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Abstract 

A three -step Continuous Block Hybrid Method (CBHM) with two non-step points of order (6,6,6,6,6) is 
proposed for direct solution of the special and general third order initial value problems (IVPs). The main 
method and additional methods are obtained from the same continuous schemes derived via interpolation 
and collocation procedures. The stability properties of the methods are discussed and the stability region 
shown. The methods are applied in block form as simultaneous numerical integrators over non-overlaping 
interval. The efficiency of the proposed method was tested and was found to compete favorable with the 
existing methods. 
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1. Introduction 

This paper considers the solution of special and general third order initial value problem of the form: 

        100 ,,,,   ayayyayyxfy
     (1)  

        100 ,,,,,,   ayayyayyyyxfy
    (2) 

  

However, only a limited number of numerical methods are available for solving (1) and (2) directly without 
reducing to a first order system of initial value problems. Some authors have proposed solution to higher 
order initial value problems of ordinary differential equations using different approaches (Awoyemi 
(1991),Awoyemi (2000),Kayode (2005) and Adekunle et al. (2013)). These methods mentioned which were 
implemented in Predictor-Corrector mode, like linear multistep methods and other standard method are 
usually applied to initial value problem as a single formula but the setbacks of this method are:  (1) They 
are not self-starting (2) they advance the numerical integration of ordinary differential equation in one step 
at a time which lead to overlapping of piecewise polynomial solution mode. See ( Mohammed and Adeniyi 
(2014) and Mohammed and Adeniyi (2015)) for details. The advantages of continuous method are widely 
reported by Awoyemi (2003). 
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In order to correct the setback of the method of Predictor-Corrector method, Fatunla(1991), Olabode 
(2009), Olabode and Yusuph (2009) and Yahaya and Mohammed (2010) proposed block methods for the 
solution of higher order differential equations with limitation to special type of tODEs 

In view of the above mention, we extended the work of Olabode and Yusuph (2009) into a modified linear 
multi-step method by considering one-three off step point at collocation to handle both special and 
general third ordinary differential equations. The three step block hybrid method proposed is zero stable, 
consistent and more accurate than the existing one. Experimental results confirm the superiority of the 
new schemes over the existing method. 

2.  Derivation of the method
 

In this section the objective is to derive Hybrid Linear Multi-step Method (HLMM) of the form 
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Where j , j  and v  are unknown constants and jv  is not an integer. We note that k =1, 0j , 0  

and 0  do not both vanish. In order to obtain (2), we proceed by seeking to approximate the exact 

solution Y(x) of the form 
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        (3)  

Where   jabax ,, are unknown coefficients to be determined and kr 1 , 0S are the number of 

interpolation and collocation points respectively. We construct the continuous approximation by imposing 

the following conditions.  

  1,......,2.1,0,   rjyxY jnjn

      (4)  

 
jnjn fxY           (5)  

Equation (4) and (5) lead to a system of (r+s) equations which is solved by Cramer’s rule to obtain ja . The 

continuous approximation is constructed by substituting the values of ja  into equation (3). After 

simplification, the continuous method is expressed as 
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where  xj ,  xj  x,  and  xv  are continuous coefficients. We note that since 

equation (1) involves first and second derivatives, the first and second derivative formula 
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Equation (7) is easily obtained from (6) and is used to provide the first and second derivatives for the 

methods by imposing the condition 

       xxYxxY   ,
       (8)   

    00 ,   aYaY
       (9) 

3. Three Step Block Hybrid Method with two off Step Collocation Point 

 

To derive this methods, we use Eq.(6)  to obtained a continuous  3-step HLM method with the following 

specification : r=3,s=6,k=3,   8,...,1,0,,
2

5
,
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We also express    xx jj  ,  and  xv  as a functions of t, where 
h
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t n
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form as follows:  
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  (10)  
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The MFDMs are obtained by evaluating (10) at 
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In particular, to start the initial value problem for n = 0, we obtain the following equations from (9): 
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The derivatives are derived by 
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This proposed method is consistent since its order is 6, its also zero-stable; above all, it has moderate interval of 

absolute stability as can be seen in figure 1. The proposed three step method (11)-(15) have order 6 and error 

constants given by the vector
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4.  Convergence 

The convergence of the proposed block hybrid methods is determined using the approach of Fatunla 

(1991) for hybrid linear multistep method, where the block hybrid method are represented in a single 

block, r point multistep method of the form 
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Where h is a fixed mesh size within a block, Ai,Bi, i=O(1)k are r by r matrix coefficients and 
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 A0 is  r by r identity matrix. 

