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Introduction

Most countries in sub-Saharan Africa had missed the
target in achieving the Millennium Development Goals
(MDGs) for maternal and child health by 2015.

Diarrhoea, cough and fever are the leading causes of
childhood morbidity and mortality in sub-Saharan
Africa (SSA)

An estimated 3.5 million deaths each year are due to
diarrhoea worldwide, 80% of which occur in under-5
children [4].

WHO estimates that the global burden of disease due
to environmental factors is 24%, and these factors are
responsible for 23% of all deaths each year.
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Introduction....

In Nigeria, the upward trend of childhood mortality are mainly
due to parasitic and infectious diseases such as diarrhea, malaria,
acute respiratory and measles contributes a leading cause of child
deaths Adetunji (1991); Grais et al.(2007).

Despite a global decline in under-five mortality rates (U5MR) in
recent decades, the situation still remains persistently high in
Sub-Saharan African (SSA) countries with higher at 86 deaths
per 1000 live births [3].

Neonatal deaths accounts for one-third of under-five deaths in
SSA . In Nigeria, the under-five mortality estimates have declined
tremendously from 193 to 128 per 1000 live births in 1990 to
2013, but infant mortality had not varied substantially, IMR 75 to
69 per 1000 live births in 1990 to 2013 [7].
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Geographical Maps and Spatial Data Point Patterns

Figure: Geographical Map of Nigeria
showing 36 states and Federal Capital
Territory , Abuja)

Nigeria : Most populous in
Sub- Saharan Africa and 7th

the largest in the world with
about 180 million

Land mass 975,225 sq. km

Administratively, made up
36 states and FCT, Abuja
(2nd level) and 774 local
govt. areas(3rd level)
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Discretization and Data Collection designs

Figure: Discretization of the
administrative(State) boundaries of
Nigeria

Figure: Pattern Point Plots Showing
Data collection in 2013 Nigeria DHS
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Survey Design

Table: Variable name, variable types, and response categories covariates used in
the analyses

Covariate name Covariate type Response categories/range code

Response Binary death/alive, disease/no disease
outcomes
Child’s sex binary Female (-1) , male (1)
Residence binary rural(-1), urban (1)
Antenatal binary no attendance(-1), attendance (1)
medu Categorical no prim, prim, sec, high
wealth index Categorical poorest, poor, middle, rich, richest
Mother’s age Categorical < 20, 21− 29, 30− 39, 40− 59(ref.)
Child’s age continuous 0-59 months
Mother’s bmi continuous mbmi=wt(kg)/h2(m2)
Geographical location Coordinates region index s = 1, . . . , 37
information (longitude, latitude)
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Study designs 2013 Nigeria DHS

A representative sample selected from 38,948 women aged between
15 and 49 years from 38,522 households.
A two-stage stratified sampling design was implemented to collect the
data. The
Using a structured questionnaire, data was collected on reproductive
health and birth histories, demographic and their children nutritional
status, among other
GPS receivers were also used to locate the coordinates of the sample
households.
Let j = 1, ...,Ni denote individuals child within groups i = 1, ..., I ,
where i may index, for example, time units, geographical (spatial)
units, socioeconomic groups, etc.
(yi ,wi , xi , si ), i = 1, . . . , n, where yi represent individual child i
dichotomous health outcome, wi are measurable categorical
covariates, xi presents metrical variable (e.g. child’s age in months,
mother body mass index), si denote the location index ,
i = 1, 2, . . . , 37.
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The Statistical Models

let a be binary outcome of a child dying between age 0- 11 month
classified as infant mortality

yij1 =

{
1 if the child dies between 0-11 months
0 otherwise

let let a child has Diarrhea in the last 2 weeks prior to the survey

yij2 =

{
1 if the child has disease
0 otherwise

a child has pneumonia(Acute respiratory infection, ARI) in the last 2
weeks prior to the survey

yij3 =

{
1 if the child has disease
0 otherwise

a child’s z-score (height-for-age) is classified as acutely stunting

yij4 =

{
1 if the child (height-for-age) is < −2.00
0 otherwise

where the predictor, ηijk , is given by

ηijk = wijβk + fk(xij) + sijk (1)
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Multinomial Model

Let Yijk and πi jk be the child health status and probability of the
child heath outcome respectively, Yijk then follows a Multinomial
distribution, and written as Yijk ∼ MN(1, πijk) where
πijk = (πij1, πij2, πij3, πij4)′.

