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Abstract  For extrapolation, climate change and other 
meteorological analysis, a study of past and current 
weather events is a prerequisite. NASA (National Aer-
onautics and Space Administration) has been able to 
develop a model capable of predicting various weather 
data for any location on the Earth, including loca-
tions lacking weather stations, weather satellite cover-
age, and other weather measuring instruments. This 
paper evaluates the prediction accuracy of the NASA 
temperature data with respect to NiMet (Nigerian 

Meteorological Agency) ground truth measurement, 
using Akwa Ibom Airport as a case study. Explora-
tory data analysis (descriptive and diagnostic analy-
ses) of temperature retrieved from NiMet and NASA 
was performed to give a clear path to follow for pre-
dictive and prescriptive analyses. Using 2783 days of 
weather data retrieved from NiMet as ground truth, the 
accuracy of NASA predictions with the corresponding 
resolution was calculated. Mean absolute error (MAE) 
of 2.184  °C and root mean square error (RMSE) of 
2.579  °C, with a coefficient of determination (R2) 
of 0.710 for maximum temperature, then MAE of 
0.876  °C, RMSE of 1.225  °C with a coefficient of 
determination (R2) of 0.620 for minimum temperature 
was discovered. There is a good correlation between 
the two datasets; hence, a model can be developed to 
generate more accurate predictions, using the NASA 
data as input. Predictive and prescriptive analyses were 
performed by employing five prediction algorithms: 
decision tree regression, XGBoost regression and MLP 
(multilayer perceptron) with LBFGS (limited-memory 
Broyden-Fletcher-Goldfarb-Shanno) optimizer, MLP 
with SGD (stochastic gradient) optimizer and MLP 
with Adam optimizer. The MLP LBFGS algorithm 
performed best, by significantly reducing the MAE 
by 35.35% and RMSE by 31.06% for maximum tem-
perature, accordingly, MAE by 10.05% and RMSE 
by 8.00% for minimum temperature. Results obtained 
show that given sufficient data, plugging NASA pre-
dictions as input to an LBFGS-MLP model gives more 
accurate temperature predictions for the study area.
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Introduction

Weather prediction remains a vital aspect of our liveli-
hoods, as the current state of the weather has an enor-
mous impact on humans, their livelihood, and their 
day-to-day activities (Denissen et al., 2008; Dundas & 
Von Haefen, 2021). Knowledge of the future state of 
the weather can be used in events and activities plan-
ning, disaster monitoring, and management (Kusiak 
& Shah, 2006; Marson & Legerton, 2021). Usually, 
real-time hyperlocal weather state and its parametric 
values are measured using sensors sited on ground, or 
remotely sensed using sensors mounted on aircrafts, 
satellites, and radiosondes. These weather data are 
then pooled into a database, for storage, visualization, 
analysis, and extrapolation. Past weather data are used 
together with computer algorithms, to predict future 
weather conditions. The art and science of extracting 
meaningful information and discovering patterns from 
these data is termed data mining, which is currently 
the most used technique for weather prediction (Twin, 
2021; Sheikh et al., 2016).

In advanced countries, weather data sources have 
increased, as a result of technological advancements 
in the aspect of miniaturization of sensors and the 
internet of things. Weather data from varying sources, 
varying formats, varying structures, and continuous 
increments are pooled together for storage and analy-
sis. This type of data is termed big data, and it can be 
cumbersome to deal with using traditional approaches 
(Fathi et al., 2021). The approach to extracting mean-
ingful information from this type of data is termed 
big data analytics, and it is categorized into four; 
descriptive, diagnostic, predictive, and prescriptive 
analytics (Maydon, 2017). The descriptive and diag-
nostic analytics clearly defines the path to follow for 
the predictive and prescriptive analytics to follow 
(Oloyede et al., 2022).

Nevertheless, the problem of unavailability of 
weather data from remote areas of developing coun-
tries like Nigeria remains a challenge. There are 
no records of past weather data as a result of lim-
ited weather stations, even where there are weather 

stations, the weather data are full of inconsistencies. 
This necessitates solutions like the development of 
meteorological satellites that can capture weather data 
using satellite remote sensing technologies (Waring 
& Running, 2007). However, meteorological satel-
lites are only applicable in measurement of land sur-
face temperature (LST) and suitable for LST-related 
correlation analysis (Oloyede et  al., 2021; Nnah 
et  al., 2021). In addition, they have their limitations 
of low spatial resolution, cloud cover restriction, and 
in some cases, low temporal resolution depending on 
the configuration of the satellite. Consequently, intel-
ligent models have been developed, to address these 
limitations and synergize the effort of meteorologi-
cal satellites, by predicting meteorological elements 
of every location on Earth. An example of this is 
NASA’s POWER (National Aeronautics and Space 
Administration’s Prediction of Worldwide Energy 
Resources) project (NASA, 2022). NASA POWER 
meteorological elements are derived from a combina-
tion of NASA’s GEOS 5.12.4 FP-IT (Goddard Earth 
Observing System, Ver. 5.12.4, Forward Processing 
– Instrument Teams) and GMAO MERRA-2 (Global 
Model and Assimilation Office’ Modern-Era Retro-
spective analysis for Research and Applications, Ver. 
2) (Gelaro et al., 2017).

