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Abstract 
 

Several stationary iteration techniques for numerical solutions to special systems of linear equation systems of the form  

𝒜𝑢 = 𝑏 have been studied in an attempt to improve their convergence, suitability, and strength. Among such techniques is the 

Extended Accelerated Overrelaxation (EAOR) iterative scheme. In this paper, we studied the basics of the EAOR methods and 

applied them to compute the solution of a real-life problem, resolving the heat equation when a steady temperature is applied to a 

metal plate. We show how the real-life problem can be modeled into a partial differential equation, followed by discretization 

through the use of finite differences, and finally generating a largely sparse system of algebraic linear equations, from which the 

unknowns are to be solved. The techniques were compared with the Refinement of Accelerated Overrelaxation (RAOR) iterative 

scheme. The outcome of the numerical tests proves the effectiveness of the EAOR schemes for such problems. 

 

Keywords: extended accelerated overrelaxation method, discretization, spectral radius, heat transfer, large linear equation  

                system  

 

 

1. Introduction  
 

 Many real world problems are usually represented in 

terms of mathematical concepts and equations, such as partial 

differential equations. These equations can be solved 

numerically through the use of discretization techniques. 

Among such techniques is the finite difference method. The 

finite difference procedure is a numerical analysis tool for 

providing approximate solutions to a wide range of scientific 

and engineering problems (Saad, 2003). The finite difference 

method works by dividing the area of interest into a certain 

number of mesh points and then giving each mesh point a 

unique identifier based on its location, like in heat transfer 

systems. 

Some authors have come up with new, simple, and 

accurate ways to solve heat conduction problems in the past few 

years. These methods use meshless techniques. Heat 

conduction in nonlinear functionally graded materials can be 

simulated using a local semi-analytical meshless method, 

according to Wang, Wang, and Gong (2021).      The method's

 
accuracy and validity have been demonstrated numerically 

through some case studies. Also, Chebyshev polynomials were 

used by Wang, Zhao, Chen, and Fan (2021) to develop a 

localized method for large-scale simulation of 2D boundary 

value problems. The method has great potential for solving 

elliptic partial differential equations quickly and accurately. 

Wang, Fan, Zheng, and Lin (2020) solved some problems with 

diffusion and convection-diffusion by using a localized space-

time method of fundamental solutions. It is of utmost 

importance to utilize mathematics to fully understand and 

quantify any physical phenomenon. Such processes are usually 

transformed into systems of linear equations depicted as 

 

𝒜𝑢 = 𝑏 (1) 
  

where, 𝒜 = [𝑎𝑖𝑗]  is a non-singular ( det 𝒜 ≠ 0)  square 

matrix. We split the matrix 𝒜 into 𝒜 = 𝐷 − 𝒜𝐿 − 𝒜𝑈  and 

impose the normalization to 𝐷−1𝒜 = 𝐷−1𝑏  to get  𝒜 = ℐ −
ℒ − 𝒰,  where −ℒ and −𝒰  are strictly lower and  upper 

triangular sections of  𝒜, and ℐ   is the identity matrix. 

Current stationary iteration techniques for 

computations of equation (1) by various researchers such as 

Assefa and Teklehaymanot (2021), Audu, Yahaya, Adeboye, 

and   Abubakar   (2021a),   Tesfaye,   Awgichew,   Haile,   and 
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Gashaye (2020); Vatti, Sri, and Mylapalli (2018); Vatti, Rao, 

and Pai (2020a); Wu and Yu-Jun (2014); and Youssef and Farid 

(2015) have been constructed to approximately find solutions 

to a square linear system of equations under special situations. 

Also, Vatti, Rao, and Pai (2020b) changed the Accelerated 

Overrelaxation approach and created the Reaccelerated 

Overrelaxation technique, which has a faster convergence rate 

than the Accelerated Overrelaxation technique. Some authors 

studied the performance of iteration methods for solutions to 

some systems of linear equations in case study applications. 