Ym, Ym-1 , Fm and Fm-1 are vectors of numerical estimates  

Definition 1. The block method is zero stable provided the root 𝑅𝑖,𝑗 = 1(1)𝑘 of the first characteristic 

polynomial 𝑝(𝑅) specified as 
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Satisfies |𝑅𝑗| ≤ 1 and for those roots with|𝑅𝑗| ≤ 1, the multiplicity must not exceed 2. 

We can put the five integrator represented by equations (11) - (15) into the matrix-equation form and for 

easy analysis the result was normalized to obtain; 
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(18) 

The first characteristic polynomial of the block hybrid method (18) is given by  

   10det ARAR   
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Substituting the value of A0 and A1 into the function above gives 
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  14  RR         (19)  

Therefore, R=0, R=1. The block method is zero stable and consistent since the order of the method p=6>1, 

and by Henrici (1962), the block method is convergent.   

5.  Region of Absolute Stability 

The absolute stability region of the newly constructed hybrid linear multi-step methods (11)-(15) is plotted 

using Chollom (2004) by reformulating the methods as general linear methods and is shown in Figure 1 

below. 
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Fig. 1: Region of Absolute Stability Region of Hybrid Linear Multi-Step Method (HLMM) 

 

 

 

 

6.  Numerical Examples 

We report here seven numerical examples taken from literature for the bases of comparison (see Tables 1-

7).  

Problem 1 

yyy eeey 32 23  

 

4

1
)0(,)0(,2ln)0(

2
1  yyy  

Exact Solution is  1ln)(  xexy
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Table 1: Showing Exact solutions and the computed results from the proposed methods for Problem 1 

X Exact Solution 
Numerical Solution Error   

Error  in R-K 

Method 

0.1 0.7443966600 0.7443966601 1E-10 5.755E-09 

0.2 0.7981388693 0.7981388694 1E-10 1.150E-07 

0.3 0.8543552446 0.8543552445 1E-10 1.205E-07 

0.4 0.9130152525 0.9130152524 1E-10 4.059E-08 

0.5 0.9740769843 0.9740769842 1E-10 1.127E-07 

0.6 1.037487950 1.037487951 1E-09 1.092E-07 

0.7 1.103186049 1.103186049 0 7.339E-08 

0.8 1.171100666 1.171100666 0 1.230E-07 

0.9 1.241153875 1.241153875 0 9.167E-08 

1.0 1.313261687 1.313261687 0 1.149E-07 

 

Problem 2 xy sin3 (Olabode and Yusuph (2009)) 

1.0,2)0(,0)0(,1)0(  hyyy  

Exact Solution is 2
2

cos3)(
2


x

xxy
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Table 2: Showing Exact solutions and the computed results from the proposed methods for Problem 2 

X Exact Solution 

Numerical Solution Error   

Olabode and Yusuph 

(2009) 

0.1 
0.990012496 0.990012496 0 

1.65922E-10 

0.2 
0.960199733 0.9601997335 5E-10 

4.76275E-10 

0.3 
0.911009467 0.9110094673 3E-10 

6.23182E-10 

0.4 
0.843182982 0.8431829819 1E-10 

2.91345E-10 

0.5 
0.757747686 0.7577476855 5E-10 

8.71118E-10 

0.6 
0.656006845 0.6560068445 5E-10 

3.92904E-09 

0.7 
0.539526562 0.5395265615 5E-10 

9.55347E-09 

0.8 
0.410120128 0.4101201276 4E-10 

1.80415E-08 

0.9 
0.269829905 0.2698299042 8E-10 

3.03120E-08 

1.0 
0.120906918 0.1209069177 3E-10 

4.73044E-08 

 

