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ARTICLE INFO ABSTRACT
Keywords: Moisture/air-flow over the aircraft wing and bonnet of a moving car in aerodynamical systems exhibit dynamic
Casson behavior characterized by accelerating and decelerating flows. These analysis is essential and applicable in

Stretching/shrinking sheet
Non-similar solution

various fields, including physics, engineering, and fluid mechanics. The present investigation aim to explore
the dynamics of accelerating and decelerating flows within the framework of boundary layer examination.

Duf Soret effect . - .. . . .
o/ oret eflec To achieve these objectives, a non-similar group of transformations is employed to convert the governing

Nanoparticle . . . ) . - . . . .

MED dimensional two-variable dynamical system into a dimensionless differential form, with n and & as the

independent variables. To gain physical understanding of the mathematical equations governing the flow,
an efficient bivariate spectral collocation method (BSCM) is employed for analyzing the flow dynamics.
This method allows for a thorough investigation of the behavior and characteristics of the accelerating and
decelerating Casson flows. Subject to the convergence and residual error analysis of the numerical results, the
effects of pertinent parameters on the flow variables were investigated. The findings of this study show that the
effects of flow parameters on decelerating and accelerating flows are not completely opposite. Additionally, the
Biot parameter positively impacts the velocity and temperature profiles of the two dynamical flows. However,
an increase in the Casson fluid parameter § has an opposing effect on the temperature and concentration
profiles of both flows.

1. Introduction

The study of accelerating or decelerating flow around a surface
holds significant applications in the stability analysis of aircraft, de-
termination of aircraft speed, and enhancement in the design of high-
speed trains, vehicles, or aircraft. Sundstrom and Cervantes [1] investi-
gated the similarities between accelerating and decelerating flows. The
study revealed that the time developments of mean and turbulent prop-
erties in accelerating and decelerating flows exhibit similarity during
an initial phase after the transient period. In another work [2], they
explored the self-similarity of wall-bounded temporally accelerating
turbulent flows, while Seddighi et al. [3] employed a direct numer-
ical solution to study accelerating fluid around a tube. Additionally,
Guerrero et al. [4] discussed the behavior of decelerating flow at a

transient state. Other important literature discussing the applications
of accelerating and decelerating flows includes Refs. [5-7].

Obtaining analytical and approximation solutions for non-Newtonian
fluids is challenging due to the complexity inherent in their nonlinear
structure, a difficulty that is particularly to the Casson fluid model.
According to Sparrow et al. [8], a non-similar boundary layer can
arise due to various influences such as alterations in wall temperature,
surface mass transfer, free stream velocity, the introduction of fluid
through injection/suction on the surface, the impact of buoyancy
forces, the influence of inclination angles, and other factors. To predict
the ideal solution for dynamical flows intended for engineering and
scientific applications, conventional similar solution techniques prove
inadequate as they do not sufficiently account for all independent
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variables [9,10]. While several self-group theories have been adopted to
address this challenge [2,11-14], Lawal and Ajadi [15] provided local
non-similarity solutions for the flow of Casson. These approaches are
specific to particular problems. To circumvent doubts in the solutions
arising from self-similarity results, truncation errors in perturbation
series, and to avoid the occurrence of intersection and violation of
boundary conditions commonly referred to as “common errors made
in the investigation of boundary layer flows", dimensional problems
are transformed and solved using a non-similar approach. Through this
method, the coordinates x and y are eliminated by an appropriate
transformation in the modified equations of a dimensional partial
differential equation (PDE) problem, resulting in dimensionless systems
with coordinates n and £ (White [16]).

Numerous investigations into this analysis include the recent non-
similar solution of Casson fluid boundary layer flow by Bisht and
Sharma [17], the utilization of the non-similar approach for solving the
conjugate gradient problem by Khademi et al. [18], and Kaya [19]).
Yih [20], in his study on non-Darcy MHD natural convection flow en-
compassing viscous and Joule heating effects over a permeable sphere,
considered this approach. The dynamics of Reiner-Philippoff (RP) fluid
by Tijani et al. [21-23] justify the accuracy and efficiency of the non-
similar technique in solving engineering and biological systems. Other
notables studies can found in the recent study of Mustafa et al. [24] for
the solution power-law fluid flow over a moving wedge, Cui et al. [25]
on the forced convection analysis of nano-fluid flow over stretching
surface, Farooq et al. [26], to mention few.

