider the following nonlinear IVP 

over the range 0 1x  . Source: Mohammed et al. 

(2022). 

 

   

21002 1000 , 0 1

1 , 0 1

y y z y

z y z z z

    

    
 

Exact solution:    2 ,x xy x e z x e    

 

Table 3: Comparing the Maximum errors for Problem 1 

h Methods  Maximum errors 

 

0.01 

TSDBHM1 5.897 10-15 

TSDBHM2 4.108 10-15 

0.001 Mohamad et al. (2018) 7.35  10-04 

 

Table 3 shows the numerical computations for 

problem 1 for h=0.01. The table displays the exact 

solutions at the interval of 0.1 and the comparison of 

the absolute errors for both TSDBHM1 and 

TSDBHM2 are also shown. Our methods compare 

favorably with the analytical solution. In table 4, we 

compare the maximum errors incurred in our 

numerical methods with that of Mohamad et al. 

(2018). Our methods outperform the method of 

Mohamad et al. (2018) with smaller h=0.001.  

 

 

Table 4: Numerical results for Problem 2 with h =0.1 

t Exact Solution  Error in 

TSDBM 1 

Error in TSDBM 

2  

Error in   

Ehiemua and Agbeboh 

(2019) 

0.1 0.998657928234444 2.68*10-9 1.94*10-9 8.30*10-7 

0.2 0.603793035989310 1.62*10-9 1.44*10-9 7.46*10-7 

0.3 0.481435906578825 1.27*10-9 1.04*10-9 5.03*10-7 

0.4 0.481524407956732 6.56*10-10 5.83*10-10 3.01*10-7 

0.5 0.536631277777468 4.04*10-10 3.41*10-10 1.69*10-7 

0.6 0.616459494098040 1.99*10-10 1.77*10-10 9.12*10-8 

0.7 0.707395727432966 1.22*10-10 9.53*10-11 4.78*10-8 

0.8 0.803323114546348 5.35*10-11 4.75*10-11 2.45*10-8 

0.9 0.901493171616753 2.85*10-11 2.46*10-11 1.24*10-8 

1.0 1.00067092525581 1.35*10-11 1.20*10-11 6.20*10-8 

 

Table 4 above presents the exact solution of problem 

2 and absolute error incurred in solving the problem 

with the newly derived schemes. The two newly 

derived schemes are of the same order of accuracy but 

different error constants due the change in the choice 

of the off-grid points used. The method TSDHBM 2 

with lower error constants performs slightly better 

than its counterpart TSDHBM 1. However, both 

methods outperform the method of Ehiemua and 

Agbebor (2019).  
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Table 5: Comparing the Maximum errors for Problem 3 

h Methods  Maximum errors 

 

0.001 

TSDBHM1 1.212 10-03 

TSDBHM2 7.122 10-04 

0.001 Mohamad et al. (2018) 3.898  10-03 

Table 5 presents the numerical solution of problem 3 

which is highly stiffed. The problem was solved using 

the step size of h=0.001 and the absolute error are 

shown. However, our methods still perform better than 

the method of Mohamed et al. (2018) as displayed in 

table 7 with the same step size. 

Table 6: Comparing the Absolute error in the proposed method with existing methods found in literature for problem 4. 

 

h 

Ehigie and 

Okunuga 

(2013) 

 ny  

 nz  

Biala et al 

(2015) 

 

 ny  

 nz  

Abhulimen and 

Ukpebor (2018) 

 ny  

 nz  

Mohammed et 

al. (2022) 

 

 ny  

 nz  

TSDBHM1 

 

 ny  

 nz  

TSDBHM2 

 

 ny  

 nz  

0.0625 

3
9.4 10  

 
93.6 10  

 
104 10  

 
108 10  

 
85.0 10  

 
107.0 10  

 
119.25 10  

 
119.56 10  

 1.18*10-16 

 1.24*10-18 

 8.40*10-17 

 8.84*10-19 

0.03125 

 
93.4 10  

 
93.5 10  

 
127 10  

 
147 10  

 
86.0 10  

 
101.0 10  

 
137.8 10  

 
161.1 10  

 5.76*10-23 

 9.08*10-24 

 1.58*10-22 

 4.24*10-24 

 

The two newly derived methods perform better than existing methods at t=1 as shown in the table 6 

 

Table 7: Comparing the Absolute error in the proposed method with existing methods found in literature for 

problem 5. 

 h  

Akinfenwa et al. (2013) 

ny  

nz  

Mohammed et al. 

(2022) 

ny  

nz  

TSDBHM1 

 

 ny  

 nz  

TSDBHM2 

 

 ny  

 nz  

0.02 

139.1102 10  
121.2527 10  

212.12 10  
177.89 10  

8.55 10-24 

9.52 10-24 

5.40 10-24 

6.68 10-24 

The two newly derived methods perform better than existing methods at t=1 as shown in the table 7 

CONCLUSION 
In this paper, we seek an approximate solution from 

the Hermit polynomial in order to derive a class of 

two-step second derivative linear multistep methods 

for solving stiff problems of first order ordinary 

differential equations. In the derivation process, some 

carefully selected off-grid points are incorporated to 

interpolation and collocation points. The reliability of 

the derived methods was tested and findings show that 

they are convergent and A-stable. Hence, we further 

test the effectiveness of the schemes on some standard 

stiff problems of first order ordinary differential 

equations. Numerical results show that the methods 

are more effective in terms of accuracy than some 

other methods we compared with in the literature.  
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