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Abstract

A three -step Continuous Block Hybrid Method (CBHM) with two non-step points of order (6,6,6,6,6) is
proposed for direct solution of the special and general third order initial value problems (IVPs). The main
method and additional methods are obtained from the same continuous schemes derived via interpolation
and collocation procedures. The stability properties of the methods are discussed and the stability region
shown. The methods are applied in block form as simultaneous numerical integrators over non-overlaping
interval. The efficiency of the proposed method was tested and was found to compete favorable with the
existing methods.

Keywords:Collocation, Interpolation, Power series approximant, Grid points, Off-grid points and Block
methods

1. Introduction
This paper considers the solution of special and general third order initial value problem of the form:

y"=10y) ¥@)=y, . y(@)=n, y'@)=n, (1

ym _ f (X, y’ y,) yﬂ)’ y(a) — yO , y'(a) = 770 ) y”(a) =mn (2)

However, only a limited number of numerical methods are available for solving (1) and (2) directly without
reducing to a first order system of initial value problems. Some authors have proposed solution to higher
order initial value problems of ordinary differential equations using different approaches (Awoyemi
(1991),Awoyemi (2000),Kayode (2005) and Adekunle et al. (2013)). These methods mentioned which were
implemented in Predictor-Corrector mode, like linear multistep methods and other standard method are
usually applied to initial value problem as a single formula but the setbacks of this method are: (1) They
are not self-starting (2) they advance the numerical integration of ordinary differential equation in one step
at a time which lead to overlapping of piecewise polynomial solution mode. See ( Mohammed and Adeniyi
(2014) and Mohammed and Adeniyi (2015)) for details. The advantages of continuous method are widely
reported by Awoyemi (2003).
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In order to correct the setback of the method of Predictor-Corrector method, Fatunla(1991), Olabode
(2009), Olabode and Yusuph (2009) and Yahaya and Mohammed (2010) proposed block methods for the
solution of higher order differential equations with limitation to special type of tODEs

In view of the above mention, we extended the work of Olabode and Yusuph (2009) into a modified linear
multi-step method by considering one-three off step point at collocation to handle both special and
general third ordinary differential equations. The three step block hybrid method proposed is zero stable,
consistent and more accurate than the existing one. Experimental results confirm the superiority of the
new schemes over the existing method.

2. Derivation of the method

In this section the objective is to derive Hybrid Linear Multi-step Method (HLMM) of the form

r-1 s—1
J.Zoajynﬂ :hsj_zoﬂj fn+j +h3ﬂy fn+,u+h3ﬂv fn+v (2)

Wherea;, B, and B, are unknown constants and V; is not an integer. We note that a, =1, f; # 0, «,

and ,Bo do not both vanish. In order to obtain (2), we proceed by seeking to approximate the exact

solution Y(x) of the form
r+s-1

Y(x)=>lax!, a)
=0

Where X € [a,b], a; are unknown coefficients to be determined and 1<r <k, S > Qare the number of

interpolation and collocation points respectively. We construct the continuous approximation by imposing
the following conditions.

Y(X0)=Yesr §=012,, 11
(4)

Y7l )= £, 5

Equation (4) and (5) lead to a system of (r+s) equations which is solved by Cramer’s rule to obtain &;. The
continuous approximation is constructed by substituting the values of a; into equation (3). After

simplification, the continuous method is expressed as

r-1 s—1
Y(X) = Zaj (X)yn+j + h32ﬁj (X)fmj + hgﬂy (X)fmy + hgﬂv (X)fnw (6)
i=0 j=0

where (X), B (X) ,ﬂﬂ (X) and f, (X) are continuous coefficients. We note that since

equation (1) involves first and second derivatives, the first and second derivative formula
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Y'(x)=

>

r-1 s—1
(Za; (X)yn+j + hSZﬂ; (X)fn+j + hgﬂ;z(x)fm,u + h3IB\:(X)fn+v j
j=0 j=0

1 r-1 ” ” , ’ (7)
0= (za 0 S n+,.+h3/s,,<x>fn+,,+haﬂv<x>fwj

Equation (7) is easily obtained from (6) and is used to provide the first and second derivatives for the
methods by imposing the condition

Y'(x)=8(x), Y"(x)=7(x) (8)
Y'(@)=6, Y"(@)=7

3. Three Step Block Hybrid Method with two off Step Collocation Point

To derive this methods, we use Eq.(6) to obtained a continuous 3-step HLM method with the following

specification : r=3,5=6,k=3,V = %,,u = g,yi (X) =x"i=01...8.