The probability of the child health defects can be defined thus:

πijk =
exp(ηijk)

1 +
∑k

k=1 exp(ηijk)
, k = 1, 2, 3, 4 (2)

Let the relation Y → X be given as, Y = Xβ + ε, by taking
ε ∼ N(0, τ 2) as error or residual term
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Model Specifications

We proposed the following predictors

M1 : ηi = w ′β + xi ′γ

M2 : ηi = w ′
i β + f (x1) + . . . f (xp)︸ ︷︷ ︸

M3 : ηi = w ′
i β + fj(x) + θrandom(si )

M4 : ηi = w ′
i β + fj(x) + φdistrict(si )

M5 :ηi = w ′
i β + fj(x) + φdistrict + θrandom

The model performance is assessed using

Deviance information criteria (DIC) proposed by Spiegelhalter et
al.[8], defined as DIC = D(θ̄) + pD

D(θ̄)− posterior mean deviance and pD is the difference between the
posterior mean deviance and the evaluated deviance at the posterior
mean of Y .
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Prior Distributions of Spatial effects

In spatial statistics, we adopt as proposed Besag et.al [5]

Unstructured Hetereogeneity(uncorrected) effect is modelled by i.i.d
Gaussian Random prior

θunstr ∼ N(0, σ2unstr ) (3)

,

Structured (correlated) Spatial effect is modeled by Gaussian intrinsic
Conditional auto-regressive (CAR) error defined as

φ(s)|φ(t), t 6= s, τ2 ∼ N

∑
t∈δs

φ(t)

Ns
,
τ2

Ns

 (4)

where Ns is the number of adjacent regions and t ∈ δs denotes that
the region t is a neighbor of region s. Thus, the conditional mean of
fstr (s) is an un-weighted average of function evaluations of
neighboring regions t.
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Prior Distributions fixed and Non-linear effects

Fixed effects prior,

an independent diffuse prior, i.e. p(β) ∝ const..

Non-linear effects of Continuous covariates

We adopt by Bayesian P− splines prior as suggested in the work Fahrmeir
and Lang,[10] , which permits f (x) to be written as a linear combination of
B−spline):

f (x) =
d∑

j=1

βkjBj(x)

where β = (β1, . . . .βp)′ corresponding vector of the unknown regression
coefficients.

the smoothing spline can be modified by a flexible first or second Gaussian
order random walk defined by

βj = βj−1 + uj ; βj = 2βj−1 − βj−2 + uj (5)

with Gaussian errors uj ∼ N(0; τ 2) and indep. diffuse priors,
β1, β2, . . . ∝ const. where variance assume ,τ 2 ∼ IG (a, b)), with
hyper-parameters a and b , which is used to controls the smoothness.
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Data Applications and Implementations

Bayesian inference was performed using Markov chain Monte Carlo
(MCMC) simulation technique.
Data cleaning and re-coding was done in R environment and R-INLA
package used to implement the model in this work.

NIGERIA 2013 DHS

Spatial Mapping of infant mortality and Diseases
Morbidity

Tanzania 2010 DHS

Bayesian Joint Spatial Modelling of Anemia and Acute
Malnutrition among under-five children
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Model Performance Using DIC

Table: Frequency distribution of infant mortality & morbidity in 2013 NDHS

Defects No Yes %
Mortality 28566 2886 9.2%
Diarrhea 28491 2968 9.4%
Fever 28430 3691 11.7%
Pneumonia 28694 1155 3.7%
Cough 28380 2812 8.9%

Table: Deviance Information Criteria (DIC)values for Model selection

Model Mortality Diarrhea Fever Pneumonia Stunting Remark
M1 3123.67 18479.2. 21716.6 28021.3 2752.0 least
M2 3301.29 17993.3 21384.4 26956.4 2601.2 Poor
M3 3109.26 17251.0 20265.9 24125.6 2534.3 Moderate
M4 3058.94 17649.4 18823.3 24042.2 2104.4 Moderate
M5 2921.94 15079.1 17230.3 17492.2 2046.1 Best model
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Posterior estimates of Categorical Covariates

TABLE OF POSTERIOR ODDS
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Posterior Odd ratios of risk factors of infant Mortality and
Diarrhea for Model 3

Infant mortality Childhood Diarrhea
Var. par mean 0.025quant 0.975quant mean 0.025quant 0.975quant
Const. β0 1.705 1.541 1.886 0.215 0.199 0.233
Male β1 0.973 0.914 1.035 1.001 0.968 1.036
Multiple(twin) β2 0.962 0.878 1.053 1.525 1.418 1.640
Birth weight
Very cbw β3 0.974 0.818 1.160 1.512 1.359 1.681
Low cbw β4 1.014 0.917 1.120 0.747 0.703 0.793
high cbw β5 0.979 0.886 1.083 0.878 0.828 0.931
Urban β6 1.010 0.939 1.087 1.045 1.001 1.091
Breastfed β7 0.391 0.338 0.451 0.910 0.828 1.001
Space (≥ 2) β8 1.122 1.044 1.207 0.961 0.916 1.007
Mother’s edu.
Prim β9 1.030 0.929 1.142 1.074 1.006 1.146
Sec. β10 1.089 0.982 1.208 0.972 0.911 1.038
High β11 0.933 0.806 1.080 1.016 0.920 1.122
Mother’s age
< 20 yrs β12 0.924 0.806 1.059 1.248 1.138 1.369
30-39 yrs β13 1.032 0.944 1.128 0.902 0.852 0.955
≥ 40yrs β14 0.983 0.875 1.105 0.979 0.904 1.061
Vit. A β15 0.841 0.760 0.929 1.029 0.980 1.080
Antenatal β16 0.992 0.877 1.122 0.933 0.880 0.990
DPT1 β17 0.995 0.887 1.117 0.924 0.878 0.973
Vaccine β18 0.949 0.837 1.077 1.031 0.983 1.082
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Posterior Odd ratios of risk factors of Childhood fever and
Acute Respiratory infection (ARI)