In the context of heat and mass transfer within a moving fluid flow,
Soret-Dufour factor plays a pivotal role, being indispensable for tasks
like shaping nuclear reactor designs, harnessing geothermal energy,
managing the movement of groundwater pollutants, overseeing oil
reservoir dynamics, enabling isotope separation, manufacturing rubber
and plastic sheets, blending gas compositions, optimizing compact
heat insulation exchangers, and facilitating the responsible disposal of
nuclear waste, alongside various other practical applications. Gajjela
and Garvandha [27] analyzed the characteristics of thermo-diffusion
and diffusion-thermo effects mixed with chemical reaction of MHD pair
stress liquid over an extended cylinder. A model encompassing the
effects of thermal radiation, and slip on bio-convection of an Oldroyd-
B nanoliquid was numerically investigated by Tlili and Wagas [28]. In
their study, extra impact of convective heating and absence of mass
flux improves the fluid flow. Shojaei et al. [29] presented a depiction of
the radiative flux involving the Dufour and Soret effects in the context
of a second-grade fluid flowing on an elongated cylinder. The study

indicated that as the Schmidt and Prandtl numbers increase, the solutal
and thermal fields converge. Also, Jawad and Saeed [30] investigated
the impact of Dufour and Soret effects on Maxwell fluid on an elongated
surface with permeability using the Buongiorno model. In general,
the Soret and Dufour parameters increase mass transfer but decrease
Nusselt number. Other physical situations where the Soret and Dufour
effects have been extensively analyzed can be seen in Ref. [31-36].

In recent times, scientists and engineers are focusing on the behavior
of non-Newtonian and Newtonian fluid flows on expanding and con-
tracting surfaces, particularly in various industrial fields like polymer
processing, glass fiber production, and others. The flow of Casson
fluid is characterized by the dominance of its shear stress magnitude
over a yielded shear stress. This fluid’s fundamental basis is rooted
in a structural representation of the interaction between solid and
liquid components in a double-phase suspension. Examples of Casson
fluids include jelly, honey, concentrated fruit juice, synthetic fiber,
and soup. Various products, such as paints, pharmaceutical substances,
synthetic lubricants, china clay, tomato sauce, and coal, leverage the
characteristics of Casson fluid in their manufacturing processes. Human
blood is also considered a Casson fluid due to its composition of red
blood cells, globulin, fibrinogen, and proteins in an aqueous plasma
medium [37-39].

Pioneering discussions on Casson fluid flow through tubes were
initiated by Oka [40], while Bhattacharyya et al. [41] explored magne-
tohydrodynamic flow over contracting/expanding sheets, emphasizing
the uniqueness of the similarity solution in the presence of a stronger
magnetic field. Mernone et al. [42] investigated two-dimensional peri-
staltic channel flow of Casson fluid, and Mustapha et al. [43] studied
heat transfer with a time-dependent Casson model in a boundary layer
over a moving plate. Mukhopadhyay [44] examined the effects of
thermal radiation and heat blowing/suction on Casson fluid flow over
stretched sheets, while Pramanik [45] systematically investigated the
impact of porosity and radiant heat flow on heat and mass transfer.
Arthur et al. [46] considered the influence of magnetic fields and chem-
ical reactions, and Anwar et al. [47] explored transient magnetohy-
drodynamic movement of Casson fluid on an unbounded vertical plate
under varying temperature and velocity conditions. Singh et al. [48]
discussed the boundary layer motion of a laminar conductive Casson
fluid induced by a horizontal porous sheet undergoing linear contrac-
tion/expansion with mass transpiration. Additional literature on Casson
fluid can be found in Refs. [49-51]. The motivation for experiments on
shrinking/stretching sheets lies in addressing transportation challenges,
making this model widely applicable in engineering and industrial
operations such as metal thinning, sheet extrusion, and heat exchange.
The stretching sheet problem, initially investigated by Sakiadis [52,53],
was further elucidated by Aly and Pop [54] through the study of flow
through a moving sheet.

