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In this note, a general class of contractive inequality, namely, admissible hybrid (H — « — ¢) contraction, is proposed in metric
space endowed with a graph, and new criteria for which the mapping is a Picard operator are examined. The significance of this
type of contraction is connected with the possibility that its inequality can be particularized in more than one way, depending on
the provided constants. Relevant examples are designed to support the assumptions of our obtained notions and to show how they
are different from the known ones. A corollary which reduces our obtained result to a recently published result in the literature is

pointed out and discussed.

1. Introduction and Preliminaries

The celebrated Banach contraction principle in metric space
has undoubtedly laid the foundation of the modern metric
fixed point theory. The importance of fixed point results via
this principle runs over several fields of sciences and en-
gineering. Examiners in this area have investigated a lot of
novel ideas in metric space and have presented more than
a handful of significant results.

Hereunder, every set @ is taken nonempty, N depicts the
set of natural numbers, R is the set of real numbers, and R*
is the set of all non-negative real numbers.

Definition 1 (see [1]). Let ¥ be the set of all functions
¢: R* — R* satisfying the following:

(i) ¢ is monotone increasing, that is, ¢, <t, implies

d(t) <d(ty)

(ii) The series Z;‘;Oqsp (t) is convergent for all > 0.
Then, ¢ is termed a (c)-comparison function.

Remark 1. If ¢ € ¥, then ¢ (t) <t for any ¢ >0and ¢(0) =0,
and ¢ is continuous at 0.

Definition 2 (see [2]). Leta: ® x ® — R be a function. A
self-mapping I': ® — @ is termed a-orbital admissible if
for all r € @,

a(r,ITr)>1 = oc(l“r, Fzr) >1. (1)

Definition 3 (see [2]). Leta: ® x ® — R* be a function. A
self-mapping I'' ® — @ is termed triangular «-orbital
admissible if for all » € @, T is a-orbital admissible and

a(r,s)zlanda(s,I's)>21= a(r,I's)>1. (2)
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Lemma 1 (see [3]). LetI': ® — @ be a triangular a-orbital
admissible mapping. If we can find ry € ® such that
a(ry,I'ry) =1, then

oc(rp, rm) >1Vp,m €N, (3)
where the sequence {rp} is defined by r,,, = I'r, and p € N.

Definition 4 (see [3]). Let a: @ x® —> R be a self-
mapping. The set ® is termed regular with respect to « if
for a sequence rp} in @ such that a(r,,7,,,) > 1, for all p
andr, — r € ®as p — 00, we have a(r,,,r) > 1 for all p.

\ @(s,Is)(1+@(r,Ir))
T 1+@(r,s)

for g>0,r,s € O;

M (r,s) =3

@(r,Ts) + @ (s, Tr)
2

1;>0 with i=1,2...,5Y =1, and
Fix(T) = {r € ®: T'r =r}.

For some extensions of the idea of hybrid contractions in
the fixed point theory, we refer to [4-7] and the references
therein.

Following Petrusel and Rus [8], a self-mapping T of
ametric space (®, @) is termed a Picard operator (abbr., PO)
if I has a unique fixed point r* and lim, ,, I?r = r* for all
r € ® and I'is termed a weakly Picard operator (abbr. WPO)
if the sequence {I"’r} . converges, for all r € ® and the limit
(which may depend on r) is a fixed point of I.

Jachymski [9] introduced the notion of contraction in
metric space endowed with a graph H. Accordingly, let
(®, @) be a metric space and let A denote the diagonal of the
Cartesian product @ x ®. Consider a directed graph H such
that the set V (H) of its vertices coincides with @, and the set
E(H) of its edges contains all loops, i.e, E(H)2A. It is
assumed that H has no parallel edges, so H can be identified
with the pair (V (H), E(H)). Moreover, H may be treated as
a weighted graph (see [[10], p. 376]) by assigning to each
edge the distance between its vertices. The conversion of
agraph H is denoted by H™!, i.e., the graph obtained from H
by reversing the direction of edges. Therefore,

E(H') ={(r,s) € ©x ®|(s,7) € E(H)}. (6)

The letter H denotes the undirected graph obtained from
H by ignoring the direction of edges, or more conveniently,

[@(r, )" - [@(r, Tr)]" - [@(s,Ts)]" -
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Lately, Karapmar and Fulga [3] studied a new idea of
contractive inequality which is a refinement of some known
contractions in the following sense:

Definition 5 (see [3]). Let (®,®) be a metric space. A self-
mapping I ® — O is termed an admissible hybrid con-
traction, if we can find ¢ € ¥ and a: ® x ® —> R such that

a(r,s)@ (I'r,I's)<¢(M(r,s)), (4)

where

[ [L@(r, 97+ 1,0 (r, Tr)? + 1@ (s, Ts)4,

>q ((D(s, I'r)(1+o(r, Fs)))q](llq)
+ A5 >

1+@(r,s)

(5)

@ (s, Ts)(1 + @(r,Tr)) A
1+@(r,s)

As
] for g =0,r,s € ®\Fix(I),

by treating H as a directed graph for which the set of its
edges is symmetric. Under this convention,

E(H)=E(H)UE(H™). (7)

The pair (V,E) is said to be a subgraph of H if
V' cV (H) and E CE(H) and for any edge (r,s) € E' and
r,s € V'.If r and s are vertices in a graph H, then a path in H
from r to s of length N € N is a sequence {r;}~, of N + 1
vertices such that ry =7, ry =, and (r,_,7,) € E(H) for
alli=1,2,...,N. A graph H is connected if there is a path
between any two vertices. H is weakly connected if H is
connected.

Subsequently, fixed point results for Lipschitzian-type
contractions in metric spaces endowed with graph have been
obtained by several authors (see, e.g., [1, 11-16]). In par-
ticular, Bojor [1] obtained the following result:

Definition 6 (see [1]). Let (@, ®) be a metric space endowed
with a graph H. A self-mapping I': ® — @ is termed
a (H — ¢) contraction if

(i) Vr,s e ®((r,s) € E(H)= (I'r,Ts) € E(H))

(ii) We can find ¢ € ¥ such that

@ (Tr,Ts) < (@ (r,9)), (8)
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for all (r,s) € E(H).

Definition 7 (see [1]). A self-mapping I': ® —  is said to

be orbitally continuous if for all » € ® and any sequence

{kp} , TFr — se® implies that [([*r) — Ts as
peN

p — oo.

Definition 8 (see [1]). A self-mapping I': ® — ® is said to
be orbitally H-continuous if for all » € ® and a sequence
pen Tp T and (rp,rpﬂ) € E(H) imply that
— Ir as p — co.

"p
l“rp

Theorem 1 (see [1]). Let (O, ®) be a complete metric space
endowed with a graph H and I': ® — © be a (H - ¢)
contraction. Assume further that

(i) H is weakly connected;
(ii) for any  sequence {rp}peN in O  with

@ (rp,7p41) — 0, we can find k, py € N such that
(rkp,rkm) € E(H) for all p,m € N and p,m=> py;

(iii) . is orbitally continuous ot;

(iii) ,I" is orbitally H-continuous and we can find
a subsequence {I'P*ro}ioy of {IPro},ey such that
(I'Prry,r*) € E(H) for each k € N.

endowed with a graph have not been well considered. Hence,
invited by the ideas in [1, 3, 9], we initiate an idea of ad-
missible hybrid (H —a — ¢) contraction in metric space
equipped with a graph and investigate the conditions for
which this new contraction is a Picard operator. Compar-
ative examples are constructed to demonstrate that our
obtained results are valid and distinct from the existing
results in the literature. In addition, a corollary is highlighted
to show that the concept proposed in this manuscript
complements and subsumes a well-known result in the
literature.

2. Main Results

We now examine the idea of admissible hybrid (H — a — ¢)
contraction in metric space endowed with a graph H.

Definition 9. Let (®,®) be a metric space endowed with
a graph H. A self-mapping I': ® — @ is termed an ad-
missible hybrid (H — a — ¢) contraction if

(i) Vr,s € ®((r,s) € E(H)=> (I'r,Ts) € E(H));

(ii) we can find ¢ € ¥ and a: ® x ® — R such that

Then, I'is a PO. a(r, )@ (I, Ts) < $ (M (1,5)), )
As duly revealed from the available literature, we un-
derstand that hybrid fixed point concepts in metric space  for all (r,s) € E(H), where
[ (M@ (7, 97+ 1,0 (r, Tr)? + 1@ (s, Ts)4,
O(s,T)(1+a(r,Tr))\! . (@(s,Tr)(1+a(rTs))!]"?
+A4 + A5 ,
1+a(r,s) 1+ @(r,s)
for g>0;
M(r,s) = 3 (10)
A
@0 9" - [@(r,TNI - (@ (s, To) - | LTI QT T
1+@(r,s)
As
' o(r,rs);w(s,rr)] for g = 0,r 5,7 £T7,
0, ifr,se{0,1},r+#s;
L;20withi=1,2,...,5and ¥, A = 1. a(r,s) = , (12)
1, otherwise.

