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Abstract 
We develop a class of block unification multi-step method (BUMM) which are used as boundary value methods for the 

numerical integration of third order boundary value problems in ordinary differential equations resulting from boundary 

layer flow. The method solves the problem directly instead of converting it to a system of first order ordinary differential 

equations before solving. The block unification multi-step methods are constructed using Chebyshev polynomials as basis 

function and employing interpolation and collocation method.The basic properties of the methods are investigated and 

numerical experiments are given to show the performance of the methods. 

 

INTRODUCTION 

In understanding physical phenomena mathematical models are developed in science, engineering and technology to 

help understand these physical phenomena. The mathematical models are expressed in equations in which a function 

and its derivatives play significant roles. An equation that contains some derivatives of an unknown function of one 

or more several variables is called a differential equation. These equations arise not only in fields like physical 

science but also in fields like operation research, psychology, medicine, economics, engineering, etc, ranging from 

models that describe neural works, acoustic wave propagation in relaxing media, draining and coating flow problems 

to the deflection of a curved beam that has a constant or varying cross section and as such faster and more accurate 

numerical methods are required. 

Steady flow of viscous incompressible fluids has attracted considerable attention in recent years due to its crucial role 

in numerous engineering applications. Numerical analysts encounter actually a wide variety of challenges in 

obtaining suitable algorithms for computing flow and heat transfer of viscous fluids (Bataller, 2010). Boundary layer 

flow problems of third order and third order ordinary differential equations have been discussed in many papers in 

recent years. Examples of such papers are (Abdullah et al 2013; 2013) who had developed a fifth order block method 

using constant step size with shooting technique to solve third order non-linear boundary value problems and 

developed a fourth order two-point block method for solving non-linear third order boundary value problems. The 

combination of the standard adomian decomposition method and a finite difference scheme, while taking note of 

their respective advantages and disadvantages, was used to solve the Blasius problem in Akdi and Sedra (2014). This 

way the coupled method offset the limitations of the individual methods. Aminikhah and Kazemi (2016) used quartic 

b-splines approximations to construct the numerical solution to Blasius equation. Collocation approximation was 

applied in deriving schemes that were applied as a block method to solve special third order initial value problems in 

Olabode (2009). Jator (2008) used a continuous linear multistep method to generate multiple finite difference 

methods that were assembled into a single block matrix that was used to solve third order BVPs. Jator (2009) 

presented Multiple Finite Difference Methods obtained from a linear multistep method of step 4, these were used to 

solve third order boundary value problems directly.A family of three step hybrid methods independent of first and 

second derivative components using Taylor approach were proposed to solve special third order ODEs in Jikantoro et 

al (2018), These were all done without reducing the ODEs to equivalent systems of first order ODEs.Ahmed (2017) 

used the variational iteration method to get numerical solutions to third order ordinary boundary value problems after 

reducing them to a system of first order ODEs. 

In this paper, third order ordinary differential equations resulting from boundary layer flow such as Blasius, Sakiadis 

and Falkner-Skan are considered. 

 

 

METHODOLOGY 
In this section, the construction of the block unification multistep method through the interpolation and collocation 

approach is discussed, which will be used to produce several discrete schemes for solving boundary layer flow. 

The starting point is to construct the block unification multi-step method (BUMM) which has the form 
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The first and second derivative formulas for (1) are used to generate additional methods by evaluating )(xU  and 

)(xU   at kjx jn )1(0,  . The construction of (1) is discussed in the following theorem. 
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 and obtained by replacing the jth column of V by the vector W and let (2) satisfy 

jnjn yxU  )( vvj ,1,0   and vvvj ,1,2,0   

jnjn fxU   )(  kj )1(0         (3) 

then the continuous representation (1) is equivalent to 
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Proof The basis function for (1) is taken as 
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where jiji h ,1
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,1 ,   are coefficients to be determined. 

Inserting (5) into (1) gives 
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Imposing conditions (3) on (6), a system of (k+4) equations is obtained which could be expressed in the form 
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The elements of H are found using the Cramer’s rule 
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where jV  is obtained by replacing the jth  column of V by W. Using the newly found elements of H, (6) is re-

written as 
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effectively applied by imposing 
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Specification of Methods 
To derive an implicit three step method with one off-grid point, the following specifications were considered,  r = 3, 

s= 5, k = 3, v =
3
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, to give the continuous form as: 
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k

i

invnvvnvn fhfhyyyyh )1(3

0

)1(3)1(

01

)1(

1

)1(
 

             (15) 





  




  nin

k

i

invnvvnvn fhfhyyyyh )(3

0

)(3)(

01

)(

1

)(
 

 




  n

k

in

k

i

k

in

k

vn

k

vvn

k

vn fhfhyyyyh )(3

0

)(3)(

01

)(

1

)(
 

All the equations in (13) to (15) are of order )( 5khO and can be compactly written in matrix form by introducing 

the following notations. Let A be a NN 33  matrix defined by 



















333231

232221

131211

AAA

AAA

AAA

A  where 
ijA are NN  matrices given as 
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12A , 13A , 23A , 32A , are NN  null matrices and 22A , 33A  are NN   identity matrices. Similarly, another 

matrix B which is a NN 33   matrix defined as 



















333231

232221

131211

BBB

BBB

BBB

B  

Where 
ijB  are NN   matrices given as 
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12B , 13B , 22B , 23B , 32B , 33B  are NN  null matrices 

And then the following vectors are defined 
T

knnknnknn yhyhyhyhyyY ),,,,,,,,( 2

1

2

11 
   

T

knnknnknn xyhxyhxyhxyhxyxyY ))(,),(),(,),(),(,),(( 2
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2

11 
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   



2ND SCHOOL OF PHYSICAL SCIENCES BIENNIAL INTERNATIONAL CONFERENCE FUTMINNA 2019 

SPSBIC2019 Chemical Sciences 1124 | P a g e 

 

 

T

NNN llllllhL ),,,,,,,,()( 111
   

Tkk

kkk

vv

yfh

yfhyfhyfhfh

fhfhfhyfhyhfhyhfhC

)0,0,

,,0,0,,,0,,0,

,,,,,,,,(

0

)(

00

3)(

0

0

)1(

00

3)1(

00

)(

00

3)(

00

)1(

00

3)1(

00

3)(

0

0

3)1(

00

3)2(

00

3)1(

000

3)0(

000

3)0(

000

3)0(

0

















 

 

With )(hL representing the local truncation error vector at the point nx of the methods (12) to (14). 

