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Abstract
In most scientific and engineering problems, ordinary differential equations cannot be solved by
analytic methods. Consequently, numerical approaches are frequently required. A block hybrid Milne
technique was formulated in this paper in order to develop a suitable algorithm for the numerical
solution of ordinary differential equations. Utilizing power series as the basis function, the proposed
method is developed. The developed algorithm is used to solve systems of linear and nonlinear
differential equations, and it has proven to be an efficient numerical method for avoiding time-
consuming computation and simplifying differential equations. The fundamental numerical properties
are examined, and the results demonstrate that it is zero-stable and consistent, which ensures
convergence. In addition, by comparing the approximate solutions to the exact solutions, we
demonstrate that the approximate solutions converge to the exact solutions. The results demonstrate
that the developed algorithm for solving systems of ordinary differential equations is straightforward,

efficient, and faster than the analytical method.

Keywords: Ordinary differential equations, numerical solution of ODEs, Hybrid Milne method,
approximate solutions, algorithm and power series

Introduction
An equation in mathematics that describes

the relationship between a function and its
derivative is an example of a differential
equation. In practical contexts, functions are
typically used to represent rates of change.
Engineers, physicists, economists,
biologists, and others rely heavily on

differential equations. Initial value first order

ordinary differential equations appear in the
process of modeling real-world situations n
physical and applied sciences, particularly in
algebraic expressions concerning problems
related to flow of viscous thin films, disease
models, chemical kinetics, quantum
mechanics and  electromagnetic  waves
(Aslam et wal., 2021: Mazarina and
Syahirbanun (2022); Amat et al., 2019;
Kwanamu et al., 2021). Understanding the

behaviors and propertiesof the mvestigated
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physical phenomena requires the resolution
of this type of problem (Kashkaria and Syam
(2019)). In the majority of instances.
available analvtical approaches fail to
provide an accurate solution to a general
first-order nitial value problem. To solve
such problems that come up in various area
of engineering and science, it is important to
use numerical approaches that are close to
the equations' solutions (Chapra and Canale,
2015). As such, scientific and technological
problems involving differential equations are
typically solved using numerical methods

rather than analytic ones.

In this research. we intend to develop and
study a four-step first derivative hybrid
block Milne approach for systems of
ordinary differential equations taken into

account as:

z = f(t2,2;, ’rl{n}:"l
{,E: =Stz,z with initial conditions {.:1 (9)=¢ i1
z,=f(t.z.z |I:,,|[n_1= e,
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For arbitrary z,<z<z,. In this case, the
function _j'{r.z} 15 assumed to be
continuous  throughout the integration
interval, and a unique solution exists.

Numerous research has been carried out to
provide numerical solutions to problems
modeled as first order ordinary differential
equations. These include works of authors
such as Ndipmong and Udechukwu (2022),
Garba and Mohammed (2020), Gomathi and
Rabiyabe (2022), Badmus et al (2015),
Ehiemua and Agbeboh (2019), Eziokwu and
Okereke (2020). Iyorter, B. V., Luga, T. &
Isah. S. 8. (2019). Techniques of solution
employed by the above researchers include,
Euler methods, the Adams Bashforth and
Adams Moulton methods, linear multistep
methods, Runge-Kutta methods and Milne
methods among others.

Few mathematicians have come up with
some block Milne techniques regarding
solutions to wvarious differential problems.
The convergence of some selected properties
with respect to block predictor-corrector
methods and its applications on differential
problems were investigated (Oghonyon er
al., 2016a). Again, Oghonyon et al., (2016b)
focused on block predictor-corrector method

and derived a Milne’s scheme. They
implemented the scheme on  ordinary
differential problems and obtained a

favourable outcome. Recently, Oghonyon et
al. (2018a) formulated a suitable exponential
fitted block Milne's scheme for ordinary

differential  equations  emerging  from
oscillating vibrations problems.
these approaches are limited by their low

accuracy rate and low number of steps. The

However,

present research was motivated by the need
to overcome the shortcomings of existing
approaches by expanding the number of
steps at both grid and off-step locations. The
Milne technique employs the predictor-
corrector algorithm and is dahlquist stable
and accurate to the second order. For their
starting values, the predictor-corrector of the
Milne scheme requires single-step methods.
In this study, the corrector component is
reformulated into a continuous form and
implemented as a block method in order to
make 1t self-starting to solve systems of
ordinary differential equations. To improve
the degree of accuracy of the Milne method,
appropriate off-grid points are selected with
care.