. X - n . .
We also express & ( ) ( ) and f,(X ( ) as a functions of t, where t = to obtain the continuous

form as follows:

a, :[1—gt+%t2) a, :(Zt—tz), a, :(_%H_ltzJ

2

Bo(x)= —~ (10078 — 286187 +33600° — 21910:* +863&° — 2044° + 268 —15t°)
201600
Bi(x)= 25; OO(1001& ~14400t> +8400t* —5404° +1617t° — 244t +15t°)
By (x)= 3;60( 2082t +3809%% —4200t* +3542t° —1274° + 220t —15t°)
Bs(x)= 15175(3244 5910° + 6720t —5936t° + 2268° —416t7 +30t°)
2
By(x)= —=— (- 40662 + 741187 ~8505(t* + 75078° — 20484° + 5508 — 40t°)
S 22400
Bs(x)= L(lsmt — 2402t +2800t* — 2548° +1015° —196t7 +15t°)
5040 (10)
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n+=
2

The MFDMs are obtained by evaluating (10) at X = {Xms X g, X 5} to obtain the following
n+—
3

3
Yoz = Yo —3Ynu +3Yne2 +12T){llfn +536f,,, +900f,,, —896f . +729f , —80fn+3}

n+E n+5
(11)
3 ]
=2y 18y 20 M 19715 412028f | +19716f, , —21760f , +16605f , ~1840f
297" g 9 524 e e |
(12)
3 5 15 h?
Y ==y -2y L+, ., +———|1729f +81304f, , +115740f, , —135424f . +101331f , —11080f
e 87" 4 8 491520 e 2
(13)

In particular, to start the initial value problem for n = 0, we obtain the following equations from (9):

3 1 ,[ 5039 . 626 . 347 3244 20331, _ 47
ho, =——=Y,+2y, ==Y, +h fo + f, - f,+ fs — fg + f,
2 2 100800 ° 1575 ' 560 : 1575 : 11200 ° 180
(14)
5723 . 8. 3809 788, 14823 1201
h2ye =VYo =2y, +Y, +h¥| - ——f, — = f, + f,———fy + fy — f
7o=Yom T, { 20160 ° 7 111680 > 105 % 2240 ® 1260 3}

(15)

The derivatives are derived by

5(Xn+,)= o,,., and 7(Xn+r)= Ve 1T = 1,2,g,§and3as follows:

-
N 11315 43072f  1332f  +5632f , —5103f , +760f
20160 e .

1 1
h . ===V, =Y., —
n+l 2yn 2yn+2

s _
ho. =Ly —2y +3y 4+ laof 121632f  +21130f , —27392f , +19683f , —200f
2 2 100800 "+§ “+§

3
he o=y —3y. . +2y. ., +— | 7387f +360262f _ +602370f , —628672f , +486243f , —54790f
- 806400 ny "3

+3
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7 10 13 3{ 31111 ¢ 120314 1144879 29084f 43651f 15115 ]
n+2

ho g==VY,——VYou+— + fo,+ f.,— + - f
s 6" 377 2939328 " 229635 "' 1224720 "* 32805 n+; 60480 n; 183708 "7

3 5 h®
hé, ., = > y, —4y,., + > Yo + m{znfn +13672f, , +26460f, ., — 22528fn+§ + 21141fn+§ - 2056fn+3}

2 3

3
W2y oy =Y, =2y, + Voo + 102800{1653#,] +12088f, . —52860f,, +150272f . —129033f |, +17880fn+3}

2 3

100800 n+ n+

2 3

3
W2y =Y, —2Yos + Yoo +h—{841fn +46976f, +94140f_, —125696f . +95499f —1096Ofn+3}

322560 ne> nid

2 3

3
N7 5 = Yo = 2Y0 + Yo +h—[2757fn +149360f | +363828f , —225536f . +220887f —27456fn4
2

h27n+ = yn _2yn+1 + yn+2 + h3[

8
3

209179 f +177256 +459667 234436 _— 77467f 26627
24494400 " 382725 " 408240 " 382725 n 100800 - 306108 "

2 3

3
2y a=Y. =2Y, 1+ VYo +108W){869fn +46584f ., +115140f  , —79104f . +115911f . + ZZOOfM}
> n+—