In as much as NASA POWER meteorological 
data are widely used, many reviewers query the use 
of the data in place of ground-measured data, as they 
are of the opinion that their predictions are not accu-
rate (Halabi et al., 2017). Some researchers have per-
formed evaluations of the NASA POWER accuracy, 
using varying meteorological parameters at differ-
ent geographical locations (Aboelkhair et  al., 2019; 
Osama, 2021; Quansah et  al., 2022; Rodrigues & 
Braga, 2021). Results from their evaluations show 
that the accuracy of the NASA POWER data varies 
with the geographical location, and some meteorolog-
ical parameters are more accurate than others. How-
ever, there is a consensus that the NASA POWER 
data can be useful in cases where there are no ground-
measured data and cases where there are missing val-
ues in the ground-measured data. Root mean squared 
error (RMSE) metric, mean absolute error (MAE) 
metric, and R-squared (R2) metric are among the reli-
able indicators employed for assessing such model’s 
performance (Olatomiwa et al., 2015; Xi et al., 2021). 
Nevertheless, there is a need to evaluate the accuracy 
of NASA POWER in the selected study area, which 
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this work addresses, and also proffer solutions to pre-
diction inaccuracy by employing data-driven models 
to improve prediction accuracy. Research has shown 
that Artificial Intelligent models are capable of han-
dling such huge and nonlinear data, thereby increas-
ing the accuracy and efficiency of meteorological 
data predictions (Tan et  al., 2021). Prediction of 
meteorological data is a nonlinear regression problem 
(Abhishek et  al., 2013), and regression, in machine 
learning falls under supervised machine learning, as 
the model is fed with an input and a corresponding 
output, then the model maps a function from input to 
output (Garbade, 2018).

This work is therefore aimed at developing and 
evaluating data-driven models that can predict near 
precise weather data, using NASA weather data as 
input. Accordingly, the following are the specific 
implemented objectives:

1.	 An area, with available ground truth weather 
data, is selected for use as a case study,

2.	 In situ weather data of the study area is obtained 
from NiMet (Nigerian Meteorological Agency), 
and the GPS (global positioning system) coor-
dinates of the study area are used to retrieve 
weather data with the corresponding spatiotem-
poral resolution, from NASA

3.	 Prediction accuracy of the NASA data is evalu-
ated by performing descriptive, diagnostic and 
correlation analyses on the NiMet and NASA 
weather data, using visualization and statistical 
tools in a Python integrated development envi-
ronment,

4.	 Predictive, prescriptive, and correlation analyses 
are performed using data mining techniques, and 
then the performances of the techniques are eval-
uated using statistical tools in a Python integrated 
development environment.

The rest of this paper is structured in the following 
pattern: a review of related literature on data mining 
and weather prediction techniques is presented in the 
“Review of related works” section. The “Methodol-
ogy” section presents the methodology employed in 
accomplishing the specific objectives of this work, 
while the “Results and discussion” section presents 
the discussion of the results. The “Conclusion and 
recommendation” section is a combination of the 
conclusion and necessary recommendations.

Review of related works

While data assimilation methods combine direct 
measurements with a model’s output, to improve the 
model’s output, data-driven techniques provide faster 
and computationally cheaper simulations and extrap-
olations based on analysis of historic data (Kaneko 
et  al., 2020; Nature, 2021). A review of works relat-
ing to the applicability of data-driven techniques for 
weather prediction is presented in this section. Nikam 
and Meshram (2013) proposed a data-intensive model, 
using data mining methods, to predict the weather. 
They were more interested in the prediction of rain-
fall, so they utilized seven weather features, which 
play a major role in the prediction of rainfall, out of 
36 weather features collected from the Meteorological 
Department in India. The seven weather features used 
are temperature, mean sea pressure, station level pres-
sure, vapour pressure, relative humidity, rainfall, and 
wind speed. A supervised learning method for clas-
sification; Bayesian classifier, was employed to build 
this model. The Bayesian model performed well, and 
it was observed that it performs better with a large 
training dataset.

A report on how CART (classification and regres-
sion trees) is used for weather prediction was pre-
sented by (Petre, 2009). Data were collected between 
2002 and 2005, for Hong Kong, the capital city 
of China. The weather attributes utilized are tem-
perature, average pressure, relative humidity, cloud 
quantity and rainfall. A machine learning applica-
tion, WEKA (Waikato Environment for Knowledge 
Analysis), built with the CART algorithm, was used 
for data analysis, visualization, and predictive mod-
elling. Their model was able to predict the average 
temperature for a future month, to a certain accuracy. 
They recommend that having larger data, with more 
weather parameters like wind speed, wind direction, 
and radiation can positively impact the predictive 
accuracy of the model.

A comparative analysis of two data mining tech-
niques for weather prediction, C4.5 and Naïve Bayes 
decision tree algorithm, was carried out by (Sheikh 
et al., 2016). They collected weather for 2 years and 
simultaneously analyzed the performances of C4.5 
and Naïve Bayes decision tree algorithm in a weather 
prediction model. It was discovered that the C4.5 
algorithm performed better, with an accuracy of 
88.2% compared to the Naïve Bayes, which did only 
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54.8%. C4.5 resulted in more true positives than the 
Naïve Bayes. A larger training dataset and more data 
attributes impacted positively the performance of the 
C4.5 algorithm, but negatively impacted the perfor-
mance of the Naïve Bayes algorithm.