This
Section two, we describe the construction of

paper is structured as follows. In
the new numerical technique for (1).

section three, we established the order, zero
stability, consistency, and convergence of
the technique. In Section four, we used the
method to solve systems of differential
equations of the first order and compared the
results of the different problems. Numerical
tests with sample problems and their results
were resented in section 4 and we concluded

the study in section 5

Construction of the Block Hybrid Milne Technique

To derive the new numerical technique, we apply the notion of a linear multistep collocation

procedure using the general format z(7) =
ar=ih

(2)

where

ffr{f]_-{” —IrZE[#
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u+v—1 wtr—]

A(t)=>. A" and hB(t)= ) B,.1" 3)

n=0 n=0

Here, we use the basis function of power series to derive a numerical estimate for the
ordinary differential equation of the format described in (1).
w+v—I

D> dt )

n
n=0

where w and v represents the interpolation and collocation points, t € [ty, zy], and d,'s are
unknowns. Equation (1) is differentiated to get

w+v—1

> nd (5)

n=0

Hence, the continuous format of the proposed block technique from (3) with five off grid
points at collocation is represented as

2(t)= A, (1) 2+ B, (1)1, + B, (1)1, + B (1), . + B, (1), + By, (1)

+ B, (1) f,, + B, (1) W, ©
It generated some non-linear system of equations in the format Mt =B in (7)
1 (ta-f_) ('rr+")1 (r:+’) ('fi+2)‘l (’fa+2) ("r+")h (ri+2)?
0 1 Z(IHZ) 3(%2)’ 4("”2)3 5(ra'+2)4 6(r:'+3)5 ?(Ip,.‘.-!)h d Zi42
b 0 g
0 1 2(z,.+_.,_) 3(1:._ )2 4(r1_+_,,_)3 s(rf___u__)d 6({) 7(:){ d, ;
& F! ! 1 ] E d Jird
0 1 o) 3) () S(e) () 7o) | | |
01 2ew) ) ) S 6(a) 7))
0 1 2(rr_+,_=_) 3(:)2 4(r:_+_.:\_)3 s(zH,_ﬁ_)‘; é(r”u_,_)s ?(rﬁg)ﬁ d: f
o 1 2(t,) 3 ] 4(%_]3 5(1,..) 6(34_3_)S 7(&__3_)(' “)\ 1.
0 I 2(rr'+4) 3(’:#4)“ 4(1‘“4)-IL 5(14'-*4)4 6({“4)5 ?('{SH)G
(7)

Employing Maple 2015 software to compute (7), and evaluation of the desired points results
into the following proposed schemes;
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g, =313, (A018,, 3292832, L3O, 3085,
1260 %" 315 945 945 7 63 M
_F269296hf ,—2?248hf+“ .
2205 "% 189 2
(8)
;:zsz__72353.!;?+1994752h11r_3292832 jfﬁ*_443852kﬂ+r_??8240kf U
27905 7T 735 i 945 T 405 ETTIE
, 149216 482819
W . — hf
105 Vi1~ gers Vi
9)
By b O 9D g BOVEL b e S0 R 20
"7 26880 72 26880 U T 423360 241920 7+ 5376 37 93500 7 i
_ﬂh : 5t Zin
6048 '
(10)
SRS LAYV E YV W . B . R L1 WY
“$ 710080 © 7 2520 07 211680 © 7 15120 7 5040 3205
"I ' Z:’+7
139 S i
(11)
37 . 44 47 .. 331 . 208 176
2y = hf o+ —— Bf ——— hf, — ol 2,
420 77105 Vi 26460 ivs ¥ 945 Wiy 21 Wiy * 735 Wiy 945 "i. =
(12)
5
o e Wb B b I bt B
T 16128 7 16128 71 84672 48384 7 T 16128 1 T 14112
295
-——h n+Zis
60ag Vi 72
(13)
99 141.. 17 .. 197.. 69 I
2 hfis+ A ———H0f+—Hf s —h +—0bf s +—hf ;s +2;;
w1 = 1120 V2 ¥ g0 Mia = Tgag Mina ¥ g0 Wi Y g Wit ¥ 2ag Mivs F 5 Wiy + 2
(14)
:f'+-4=£kf;+2 404;f:+1 869 ;fr‘|-4+£h .._ E f_. % f __%h "+Zi+’
315 315 6615 045 73 315 2205 "5 945 i 3
(15)