Authors like Akhir and Suleiman (2017) used a mix of triangle 

element approximation and an Accelerated Over-Relaxation 

approach to create an outstanding iterative technique for 2D 

Helmholtz equations. A numerical test was used to determine 

the method's performance. The linked Accelerated Over-

Relaxation approach showed larger convergence improvements 

for the 2D Helmholtz equations than the Successive Over-

Relaxation method, according to the results. Dahalan, Saudi, 

and Suleiman (2018) looked at how well the Quarter-sweep 

Accelerated Overrelaxation approach, which is a subset of the 

Accelerated Overrelaxation technique, solves robotic 

problems, such as finding a path from a starting point to a given 

destination in an indoor environment that doesn't have any 

collisions.  

To numerically estimate the solution of the desired 

linear system in (1), we apply the EAOR technique presented 

by Audu, Yahaya, Adeboye, and Abubakar (2021a), described 

by 

 

𝑢(𝑘+1) = ℒ𝛽,𝓇,𝑤𝑢(𝑘) + [ℐ − 𝛽ℒ − 𝓇ℒ]−1𝑤𝑏̅       (2) 

 

where ℒ𝛽,𝓇,𝑤 = [ℐ − 𝛽ℒ − 𝓇ℒ]−1[(1 − 𝑤)ℐ + [𝑤 − 𝛽 −

𝓇]ℒ + 𝑤𝒰]  is the iteration matrix of the EAOR scheme. The 

parameters involved in the scheme represent overrelaxation, 

acceleration, and extended acceleration, respectively. The 

speed of convergence is assessed through the spectral radius, 

which is dependent on the iteration matrix. Usually, the 

convergence rate of a stationary iterative technique improves 

when the spectral radius is comparatively smaller. By setting 

certain options of the parameters in the EAOR technique (2), it 

reduces to the following well-known iteration techniques as 

special cases: 

Jacobi technique; 

ℒ0,0,1 = [ℐ]−1[ℒ + 𝒰] + [ℐ]−1𝑏̅ 

Gauss-Seidel technique; 

ℒ0,1,1 = [ℐ − ℒ]−1[𝒰] + [ℐ − ℒ]−1𝑏̅ 

Successive Overrelaxation (SOR) technique; 

ℒ0,𝑤,𝑤 = [ℐ − 𝑤ℒ]−1[(1 − 𝑤)ℐ + 𝑤𝒰] + 

𝑤[ℐ − 𝑤ℒ]−1𝑏̅ 

Accelerated Overrelaxation (AOR) technique; 

ℒ0,𝓇,𝑤 = [ℐ − 𝓇ℒ]−1[(1 − 𝑤)ℐ + 𝑤𝒰 + [𝑤 − 𝓇]ℒ]  

+𝑤[ℐ − 𝓇ℒ]−1𝑏̅ 
In an endeavor to generalize the EAOR method to 

more classes of matrices, Audu, Yahaya, Adeboye, and 

Abubakar (2021b) extended the convergence domain of the 

EAOR technique to cover matrices. Despite the fact that the 

EAOR is a fast-converging technique compared to the AOR 

technique, it can attain faster convergence with more 

improvement. In light of this, Audu, Yahaya, Adeboye, and 

Abubakar (2021c) made the EAOR scheme even better so that 

it  would  converge  faster.  They  proposed  the  refinement  to 

Extended Accelerated Overrelaxation (REAOR) technique:  
 

𝑢̅(𝑘+1) = ((ℐ − (𝛽 + 𝓇)ℒ)−1((1 − 𝑤)ℐ + [𝑤 − (𝑣 +

                  𝓇)]𝐿 + 𝑤𝒰))
2

𝑢(𝑘) + (ℐ + (ℐ − (𝛽 +

                  𝓇)ℒ)−1((1 − 𝑤)ℐ + [𝑤 − (𝛽 + 𝓇)]ℒ +

                  𝑤𝒰)) (ℐ − (𝑣 + 𝓇)ℒ)−1𝑤𝑏̅                  (3) 

 

The iteration matrix is given by ((ℐ − (𝛽 +

𝓇)ℒ)−1((1 − 𝑤)ℐ + [𝑤 − (𝛽 + 𝓇)]ℒ + 𝑤𝒰))
2
. 