Findawati et al. (2019) further carried out a com-
parative analysis of Naïve Bayes, C4.5, and K-nearest 
neighbor (KNN) algorithms for weather prediction. 
Daily weather data was collected from BMKG (Badan 
Meteorologi, Klimatologi, dan Geofisika); an Indone-
sian government agency for meteorology and clima-
tology. The data spanned January 2015 to November 
2018, with 1422 entries and 8 weather attributes; 
minimum temperature, maximum temperature, tem-
perature average, wind speed, relative humidity, wind 
direction, radiation, and rain intensity. The test result 
is presented by evaluating the value of accuracy, pre-
cision, recall value and f-measure, using the WEKA 
machine learning tool. From the test result, the KNN 
method did approximately 71.6% accuracy, with k = 7 
and fold = 5, while C4.5 came second, with an accu-
racy of 69.8%, at fold = 20, and Naïve Bayes with an 
accuracy of 68.8%, at fold = 3.

Olaiya and Adeyemo (2012) performed exten-
sive research on the application of artificial neural 
networks (ANNs) and decision tree algorithms, data 
mining methods in weather prediction and climate 
change studies. Weather data for January 2000 to 
December 2009, for Ibadan, a city in Oyo State, Nige-
ria, was collected from the NiMet Oyo State office. 
Minimum temperature, maximum temperature, rain-
fall, sunshine, radiation, cloud form, evaporation, and 
wind speed are the weather attributes considered in 
this work. C5 Decision Tree classifier was selected 
and used, after performance evaluation in comparison 
with C4.5 and CART algorithms was done. The C5 
algorithm was implemented in the See5 data mining 
environment. For the ANN algorithms, multilayer 
perceptron (MLP) time-lagged feed-forward network 
(TLFN) and other recurrent networks are used, and 
implementation was performed in a neural network 
software development environment; Neuro Solutions 
6. Among the recurrent networks used, the TLFN net-
work, using a TDNN (time delayed neural network) 
memory component, a hidden layer and eight nodes, 
trained on the Lavenberg-Marquet learning algorithm, 
performed best. Good insight into trends and patterns 
emanated from the See5 rules generated and ANN 
was used to train a model to detect the relationship 

between the input variable and its output. These 
authors believe that a larger weather dataset, collected 
over decades, will improve the model’s performance.

A comparative study of classification and pre-
diction models on weather data from the National 
Climatic Data Center was carried out by (Gad & 
Hosahalli, 2022) for regression and classification 
prediction. A comparison of emerging models and 
traditional meteorological models was implemented. 
Linear regression, support vector machine (SVM), 
linear discriminant analysis (LDA), Gaussian NB, 
random forest, k-nearest neighbors (KNNs), Ada-
Boost, an ensemble method named Extreme Gradient 
Boosting (XGBoost), decision tree (CART), artificial 
neural networks multilayer perceptron (MLP), and 
deep learning are amongst the models considered for 
evaluation. The AdaBoost, CART, and XGB models 
outperform other classification algorithms, while lin-
ear regression performed best for the prediction task.

A multiple linear regression-based model for 
daily average temperature prediction was presented 
by (Gupta et  al., 2022). Datasets utilized were cre-
ated using Weather Underground’s API web service, 
with 997 daily instances of mean temperature, mean 
dew point temperature, mean humidity, and precipi-
tation. Python “corr” function of Pandas library was 
employed to calculate the coefficient of determina-
tion, which resulted in 0.6 and above in all meteoro-
logical elements considered. Results generated show 
that their model was able to predict the mean temper-
ature of a day, with an error range of 2.8 °C.

Soft computing techniques for future weather fore-
casting were presented by (Khajure & Mohod, 2016). 
The artificial neural network used was trained using 
a combination of weather parameters, which include 
temperature, pressure, humidity, dew point, wind 
speed, and visibility. From their results, they con-
cluded that a neural network is an important tool for 
weather forecasting capable of modelling a weather 
forecast system, with a combination of fuzzy infer-
ence systems to enhance accuracy. An artificial neural 
network was also employed by (Bhardwaj & Duhoon, 
2018), in a comparative study of multilayer percep-
tron, support vector regression, linear regression and 
Gaussian process are evaluated, to attain the high-
est efficiency in the prediction of parameters affect-
ing the weather. They stated that climate differs from 
weather, as the latter focuses on the short term, while 
the former is on the long term. RMSE, root relative 



Environ Monit Assess         (2023) 195:343 	

1 3

Page 5 of 21    343 

Vol.: (0123456789)

squared error (RRSE), relative absolute error (RAE), 
MAE, and coefficient of correlation (CC) are the per-
formance metrics employed. Temperature, relative 
humidity, rainfall, wind speed, sunshine, and evapo-
ration are the meteorological parameters considered. 
Support vector regression and multilayer perceptron 
performed best out of the four models considered.

Markovics and Mayer (2022) carried out a com-
parison of machine learning techniques for another 
important weather element, photovoltaic (PV) capac-
ity. Twenty-four machine learning models were tested 
and evaluated for photovoltaic power forecasting. 
Dataset from 16 PV plants in Hungary, with 15-min 
resolution, for 2  years was used for the analysis. 
Results show that multilayer perceptron and kernel 
ridge regression performed best out of all models 
considered, which was able to decrease the RMSE by 
13.9% when compared with the baseline model of lin-
ear regression. They underscored the importance of 
selecting the right predictor, as substituting the basic 
numerical weather prediction data with sun position 
angles and irradiance values had a positive impact on 
the prediction system.