3

This proposed method is consistent since its order is 6, its also zero-stable; above all, it has moderate interval of
absolute stability as can be seen in figure 1. The proposed three step method (11)-(15) have order 6 and error

1 5167 571 1141 283)T

constants given bythevecmrcg:(201600’_1785641760’_123863—40’ 12 4

4. Convergence

The convergence of the proposed block hybrid methods is determined using the approach of Fatunla
(1991) for hybrid linear multistep method, where the block hybrid method are represented in a single

block, r point multistep method of the form

k k
A, => A, +h > BUR, (16)
i=1

i=0

Where his a fixed mesh size within a block, A},B, i=O(1)k are r by r matrix coefficients and
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Alis r by r identity matrix.
Ym, Ym-1, Fm and Fn.1 are vectors of numerical estimates

Definition 1. The block method is zero stable provided the root R; ; = 1(1)k of the first characteristic

polynomial p(R) specified as

k

Z A(i)kai

i=0

p(R) = det =0 (17)

Satisfies |R;| < 1 and for those roots with|R;| < 1, the multiplicity must not exceed 2.

We can put the five integrator represented by equations (11) - (15) into the matrix-equation form and for

easy analysis the result was normalized to obtain;

1000 0™ (0000 1)y,

01000|M™||oo0oo0o01]y,

0010 0ffs|=[o0 001}y,

10010/f,| 00001y,

00001) o000y,

n+3

274 1721 2666 4779 181 0000 S0
1575 3360 1575 3200 840 | 67200
2248 36 17152 6123 436 | | [, oo 42 (fo
1575 105 1575 700 315 | M 900 | f.

.| 101125 911875 145375 3655125 198125| f , | |0 ., , 175625

36864 172032 8064 229376 86016 | 2 229376 | "
3731456 461824 3407872 260416 610304 | f 0| | oo 1011776 fus
1148175 76545 164025 14175 229635 ; ° 1148175 f,
159 243 4698 531441 963 |/ | 25461

350 32 175 22400 280 22400

(18)

The first characteristic polynomial of the block hybrid method (18) is given by

p(R)=det(RA® — A!)
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Substituting the value of A° and Al into the function above gives

10000 (00001
01000[|000O0OCO0T1
p(R)=detfRIO 0 1 0 0|-|0 0 0 0 1
00010[/|0000CO0T1
0000100001
R 0OO0O0 -1
0O ROO -1
=detf 0 0 R 0 -1
00 0R -1
0000 R-1
=[R*(R-1)] (19)

Therefore, R=0, R=1. The block method is zero stable and consistent since the order of the method p=6>1,

and by Henrici (1962), the block method is convergent.

5. Region of Absolute Stability

The absolute stability region of the newly constructed hybrid linear multi-step methods (11)-(15) is plotted
using Chollom (2004) by reformulating the methods as general linear methods and is shown in Figure 1

below.
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Fig. 1: Region of Absolute Stability Region of Hybrid Linear Multi-Step Method (HLMM)

6. Numerical Examples

We report here seven numerical examples taken from literature for the bases of comparison (see Tables 1-
7).

Problem 1

m

y"+e”’ =3 +2e7¥

y(0)=In2, y'(0)=3, y'(0)=

|

Exact Solution is Y(X) = |I‘1(eX +1)
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Table 1: Showing Exact solutions and the computed results from the proposed methods for Problem 1

X Exact Solution Numerical Solution Error Error in R-K
Method

0.1 | 0.7443966600 0.7443966601 1E-10 5.755E-09
0.2 | 0.7981388693 0.7981388694 1E-10 1.150E-07
0.3 | 0.8543552446 0.8543552445 1E-10 1.205E-07
0.4 | 0.9130152525 0.9130152524 1E-10 4.059E-08
0.5 | 0.9740769843 0.9740769842 1E-10 1.127E-07
0.6 1.037487950 1.037487951 1E-09 1.092E-07
0.7 1.103186049 1.103186049 0 7.339E-08
0.8 1.171100666 1.171100666 0 1.230E-07
0.9 1.241153875 1.241153875 0 9.167E-08
1.0 1.313261687 1.313261687 0 1.149E-07

Problem 2 y” = 3sin x (Olabode and Yusuph (2009))

y(0)=1 y'(0)=0, y"(0)=-2,h=0.1

2

X
Exact Solution is y(x) = 3C0SX + e 2
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Table 2: Showing Exact solutions and the computed results from the proposed methods for Problem 2