This current study is concerned with the application 

of the EAOR techniques to numerically estimate the solutions 

of sparse large linear systems, which are obtained when seeking 

the heat distribution in a metal plate that has different 

temperatures at its boundaries. 

 

2. Steps for the EAOR Algorithm 
 

1. Enter matrix  𝒜, select an initial guess  𝑢0, 

maximum iteration number tolerance (𝜀) and 

𝛽, 𝓇, 𝑤 ∈ (0,1) 

2. Obtain ℒ, 𝒰 and 𝐷 from matrix 𝒜 and 𝐷−1𝒜 

3. Find the inverse of  [ℐ − 𝛽ℒ − 𝓇ℒ] 
4. Set 𝐺 = [ℐ − 𝛽ℒ − 𝓇ℒ]−1[(1 − 𝑤)ℐ +

[𝑤 − 𝛽 − 𝓇]ℒ + 𝑤𝒰] 
5. Set 𝑉 = 𝑤[ℐ − 𝛽ℒ − 𝓇ℒ]−1𝑏̅ 

6. Compute 𝑢(𝑘+1) = 𝐺𝑢(𝑘) + 𝑉 

7. Stop if ‖𝑢(𝑘+1) − 𝑢(𝑘)‖
∞

< 𝜀 

 

2.1. Steps for refinement EAOR algorithm 
 

1. Enter matrix  𝒜, select an initial guess  𝑢0, 

maximum iteration number tolerance (𝜀) and 

𝛽, 𝓇, 𝑤 ∈ (0,1) 

2. Obtain ℒ, 𝒰 and 𝐷 from matrix 𝒜 and 𝐷−1𝒜 

3. Find the inverse of  [ℐ − 𝛽ℒ − 𝓇ℒ] 

4. Set  𝑇1 = (ℐ − (𝛽 + 𝓇)ℒ)−1((1 − 𝑤)ℐ +

[𝑤 − (𝛽 + 𝓇)]ℒ + 𝑤𝒰) 

5. Set  𝑇 = ((ℐ − (𝛽 + 𝓇)ℒ)−1((1 − 𝑤)ℐ +

[𝑤 − (𝛽 + 𝓇)]ℒ + 𝑤𝒰))
2
 

6. Set   𝑃 =  (𝐼 + 𝑇1)(ℐ − (𝛽 + 𝓇)ℒ)−1(𝑤𝑏̅) 

7. Compute 𝑢(𝑘+1) = 𝑇𝑢(𝑘) + 𝑃 

8. Stop if ‖𝑢̅(𝑘+1) − 𝑢(𝑘)‖
∞

< 𝜀 

 

3. Materials and Method 
 

We consider a real-life problem, namely a two-

dimensional heat distribution problem. This particular problem 

concerns a metal plate of size  0.9𝑚 × 0.9𝑚  with the edges 

held at steady temperatures as in Figure 1 (Mayooran & Elliot, 

2016). 

 

3.1 Problem specification 
 

Due to the fact that heat usually moves from a higher 

temperature to a lower temperature, for the metal plate given in 

Figure 1 we pose the problem of finding the temperature 
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distribution within the metal while in a steady state. What 

would the temperature be at each point? 

 

3.2 Method of solution 
 

We intend to find the temperatures within the metal 

plate in a stable state. For this, the metal plate is divided using 

a step-size along each axis, as displayed in Figure 2. After 

discretization of the plate, we get 64 inner grid nodes, which 

gives 64 unknowns. Each cell in the picture shows the 

temperature of a node of an element in the metal couple, with 

the edge of the metal plate in the middle of each node. It should 

be noted that the mesh points in Figure 2 are at the center of 

each element.  

The aim is to examine the temperature distribution at 

each point in time. As it is typical with differential equations, it 

is easier to describe how this set-up changes from moment to 

moment. We write the physical dynamic model in the form of 

derivatives or partial derivatives, in what is known as the heat 

equation. 