Data-driven and machine learning approach were 
also used to build a model for air quality index pre-
diction (Xi et al., 2021). Climatic data with multiple 
features from 31 regions and provinces in China was 
used to build a Bayesian network model for monitor-
ing and predicting air quality index. A Bayesian Net-
work with two layers was developed for analyzing 
factors influencing various air pollutants, forecast-
ing spatiotemporal changes and revealing the extent 
of impact incurred from each factor. Results gener-
ated were compared with results from other machine 
learning models, and they were able to conclude that 
the Bayesian Network model was able to reach a 90% 
accuracy in prediction.

A deep spatiotemporal forecasting model was pro-
posed by (Kong et al., 2022), for multiple site weather 
prediction by using spatial and temporal information. 
Their research takes into consideration spatial and 
temporal parameters, and obtains forecasts of multiple 
weather stations simultaneously, using the same frame-
work. In addition, the impact of changes in season and 
topographical variations on the accuracy of the model 
was considered. A convolutional neural network-based, 
deep spatiotemporal forecasting model was used for 
short-term weather forecasts at 226 weather stations 

in Beijing, China. Experiments indicate that the model 
has strong stability and high prediction accuracy.

An ensemble of spatial–temporal attention net-
works and multilayer perceptron for weather forecast-
ing using was proposed, modelled, evaluated, and pre-
sented by (Li et al., 2021). A hybrid of the multilayer 
perceptron and the spatial–temporal attention network 
was employed to build a model for forecasting humid-
ity, surface temperature, wind speed, and direction at 
a total of 24 weather stations in Beijing, the capital of 
China. The report showed that this ensemble model 
performed better than the numerical weather predic-
tion model and other algorithms.

Research has shown that reanalysis of data assimi-
lation methods are not good for trend studies, due to 
changes in observing systems. This extensive review 
reveals that data-driven techniques can be effective 
and efficient when employed for weather data predic-
tion and forecasting. In addition, to improve predic-
tion accuracy, the authors emphasized the need for a 
large training historical dataset, which has proven to 
be difficult to obtain or non-existent in many loca-
tions. Consequently, this work explores the use of the 
NASA POWER dataset and a few ground measure-
ment, to train the system, and subsequently plug any 
NASA POWER data as an input feature to generate 
predictions that are more accurate.

Methodology

The flowchart describing systematically the objec-
tives followed to achieve the aim of this research 
work is presented in Fig. 1.

Study area extraction

The availability of ground truth weather data, suf-
ficient enough to train our prediction model, is key 
in selecting the study area. Consequently, the Victor 
Attah International Airport is selected, since there is 
a Nigerian Meteorological Agency (NiMet) weather 
station at the location. The Victor Attah International 
Airport is sited in the Uruan LGA (local government 
area) of Akwa Ibom State, Nigeria, at coordinates 
4.8714° N, 8.0916° E. Figure  2 is a satellite image 
of the Victor Attah International Airport, composed 
using the Google Earth Pro application.
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This location is pointed, composed using QGIS 
(Quantum Geographic Information System), as shown 
in Fig. 3

Data retrieval, cleaning, and pre‑processing

Step 1: retrieve and view dataset

In situ weather data of the study area is retrieved from 
NiMet (NiMet, 2022), in Microsoft Word document 
format, and is converted to comma-separated values 
format for analysis in the Python environment. To get 
an understanding of the dataset, and ensure the right 
data are imported into the Python environment, the 
Python head and tail function is employed to view the 
first five and last five rows. Figure 4 shows the first 
five and last five rows of the NiMet dataset.

It is discovered that the dataset spans from 
01/01/2010 to 14/08/2017, with a total of 2783 entries 
for each feature. The dataset is a constituent of eight 
features: date, maximum temperature (°C), minimum 
temperature (°C), rain (mm), and relative humidity 
(%) at 0600Z, 0900Z, 1200Z, and 1500Z. This implies 
that temperature, rain, and relative humidity are the 
three weather parameters captured in the dataset. Also, Fig. 1   Methodology flowchart

Fig. 2   Satellite image of the Victor Attah International Airport
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it is observed that there are some unwanted columns 
in the dataset and other weather features that are not 
required. These columns are filtered out.

The GPS coordinates of the study area (4.8714° N, 
8.0916° E) are used to retrieve weather data with corre-
sponding meteorological, temporal, and spatial features 
from the NASA repository (NASA, 2022). Python head 
and tail function is used to view the dataset. Figure  5 
shows the first five and last five rows of the NASA dataset.

The dataset is constituted of the required features 
for this analysis. However, the date format differs 
from the NiMet date format. The date format will be 
converted to conform to the NiMet date format.

Step 2: check for missing values and unwanted 
columns

A check for missing values in the NiMet and NASA 
datasets is implemented. It is observed that the NASA 

dataset contains no missing data points; however, 
some missing data points and some unwanted features 
were recorded in the NiMet dataset. It is usual prac-
tice to overlook missing data points, but it is argued 
that this has a negative influence on model learning 
performance because the missing data points may 
include important information (Gill et  al., 2007; 
Romero-Fiances et  al., 2022; Faybishenko et  al., 
2022). There are several approaches to filling missing 
data points in time series data: forward filling, back-
ward filling, linear interpolation, and mean of nearest 
neighbor (Johnson et al., 2021; Sher, 2020; Zhang & 
Thorburn, 2022). The unwanted data columns are fil-
tered out, and the mean of nearest neighbor approach 
is employed to fill the missing data points. The fol-
lowing equation explains the approach.