The novelty of this work lies in presenting a non-similar approach
to investigate the Soret, Dufour, and radiation effects on accelerating or
decelerating flow around a surface. The non-similar method is justified
based on the non-vanishing of coordinates x and y for some physical
parameters while using a similar analysis. Such solutions warrant con-
siderable attention as they provide valuable insights for optimizing the
design of supersonic vehicles, trains, and aircraft.

2. Mathematical statement

Consider two-dimensional laminar boundary layer flow of Casson
nanofluid over a non-linear radiated slanted extending surface with
convective surface boundary condition. The free stream and extending
velocity are considered to be U, (x) = 0 and U,(x) = ax?. Where x
represents the coordinate in the direction of the extended surface with
a constant a. A transverse magnetic field is assumed normal to the flow
path. The thermophoresis and Brownian motion effect is considered
to be very significant due to the presence of the nanoparticle. The
constants of the fluid temperature T and the nanoparticle fraction
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Fig. 1. Model physical coordinate geomeltry of boundary layer flow of Casson fluid.

C at the wall surface are considered to be T, and C, while the
ambient nanofluid mass and temperature C_ and T, are achieved as y
approaches to immensity as demonstrated in Fig. 1 (see [8,15,34,55]).

Utilizing the Roseland approximation, the governing equation can
be written as;

du dvu
—+ — =10, 1
dx * dy &
BZ
w2 42 =»-(|+1)ﬂ+g[ﬂ,(r T,)+6.(C~C, )] cos y— 2B 5y
dx  dy /)
WIT 0T _ i_l‘}"’r] [ ac or Dy (dT)] Dy Ky g*C
dx d} k dy r}y dy dy C,C, ay? :
3)
. DKy g2
u£+ aC a*C . 7 o T @
dx dy dy2 Ty o‘yz

The boundary conditions are defined as

dT
u=u, v=0, k2L =h (T —T), cC=C, a y=0,
: ray = \lr w )
u—uylx), T-=T, C—=C, a y— oo,
. -1 -
where U, = ibx?, B(x) = Byx 2 , U, = Aax”.
2.1. Solution through the non-similar transformation
We define the following variables (see [8,15,34,55]);
dy dy 12 Z21
= —, f= ——, = (Avh 2 1), [5)
u oy v Ix W ( v ) x 2 f(&n ()
/2 7z x
q:y(—) . E=2, T=AT0+T,, C=ACH+C,. (7)
v

u = vbx” (&, ),
zv g f (8)
d

= —(avb)' P (Z; )f AbyxZ N Z = 1)f' — (Avb)' 2 x5 1

Utilizing Egs. (6)-(8) in to Egs. (1)-(3) yield

(I +;19)f"’+(?n§' 21[3+m-¢] cosy — [Ha2+2f']f’+(—z,j')ff”
af’ wdf
=¢|r = "5 ©)
[1 + iNr]B” +PrN,O'd + PrN,(B')Z + D" + (%) Prré’
1 0f
_pg[f ——3}—‘5 (10)
¢”+sr9”+Le(Z+')f¢’+N "—Lf[f——gi:df] 1n
Subject to;
. ) _
r=-5(F) 22, =1 T 000 = -Bil1 -0 o).
¢(n,§)=l. at r.'=0, (12)
f(n.8) = —Q O(n.&)=0, ¢=0, a n=co.

All the relevant parameters are defined in the nomenclature section.