Analysis of the Proposed Technique
This section is concerned on analyses with respect to zero stability and consistency of the
novel technique.
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Consistency
The proposed technique described in section 2 is frequently written as;

4 4
> Aizwri = ) BBfuyi =0 (16)
i=0 i=0

Following Oghonyon ef al. (2018b) and Mohammed et al. (2021), the local truncation error is

a linear difference operator as;
L[z(t); h]

—h (Bz (£)7', + By(£)2'y + Bs(£)2', + Br(£)2', + Bo(£)z',, + B13(£)7',
2 2 % 4

+By(0)2') (17)

Assuming that z(%) is sufficiently differentiable, then the Taylor’s expansion of (17) about
the point £, can be represented as;

L[z(%); h] = Eyz(t) + E;hz' (%) + E;h%2" (£) + -+ + E,hPzP (1)

+ Bp4 AP 1ZPYI(£) (18)

The discrete scheme in (9) is said to be consistent if p = 1 for Ey = E; = E; =+ =E), =
0,Ep4q # 0, where Ep,, denotes the error constant, and p denotes the order of the hybrid
technique (Tiamiyu ef al., 2021). The summary of the order and error constant of the block
schemes is given in Table 1.

Table 1 —Error Constants and Order of the Proposed Technique

Equation Order Error constant
(8) 7 1643
15680
(9) 7 70099
27095040
(10) 7 1051
2055208960
() 7 9925
11098128384
(12) 7 1
1003520
(13) 7 139
433520640
(14) 7 17
16056320
(15) 7 |
211680

85



Abacus (Mathematics Science Series)
\ol. 49, No 4, December, 2022

M.A.N. ABACUS

Zero Stability
To determine the zero stability of the new derived schemes, the first characteristic polynomial

R(2) of (8) to (15) denoted as det(ix A(1)— A(O)) is normalized as follows;
R(A)=det(Ax A(1)- 4(0)) such that we obtain

1 100000 0)(0000O0O0O0 0
01 00000O0|[[0000O0O0O0 —I
01 100000||0000000 0
R(l)z/u()l()loooo_ooooooooz(iz_i)ﬁ
01 001000|/000000O0 0
010001 00[[000000O0 0
01000071 0[[0000O0O0O0 0
0100000T1)0000000 0

for |/1\ <1 and the roots \/1[ =1, the multiplicity must not exceed one. Hence, we arrive at the
deduction R(i):det(ix A(l)—A(O)):(}LE—Z)/ﬁ"’:O and
A=(0 0 0 0 0 0 0 1). Therefore, the developed hybrid block Milne technique is

said to be zero stable.

Convergence

According to Ma’ali et al. (2020), Dahlquist's fundamental theorem asserts that "the
necessary and sufficient requirements for a linear multi-step procedure to be convergent are
consistency and zero-stability. By Kashkaria and Syam (2019) and Oghonyon et al. (2018b),
since the hybrid block approach provided is consistent and zero stable, the convergence
requirement is met.

Numerical Tests

Problem 1: We consider a set of linear differential equations in the form;

z, =-21z,+19z, - 20z, Z](U):]
zy =19z, - 21z, + 20z, z,(0)=0
zy =40z, — 40z, — 40z, z,(0)=-1

0<t<3, h=0.2

The exact solution is provided as

86



Abacus (Mathematics Science Series)
\ol. 49, No 4, December, 2022

M.A.N. ABACUS I

z(1)= %e 20 L g sin(40£)+%e “ cos(40¢)

z,(t) = %e'z - % e sin(40¢) - % e cos(401)
z,(t)=e"" sin(40r)—e ™ cos(40r)

Problem 2: Considering the systems of initial value problem of first order differential
equation of the form;

2 =—2z,;+952,, z,(0)=1
2, =—2,—97z,, z;(0)=1
h=0.0625
The real solution is provided as;
Z; (f) — %e—lf _ ﬁe—%r
47 47
48 —U6y l —21
ADRIE
47 47

Problem 3: We consider the systems of initial value problem of first order differential
equation of the form;
2 =—(2+10*)z +10%z, z,(0)=1

Z,=z-2z,-2;, z,(0)=1

With 4 =0.1 and the exact solution given as

Z (r) =™

zl(!) =e'

Problem 4. Solving the non-linear system of initial value problem of first order differential
equation of the form;

z, =-1002z, +100z,%, z,(0)=1
y=2-2,(1%3z,), z,(0)=1

Test Results
This section presents the test results for problems 1 to 4 considered in previous section.