(1)X =

∑

X

N

Fig. 3   Map of Akwa Ibom showing the study location
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where X represents mean of nearest neighbors, 
∑

X 
represents sum of all nearest neighbor datapoints; N 
is the number of data points.

Table 1 lists the extracted features taken into account 
for this work, along with a description and the interna-
tional system of units (SI unit) that correspond to them.

Descriptive, diagnostic, and correlation analyses

Data visualizations for the NASA and NiMet dataset, 
using a time series plot is employed for descriptive 
analyses, aimed at gaining insights into what has hap-
pened in the past in aspects of trends, patterns, and 

most importantly uncover the variation between the 
NASA predictions and NiMet ground truth measure-
ments. Before that, the input features and the target fea-
ture need to be well defined.

Step 1: set features and target

Maximum temperature  Considering maximum tem-
perature as the weather parameter for prediction, a new 
data frame is created, with NASA daily average tem-
perature, daily maximum temperature, daily minimum 
temperature, and daily relative humidity as features, 
with NiMet maximum daily temperature as the target. 
Features are independent variables that act as input in a 
model, while the target is the resultant output. Figure 6 
shows a screenshot of the newly created data frame.

Minimum temperature  When considering minimum 
temperature as a weather parameter for prediction, the 
data frame constituents will be NASA daily average tem-
perature, daily maximum temperature, daily minimum 
temperature, and daily relative humidity as features, with 
NiMet minimum daily temperature as the target. Figure 7 
shows a screenshot of the newly created data frame.

Step 2: time series plots

This section is a statistical analysis of the NiMet 
and NASA datasets, presented in data visualization 
form. This helps in gaining insights and understand-
ing of trends, patterns, and seasonality in the data-
sets and also helps to compare the NASA model’s 

Fig. 4   First five and last 
five rows of the NiMet 
dataset

Fig. 5   First five and last five rows of the NASA dataset
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values with the NiMet ground truth values. Figure 8 
is a time series plot of the NiMet daily maximum 
temperature and the NASA daily maximum tem-
perature, in a comparative form. Figure  9 further 
clearly shows the difference in the NiMet and NASA 
curves, by resampling the data points on a monthly 
average basis.

Comparatively, the time series plot for NASA is 
different from that of NiMet. There is a definite indi-
cation that the NiMet daily maximum temperature 
and ground truth measurement differ from the data 
points for daily maximum temperature predicted by 
NASA. This is a result of having weather data values 
that are inaccurate when compared with the ground 
truth values.

Figure 10 is a time series plot of the NiMet daily 
minimum temperature and the NASA daily minimum 
temperature, in a comparative form, and Fig. 11 pre-
sents same on a monthly average basis.

Comparatively, the time series plot for NASA 
minimum temperature is slightly different from that 
of NiMet minimum temperature. Also, visually, the 
NASA model is close to the NiMet ground truth 
measurement, but this will further be estimated statis-
tically in the next section.

Step 3: evaluate the mean absolute error and the root 
mean squared error

The MAE and the RMSE are model evaluation met-
rics associated with regression models. These met-
rics are used to evaluate the extent of error between 
the NASA predictions and the NiMet ground truth 
values, as the time series plots cannot tell the extent.

While a prediction error is an evaluation of the 
discrepancy between the ground truth value and the 
predicted value of an instance, MAE is the mean of 
prediction errors over all instances.

Table 1   Extracted features 
for this work

S/N Feature Feature description SI unit

1. Date Date each data was logged Second
2. Daily maximum temperature Maximum temperature value per date °C
3. Daily minimum temperature Minimum temperature value per date °C
4. Daily average temperature Average temperature value per date °C
5. Daily relative humidity Relative humidity value per date %

Fig. 6   Features and maxi-
mum temperature as target
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where yi is the ground truth value for an instance xi ; 
�
(

xi
)

 is the predicted value for an instance xi ; n is the 
number of instances.

While mean squared error (MSE) is the squared 
of prediction errors over all instances, RMSE is the 
square root of the MSE.

(2)MAE =

∑n

i=1
abs(yi − �

�

xi
�

)

n

where yi is the ground truth value for an instance xi ; 
�
(

xi
)

 is the predicted value for an instance xi ; n is the 
number of instances.

Note that MAE and RMSE are relative metrics and 
differ from one criterion to another. The value ranges 
from 0 to + ∞, with the best values being the lowest 

(3)RMSE =

�

∑n

i=1
(yi − �

�

xi
�

)
2

n

Fig. 7   Features and mini-
mum temperature as target

Fig. 8   NiMet and NASA maximum temperature time series plot



Environ Monit Assess         (2023) 195:343 	

1 3

Page 11 of 21    343 

Vol.: (0123456789)

Fig. 9   Monthly resampled NiMet and NASA maximum temperature time series plot

Fig. 10   NiMet and NASA minimum temperature time series plot

Fig. 11   Monthly resampled NiMet and NASA minimum temperature time series plot
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(Idrissi et al., 2019). The lower the MAE and RMSE, 
the better the model (Elsaraiti & Merabet, 2021; 
Vulova et al., 2021).