The engineering physical quantities of interest are;
Tw Xw

=——  Sh

Xy
C'Jr =———. Nu, . N
0.5pU2 kp(Ty—Ty)

"D, -c 43

with surface heat flux and shear stress given by g,, and 7, respectively

dC

D55 (14)

= pVave(n),

q ——K£| —Gp =
“ 0yl " y=0

In non-dimensional form, (13) using Eq. (6)-(8) and (14) becomes

1 —_——
%Ref Cy = (1 + é) S70,0). Re ?Nu, = —(1 + %Nr)ﬂ’((),f_,‘),

1
Re 2 Sh, = —¢'(0.0),
(15)

U,x

where Re, =
v

3. Numerical method

Different problems involving ordinary differential equations have
been solved using spectral collocation technique (SCM). SCM is used,
for instance, by Akolade et al. [56] to research the effect of thermo-
physical features on squeezed flow. Refs. [57-59] are some references
for other works on the considered technique in addressing different
physical flow problems. In order to offer a solution for PDEs in Egs. (9)—
(12), the spectral collocation method (SCM) is transformed into the
bivariate spectral collocation method (BSCM). In this section, we in-
troduce a modification of the spectral collocation method known as
the bivariate spectral collocation method (BSCM) to solve the partial
differential equations (PDEs) described by Egs. (9)—-(12).

In the present approach (BSCM), the problem domains ¢ = [0, L;]
and n = [0, L, ], where L; is the finite value of dimensionless variable
and L, represent the truncated boundary layer edge. ¢ and n are

converted to Chebyshev domain 7 € [—1.1] and { € [-1. 1] using the
respective transformation
L(rt+1 LAg+1)
=5 ) and .§=7f‘52 , (16)

The partial derivative approximation for functions f(zr.&), #(7.&)
and ¢(r,&) at the Chebyshev—Gauss—Lobatto collocation points 7; =

; N, . N,
{cos(ﬂ)} and {; = {cos(ﬂ)} " are given in the form of
N:JJizo Ne/Jj=o
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differentiation matrices D) and d below (see Uddin et al. [60]).

Ng
a"(f.0,p) 2 & (n} ()
—_— 6, N =d"™(f.6.9),
25 ) V60,001 = d”(,8.9)
0/.0.8) 2 5w s
———— =~ — ) D//(/.6.9)k.j))=D"(.8.9). 17
pwo L,,E (f.6.9)(k.j) = D (].6.4) a7

Z D, f(k, n) —dD)),

o> f ~2 Z (
agon L i3 L, &

with n the order of the differential equations and entries of matrices D
and d as (see, [60,61]).

¢ (_])jﬂ
dy,=-=2 JFELI=0.1,..., N,
7 < C_j—C{ :

dy =—L7‘.f= 1.2,...
21-¢D)
2NZ+1
dyy = _—-6 =—dy N
and (1s)
I
('k l"-— l'k
D S k=12,...N,-1
kk = 2(]—!’3)‘ = L4, N, »
2N2 +1
Dy, = T e Z_DN,N,’

N -1,

dFEkRLE=0,1,....N_,

with

2,
L =
k 1.

where

k=0.N,

2, 1=0,N,
and ¢; =
—1<k<N,-1, 1,

~1<I<N, -1,

(19)

F=1700.0), £(0. 1), £(1,0), f(1, D). ... f(N. NI,
B = [6(0,0),6(0,1),6(1,0),6(1, 1), ... 6N, NI, (20)

@ = [(0,0), (0, 1), (1,0), (1, 1), ... p(N, N,;)IT.
To obtain solution for Eq. (9) to (12), the following discretized equa-
tions are calculated at the grid points 7;(i = 0, 1,2, .... N o) and ¢ U=

0,1,2,....Np), taking into account Egs. (16)-(20). As such the reduced
governing PDEs are discretized as follow:

ByD* [ +Gre ! [é + chb_] cosy — [Ha2 + an]f+ oy FD2F

= ¢ [pjaw)) - v*faf]. 1)
[1 + %N,] D%3 + PrN,D@Dé + PrN,DADA + D,D*¢ + f, PriD@
- (22)
= Pr{;|Dfdé — Dédf],
D2§ + SrD%8 + Lep,, [ D + %Dzé = Let, [Dfdf,a -Dj df]‘ (23)
b
where §, = (1 + ,le) By = (Z;' ) and (‘r (i =0.2....,N).LG =