X Exact Solution Olabode and Yusuph
Numerical Solution Error
(2009)

0.1 1.65922E-10
0.990012496 0.990012496 0

0.2 4.76275E-10
0.960199733 0.9601997335 5E-10

0.3 6.23182E-10
0.911009467 0.9110094673 3E-10

0.4 2.91345E-10
0.843182982 0.8431829819 1E-10

0.5 8.71118E-10
0.757747686 0.7577476855 5E-10

0.6 3.92904E-09
0.656006845 0.6560068445 5E-10

0.7 9.55347E-09
0.539526562 0.5395265615 5E-10

0.8 1.80415E-08
0.410120128 0.4101201276 4E-10

0.9 3.03120E-08
0.269829905 0.2698299042 8E-10

1.0 4.73044E-08
0.120906918 0.1209069177 3E-10

Problem 3 (Awoyemi et al (2014))

ylﬂ+4yl — X

y(0)=0, y'(0)=0, y"(0)=1h=0.1

FUTMINNA 1°7 SPS BIENNIAL INTERNATIONAL CONFERENCE 2017 pg. 278




- 3 5
Exact Solution is y(X) = ——CO0S2X + —
16 16

Table 3: Showing Exact solutions and the computed results from the proposed methods for Problem 3

X Exact Solution . . Error in Awoyemi
Numerical Solution Error
et al (2014)
0.1 | 0.004987516700 0.004987516680 1.1899E-11
2E-11
0.2 | 0.01980106360 0.01980106378 3.0422E-09
1.8E-10
0.3 | 0.04399957220 0.04399957259 7.7796E-08
3.9E-10
0.4 | 0.07686749200 0.07686749244 1.5559E-07
4.4E-10
0.5 | 0.1174433176 0.1174433185 3.0541E-07
9E-10
0.6 | 0.1645579210 0.1645579226 4.6102E-07
1.6E-09
0.7 | 0.2168811607 0.2168811622 3.138E-07
1.5E-09
0.8 | 0.2729749104 0.2729749122 7.0374E-07
1.8E-09
0.9 | 0.3313503928 0.3313503951 1.0177E-06
2.3E-09
1.0 | 0.3905275319 0.3905275341 1.6528E-06
2.2E-09

Problem 4 (Sagir (2014))
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14

y

+5y"+7y"+3y=0

y(0)=1 y'(0)=0, y"(0)=-1h=0.1

Exact Solutionis y(X) =€ + xe™*

Table 4: Showing Exact solutions and the computed results from the proposed methods for Problem 4

X Exact Solution . . Error in Sagir
Numerical Solution Error
(2014)

0.1 | 0.9953211598 0.9953211602 6.4300E-08
4E-10

0.2 | 0.9824769037 0.9824769045 2.7200E-08
8E-10

0.3 | 0.9630636869 0.9630636870 3.0500E-08
1E-10

0.4 | 0.9384480644 0.9384480648 8.9800E-08
4E-10

0.5 | 0.9097959895 0.9097959906 4.4260E-07
1.1E-09

0.6 | 0.8780986178 0.8780986179 7.7260E-07
1E-10

0.7 | 0.8441950165 0.8441950160 1.9523E-06
5E-10

0.8 | 0.8087921354 0.8087921343 1.0274E-06
1.1E-09

0.9 | 0.7724823534 0.7724823510 1.3509E-06
2.4E-09

1.0 | 0.7357588824 0. 7357588850 2.6E-09 1.3470E-05
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Problem 5 Consider the linear singular IVP

y7 4 COSX

—— y" =sinXxcosx
sinx

y(0)=1 y'(0)=-2, y"(0)=0,h=0.1

2 =2
Exact Solutionis y(x) =1—2x+ X _SinX
12 12

Table 5: Showing Exact solutions and the computed results from the proposed methods for

Problem 5
X Exact Solution Numerical
. Error
Solution
0.1
0.8000027740 | 0.8000027741 1E-10
0.2
0.6000442080 | 0.6000442081 1E-10
0.3
0.4002223173 | 0.4002223172 1E-10
0.4
0.2006961129 | 0.2006961128 1E-10
0.5
0.00167926274 | 0.001679262669 7.1E-11
0.6
-0.1965684269 | -0.1965684270 1E-10
0.7
-0.3937513691 | -0.3937513692 1E-10
0.8 -0.5895499801 3E-10
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-0.5895499804
0.9
-0.7836334206 | -0.7836334211 5E-10
1.0
-0.9756727849 | -0.9756727850 1E-10

Problem 6 Non-linear Blasius equations

2ym + yy” — 0

y(0)=0, y'(0)=0, y"(0)=1,h=0.1

The exact solution does not exist.