The MAE and RMSE for daily maximum tempera-
ture are approximately 2.184 °C and 2.579 °C, respec-
tively, while that of daily minimum temperature are 
approximately 0.876  °C and 1.225  °C, respectively. 
This implies that there are approximately 2.184  °C 
MAE and 2.579  °C RMSE between the NASA 
weather data and the NiMet ground truth measure-
ment for maximum temperature in the study area, also 
approximately 0.876  °C MAE and 1.225  °C RMSE 
between both datasets for minimum temperature.

The extent of NASA prediction error from the 
NiMet ground truth measurement has been estab-
lished statistically, but we also need to see and evalu-
ate the extent of correlation between the NASA values 
and the NiMet values. This will evaluate the suitabil-
ity of employing both datasets to build a prediction 
model with lower prediction error from ground truth 

measurement, hence, better prediction performance. 
The next section deals with the correlation analysis.

Step 4: correlation analysis

Correlation analysis or exploratory data analysis 
is employed, by creating a correlation heat map, to 
ascertain the suitability of the NASA data as an input 
feature for the development of the prediction model. 
Also, it will identify the feature with the highest cor-
relation with the target and evaluates the extent of 
correlation. Figure 12 is a heat map of the correlation 
between the features and NiMet ground truth maxi-
mum temperature measurement, as the target.

The results from the correlation heat map show 
that there is a good correlation between the NASA 
maximum daily temperature (MAX_TEMP) and the 
NiMet maximum daily temperature (NIMET_MAX_
TEMP), and it is, therefore, suitable for use as input 
in the prediction model development.

Fig. 12   Correlation heat 
map for maximum tem-
perature
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The NASA maximum daily temperature (MAX_
TEMP) feature and the target, which is the ground 
truth NiMet maximum daily temperature (NIMET_
MAX_TEMP), have the highest positive correla-
tion, with a 0.71 correlation coefficient value. This 
is followed by the NASA average daily temperature 
(TEMP), with a 0.64 correlation coefficient value. 
Conversely, the NASA daily relative humidity (RH_
DAILY) feature has a negative correlation with the 
target, with a value of − 0.51. Furthermore, the NASA 
minimum daily temperature (MIN_TEMP) feature is 
dropped, as it has a very low coefficient of determi-
nation value of 0.14 with the target. Experimentally, 
it is discovered that features with low correlation usu-
ally have a negative impact on the model training.

Accordingly, a correlation heat map showing the 
correlation between the features and NiMet ground 
truth minimum temperature measurement, as the tar-
get, is generated and shown in Fig. 13.

The NASA minimum daily temperature (MIN_
TEMP) feature and the target, which is the ground 
truth NiMet minimum daily temperature (NIMET_
MIN_TEMP), have the highest positive correlation, 
with a 0.62 coefficient of determination value. This 
is followed by the NASA average daily temperature 
(TEMP), with a 0.44 coefficient of determination 
value and NASA daily relative humidity, with a 0.36 
coefficient of determination value. Furthermore, the 
NASA maximum daily temperature (MAX_TEMP) 
feature with a coefficient of determination of 0.07 
is dropped, as it would have a negative impact when 
training the model.

Predictive, prescriptive, and performance analyses

Generally, there are two classes of machine learning 
algorithms: supervised and unsupervised learning. 
In this work, we have the NASA dataset as input, 

Fig. 13   Correlation heat 
map for minimum tempera-
ture
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then the NiMet dataset as output and the process of 
training the system to learn the function that maps 
the NASA input to the NiMet output is a supervised 
learning task. This task is termed prediction. Pre-
diction is involved with the evaluation of outputs 
from inputs, and this is achieved by fitting a model 
to a training data set, which generates an estimator 
f (X) that has the capability of making predictions 
for new samples of X (Doring, 2018). It is important 
to note that this task is a regression (non-linear), as 
it involves the prediction of numerical values given 
some numerical input.

Mathematically,

where Y  represent the output; f  represents the rela-
tionship between the input and the output; X repre-
sents the input; C represents the random error.

A couple of processes were implemented, in 
preparation for data training, and eventual testing. 
The following are highlights of the processes:

1.	 Recall that features with very low coefficient of 
determination values were dropped, resulting 
from the correlation analysis. The remaining fea-
tures were separated from the target, accordingly.

2.	 The dataset is split into a training set and a test 
set, in an 80:20 ratio, with the training set hav-
ing the first 80% of the dataset, and the remaining 
20% reserved for testing. The training set con-
tains 2226 data samples, while the test set is 557 
samples.

3.	 Data standardization is applied to the training and 
test set. Standardization is an important require-
ment for predictive modelling algorithms that 
sets all features to be on the same scale and mini-
mize loss functions.

In furtherance of the previously implemented 
processes, and since we are dealing with a non-
linear regression problem, algorithms designed to 
deal with such problems would be employed. As 
such, decision tree regression, XGBoost CART 
decision tree and multilayer perceptron algo-
rithms are employed and implemented, and then 
their performances are evaluated using RMSE and 
R-squared performance metrics.

