

AN ACCELERATED ITERATIVE TECHNIQUE: THIRD REFINEMENT OF GAUSS SEIDEL ALGORITHM FOR LINEAR SYSTEMS

Khadeejah James Audu & James Nkereuwem Essien, Department of Mathematics, Federal University of Technology, Minna, Nigeria

INTRODUCTION

Solving a large linear system is one of the challenges of most modeling problems today.. A linear system can be expressed in the format:

 $At = b \tag{1}$

where $A \in \mathbb{R}^{n \times n}$ is a matrix of coefficients, $b \in \mathbb{R}^n$ is a column of constants and t is an unknown vector to be determined. The partitioning of A gives

$$A = D - G - H \tag{2}$$

D is diagonal part, -H, and -G are the strictly upper and lower parts of A

STATEMENT PROBLEM

- Iterative approaches are unquestionably the most effective approach to employ, when solving linear systems.
- However, such approach may require several rounds to converge, which reduces computer storage and computing performance.
- In such cases, it is vital to modify or redesign existing methods in order to achieve approximate solutions with rapid convergence.
- This motivated the current study to offer an accelerated technique capable of providing better solutions quickly.

RELATED RESEARCH (2011) Vatti and Kebede (2020) Kebede et al. Introduced the method of Refinement Gauss-Seidel Refinement Gauss-Seidel RGS PPGS SRGS (2016) Kumar et al. Introduced the method of Parametric Preconditioned Gauss-Seidel

CURRENT RESEARCH

- In this study, a third refinement of Gauss Seidel method for solving linear systems is proposed
- The convergence properties of the method were examined.
- The proposed technique was employed to solve linear systems.

METHODOLOGY

Considering a linear system(1), combination of (1) and (2) process gives the Gauss Seidel method as

$$t^{(n+1)} = (D-G)^{-1} H t^{(n)} + (D-G)^{-1} b$$
(3)

The general format of refinement approach is

$$t^{(n+1)} = \tilde{t}^{(n+1)} + (D - G)^{-1} \left(b - A \tilde{t}^{(n+1)} \right)$$
 (4)

Then, Refinement of Gauss Seidel (RGS) is obtained as

$$t^{(n+1)} = \left[\left(D - G \right)^{-1} H \right]^{2} t^{(n)} + \left[I + \left(D - G \right)^{-1} H \right] \left(D - G \right)^{-1} b \tag{5}$$

Modification of (5) results into

$$t^{(n+1)} = \left[\left(D - G \right)^{-1} H \right]^{3} t^{(n)} + \left[I + \left(D - G \right)^{-1} H + \left(\left(D - G \right)^{-1} H \right)^{2} \right] \left(D - G \right)^{-1} b$$
 (6)

We remodify (6) to obtain

$$t^{(n+1)} = \left[(D-G)^{-1} H \right]^4 t^{(n)} + \left[I + (D-G)^{-1} H + ((D-G)^{-1} H)^2 + ((D-G)^{-1} H)^3 \right] (D-G)^{-1} b$$
(7)

Equation (7) is called Third Refinement of Gauss Seidel (TRGS) method

CONVERGENCE ANALYSIS

The TRGS method converges if the spectral radius of its iteration matrix is less than 1, expressed as;

$$\left[\rho\left(\!\!\left(D-G\right)^{\!-1}H\right)\!\!\right]^4<1$$

THEOREM 1:: If A is strictly diagonally dominant (SDD) matrix, then the third-refinement of Gauss-Seidel (TRGS) method converges for any choice of the initial approximation $t^{(0)}$

THEOREM 2:: If A is an M-matrix, then the third-refinement of Gauss-Seidel (TRGS) method converges for any initial guess .

RESULT AND DISCUSSION

Applied problem [4]: Consider the linear system of equations;

$$\begin{pmatrix} 4.2 & 0 & -1 & -1 & 0 & 0 & -1 & -1 \\ -1 & 4.2 & 0 & -1 & -1 & 0 & 0 & -1 \\ -1 & -1 & 4.2 & 0 & -1 & -1 & 0 & 0 \\ 0 & -1 & -1 & 4.2 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & -1 & 4.2 & 0 & -1 & -1 \\ -1 & 0 & 0 & -1 & -1 & 4.2 & 0 & -1 \\ 0 & -1 & -1 & 0 & 0 & -1 & -1 & 4.2 & 0 \\ 0 & -1 & -1 & 0 & 0 & -1 & -1 & 4.2 \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \\ t_3 \\ t_4 \\ t_5 \\ t_6 \\ t_7 \\ t_8 \end{pmatrix} = \begin{pmatrix} 6.20 \\ 5.40 \\ -9.20 \\ 0.00 \\ 6.20 \\ 1.20 \\ -13.4 \\ 4.20 \end{pmatrix}$$

Table 1. Comparison of Spectral radius and Convergence rate for the Applied Problem.