Comparison of the computations are displayed in some Figures and Tables. The exact
solutions are represented by z(#) and the new hybrid Block Milne solutions are denoted as
z:(t),5=1,2.
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0.35

1D A = = Exact solution Y ®m ® Exact solution
E Numerical solution 090 1 = Numerical solution
0B -
0.25 -
as 0.20 -
=) N
N N 015
04 -
010 -
0.2 -
0.05 -
0D - 0.00 -
op 02 04 . 06 0B 1D oD 02 04 . 06 0B 1D
Figure 1: Profile solution for Problem 1
Table 2: Comparison Result of z; for Problem 1
t z(t) 7, (%) 1z(%)
—z;(¢)|
0.20 | 0.33530156446464362999 | 0.067672002734714790247 | 2.54284x 1072
0.40 | 0.22466441197379730427 | 0.22469925984189926044 | 3 48478x10°°
0.60 | 0.15059710594701431165 | 0.15059886462150065052 1.75860x10°°
0.80 | 0.10094825899733647829 | 0.10097264863920704481 2.43896x107°
1.00 | 0.06766764161830634611 | 0.067672002734714790247 | 4.36116x10°°
1.20 | 0.04535897664470625168 | 0.045361183829914490593 | 220718x10°°
1.40 | 0.03040503131260898249 | 0.030406509816399355942 | 1.47850x1077
1.60 | 0.02038110198918310758 | 0.020382094187318619971 | 9.92198x 1077
1.80 | 0.01366186122364628040 | 0.013662846293445486353 | 9.85069% 1077
2.00 | 0.00915781944436709014 | 0.009158487495676968640 | 6.68051x1077
2.20 | 0.00613866995153422058 | 0.0061391177562605422358 | 4.47804x 10"
2.40 | 0.00411487352451001442 | 0.0041151737191594553502 | 3.00194x 10"
2.60 | 0.00275828221038038621 | 0.0027585481612003116988 | 2. 65950x 1077
2.80 | 0.00184893185824146541 | 0.0018491116996924581333 | 1.79841x 1077
3.00 | 0.00123937608833317921 | 0.0012394966389739651914 | 1.20550x1077
Table 3: Comparison Result of z, for Problem 1
t z(t) 2,(t) |z(#)
— 7,(%)|
0.20 | 0.33535037428834497180 | 0.30960572256641213744 | 2.57446x 107>
0.40 | 0.22466451974417424401 | 0.22464062855752519152 | 2.38911x10°°
0.60 | 0.15059710593100098342 | 0.15060266988864076734 | 5.56395x10°°
0.80 | 0.10094825899732591356 | 0.10092877892490726787 | 1.94800x10°°
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1.00

0.06766764161830634894

0.06766974703465251893

2.10541x10°°

1.20

0.04535897664470625168

0.04536118109942907980

2.20445%x10°°

1.40

0.03040503131260898249

0.03040650998570001563

1.47867x 107"

1.60

0.02038110198918310758

0.02038209226510866320

9.90275% 10’

1.80

0.01366186122364628040

0.01366284619401490224

9.84970x 107

2.00

0.00915781944436709014

0.00915848749555003001

6.68051x 10"

2.20

0.00613866995153422058

0.00613911775626806871

4.47804x 107’

2.40

0.00411487352451001442

0.00411517371907533865

3.00194x10”’

2.60

0.00275828221038038620

0.00275854816119593290

2.65950x 107’

2.80

0.00184893185824146541

0.00184911169969245197

1.79841x 107’

3.00

0.00123937608833317921

0.00123949663897396534

1.20550x 107’

= = Exactsolution

—— Numerical solution

035

0.30 -

025

0.20

n)

015

010 -

m ® Exact solution
Numerical solution

Figure 2: Profile solution for Problem 2

Table 4: Comparison Result of 2z, for Problem 2

1D

t

z(t)

z, (1)

|z(¢) — 2, ()]

0.0625

1.7812388434267357035714

1.7224741201493165655975

5.87647x107"