(4)Y = f (X) + C

Decision tree regression

The decision tree regression is a supervised learn-
ing regression algorithm. It works in a tree-like 
form, by transiting from observing and input 
(branches) to drawing conclusions about the input 
(leaves). Implementation of the decision tree regres-
sion algorithm resulted in predictions, with an 
approximate RMSE value of 1.863 °C, MAE value 
of 1.471  °C, and an R-squared value of 0.531, for 
maximum temperature, then an approximate RMSE 
value of 1.150 °C, MAE value of 0.805 °C, and an 
R-squared value of 0.253, for minimum tempera-
ture. The results are presented in Figs. 14 and 15.

XGBoost regression

XGBoost (Extreme Gradient Boosting) is an opti-
mized gradient boosting supervised learning algo-
rithm that uses CART (Classification and Regression 
Trees). CART are trees containing real value scores in 
each leaf, irrespective of whether they are employed 
for regression or classification. Approximate RMSE 
and MAE values of 1.822  °C and 1.444  °C, respec-
tively, with an R-squared value of 0.551 was recorded 
for maximum temperature, also approximate RMSE 

Fig. 14   Maximum temperature predictions, RMSE, and 
R-squared evaluation using decision tree regression
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and MAE values of 1.182  °C and 0.816  °C, respec-
tively, with an R-squared value of 0.211 was recorded 
for minimum temperature. The results are presented 
in Figs. 16 and 17.

Accordingly, multilayer perceptron (MLP) algo-
rithm is employed. MLP is a feed-forward ANN (arti-
ficial neural network) with more than one perceptron, 
with varying hyper-parameters, that learns the rela-
tionship between linear and nonlinear data. Choosing 
the right parameters is crucial to the performance of 
the MLP neural network.

An MLP is constituted of one or multiple hidden 
layers that connect between the input layer and the 
output layer, with an activation function that trans-
forms the output of the hidden layer(s). However, 
research has shown that the default activation function 
recommendation for modern neural networks, includ-
ing MLP, is the rectified linear unit (ReLU) activation 
function (Brownlee, 2021; Goodfellow et  al., 2016). 
While the activation function controls how well the 
network model learns the training dataset, optimiz-
ers are used to tune the parameters of the network 
model to reduce errors. Research shows that there is 
no defined guideline for selecting an optimizer, but 
many authors argue that the Adam optimizer has been 
developed for large datasets and is a good choice to 
start with (Stack Exchange Network, 2018; Kingma 
& Ba, 2015; Okewu et al., 2019). Consequently, dif-
ferent MLP neural architecture, using available opti-
mizers in the Scikit-learn machine learning library 

Fig. 15   Minimum temperature predictions, RMSE, and R-squared 
evaluation using decision tree regression

Fig. 16   Maximum temperature predictions, RMSE, and R-squared 
evaluation using XGBoost regression

Fig. 17   Minimum temperature predictions, RMSE, and R-squared 
evaluation using XGBoost regression
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for python integrated development environment, is 
employed for this work. The following is an imple-
mentation of MLP with different neural architectures, 
and their respective performance evaluation. It is 
important to note that there is no rule to evaluate the 
number of hidden layers/nodes in a multilayer percep-
tron. Although many authors suggest that 2 hidden 
layers are enough but research has shown that system-
atic experimentation is the approach to discovering 
what works best (Chavan, 2013). Consequently, vary-
ing architectures were experimented and we found 
that the architecture with 2 hidden layers, first with 4 
nodes and second with 2 nodes, performed optimally.

MLP with LBFGS optimizer

LBFGS (limited-memory Broyden-Fletcher-Gold-
farb-Shanno) optimizer, with two hidden layers: the 
first hidden layer with four nodes, while the second 
hidden layer with two nodes. For regularization and 
to control overfitting/underfitting, alpha (a param-
eter that controls the size of weights in the hidden 
layers) is set to 0.00001. The activation function 
used is ReLU. MAE and RMSE evaluation resulted 
in 1.412  °C and 1.778  °C, respectively, with an 
R-squared value of 0.573, for maximum temperature. 

MAE and RMSE evaluation resulted in 0.788 °C and 
1.127  °C, respectively, with an R-squared value of 
0.282, for minimum temperature. The results are pre-
sented in Figs. 18 and 19.

MLP with SGD optimizer

SGD (stochastic gradient) optimizer, with two hid-
den layers; the first hidden layer with four nodes, 
while the second hidden layer with two nodes. For 
regularization and to control overfitting/underfit-
ting, alpha is set to 0.00001. The activation function 
used is ReLU. MAE and RMSE evaluation resulted 
in 1.424  °C and 1.786  °C, respectively, with an 
R-squared value of 0.569, for maximum temperature. 
MAE and RMSE evaluation resulted in 0.794 °C and 
1.126  °C, respectively, with an R-squared value of 
0.284, for minimum temperature. The results are pre-
sented in Figs. 20 and 21.

MLP with Adam optimizer

Adam optimizer, with two hidden layers; the first hid-
den layer with four nodes, while the second hidden 
layer with two nodes. For regularization and to control Fig. 18   Maximum temperature predictions, MAE, RMSE, and 

R-squared evaluation using LBFGS MLP

Fig. 19   Minimum temperature predictions, MAE, RMSE, and 
R-squared evaluation using LBFGS MLP
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overfitting/underfitting, alpha is set to 0.00001. The 
activation function used is ReLU. MAE and RMSE 
evaluation resulted in 1.428 °C and 1.797 °C, respec-
tively, with an R-squared value of 0.564, for maximum 

temperature. MAE and RMSE evaluation resulted 
in 0.795  °C and 1.128  °C, respectively, with an 
R-squared value of 0.282, for minimum temperature. 
The results are presented in Figs. 22 and 23.