Example 1. Let ® = {0, 1,2, 3,4} with the Euclidean metric
@(r,s) =|r —s|Vr,s € @. Define I': ® — O by

|

forall r € ® and a: @ x & — R by

2r,
1)

ifr €{0,1}

11
ifr € {2,3,4}, (1)

Then, T' is an admissible hybrid (H — o — ¢) contraction
with ¢ (t) = (9t/10), A, = A5 = (2/5),A, =4, =0, and A, =
(1/5) for q = 0,2, where the graph H is defined by V (H) =
® and

E(H) ={(0,1), (0,2), (0,3), (0,4), (2,3), (2,4), (3,4)} UA,

(13)



but I' is not an admissible hybrid contraction defined in [3],
since «(1,2)@(T1,T2) =1 while ¢(M(1,2)) =0 for g=0
and ¢ (M (1,2)) = (27/50) for q = 2. See Figure 1.

The following is our main result:

Theorem 2. Let (O, ®) be a complete metric space endowed
with a graph H and I': ® — © be an admissible hybrid
(H — a — ¢) contraction. Assume further that
(i) I is triangular a-orbital admissible;
(ii) we can find r, € © such that a(ry,I'ry)>1;
(iii) H is weakly connected;
(iv) for any  sequence { P}pe in O with
(1 ps7p1) — 0, we can find k, p, € N such that
(Tkp> Tim) € E(H) for all p,m € N and p,m> p;
(v) I is orbitally continuous or;
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(v) oI" is orbitally H-continuous, and we can find
a subsequence {FPkrO}k n Of {IPro}pen such that
(I'Pery,r*) € E(H) for each k € N.

Then, T is a PO.

Proof. Let ry € ® be such that (r,,Ir,) € E(H) and
a(ry,I'ry) =1 and define a sequence {rp}PGN by r, =T*r,
with r,#r,,. Then, a standard induction reveals that
(T?ry, TP*'r;) € E(H). Since T is an admissible hybrid
(H — a — ¢)-contraction, then by (i) and Lemma 1, in-
equality (9) becomes

p)<o(M(r

oc(rp,l,rp)co(rrp,l, I'r

Considering Case 1 of (9), we have

p,l,rp)). (14)

M(rp_l, rp) = [Alm(rp_l, rp)q + )LZ(D(TP_I, Frp_l)q + /\3®(rp, l"rp)q,

o, <®(rp, I, )(1+@(rp s Frp_l))>q

1+ G)(rp_l, rp)

<‘D(rp’ Iry1)(1+0(rp117,)) >q:| "
+A5

1+ (D(rp,l,rp)

) 0y y) () 1

ha(r,-
W( fiwl ~a(r, l,rp))>q MS(a(rp,rf)f;Z @(rp_l,%))>q]wq>

p l’rp)

Tp-1> rp)

(rp pr ) +A ‘D( p—l’rp)q+A3®(rp’rp+l)q+A4‘D(rp’rp+l)q](1/q)

=[(A +Ay)a(r,

Hence, from (14), we have

G)(rp, rp+1) = (D(Frp_l, l"rp)

< ‘/5< [ (A + AZ)(D(rp—l

l,r) + (A +4,)@ (

)]

< oc(rp_l, rp)(b(l"rp_l, l"rp)

T’P)q + ()t3 + A4)®(1’P, rp+1)q] (1/q)).

(16)
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FIGURE 1: Graph H defined in Example 1.

Now, if (D(rp,l,rp) < (D(rp, rpﬂ), then we have

1y 7pir) < ¢< (L +4)0(rp107p)" + (s +2,)0(r 7t )] (I/q)>
¢<[(’\ +1)0(rprpn) + (s +/\4)<D(rp,rp+1)‘1](1/q))
(,b( (M +A, + A5 +/14)(1/q)(°(7’p’ f’p+1))

NAREEREE +/\4)( (P’rp+1)

IN

<O(7p rp+1)
a contradiction. Therefore, @ (r,,1,,1) <®(r,_;,7,), so that Continuing inductively, we obtain
(14) becomes
Co(rp, rp+1) <¢f (@ (ry, Try))Vp € N.
Co(rp,rpﬂ)Sgb(a)(rp_l,rp)). (18)

Also by Case 2, we have

M(ry1omp) = ®(rp 1, p) ~@(rp-1,T7, I)A (rp’rrp)13

G)r Fr 1+G) Frpfl)) b
1+(D Plrp)