0.1250

1.5741655206295851644515

1.5735784574373308188485

5.87063x 107’

0.1875

1.3892017181724113003316

1.3892024037603170774055

6.85587x 107"

0.2500

1.2259662270401725672575

1.2259388994057635266342

2.73276x107’

0.3125

1.0819113980702038580181

1.0819097671638695472152

1.63090x 10”°

0.3750

0.9547834576680082137107

0.9547834503875126024516

7.28049x 10"

0.4375

0.8425934440310276216596

0.8425934516379089236209

7.60688x 10"’

0.5000

0.7435861044954685223724

0.7435861104615844738720

5.96611x10""

0.5625

0.6562124340221962623557

0.6562124427626918203525

8.74049x107°

0.6250

0.5791054404620863729971

0.5791054482856815168921

7.82359x10”°

0.6875

0.5110587574776790508945

0.5110587643823243132580

6.90464x 10~

0.7500

0.4510077705127836967800

0.4510077766062636108881

6.09347x10”°

0.8125

0.3980129605191156331026

0.3980129676396217252892

7.12050x 10’

0.8750

0.3512452048466444049929

0.3512452111740265736755

6.32738x 10~

0.9375

0.3099728053248554045335

0.3099728109087331320470

5.58387x10"°

1.0000

0.2735500405846426751048

0.2735500455125017088059

4.92785%10”°
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Table 5: Comparison Result of z, for Problem 2

1 z(t) z,(1) |z(£) — z,(1)]
0.0625 | -0.016245038257544897841 | 0.0425196927492879193219 5.87647 x 10™
0.1250 | -0.016563954486775427961 | -0.015976884280185252955 5.70702 x 10
0.1875 | -0.014623160590466903241 | -0.014623839988320409986 9.75732 x 10
0.2500 | -0.012904907614905720049 | -0.012877574517332491221 2.73330 x 10”7
0.3125 | -0.011388541032223374104 | -0.011386900616537189755 1.64041 x 107
0.3750 | -0.010050352185978799434 | -0.010050336396356883139 1.57896 x 10"
0.4375 | -0.008869404674010816489 | -0.008869404771661439535 | 9.76506 x 107"
0.5000 | -0.007827222152583879181 | -0.007827221491546657376 | 6.61037 x 107"
0.5625 | -0.006907499305496802761 | -0.006907499354057801868 4.85609 x 107"
0.6250 | -0.006095846741706172347 | -0.006095846823639266986 8.19330 x 107"
0.6875 | -0.005379565868186095272 | -0.005379565940867042176 7.26809 x 107"
0.7500 | -0.004747450215924038913 | -0.004747450280046560113 6.41225 x 107"
0.8125 | -0.004189610110727532980 | -0.004189610185679065957 7.49515 x 107"
0.8750 | -0.003697317945754151631 | -0.003697318012358163204 6.66040 x 107"
0.9375 | -0.003262871634998477942 | -0.003262871693776138244 | 5.87776 x 107"
1.0000 | -0.002879474111417291316 | -0.002879474163289491153 5.18721 x 107"

LD

0B -

— O.B -

04 A

= = Exact solution

—— Numerical solution

LD A

m ® Exact solution
Numerical solution

T
op

T T T
04 0.6 oB

t

T
0.2

T T T T
LD oD 0.2 o4

Figure 3: Profile solution for Problem 3

Table 6: Comparison Result of z; for Problem 3

T T
0.6 oB

t Z(t) z, (%) 1Z(%) — z, (1)
0.100 | 0.1353352832366126918 | 0.135335283900553600380 | 6.63940 x 10"
0.200 | 0.0183156388887341802 | 0.018315639037978913619 | 1.49244 .10
0.300 | 0.0024787521766663584 | 0.002478752208879943511 | 3.22135 x107"
0.400 | 0.0003354626279025118 | 0.000335462633345306306 | 5.44279 « 107"
0.500 | 0.0000453999297624848 | 0.000045399930718803095 | 9.56318 « 107"
0.600 | 6.144212353328209x 10° | 6.14421250257915187 x 10° | 1.49250 x 107"
0.700 | 8.315287191035678 107 | 8.31528743325846039 107 | 2.42222 10
0.800 | 1.125351747192591 « 107" | 1.12535178360510108 « 107 | 3.64125 « 107"
0.900 | 1.522997974471262x 10" | 1.52299803111905810 x10™ | 5.66477 x107°
1.000 | 2.061153622438557x 10" | 2.06115370575375547 x 10~ | 8.33151 x 107"’
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Table 7: Comparison Result of z, for Problem 3