 

Problem 3 (Awoyemi et al (2014)) 

xyy  4

 
1.0,1)0(,0)0(,0)0(  hyyy  
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Exact Solution is 
16

5
2cos

16

3
)(  xxy

 

 

 

Table 3: Showing Exact solutions and the computed results from the proposed methods for Problem 3 

X Exact Solution 
Numerical Solution Error   

Error in Awoyemi 

et al (2014) 

0.1 0.004987516700 0.004987516680 
2E-11 

1.1899E-11 

0.2 0.01980106360 0.01980106378 
1.8E-10 

3.0422E-09 

0.3 0.04399957220 0.04399957259 
3.9E-10 

7.7796E-08 

0.4 0.07686749200 0.07686749244 
4.4E-10 

1.5559E-07 

0.5 0.1174433176 0.1174433185 
9E-10 

3.0541E-07 

0.6 0.1645579210 0.1645579226 
1.6E-09 

4.6102E-07 

0.7 0.2168811607 0.2168811622 
1.5E-09 

3.138E-07 

0.8 0.2729749104 0.2729749122 
1.8E-09 

7.0374E-07 

0.9 0.3313503928 0.3313503951 
2.3E-09 

1.0177E-06 

1.0 0.3905275319 0.3905275341 
2.2E-09 

1.6528E-06 

 

Problem 4 (Sagir (2014))

 



FUTMINNA 1ST SPS BIENNIAL INTERNATIONAL CONFERENCE 2017 pg. 280 

0375  yyyy

 
1.0,1)0(,0)0(,1)0(  hyyy  

Exact Solution is 
xx xeexy  )(  

Table 4: Showing Exact solutions and the computed results from the proposed methods for Problem 4 

X Exact Solution 
Numerical Solution Error   

Error in Sagir 

(2014) 

0.1 0.9953211598 0.9953211602 
4E-10 

6.4300E-08 

0.2 0.9824769037 0.9824769045 
8E-10 

2.7200E-08 

0.3 0.9630636869 0.9630636870 
1E-10 

3.0500E-08 

0.4 0.9384480644 0.9384480648 
4E-10 

8.9800E-08 

0.5 0.9097959895 0.9097959906 
1.1E-09 

4.4260E-07 

0.6 0.8780986178 0.8780986179 
1E-10 

7.7260E-07 

0.7 0.8441950165 0.8441950160 
5E-10 

1.9523E-06 

0.8 0.8087921354 0.8087921343 
1.1E-09 

1.0274E-06 

0.9 0.7724823534 0.7724823510 
2.4E-09 

1.3509E-06 

1.0 0.7357588824 0. 7357588850 2.6E-09 

 

1.3470E-05 
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Problem 5 Consider the linear singular IVP 

xxy
x

x
y cossin

sin

cos


 

1.0,0)0(,2)0(,1)0(  hyyy  

Exact Solution is 
12

sin

12
21)(

22 xx
xxy 

 

Table 5: Showing Exact solutions and the computed results from the proposed methods for  

Problem 5 

X Exact Solution Numerical 

Solution 
Error   

0.1 

0.8000027740 

 

0.8000027741 1E-10 

0.2 

0.6000442080 

 

0.6000442081 1E-10 

0.3 

0.4002223173 

 

0.4002223172 1E-10 

0.4 

0.2006961129 

 

0.2006961128 1E-10 

0.5 

0.00167926274 

 

0.001679262669 7.1E-11 

0.6 

-0.1965684269 

 

-0.1965684270 1E-10 

0.7 

-0.3937513691 

 

-0.3937513692 1E-10 

0.8 -0.5895499801  3E-10 
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-0.5895499804 

0.9 

-0.7836334206 

 

-0.7836334211 5E-10 

1.0 

-0.9756727849 

 

-0.9756727850 1E-10 

 

Problem 6   Non-linear Blasius equations  

02  yyy

 

1.0,1)0(,0)0(,0)0(  hyyy  

The exact solution does not exist. 