Fig. 20   Maximum temperature predictions, MAE, RMSE, and 
R-squared evaluation using SGD MLP

Fig. 21   Minimum temperature predictions, MAE, RMSE, and 
R-squared evaluation using SGD MLP

Fig. 22   Maximum temperature predictions, MAE, RMSE, and 
R-squared evaluation using Adam MLP

Fig. 23   Minimum temperature predictions, MAE, RMSE, and 
R-squared evaluation using Adam MLP
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Results and discussion

Tables 2 and 3 show, in summary, the NASA predic-
tion and other prediction algorithms employed, with 
their corresponding performance evaluation.

From the results generated, models built with 
the multilayer perceptron algorithm performed bet-
ter than models built with decision tree algorithms. 
Although XGBoost regression performed bet-
ter than decision tree regression in predicting the 
daily maximum temperature for the study area, it 
could not outperform its counterpart in the predic-
tion of the study area’s daily minimum temperature. 
Accordingly, amongst the multilayer perceptron, the 
LBFGS multilayer perceptron slightly outperformed 
its counterparts in predicting both the maximum 
and minimum temperatures of the study area, except 

for one occasion where the SGD multilayer percep-
tron did better in RMSE, by 0.08%.

Generally, RMSE tells the performance of the 
model by evaluating the average difference between 
the predictions and actual measurements; the lower 
the difference, the better the model. While R-squared 
shows the performance of the model by evaluating 
how well the model fits the ground truth data values. 
R-squared does not tell how good a model is alone; 
this explains why it is usually used alongside other 
performance metrics (Chicco et al., 2021). However, 
a coefficient of determination value of ≥ 0.5 stipu-
lates a good correlation between the model and the 
ground truth measurement. Since this is a regression 
analysis problem, which implies that we are more 
interested in the prediction values, the R-squared 
value will not matter.

Table 2   Predictive 
models employed and their 
performance evaluation

Feature Predictive algorithm MAE (°C) RMSE (°C) R-squared

Maximum temperature NASA 2.184 2.579 0.710
Decision tree regression 1.471 1.863 0.531
XGBoost regression 1.444 1.822 0.551
LBFGS multilayer perceptron 1.412 1.778 0.573
SGD multilayer perceptron 1.424 1.786 0.569
Adam multilayer perceptron 1.428 1.797 0.564

Minimum temperature NASA 0.876 1.225 0.620
Decision tree regression 0.805 1.150 0.253
XGBoost regression 0.816 1.182 0.211
LBFGS multilayer perceptron 0.788 1.127 0.282
SGD multilayer perceptron 0.794 1.126 0.284
Adam multilayer perceptron 0.795 1.128 0.282

Table 3   Predictive 
models employed and their 
performance improvement 
WRT NASA prediction

Feature Predictive algorithm MAE RMSE

Maximum temperature NASA 2.184 2.579
Decision tree regression 32.65% 27.76%
XGBoost regression 33.88% 29.35%
LBFGS multilayer perceptron 35.35% 31.06%
SGD multilayer perceptron 34.80% 30.75%
Adam multilayer perceptron 34.62% 30.32%

Minimum temperature NASA 0.876 1.225
Decision tree regression 8.11% 6.12%
XGBoost regression 6.85% 3.51%
LBFGS multilayer perceptron 10.05% 8.00%
SGD multilayer perceptron 9.36% 8.08%
Adam multilayer perceptron 9.25% 7.92%
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Conclusion and recommendation

Descriptive and diagnostic analyses of NiMet and 
NASA maximum temperature datasets for the study 
area were performed, with trends and patterns identi-
fied. Using the NiMet data as ground truth, perfor-
mance evaluation of the NASA data reported a mean 
absolute error (MAE) of 2.184  °C and root mean 
squared error (RMSE) of 2.579  °C, while correla-
tion analysis reported a coefficient of determination 
(R2) value of 0.710. This is an indication of a good 
correlation between the two datasets, in addition, a 
model can be developed to predict more accurately, 
weather data for the study area, using the NASA data 
as input. Predictive and prescriptive analyses were 
performed by employing five prediction algorithms, 
from the decision tree class and artificial neural net-
work class. The five prediction algorithms employed 
are decision tree regression, XGBoost regression, 
MLP (multilayer perceptron) with LBFGS (limited-
memory Broyden-Fletcher-Goldfarb-Shanno) opti-
mizer, MLP with SGD (stochastic gradient) opti-
mizer and MLP with Adam optimizer. MLP with 
LBFGS optimizer performed best, by reducing the 
MAE from 2.184 to 1.412  °C (35.35%) and RMSE 
from 2.579 to 1.778 °C (31.06%) for maximum tem-
perature. Accordingly, a reduction in MAE from 
0.876 to 0.788  °C (10.05%) and RMSE from 1.225 
to 1.127 °C (8.00%) for minimum temperature. Fur-
ther improvement can still be achieved by employing 
ensemble models.
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