t Z(t) zy(%) 1Z(1) — z,(%)|
0.100 | 0.36787944117144232160 | 0.36787944207382158129 | 9.02379 «10°"°
0.200 | 0.13533528323661269189 | 0.13533528378795869403 | 5.51346 x 107"
0.300 | 0.049787068367863942979 | 0.049787068691376165830 | 3.23512 107"
0.400 | 0.018315638888734180294 | 0.018315639037311634828 | 1.48577 107"
0.500 | 0.006737946999085467096 | 0.006737947070050389561 | 7.09649 10"
0.600 | 0.002478752176666358423 | 0.002478752206771637136 | 3.01052 « 107"
0.700 | 0.000911881965554516208 | 0.000911881978835968039 | 1.32814 107~
0.800 | 0.000335462627902511838 | 0.000335462633329613693 | 5.42710 «107*
0.900 | 0.000123409804086679549 | 0.000123409806381785372 | 2.29510 » 107"
1.000 | 0.000045399929762484851 | 0.000045399930680040142 | 9.17555 « 107"

LD - = = Exact solution LD A ®m ® Exact solution
—— Numerical solution Numerical solution
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Figure 4: Profile solution for Problem 4
Table 8: Comparison Result of z; for Problem 4

t Z(t) 7, (%) 1Z(2) — z,(%)|
0.100 | 0.81873075307798185867 | 0.81873075717909515030 | 4.10111 x10”
0.200 | 0.67032004603563930074 | 0.67032004732826214578 | 1.29262 «10”
0.300 | 0.54881163609402643263 | 0.54881163715192314629 | 1.05789 x10”
0.400 | 0.44932896411722159143 | 0.44932896498600046686 | 8.68778 x 10
0.500 | 0.36787944117144232160 | 0.36787944368730752857 | 2.51586 x10”
0.600 | 0.30119421191220209664 | 0.30119421304245564822 | 1.13025 x107"°
0.700 | 0.24659696394160647694 | 0.24659696486679413398 | 9.25187 x107"°
0.800 | 0.20189651799465540849 | 0.20189651875332366913 | 7.58668 x 107°
0.900 | 0.16529888822158653830 | 0.16529888964265752646 | 1.42107 10
1.000 | 0.13533528323661269189 | 0.13533528398193333375 | 7.45320 x 107"
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Table 9: Comparison Result of z, for Problem 4

t | Z(t)

z,(t) |1Z(£) — z,(£)]

0.100 | 0.90483741R803595957316

0.9048374 1888208201073

846122 . 107"

0.200 | 0.81873075307798185867

0.81873075386712958296

7.89147 L 107"

0.300 | 0.74081822068171786607 | 0.74081822139576027818 | 7.14042 . 107"
0.400 | 0.67032004603563930074 | 0.67032004668177876646 | 6.46139. 107"
0.500 | 0.60653065971263342360 | 0.60653066083442824593 | 1.12179 107
0.600 | 0.54881163609402643263 | 0.54881163712358090997 | 1.02955 . 107
0.700 | 0.49658530379140951470 | 0.49658530472298378291 | 9.31574 . 107"
0.800 | 0.44932896411722159143 | 0.44932896496017530462 | 8.42953 . 107"
0.900 | 0.40656965974059911188 | 0.40656966084988405816 | 1.10928 . 107

1.000 | 0.36787944117144232160

0.36787944218432163944

6.63940 . 107

Discussion of Results

The newly derived block Milne technique is
applied to stiff initial value problems in
ordinary differential equations of the first
order. The present technique associates
numerical results with their exact solutions
and summarizes the results in graphs and
tables. The graphs of the exact solutions
versus the numerical solutions for problems
| to 4 are presented in Figures | to 4, which
demonstrate that the numerical results are in
good agreement with the exact solutions. In
addition, the absolute errors associated with
the numerical results and the analytic
solutions are compared in Tables 2-9. The
relatively small difference between the exact
answer and the computed results proves the
validity of the derived technique.

Conclusion

the collocation methodology, we
self-starting hybrid block

Using
established a
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