0,2,.,.‘N‘:)), (q(; =1,2,....N, -2, =0, 2,,.,,N§J) and (r‘-(f =

Vi
R
= 001
2
|
w4
©
=1
S 408
[/;] \
4 TR,
@ 108 7 Resr(1.n) M

-=-m-= Resg (1,n)
1071 = Resy (1,7)

10 20 30 40 50 60 70

Fig. 2. Residual error norm representing the convergence of the model as N, increases
and Ne=10, Ha=05, §=05, Gr=1.0, Gc =1, Pr=1.0, Sc =20, N, = 0.1, N, =04,
Sr=04, Nr=0.1, Du=0.1, Z=05 y=x/4, Q0 =001, Bi=1.

L2, ...,N, - 1).{;(j = 0.2,..., NgJ) respectively. Subject to the dis-

cretized boundary conditions:

2 G
= X dn 1S 0J).

n k=0 noI=0

N?
Li Y Dy S ki) =0, S(NJ) =Py

N
2 o . . . . y
T Z Dy_48(k.j) = Bil(N,.j) = =Bi, ¢(N_.j)=1,
n k=0

for j=0, 1,2,..., N

= Z Doy f(k.j)=0. 6(0.))=0,

I':I' k=0

$(0.)) =0 for j=0,1,2,....N,.

29

Egs. (21)—(24) form a system of nonlinear algebraic equations with
3(N, + 1) x (N + 1). These unknowns are obtained using Newton
method by implementing FindRoot in mathematical symbolic package
MATHEMATICA.

The numerical scheme exhibits rapid convergence with increasing
order of approximations for both N, and N_, as evident in Table 1.
Specifically, at N, = 10, there is a tolerance difference of up to 107°
observed between N, = 40 and N, = 50 for the engineering physical
quantities. Similarly, for N, = 50, a tolerance difference of up to 10~ is
observed between N, = 9 and N, = 10 for the skin friction and Nusselt
number. It can be adjudged that for N; = 10 and N, = 50, convergence
and accuracy of the numerical solution is assured. The residual error
which further affirms the stability and convergence of the scheme is
depicted in Fig. 2.

4. Results and discussion
4.1. Results of distribution profiles f'(¢.n), 8(¢.n), and ¢(C.n)

This article numerically investigates the dynamics of accelerating
and decelerating flow of hydromagnetic flow of a Casson fluid over
a slanted vertical plate with the influence of Soret and Dufour effects
and thermal radiation. By introducing the non-similar transformation
approach, the system of equations governing the flow with boundary
conditions are highly non-linear in nature and complex to obtain
any exact solutions. To accomplish the research objective, the present
study employs the Spectral collocation method for handling these non-
linear differential equations in Mathematica and results are performed
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Table 1

Convergence solution of BSCM for different approximation’s orders when: Ha = 05, § =05, Gr = 1.0, Ge = 1, Pr = 1.0,

Se=20, N =01, Ny =04, Sr=04, Nr=01, Du=01, Z=05, y =x/4, @ =001, Bi = L.
Order 1ReIC, Re.* Nu, Re * Sh, Order 1ReIC Re,* Nu, Re,*Sh,
N =10 N_. =50
N, =10 —0.48707 0.316403 0.846396 N, =02 —1.45823 0.330145 0.51957
N =20 —1.47206 0.315825 0.776300 N;. =M —1.46951 0.312062 0.657011
N_ =30 —-1.46714 0.315874 0.775476 N;. =06 —1.46809 0.314348 0.725461
N, =40 —1.46713 0.315874 0.775471 N;- =07 —1.46789 0.315821 0.742431
N, =50 —1.46713 0.315874 0.775471 N, =08 —1.46741 0.315423 0.757388
N, =60 —1.46712 0.315874 0.775471 N, =09 —1.46721 0.315611 0.767221
N, =T0 —1.46712 0.315874 0.775471 N, =10 -1.46713 0.315874 0.775471