We compare our method with fourth order Runge-Kutta Method which shows an agreement with each 

other. 
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Table 6:Numerical methods for problem 6 

x Numerical Solution R-K METHOD 

0.1 0.0049999583 0.0049999552 

0.2 0.0199986668 0.0199986591 

0.3 0.0449898795 0.0449898741 

0.4 0.0799573780 0.0799573773 

0.4 0.1248700575 0.1248700476 

0.6 0.1796771413 0.1796771264 

0.7 0.2443036171 0.2443036129 

0.8 0.3186460094 0.3186459795 

0.9 0.4025686206 0.4025686062 

1.0 0.4959003415 0.4959003376 

 

Problem 7 

Consider linear system  

 wzyy 4481393817
68

1
  

 wzyz 89628371141
68

1
  

 wzyw 159243193059
68

1


 

With initial conditions    

     
     
     














50,520,200

330,280,120

120,20,20

wzy

wzy

wzy

 



FUTMINNA 1ST SPS BIENNIAL INTERNATIONAL CONFERENCE 2017 pg. 284 

The analytical solution of the problem is given by 





















xxx

xxx

xxx

eeew

eeez

eeey

32

32

32

4511

723

32
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Table 13:  Example 7 for k=3 with Two off-grid point at Collocation 

X Exact Solution Numerical Solution Error 

 y(x) Z(x) W(x) Y(x) Z(x) W(x) Y(x) Z(x) W(x) 

0.1 0.884820064 0.572590725 -15.30062101 0.8848200328 0.5725907975 -15.30062105 3.12E-08 7.25E-08 4E-08 

0.2 -0.115811730 2.806176217 -18.69930729 -0.115811924 2.806176663 18.69930753 1.93E-07 4.46E-07 2.4E-07 

0.3 -1.074669813 4.847826406 -22.33276225 -1.074670301 4.847827514 -22.33276288 4.88E-07 1.11E-06 6.3E-07 

0.4 -2.055674522 6.818196467 -26.33299947 -2.055675432 6.818198548 26.33300066 

9.09E-07 2.08E-06 

1.19E-

06 

0.5 -3.118451905 8.820816349 -30.83482248 -3.118453394 8.820819761 -30.83482447 

1.48E-06 3.41E-06 

1.99E-

06 

0.6 -4.322218381 10.94949803 -35.98269587 -4.322220576 10.94950306 -35.98269878 

2.19E-06 5.03E-06 

2.91E-

06 

0.7 -5.729277942 13.29446306 -41.93745391 -5.729280922 13.29446992 -41.93745794 

2.98E-06 6.86E-06 

4.03E-

06 

0.8 -7.408370060 15.94766196 -48.88324052 -7.408373873 15.94767075 -48.88324578 

3.81E-06 8.79E-06 

5.26E-

06 
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0.9 -9.438075281 19.00766567 -57.03504949 -9.438079890 19.00767630 -57.03505590 

4.61E-06 1.06E-05 

6.41E-

06 

1.0 -11.91046916 22.58444820 -66.64723234 -11.9104655489 22.58446732 -66.647239321 

3.61E-06 1.91E-05 

6.98E-

06 
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5. Conclusion 

We have derived a three-step continuous Hybrid Linear Multi-step Method (HLMM) from which Multiple 

Finite Difference Methods (MFDMs) are obtained and applied to solve third order ordinary differential 

equations (ODE) without first adapting the ODE to an equivalent first order system. The MFDMs are applied 

as simultaneous numerical integrators over sub-intervals which do not overlap and hence they are more 

accurate than Single Finite Difference Methods (SFDMs) which are generally applied as single formulas over 

overlapping intervals. We have shown that the methods are convergent and have large intervals of 

absolute stability, which make them suitable candidates for computing solutions on wider intervals. In 

addition to providing additional methods and derivatives, the continuous HLMM can be used to obtain 

global error estimates. Our future research will be focused on adapting the MFDMs to solve third order 

partial differential equations. 
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