P

[
[@ rooTry) + (7 Tr, 1)}
5
[

sO(rp ) ( Tp-1> rp)AZ '@(rp’rwl)/\}

‘D "p p+1 1+‘D plrp))r

(
1+(D P LT )
@ Tp-17p p p+1)+®(rp’rp)r
‘D(rp L rp)(AMz ) (rp rp+1)(AM4)
"p-

'15
|: LTy +G) r rPH) :|

(17)

(19)

(20)



Now, if (D(rp_l,rp) < (D(rp, rp+1), then
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(M+4,) (A5+44) A
M(rppry)<@(rprpa) P 0(rprpa) T 0(rp T )
_ G)(l’ ; 1) (A +2+ A5 40, +A5) (21)
ppt
o)
and so (14) becomes GD(FPrO, rp+1r0) < ¢P (@ (ro,I'ro))s (26)
(D(T’P,TP+1) < (P((D(TP, T’p+1)) < (D(rp,rp+1), (22) for all p € N and for all g>0. He?ce, we have
lim @(T?ry, I ry) =0, 27
which is a contradiction. Therefore, we must have p— ( 0 0) (27)
Co(rp,rPH) < (D(rp_l, rp), (23) and by (iv), we can find k, p, € N such that
k k
so that (14) resolves to (F Pro. T m”o) € E(H)Vp,m €N, p,m2 p,. (28)
GD(T’P, rP+1) < ¢(®(1’P_1, rp)), (24) Since @ (I*Pry, TF(P*Vy ) — 0, then for any given e >0,
we can choose N € N and N > p, such that
and by induction, we obtain G)(karo, l"k(P“)rO) <e—¢(e), forany peN. (29)
(7711 ) <97 (@ (1o, ) )¥p € N. (25)

Therefore, we see that

@(Trg, TP 1) < @(Trg, I*P 1) + (TP Dy, TH P2

Since (I*Pry, [XP*Dr ) € E(H), then for any p> N, we
have

(30)

<e-¢(e) + ¢k(®(rkpr0, l"k(P”)rO)) <e.

Similarly, since (karo, Fk<P+2)r0) € E(H), then for any

p=N, we have

CD(kar(,, Fk(p+3)r0) < (D(karo, Fk(p“)ro) + (D(Fk(p”)ro, Fk(p+3)r0)

<e-¢(e) + ¢k(®(rkpr0, Fk(p+2)r0)) <e.

Continuing inductively, we see that

@(karo,l“k(p+m)r0) <e, forany pmeN,p>N. (32)

Therefore, {1" kaO}keN is a Cauchy sequence in (O, ®),
and hence by the completeness of (®,®), [¥Pr, — r* as
p — co. Given that @ (I?ry, T"*'r;) — 0 as p — oo,
then we have I'’ry, — r* as p — o0.

Now, for any arbitrary r € ®, we see that

(1) if (r,r,) € E(H), then (I'?r,TPr,) € E(H) for all
p € N. Therefore,

@ (IPr,TPr)) < ¢ (@(r,7,))Vp € N. (33)

Letting p — oo, we have that I'’r — r*.

(31)

(2) if (r,7,) ¢ E(H), then by (iii), we can find a path in
H and {7}, from r, to r such that 7, = ry and 7y =
r with (7,_,7;) € E(H) for all i=1,2,...,N such
that by simple induction, we obtain

%, T*%) e E(H), fori=12,...,N,
i—1 i

N 34
@ (IPre, IPr) < Z‘PP (@(Fi172))s 0
i

so that @ (I'Pry, [Pr) — 0, implying that IPr — r*.
Hence, for all r € @, there is a unique point 7* € ® such
that
lim Tfr=r" (35)