Fever Pneumonia
var. par. mean 0.025quant 0.975quant mean 0.025quant 0.975quant
(Intercept) β0 0.268 0.248 0.290 0.853 0.764 0.952
breast1 β1 0.906 0.827 0.992 0.973 0.843 1.124
Male β2 0.981 0.950 1.013 0.996 0.937 1.060
Twin β3 1.428 1.332 1.532 1.120 1.007 1.245
vlbw β4 1.487 1.339 1.648 1.142 0.948 1.377
lowbw β5 0.787 0.743 0.833 0.894 0.806 0.992
hhcbw β6 0.910 0.861 0.963 1.005 0.909 1.110
urban β7 1.002 0.962 1.044 0.896 0.834 0.963
space β8 0.993 0.950 1.038 1.035 0.959 1.117
prim β9 1.040 0.978 1.105 1.037 0.938 1.147
sec β10 0.970 0.913 1.030 0.894 0.810 0.985
high β11 1.104 1.008 1.209 0.926 0.808 1.061
mage20 β12 1.125 1.025 1.233 1.042 0.908 1.195
mage30 β13 0.892 0.845 0.942 0.911 0.833 0.997
mage40 β14 1.079 1.001 1.163 1.088 0.962 1.231
Vit. A β15 0.993 0.949 1.040 0.951 0.876 1.033
Antenatal β16 0.925 0.876 0.977 0.991 0.899 1.092
DPT1 β17 0.995 0.947 1.045 0.997 0.918 1.082
vaccine β18 0.976 0.932 1.022 0.928 0.852 1.011
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Spatial Smooth Maps

PREDICTIVE MAPS
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Predictive Mapping of Posterior Mean of Infant mortality
& Childhood diarrhea
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The dark blue region represents low prevalence(strictly negative) and white
colour region (null )indicates insignificant

The dark red and brown regions are high prevalence (strictly positive)

Left : High infant mortality prevalence are observed in many states in the
North of Nigeria, and Oyo state (S-W), may be due to high poverty rate and
low maternal education .

Right :: High prevalence Diarrhea detected in states of Borno, Bauchi(N-E),
Benue, Abia(S-E), Cross-rivers(S-S)
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low maternal education .

Right :: High prevalence Diarrhea detected in states of Borno, Bauchi(N-E),
Benue, Abia(S-E), Cross-rivers(S-S)
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Predictive Mapping of Posterior Mean of childhood fever &
Acute Respiratory Infection (ARI)
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The dark blue region is low prevalence(strictly negative) and the
white region is a null region indicating insignificant

The dark red and brown regions are high prevalence (strictly positive)
Left: High risk of fever detected in some states: Borno, Bauchi,
Niger, Benue (north-east), Ogun,Osun, Ondo(S-W),& Rivers, Imo,
Abia & Cross-rivers
Right: High prevalence ARI observed in (N-E)Borno, Bauchi, Jigawa,
FCT, Abuja, Benue, and (S-S zone) Bayelsa, Cross-rivers states
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Spatial Residual plot of Posterior mean of acute
malnutrition (stunting)
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The dark blue region is low prevalence of acute stunting.

The dark red and brown region is high(positive)prevalence of acute stunting,
strictly positive. High incidence are detected in Akwa, Anambra, Abia,
Cross-rivers, Ebonyi states ; Delta and Edo; & Adamawa, Borno and Bauchi
States (North- East region).

The white region is a null region indicating insignificant
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Non-linear smooth plots of continuous covariate effect of
child age (months)

Plots of Smooth function estimates of Continuous covariate
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Non-linear Plots of effects of child’s age (months) on
infant mortality & Childhood Diarrhea

Left : infant mortality it resembles a flipped J-shape, the chance of child
survival improves steadily as the child grows older i.e. risk of the child dying
at infancy decreases steeply as he grows older.