 
𝜕𝑇

𝜕𝑡
− 𝛼 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2) = 0                                (4) 

 

The equation implies that as time increases, 

temperature changes over the three co-ordinates  𝑥, 𝑦 and  𝑧. 

In this work, we consider only two dimensions 𝑦 and 𝑥. 

Transforming the heat transfer problem into the Laplace 

equation:  

 
𝜕2

𝜕𝑥2 𝑇(𝑥, 𝑦) +
𝜕2

𝜕𝑦2 𝑇(𝑥, 𝑦) = 0                                           (5) 

 

for  0 ≤ 𝑥 ≤ 0.9  and 0 ≤ 𝑦 < 0.9  combined with the 

following boundary conditions   

 

𝑇(𝑥, 0) = 273, 𝑇(𝑥, 0.9) = 298,   
𝑇(0, 𝑦) = 273  and  𝑇(0.9, 𝑦) = 373.                                     (6) 

 

Application of the central finite difference 

approximation to the partial derivatives 
𝜕2𝑇

𝜕𝑥2  and  
𝜕2𝑇

𝜕𝑦2  in (5) 

gives:  

 
𝜕2𝑇

𝜕𝑥2 =
𝑇𝑟+1,𝑠−2𝑇𝑟,𝑠+𝑇𝑟−1,𝑠

ℎ
2                                                          (7) 

 
𝜕2𝑇

𝜕𝑦2 =
𝑇𝑟,𝑠+1−2𝑇𝑟,𝑠+𝑇𝑟,𝑠−1

𝑘2                                                         (8) 

 

where  (𝑟, 𝑠) is the position on 𝑥 − 𝑦 axes, with a discrete value 

range. Then, we have 

 
𝑇𝑟+1,𝑠−2𝑇𝑟,𝑠+𝑇𝑟−1,𝑠

ℎ
2 +

𝑇𝑟,𝑠+1−2𝑇𝑟,𝑠+𝑇𝑟,𝑠−1

𝑘2 = 0                         (9) 

 
For 𝑘 = ℎ, equation  (9) becomes    

       

4𝑇𝑟,𝑠 − 𝑇𝑟+1,𝑠 − 𝑇𝑟−1,𝑠 − 𝑇𝑟,𝑠+1 − 𝑇𝑟,𝑠−1 = 0                         (10) 

 

which signifies that, at each interior mesh-point, the 

temperature is the average of the temperatures of the four 

neighboring nodes of that specific mesh-point. Application of 

equation (9) to all the inner grid points generates a set of 64 

algebraic linear equations: 