for both accelerating and decelerating flow situations respectively.
The uniqueness of this current investigation is concerned with the
immediate emerging engineering applications as visualized in many
aerodynamic and fluid mechanics problems in air flow around an
aircraft and brunet of a moving vehicle. During the course of the nu-
merical computations, relevant influence of pertinent flow parameters
on flow dynamics are highlighted to incorporate the influences of the
Casson parameter, thermal radiation parameter, magnetic parameter,
as well as Soret and Dufour parameters. Figs. 3(a, b, ¢) Illustrate the
impression of the Casson fluid flow parameter (f) on the velocity curve,
temperature distribution, and fluid concentration for both accelerating
and decelerating flow situations in the existence of thermal radiation
(N,). From Fig. 3(a), increment in (f) is clearly observed to atten-
uate the velocity profile for both accelerating and decelerating flow
situation. This is owing to the physical fact that the fluid yield stress
demonstrates an inverse relationship with (f). Hence, enhancing the
values of (ff) weakens the fluid yield stress leading to decrease in
fluid velocity as observed for both accelerating and decelerating flow
situations. It is however interesting to mention that higher values of ()
significantly augment fluid concentration and temperature distribution
for accelerating flow situation whereas the opposite phenomenon is
observed for decelerating flow situation. In a situation where the flow
is accelerating, enhancing () advances the chemical specie and reduces
the thermal boundary layer resulting in the accumulation of heat and
consequently leading to an increase in the distribution of fluid tem-
perature as observed in Figs. 3(b) and (c) respectively. Figs. 4(a) and
(b) illustrate the impression of magnetic parameter( H ¢) and inclination
angle (y) on velocity curve for both accelerating and decelerating flow
situation. Fig. 4(a) shows that in the occurrence of thermal diffusion
and thermal radiation, higher values of Ha enhances the fluid viscosity
profile causing a decrease in velocity profile. This is evident for both
accelerating and decelerating flow situation. Increase in inclination
angle on the other hand weakens the buoyancy current leading to
decrease in velocity curve (Fig. 4(b)).

Influence of Biot number (Bi) on temperature and concentration
profile is illustrated in Fig. 5(a) and (b) for both decelerating and
accelerating flow situations. Details from the figure demonstrate that
higher fluid concentration and temperature could be achieved by grow-
ing the convective current parameter. Thus, the thermal boundary
layer about the plate could be reduced by increasing the Bi thereby
increasing the concentration profile and subsequently the temperature
distribution. The role Dufour parameter on the fluid temperature for
accelerating and decelerating flow is represented in Fig. 6(a). It can
be justified that the fluid temperature exhibits a direct proportionality
with the Dufour parameter (D,) for the two cases under consideration.
This is associated with the fact that growth in the D, increases the
concentration gradient, resulting in high mass diffusion and in turn
increasing the temperature distribution. The influence of R on fluid
temperature in both assisting and opposing flows is demonstrated in
Fig. 6(b). The figure suggests that R augment leads to an upsurge in
thermal boundary layer thickness. Furthermore, it can be inferred that
the temperature rise is a result of the absorption of radiative heat
emitted by the heated inclined plate. This phenomenon amplifies the

buoyancy force due to the increase in fluid temperature, consequently
encouraging the formation of flow within the boundary layer. Fig. 7
describes the impression of the Brownian motion parameter (N,) on the
temperature and concentration for accelerating and decelerating flow.
Observation from the Figures revealed that the nanofluid temperature
enhanced with Nb growth whereas decreases the rate of nanoparticle
concentration. In a physical context, the inclined boundary layer ex-
periences warming due to heightened Brownian motion, causing the
transfer of nanoparticles from the extending plate to the stationary
liquid. As a result, the nanoparticle absorption rate decreases.