Theorem 4.1: Let ),,( iii yyy  be an approximation to the solution vector ))(),(),(( iii xyxyxy  for the third order 

ordinary equations from boundary layer flow. If iii yxye  )( , iii yxye  )( , iii yxye  )( , where the 

exact solution given by the vector ))(),(),(( xyxyxy  is several times differentiable and if YYE  , then 

the BVMs are said to be convergent of order 2k which implies that  

)( 2 khOE , where k is the step number. 

Proof: Consider the exact form of the system formed from (13) to (15) given by 

0)()(3  hLCYQFhPY         (16) 

where )(hL  is the truncation error vector obtained from the formulae (13) to (15). The approximate 

form of the system is given by 

0)(3  CYQFhYP          (17) 

where Y  is the approximate solution of vector Y . 

Subtracting (16) from (17) and letting 
T

NNN eeeeeeYYE ),,,,,( 111
  and using the mean value 

theorem, we have the error system 

)()( 3 hLEQBhP            (18) 

where B  is the Jacobian matrix and its entries ,3,2,1,, srBrs  are defined as 
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From (17) and )(hL  

)()( 13 hLQBhPE   

)(hSLE   

)(hSLE   

 )()( 53  khOhO  

 )( 2 khO  

Which show that the methods are convergent and the global errors are of order )( 2khO  

Numerical Examples 
Here, three numerical examples are considered: Blasius equation, Sakiadis equation and Falkner-Skan equation. All 

three solutions were compared with solutions using Runge-Kutta method. 

Problem 1: Blasius Equation 

02  yyy  

1)(,0)0(,0)0(  yyy  

Table 1: Comparison of the Solutions from Proposed Methods and Runge-Kutta Method 

 Proposed Method Runge-Kutta 



2ND SCHOOL OF PHYSICAL SCIENCES BIENNIAL INTERNATIONAL CONFERENCE FUTMINNA 2019 

SPSBIC2019 Chemical Sciences 1125 | P a g e 

 

 

X N )0(y   )( xy  )( 
 xy  )0(y   )( xy  )( 

 xy  N 

1.0 9 1.021157329 0.5063049940 0.9381906626 1.021157016 0.506305291 0.93810698 27 

2.0 17 0.5442717691 1.051664551 0.3810337080 0.5442717609 1.051664633 0.381033607 51 

3.0 25 0.4045496973 1.679698960 0.1689551177 0.4045497078 1.6796990467 0.168955073 75 

4.0 33 0.3527462516 2.432249676 0.06202511200 0.3527462779 2.432249926 0.0620251103 99 

5.0 41 0.33256595103 3.3170985421 0.0155692563 0.3325659529 3.3170985488 0.0155692560 123 

 

Problem 2: Sakiadis flow 

02  yyy  

0)(,1)0(,0)0(  yyy  

Table 2: Comparison of the Solutions from Proposed Methods and Runge-Kutta Method 

 Proposed Method Runge-Kutta 

x N )0(y   )( xy  )( 
 xy  )0(y   )( xy  )( 

 xy  N 

1.0 9 -1.062106604 0.4858145149 -0.9021137979 -1.0621056881 0.4858148417 -0.9021137490 27 

2.0 17 -0.6214631716 0.8954882570 -0.3357451645 -0.6214629182 0.895488335 -0.3357452060 51 

3.0 25 -0.5078781704 1.190534705 -0.1428727781 -0.5078780256 1.190534757 -0.1428727865 75 

4.0 33 -0.4687973723 1.377935656 -0.06161582430 -0.4687972558 1.3779357168 -0.0616581740 99 

5.0 41 -0.4539702818 1.487355776 -0.02661787579 -0.4539701772 1.487355831 -0.0266178690 123 

 

Problem 3: Falkner-Skan Equation 

   01)()()(
2

0   ffff
 

1)(lim,0)0(,0)0( 





fff  

Table 3: Comparison of the Errors from Proposed Methods and Runge-Kutta Method 

 Proposed Method Runge-Kutta Method 

x N )( 
 xy  )( xy  N )( 

 xy  )( xy  

0.1 9 0.5223955323 0.6065298823 27 0.522394253 0.606530550 

0.2 17 0.03825982349 1.510386946 51 0.0382595394 1.510388234 

0.3 25 0.0014085063 2.502848721 75 0.0014082032 2.502849911 

0.4 33 0.0000245898 3.502571462 99 0.0000245779 3.502571249 
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Results Discussion 

From tables 1 to 3, it is evident that the proposed methods have a good performance compared with the existing 

Runge-Kutta method. 

 

CONCLUSION 
In this paper, BUMMs have been proposed using the boundary value technique to solve boundary layer flow 

problems in ordinary differential equations. This has been done by applying the method directly to the differential 

equations. The convergence of this class of methods was carried out and numerical examples were given. The 

efficiency of the methods was given in the Tables 1, 2 and 3. In all three tables, the accuracy of the results can be 

comparable as the proposed methods have a good performance in comparison to the Runge-Kutta method.  
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