 
4𝑡1,1 − 𝑡2.1 − 𝑡1,2 = 546

4𝑡2,1 − 𝑡3,1 − 𝑡1,1 − 𝑡2,2 = 273

4𝑡3,1 − 𝑡4,1 − 𝑡2,1 − 𝑡3,2 = 273

4𝑡4,1 − 𝑡5,1 − 𝑡3,1 − 𝑡4,2 = 273

4𝑡5,1 − 𝑡6,1 − 𝑡4,1 − 𝑡5,2 = 273

4𝑡6,1 − 𝑡7,1 − 𝑡5,1 − 𝑡6,2 = 273

4𝑡7,1 − 𝑡8,1 − 𝑡6,1 − 𝑡7,2 = 273

4𝑡8,1 − 𝑡7,1 − 𝑡8,2 = 646

4𝑢1,2 − 𝑡2,2 − 𝑡1,3 − 𝑡1,1 = 273

4𝑡2,2 − 𝑡3,2 − 𝑡1,2 − 𝑡2,3 − 𝑢2,1 = 0

4𝑡3,2 − 𝑡4,2 − 𝑡2,2 − 𝑡3,3 − 𝑡3,1 = 0

4𝑡4,2 − 𝑡5,2 − 𝑡3,2 − 𝑡4,3 − 𝑡4,1 = 0

4𝑡5,2 − 𝑡6,2 − 𝑡4,2 − 𝑡5,3 − 𝑡5,1 = 0

4𝑡6,2 − 𝑡7,2 − 𝑡5,2 − 𝑡6,3 − 𝑡6,1 = 0

4𝑡7,2 − 𝑡8,2 − 𝑡6,2 − 𝑡7,3 − 𝑡7,1 = 0

4𝑡8,2 − 𝑡7,2 − 𝑡8,3 − 𝑡8,1 = 373

4𝑡1,3 − 𝑡2,3 − 𝑡1,4 − 𝑡1,2 = 273

4𝑡2,3 − 𝑡3,3 − 𝑡1,3 − 𝑡2,4 − 𝑡2,2 = 0

4𝑡3,3 − 𝑡4,3 − 𝑡2,3 − 𝑡3,4 − 𝑡3,2 = 0

4𝑡4,3 − 𝑡5,3 − 𝑡3,3 − 𝑡4.4 − 𝑡4,2 = 0

4𝑡5,3 − 𝑡6,3 − 𝑡4,3 − 𝑡5,4 − 𝑡5,2 = 0

4𝑡6,3 − 𝑡7,3 − 𝑡5,3 − 𝑡6,4 − 𝑡6,2 = 0

4𝑡7,3 − 𝑡8,3 − 𝑡6,3 − 𝑡7,4 − 𝑡7,2 = 0

4𝑡8,3 − 𝑡7,3 − 𝑡8,4 − 𝑡8,2 = 373

4𝑡1,4 − 𝑡2,4 − 𝑡1,5 − 𝑡1,3 = 273

4𝑡2,4 − 𝑡3,4 − 𝑡1,4 − 𝑡2,5 − 𝑢2,3 = 0

4𝑡3,4 − 𝑡4,4 − 𝑡2,4 − 𝑡3,5 − 𝑡3,3 = 0

4𝑡4,4 − 𝑡5,4 − 𝑡3,4 − 𝑡4,5 − 𝑡4,3 = 0

4𝑡5,4 − 𝑡6,4 − 𝑡4,4 − 𝑡5,5 − 𝑡5,3 = 0

4𝑡6,4 − 𝑡7,4 − 𝑡5,4 − 𝑡6,5 − 𝑡6,3 = 0

4𝑡7,4 − 𝑡8,4 − 𝑡6,4 − 𝑡7,5 − 𝑡7,3 = 0

4𝑡8,4 − 𝑡7,4 − 𝑡8,5 − 𝑡8,3 = 373

4𝑡1,5 − 𝑡2,5 − 𝑡1,6 − 𝑡1,4 = 273

4𝑡2,5 − 𝑡3,5 − 𝑡1,5 − 𝑡2,6 − 𝑡2,4 = 0

4𝑡3,5 − 𝑡4,5 − 𝑡2,5 − 𝑡3,6 − 𝑡3,4 = 0

4𝑡4,5 − 𝑡5,5 − 𝑡3,5 − 𝑡4,6 − 𝑡4,4 = 0

4𝑡5,5 − 𝑡6,5 − 𝑡4,5 − 𝑡5,6 − 𝑡5,4 = 0

4𝑡6,5 − 𝑡7,5 − 𝑡5,5 − 𝑡6,6 − 𝑡6,4 = 0

4𝑡7,5 − 𝑡8,5 − 𝑡6,5 − 𝑡7,6 − 𝑡7,4 = 0

4𝑡8,5 − 𝑡7,5 − 𝑡8,6 − 𝑡8,4 = 373

4𝑡1,6 − 𝑡2,6 − 𝑡1,7 − 𝑡1,5 = 273

4𝑡2,6 − 𝑡3,6 − 𝑡1,6 − 𝑡2,7 − 𝑡2,5 = 0

4𝑡3,6 − 𝑡4,6 − 𝑡2,6 − 𝑡3,7 − 𝑡35, = 0

4𝑡4,6 − 𝑡5,6 − 𝑡3,6 − 𝑡4,7 − 𝑡4,5 = 0

4𝑡5,6 − 𝑡6,6 − 𝑡4,6 − 𝑡5,7 − 𝑡5,5 = 0

4𝑡6,6 − 𝑡7,6 − 𝑡5,6 − 𝑡6,7 − 𝑡6,5 = 0

4𝑡7,6 − 𝑡8,6 − 𝑡6,6 − 𝑡7,7 − 𝑡7,5 = 0

4𝑡8,6 − 𝑡7,6 − 𝑡8,7 − 𝑡8,5 = 373
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4𝑡1,7 − 𝑡2,7 − 𝑡1,8 − 𝑡1,6 = 273 