Technique	Iteration	Spectral	Execution	Convergence	
	Step	Radius	Time (sec)	Rate	
GS	88	0.89530	6.70	0.04803	
RGS	44	0.80157	5.53	0.09606	
SRGS	30	0.71765	5.00	0.14408	
TRGS	22	0.64251	4.10	0.19212	

The Table shows that TRGS reduced the number of iteration to one-fourth of GS, half of RGS and a few steps of SRGS. Based on how close their spectral radii are to zero, it is inferred that the TRGS technique has a faster

rate of convergence than the initial refinements of GS $(\rho(TRGS) < \rho(SRGS) < \rho(RGS) < \rho(GS) < 1)$

Technique	n	$t_1^{(n)}$	$t_{2}^{(n)}$	$t_3^{(n)}$	$t_4^{(n)}$	$t_5^{(n)}$	$t_6^{(n)}$	$t_7^{(n)}$	$t_8^{(n)}$
GS	1	1.47620	1.63720	-1.44920	0.04476	1.14180	0.91970	-1.95840	0.79746
	2	0.86540	1.96410	-1.02590	-0.02391	0.94982	0.90209	-2.07580	0.94392
	:	:	:	:	:	:	:	:	:
	87	0.99999	2.00000	-1.00000	0.00000	1.00000	1.00000	-2.00000	1.0000
	88	1.00000	2.00000	-1.00000	0.00000	1.00000	1.00000	-2.00000	1.0000
RGS	1	0.86540	1.96410	-1.02590	-0.23917	0.949820	0.90209	-2.07580	0.9439
	2	0.94909	1.94710	-1.05170	-0.04878	0.95370	0.95407	-2.04670	0.9530
	:	:	:	:	:	:	:	:	:
	43	0.99999	2.00000	-1.00000	0.00000	0.99999	0.99999	-2.00000	0.9999
	44	1.00000	2.00000	-1.00000	0.00000	1.00000	1.00000	-2.00000	1.0000
SRGS	1	0.95672	1.95870	-1.05540	-0.06439	0.94007	0.94674	-2.04710	0.9530
	2	0.95952	1.96010	-1.03950	-0.03950	0.96145	0.96206	-2.03740	0.9631
	:	:	:	:	:	:	:	:	:
	29	0.99999	2.00000	-1.00000	0.00000	1.00000	1.00000	-2.00000	1.0000
	30	1.00000	2.00000	-1.00000	0.00000	1.00000	1.00000	-2.00000	1.0000
TRGS	1	0.94909	1.94710	-1.05170	-0.04878	0.95370	0.95407	-2.04670	0.9530
	2	0.96741	1.96790	-1.03170	-0.03170	0.96917	0.96959	-2.03000	0.9704
	:	:	:	÷	:	:	:	:	:
	21	0.99999	2.00000	-1.00000	0.00000	0.99999	0.99999	-2.00000	0.9999
	22	1.00000	2.00000	-1.00000	0.00000	1.00000	1.00000	-2.00000	1.0000

CONCLUSION

- The proposed TRGS method achieve a rapid convergence rate compared to GS, RGS and SRGS methods.
- The new technique has a significant improvement in reduction of the number of iteration compared to other initial refinement of Gauss Seidel methods.
- TRGS produces a qualitative and quantitative shift in solving linear systems.
- The proposed technique presents a much more convenient approach of solving linear systems.
- The proposed technique is more efficient than existing refinements of GS.

REFERENCE

- 1. Vatti, V.B.K.; Tesfaye, E.K. A refinement of Gauss-Seidel method for solving of linear system of equations. **(2011)**, *International Journal of Contemporary Mathematics and Science*, *63*, 117-127.
- 2. Tesfaye, E.K.; Awgichew, G.; Haile, E.; Gashaye, D.A. Second refinement of Gauss-Seidel iteration method for solving linear system of equations. (2020), *Ethiopia Journal of Science and technology*, 13(10), 1-15.
- 3. Kumar, V.B.; Vatti; Shouri, D. Parametric preconditioned Gauss-Seidel iterative method. (2016), International Journal of Current Research 8(09), 37905-37910.
- Meligy, Sh.A.; Youssef, I.K. Relaxation parameters and composite refinement techniques. (2022), Results in Applied Mathematics Journal. https://doi.org/10.1016/j.rinam.2022.100282.