p—00
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We now prove that r* € Fix(T'). If (v), holds, then TasLE 1: Table of values for Cases 1-6.
obviously r* € Fix(T). Otherwise if (v), holds, then since
> M(r,s)), M(r,s)),
{TPero}ey — 1 and (TPrr,r*) € E(H), then by the or- Cases r s a(r,s)@(Ir,Is) P q i 0 ) P q i 5 )
bital H-continuity of I, we have I'’**'rj — I'r* as 2 2 0 — 132272
k — co. Hence, I'" = 1" Casel 4 4 0 — 3.88566
If we can find some s € @ such that I's = s, then from the 6 6 0 o 771274
above, we must have that T?s — r*, implying that s = r*. Coes 46 1 216471 201067
Therefore, I' is a PO. O s 6y 1 2.42870 193075
, 11 0 — 0
Example 2. Let ® ={1,2,3,4,5,6} be endowed with the Case3 3 3 0 . 3.88566
metric @: ® x ® — R* defined by 5 5 0 _ 12.80912
@(r,s) =|r —s|,Vr,s € D. (36) 1 3 0 — 0.46086
Case 4 31 0 — 0.74215
Then, (®,®) is a complete metric space. 35 0 2.47339 2.65156
Consider a mapping I': ® — @ given by 5 3 0 3.03412 2.57021
r 2 1 0 — 0.37107
> ifre{2,4,6); 2 3 0 1.23669 1.32578
Iy = 37 2 5 0 145264 1.35
(37) Cases | § 1 1.97517 1.94074
1, ifref1,3,5}, 4 5 2 2.71410 3.88670
6 5 2 3.63692 4.98261
for all r € ® and a: ® x @ — R* by 1 2 0 _ 033068
2, ifrse4,5) 302 0 1.45445 119906
a(r,s) ={ ) (38) Case 6 3 4 1 1.97517 2.04242
1, otherwise. 5 2 0 2.09573 1.66712
. . —~ ~ 5 4 2 3.32940 3.61907
Consider the symmetric graph H defined by V (H) = ® 5 6 5 3.97647 498627
and
E(H) ={(1,2), (1,3), (2,3), (2,5), (3,4), (3,5), (4,5), (4,6), (5,6)} UA. (39)

Then, it is clear that T preserves edges, I is triangular
a-orbital admissible, and H is weakly connected.

To see that I' is an admissible hybrid (H — & — ¢) con-
traction, let ¢(t) = (9¢/10) for all t>0, A, = A; = (1/10),
A, =4, = (2/5),and A; = 0 for g = 0, 2. We then consider the
following cases:

Case 1. r =sand r,s € {2,4,6};

Case 2. r+s and r,s € {2,4,6};

Case 3. r=sand r,s € {1,3,5};

Case 4. r+s and r,s € {1, 3,5}

Case 5. r € {2,4,6} and s € {1, 3,5};

Case 6. r € {1,3,5} and s € {2,4,6}.
We demonstrate using the following Table 1 that in-

equality (9) is satisfied for each of the above cases. B
In Figures 2-4, we present the symmetric graph H

defined in Example 2 and illustrate the validity of contractive
inequality (9) using Example 2.

Therefore, all the hypotheses of Theorem 2 are satisfied, I
has a unique fixed point, r = 1, and lim,_,, I?r = 1 for all
r € ®. Consequently, I' is a PO.

Remark 2. If in Definition 9, we let a(r,s) =1 for all
r,se®, g>0, A, =1, and A, =1; =1, =A; =0, then ad-
missible hybrid (H — « — ¢) contraction reduces to (H — ¢)
contraction defined by Bojor [1] (see Definition 6). Hence,
we have the following result:

Corollary 1 (see [Theorem 1]). Let (O, ®) be a complete
metric space endowed with a graph H and I': ® — @ be
a (H - ¢) contraction. Assume further that

(i) H is weakly connected;

(ii) for any  sequence {rp}PEN in © with
@ (rp> 1) — 0, we can find k, py € N such that
(rkp,rkm) € E(H) for all p,m € N and p,m=> p,;

(iii) I is orbitally continuous or;

(iii) I is orbitally H-continuous, and we can find
a subsequence {I'Proliy of {IPro} ey such that
(I'Pery,r*) € E(H) for each k € N.

Then, T is a PO.
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FIGURE 2: Symmetric graph H defined in Example 2.

45
4 RHS of (2.1)
35

25
2 LHS of (2.1)
15

1
0.5 \
0
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10 11 12 13 14

Ficure 3: Illustration of contractive inequality (9) for g = 0.

RHS of (2.1)

2 LHS of (2.1)

0
O =N X
= = - QN NN A

FiGure 4: Illustration of contractive inequality (9) for q = 2.

Remark 3. It is obvious that we can obtain more conse-
quences of our results by particularizing the values of the
mappings «(r,s) and ¢ (t) and specializing the constants g
and A; (i = 1,5).

3. Conclusion

In this note, the notion of admissible hybrid (H —«a — ¢)
contraction in metric space endowed with a graph is in-
troduced (Definition 9). Sufficient conditions under which
the new mapping is a Picard operator are examined (The-
orem 2). To authenticate the hypotheses and indicate the
generality of our new ideas, comparative examples are
constructed with graphical illustrations (Examples 1 and 2).

A corollary is presented to highlight that the proposed idea
herein is a refinement of some known concepts in the lit-
erature (Corollary 1). In particular, the obtained results
herein are inspired by and compared with [1, 3, 9].
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