4𝑡2,7 − 𝑡3,7 − 𝑡1,7 − 𝑡2,8 − 𝑡2,6 = 0

4𝑡3,7 − 𝑡4,7 − 𝑡2,7 − 𝑡3,8 − 𝑡3,6 = 0

4𝑡4,7 − 𝑡5,7 − 𝑡3,7 − 𝑡4,8 − 𝑡4,6 = 0

4𝑡5,7 − 𝑡6,7 − 𝑡4,7 − 𝑡5,8 − 𝑡5,6 = 0

4𝑡6,7 − 𝑡7,7 − 𝑡5,7 − 𝑡6,8 − 𝑡6,6 = 0

4𝑡7,7 − 𝑡8,7 − 𝑡6,7 − 𝑡7,8 − 𝑡7,6 = 0

4𝑡8,7 − 𝑡7,7 − 𝑡8,8 − 𝑡8,6 = 373

4𝑡1,8 − 𝑡2,8 − 𝑡1,7 = 571

4𝑡2,8 − 𝑡3,8 − 𝑡1,8 − 𝑡2,7 = 298

4𝑡3,8 − 𝑡4,8 − 𝑡2,8 − 𝑡3,7 = 298

4𝑡4,8 − 𝑡5,8 − 𝑡3,8 − 𝑡4,7 = 298

4𝑡5,8 − 𝑡6,8 − 𝑡4,8 − 𝑡5,7 = 298

4𝑡6,8 − 𝑡7,8 − 𝑡5,8 − 𝑡6,7 = 298

4𝑡7,8 − 𝑡8,8 − 𝑡6,8 − 𝑡7,7 = 298

4𝑡8,8 − 𝑡7,8 − 𝑡8,7 = 671

 

 

(11) 

The known boundary values of the plate are inserted 

into (11) to get a sparse and large 64 × 64 linear system 𝒜𝑢 =
𝑏, which is represented as:  

4 1 0 0 0 0 0 0 1 0 0 0 0 0 0

1 4 1 0 0 0 0 0 0 1 0 0 0 0 0

0 1 4 1 0 0 0 0 0 0 1 0 0 0 0

0 0 1 4 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 4 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 4 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 4 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 4 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 4 1 0 0 0 0 0

0 1 0 0 0 0 0 0 1 4 1 0 0 0 0

0 0 1 0 0 0 0 0 0 1 4 0 0 0 0

 

  

  

 

 

 

 



 

  

 

1,1

2,1

3,1

4,1

5,1

6,1

7,1

8,1

1,2

2,2

3,2

5,8

6,8

7,8

8,8

0 0 0 0 0 0 0 0 0 0 0 4 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 4 1 0
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(12) 

 

where 𝒜  denotes the coefficient matrix of the linear equations, 

and 𝑏 denotes the constant values at the right hand side, while 

𝑢 denotes the unknown variables. The linear system is then 

expressed as  𝒟−1𝒜𝑢 = 𝒟−1𝑏  for the EAOR scheme in 

equation (3) to be applied in obtaining the 64 unknowns  (𝑢). 

Computations of spectral radius for different values of the 

EAOR parameters and comparison of the results with those of 

AOR technique were both carried out using Maple 2017 

software package.  

 
4. Results and Discussion 

 
This section presents the numerical performance of 

the EAOR technique, in comparison with its refinement by 

Audu, Yahaya, Adeboye, and Abubakar (2021a) and the 

refinement of AOR by Vatti, Sri, and Mylapalli (2018), for the 

heat distribution problem analyzed in the previous section. 