We compare our method with fourth order Runge-Kutta Method which shows an agreement with each

other.
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Table 6:Numerical methods for problem 6

X Numerical Solution R-K METHOD

0.1 | 0.0049999583 0.0049999552
0.2 | 0.0199986668 0.0199986591
0.3 | 0.0449898795 0.0449898741
0.4 | 0.0799573780 0.0799573773
0.4 | 0.1248700575 0.1248700476
0.6 | 0.1796771413 0.1796771264
0.7 | 0.2443036171 0.2443036129
0.8 | 0.3186460094 0.3186459795
0.9 | 0.4025686206 0.4025686062
1.0 | 0.4959003415 0.4959003376

Problem 7

Consider linear system

y" = é(Bl?y +1393z +448w)

7" = —é(1141y +2837z +896w)

w” = é(3059y+ 4319z +1592w)

With initial conditions

y(0)=-2, 2(0)=-2,w(0)=

-12

y'(0)=-12, z'(0)=28,w/(0)=-33
y'(0)=20, 2'(0) = -52, w'(0)=5
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The analytical solution of the problem is given by

y=e"—2e* 4+ 3
7=3e"+2e* —T7e™*
w=—-11e" —5e** + 4™
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Table 13: Example 7 for k=3 with Two off-grid point at Collocation

X Exact Solution Numerical Solution Error
y(x Z(x) W(x) Y(x) Z(x) W(x) Y(x) Z(x) W(x)
0.1 0.884820064 0.572590725 -15.30062101 0.8848200328 | 0.5725907975 -15.30062105 3.12E-08 7.25E-08 4E-08
0.2 -0.115811730 2.806176217 -18.69930729 -0.115811924 2.806176663 18.69930753 1.93E-07 4.46E-07 2.4E-07
0.3 -1.074669813 4.847826406 -22.33276225 -1.074670301 4.847827514 -22.33276288 4.88E-07 1.11E-06 6.3E-07
0.4 -2.055674522 6.818196467 -26.33299947 -2.055675432 6.818198548 26.33300066 1.19E-
9.09E-07 2.08E-06 06
0.5 -3.118451905 8.820816349 -30.83482248 -3.118453394 8.820819761 -30.83482447 1.99E-
1.48E-06 3.41E-06 06
0.6 -4.322218381 10.94949803 -35.98269587 -4.322220576 10.94950306 -35.98269878 2.91E-
2.19E-06 5.03E-06 06
0.7 -5.729277942 13.29446306 -41.93745391 -5.729280922 13.29446992 -41.93745794 4.03E-
2.98E-06 6.86E-06 06
0.8 -7.408370060 15.94766196 -48.88324052 -7.408373873 15.94767075 -48.88324578 5.26E-
3.81E-06 8.79E-06 06
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0.9 -0.438075281 19.00766567 -57.03504949 -9.438079890 19.00767630 -57.03505590 6.41E-
4.61E-06 1.06E-05 06

1.0 -11.91046916 22.58444820 -66.64723234 | -11.9104655489 | 22.58446732 -66.647239321 6.98E-
3.61E-06 1.91E-05 06
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5. Conclusion

We have derived a three-step continuous Hybrid Linear Multi-step Method (HLMM) from which Multiple
Finite Difference Methods (MFDMs) are obtained and applied to solve third order ordinary differential
equations (ODE) without first adapting the ODE to an equivalent first order system. The MFDMs are applied
as simultaneous numerical integrators over sub-intervals which do not overlap and hence they are more
accurate than Single Finite Difference Methods (SFDMs) which are generally applied as single formulas over
overlapping intervals. We have shown that the methods are convergent and have large intervals of
absolute stability, which make them suitable candidates for computing solutions on wider intervals. In
addition to providing additional methods and derivatives, the continuous HLMM can be used to obtain
global error estimates. Our future research will be focused on adapting the MFDMs to solve third order
partial differential equations.
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