Right : Diarrhearepresents an inverted-U shape, the fever risk attained
highest at age 8 months at infancy, and the risk deceases steadily soon after
as the child grows older
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Non-linear Plots of effects of Child age on the risk fever &
Acute Respiratory Infection (ARI)

Left: Figure represents an inverted-U shape, the fever risk attained highest

at age 10 months at infancy, and the risk deceases steadily soon after as the

child grows older

Right : Respiratory Infection resembles a flipped S-shape, the it
attains lowest predicted risk at child age 4.25 years(50 months) old
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Results & Discussions

In the present study, the maps showed the estimated smooth
geographical variation of specific-district(state) effects, after
controlling for other covariates.

These maps represent other risk factors not directly observed, but had
an impact on the risk of infant mortality risk and childhood disease
morbidity.

These residual spatial plots might probably be related to ecological
factors, such as varying deprivation inequalities including severity and
depth of poverty

Childhood infectious diseases including malaria, HIV/ AIDs,
pneumonia, diarrhoea and malnutrition are directly contributed to the
risk of child mortality [1].

Unobserved contextual and Environmental factors often contributed
to geographic inequality in the mortality and morbidity prevalence
depicting spatial dependence.
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SUMMARY POINTS

LESSONS LEARNED

In the present study;

The risk factors presented in the Tables posterior odd
ratios can be used to formulate policy intervention for
specific- individual needs, household or community.

The smooth curves of the risk provide tools for
epidemiologists and health practitioners to monitor
critical point in the life of the child

The predictive of maps of “hot spot ” regions, which
can assist government and developing partners to
channel scarce health resource in an effective manner.

Adeyemi et.al adyras001@myuct.ac.za (University of KwaZulu-Natal, South Africa)CAES October 26, 2017: Geospatial mapping October 26, 2017 27 / 36



Concluding Remarks

In this work, we have explored a flexible and robust approach to
investigate the influence of different kinds of covariates on the child’s
health status in Nigeria.

Our method tackles small area estimation of specific district(state)
effects, which would have been ignored in classical regression
regression due to the spatial correlation in the regions.

The findings can guide in evidence-based allocation of scarce health
resources in the sub-region with the aim of improving the chance of
child survival.

Multivariate analysis revealed the risk factors such like non-antenatal
attendance, multiple birth, short birth intervals, low maternal
education, and poor sanitation were associated with infant mortality
and childhood morbidity.
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Scenario II

Tanzania 2010 DHS

Spatial Modeling of anemia , Stunting and Wasting

Using the propose approach, we performed spatial mapping the prevalence
of acute malnutrition among under-children in Tanzania.
We estimated the risk of the Anemia, stunting and wasting jointly from
2010 Tanzania DHS data.
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Figure: Mapping of posterior mean of structured spatial residual effect of
childhood (a)anemia, (b)stunted and (c) wasted showing posterior mean
of prevalence in Tanzania DHS 2010.
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Research work in progress

Project Topic: Spatial Analysis of poverty, malnutrition and mortality among under-five
children in Sub-Saharan Africa

Semi-parametric Multinomial ordinal model to analyze spatial patterns of child
birth weight in Nigeria; Published : Inter. Journal of Environmental Res. and
Public Heath.2016

Bayesian Spatial Modeling of risk of childhood anemia in Tanzania; Published :
Proceeding of 58th Annual Conference of South African Statistical Association
SASA2016 : Held at University of Cape Town, South Africa: ISBN
978-1-86822-682-5

Multivariate Joint Spatial Modeling of childhood anemia and Acute Malnutrition
in Sub-Saharan Africa: A cross sectional survey of geographic inequalities of
Ghana, Burkina Faso, Mozambique and Tanzania Under-review: PLOS ONE

Spatial Modeling of Birthweight and Bio-Social determinants of Childhood
Mortality in Nigeria: Under-review: Jour. of Economics & Behavioural Studies

Bayesian Joint modeling of Disease Co-morbidity among under five children in
Nigeria and Tanzania; UKZN College Research Day: Postgraduate Presentation
2016.

Does a geographical contextual factor determine regional variations in child
underweight in Sub-Saharan Africa?: Case study of DHS data from Nigeria,
Ghana, Ethiopia, Tanzania, Mozambique Work in progress

Adeyemi et.al adyras001@myuct.ac.za (University of KwaZulu-Natal, South Africa)CAES October 26, 2017: Geospatial mapping October 26, 2017 30 / 36



Shell Petroleum Oil pipelines in the Niger Delta Regions of
Nigeria

(a) Shell Petroleum pipelines transverse through a village in the Niger
Delta region of Nigeria

(b) A staff of Shell Cooperation at work to identify a fault of oil
spillage
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Rural Village Settlement in Northern Regions of Nigeria

(a) Farm settlement in Northern Regions of Nigeria

(b) Youngsters playing Snooker at a village square in Northern Nigeria

This is an indicative of connectedness that inter-plays between
Poverty, Ecology, Public Health and insecurity in the region
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Thank you.
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