 
 

Figure 1. A metal plate with steady boundary conditions for 
temperature 

 

 
 

Figure 2. Discretization of the plate with boundary conditions 

  

Tables 1 and 2 show comparisons of the spectral radii 

and convergence results for the heat distribution problem, 

respectively. In Table 1, the notation for representing the 

iteration matrices of EAOR, refinement of EAOR and 

refinement of AOR is given as   ℒ𝛽,𝓇,𝑤 , 𝑅ℒ𝛽,𝓇,𝑤 and   𝑅ℒ0,𝓇,𝑤  

respectively. The designated matrix for EAOR iteration is 

ℒ𝛽,𝓇,𝑤 = [ℐ − 𝛽ℒ − 𝓇ℒ]−1[𝑤𝒰 + (1 − 𝑤)ℐ + [𝑤 − 𝛽 −

𝓇]ℒ], for the refinement of EAOR it is 𝑅ℒ𝛽,𝓇,𝑤 = ((ℐ −

(𝛽 + 𝓇)ℒ)−1((1 − 𝑤)ℐ + [𝑤 − (𝛽 + 𝓇)]ℒ + 𝑤𝒰))
2
 and for 

refinement of AOR the matrix is 𝑅ℒ0,𝓇,𝑤 = ((ℐ −

(𝓇)ℒ)−1((1 − 𝑤)ℐ + [𝑤 − 𝓇]ℒ + 𝑤𝒰))
2
. The Extended 

AOR, its refinement, and AOR refinement techniques in terms 

of their spectral radii for the heat distribution problem, with 

different values of   𝓇,  𝛽  and   𝑤 are shown in Table 1. It is 

observed that the spectral radii of   ℒ,𝓇,𝑤, 𝑅ℒ𝛽,𝓇,𝑤 and   𝑅ℒ0,𝓇,𝑤  

are smaller than 1.  However, on observation of how close their 

spectral radii are to zero, it is concluded that the rate of 

convergence of the refinement of the EAOR technique is more 

rapid than that of the EAOR and refinement AOR techniques 

due to the fact that   𝜌(ℒ𝛽,𝓇,𝑤) < 𝜌𝑅(ℒ0,𝓇,𝑤) < 𝜌𝑅(ℒ𝛽,𝓇,𝑤) <

1. Figure 4 shows the comparison of the three iteration 

techniques for clarity. This indicates that refined EAOR will 

converge to the true solution more rapidly than the compared 

methods.  
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Figure 3. The solved distribution of temperature 

Figure 4. Spectral radii of iteration matrices for EAOR, RAOR and 

REAOR 

 
Table 2 displays the convergence results for the heat 

transfer problem. It is seen that the refined Extended 

Accelerated Overrelaxation technique has a lesser number of 

iterations and takes a shorter time to solve the linear system to 

an accuracy of 10−10 in comparison with the refined 

Accelerated Overrelaxation technique and Extended 

Accelerated Overrelaxation technique. This proves that the 

convergence speed of the refined EAOR technique for the heat 

distribution problem is faster than the performance of the 

EAOR techniques and refined AOR technique. The values of 

the unknowns (𝑢) are obtained as in equation (13) and 

substituted into Figure 2 to obtain Figure 3. 

 
Table 2. Convergence results for the heat transfer problem 

 

Iterative 
technique 

Number of 
iterations 

CPU time 
(seconds) 

   

Refined AOR 226 0.500 

EAOR 300 0.531 

Refined EAOR 152 0.400 
   

 

5. Conclusions 
 

This paper has demonstrated the significance of the 

Extended Accelerated Over-relaxation techniques for 

accelerating solutions of systems of algebraic linear equations 

that stem from real-life problems, such as the heat distribution 

problem considered in the study. Due to its speed and ability to 

solve large linear systems, the refinement EAOR can be 

considered an appropriate technique when solving sparse and 

large linear systems. Further study can consider finding 

optimum values of the three parameters to attain rapid 

convergence and comparing the EAOR techniques with non-

stationary iteration techniques like the conjugate gradient 

method for speedy convergence. 
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