Fig. 8 shows the importance of the thermophoresis parameter (N,)
on the temperature distribution and concentration profile for accel-
erating and deceleration flow. It can be understood from the Figure
that the fluid temperature and nanoparticle diffusion increase with N,
augment due to the fact that thermophoresis cause the nanoparticle in
a high energy level or hot region to compel the nanoparticle toward
the cold region. Due to this effect, the heat transfer rate is increased by
transporting the hot nanoparticle from the hot region to the cold region.
Fig. 9 shows the role Soret number on the concentration profile for
accelerating and decelerating flow. It can be inferred from the Figure
that the rate of particle diffusion rise as the Soret number intensifies.
Soret number is the fraction of temperature variation (between the
plate and the ambient fluid) to concentration, hence higher Soret
number corresponds to higher temperature variation and precipitous
gradient.

4.2. Results of engineering quantities of interest

Table 2 demonstrates the variation active flow parameters on the
skin friction Sherwood number and Nusselt number for accelerating
and decelerating flow. The table suggests that for accelerating and
decelerating flow scenarios, the shear stress and mass transfer increases
with growth in #, N,, N;, N,, Du, Bi and S, whereas decreases with Ha.
This phenomenon is expected because, the surge in enhances the fluid
transport and particle diffusion in the boundary layer which give rise to
the plate shear stress and mass transfer. Furthermore, the radiative heat
flux decreases the fluid transport near the plate leading in the increases
in the shear stress. The Sherwood number significantly increase with
N, and Du increase but decreases with §, N,, N,, Bi, Ha and S,. The
thermal boundary layer thickness enhanced as a result of the increase
in the Brownian motion parameter, impacting a significant volume of
the fluid. Moreover, higher thermophoresis force reduces the Sherwood
number owning to the fact that the thermal boundary layer thickens
as a result of increased diffusion penetration into the fluid particles.
The magnetic parameter retards the fluid flow there by reducing rate
of particle diffusion near the plate edge and within the surrounding free
stream. In addition, the radiative heat flux induces more heat energy
into the fluid resulting in substantial increase in the velocity profile and
in turn enhances the rate particle diffusion on the plate surface.

It is seen that increase in f improves the heat transfer for both
accelerating and decelerating flow situations. A close examination of
the Table shows that in the incidence of N, and S, as well as D, effects,
the influence of f is less pronounced on heat transfer near the boundary
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plate resulting in negligible variation on temperature field about the
plate whereas the influence becomes noticeable far away from the
plate. Additionally, it is noted that an increase in the Bi considerably
amplifies the heat transfer for both accelerating and decelerating flow
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Fig. 5. Importance of Bi variation on (a) temperature distribution (b) concentration profile.

situations. This phenomenon is attributed to the physical reality that
an increase in the Biot number enhances heat accumulation in the
system leading to increase in temperature distribution. In addition, the
Table also suggest that increase in Soret number and thermal radiation
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Table 2

Computational results of engineering quantities of interest with variation of model parameters (f, y, Ha, ) when: Ha =05,

f=05 Gr=10, Gc=10, Pr=68, S¢ =20, N, =01, N, =04, Sr=04, Nr=03, Du=04, y =x/3, 0 =001, Bi = I.

Z > 0 (accelerating flow), Z =05

Z <0 (decelerating flow), Z = —0.5

% Re,": c, Re:'l Nu, Re.*Sh, iRef c, R._{i Nu, Re;i Sh,
g 0.3 —1.294620 0.508350 0.735862 0.316409 0.419584 0.42027
0.5 -1.00787 0.50968 0.714931 0.324829 0.421331 0.415797
L0 —0.753475 0.511507 0.689597 0.321845 0.424238 0.406996
Ha 0.1 —0.760606 0.509651 0.739757 1.106200 0.423332 0.497003
0.3 —0.847304 0.509661 0.731028 0.804141 0.422349 0.467972
0.7 -1.22436 0.509697 0.693328 ~0.161800 0.421800 0.354304
B, 0.5 -1.06053 0.362473 0.749317 0.259504 0.327308 0.431664
L0 -1.00787 0.50968 0.714931 0.324829 0.421331 0.415797
L5 —0.979414 0.590575 0.695446 0.358574 0.457492 0.412784
N, 0.1 -1.00787 0.50968 0.714931 0.324829 0.421331 0.415797
0.3 —0.925167 0.46131 0.704822 0.395509 0.399119 0.364469
0.5 -0.822831 0.324737 1.08299 0.484632 0.34576 0.444285
N, 0.2 -1.02736 0.680777 0.450532 0.304711 0.57572 0.196739
0.5 —0.99004 0.430958 0.779516 0.343015 0.353807 0.467133
0.7 —0.949841 0.285959 0.866215 0.383614 0.232114 0.534593
Sr 0.1 -1.02148 0.488022 0.758197 0.313623 0.399808 0.453672
0.3 -1.01231 0.502083 0.730709 0.321159 0.413706 0.429741
0.5 -1.00355 0.517693 0.697588 0.328415 0.429465 0.400298
N, 0.0 -1.01239 0.351828 0.744433 0.316588 0.302173 0.42533
0.2 -1.00991 0.458786 0.72124 0.321848 0.383014 0.417403
0.5 -1.00314 0.607609 0.707559 0.330925 0.494811 0.414755
B, 0.5 -1.06053 0.362473 0.749317 0.259504 0.327308 0.431664
0.7 -1.03493 0.434049 0.732703 0.291576 0.377205 0.422347
0.9 -1.01575 0.487605 0.720152 0.31524 0.409449 0.417336
D, 0.0 -1.03302 0.575615 0.666809 0.304893 0.466753 0.386335
0.2 -1.02104 0.545184 0.688605 0.314338 0.445842 0.399647
0.5 -1.00070 0.489397 0.730398 0.330589 0.407284 0.42531
MATHEMATICA. The effect of the active parameters affecting the flow
ol T ' ' ] feature has been presented through line graphs and tables. It is noted
I that the effect of the convective boundary condition at the wall for
[ Sr=0.0,03,0.7 ] variation in the Brownian motion parameter is approximately 2.298%—
08| 8.333% increment between the accelerating and decelerating flows.
. Z=(+0.5) The results show that:
— 06" 1
< 1 + Increasing the Biot number by 40% and 28.6% respectively, the
% [ skin friction of the decelerating flow increase by 12.359% and
04 1 8.115%. While the skin friction of the accelerating flow increase
1 by 2.413% and 1.853%. The Biot parameter positively impacts
02 the velocity and temperature profiles of both decelerating and
[ accelerating flows.
r 1 « The temperature profile shows a 9.375% increase in the ac-
0o . - ] celerating flow compared to the decelerating flow at the wall
o 1 2 3 4 5 with variation in f. An increase in the fluid parameter § has an
n opposing effect on the temperature and concentration profiles of
both flows.
(@) .

Fig. 9. Concentration profile for various §,.

contributes to surge in rate of heat transfer whereas the contrast is
observed with Dufour.

5. Conclusions

This study explored the dynamics of accelerating and decelerat-
ing flows near an inclined plate. The solution to the dimensionless
equations describing the fluid features were achieved through bivariate
spectral collocation method (BSCM) in mathematical symbolic package

The effects of flow parameters on decelerating and accelerating
flows are not completely opposite.

The inclined boundary layer warmth up due to the increase in
the Brownian motion which transports nanoparticles from the
extending plate to the motionless liquid and consequently lessens
the rate of absorption of nanoparticles.

The fluid temperature and nanoparticle diffusion increase with Nt
augment because, N causes the nanoparticle in a high energy
level or hot region to compel the nanoparticle toward the cold
region.

Increasing the Hartmann number by 200% and 133.33% respec-
tively, the Sherwood number of the accelerating flow decrease
by 1.179% and 5.157%. While the Sherwood number of the de-
celerating flow decrease by 5.841% and 24.289%. Increasing the
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magnitude of the Hartmann number, downsize the skin friction
and Nusselt number in the decelerating flow.
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