2015 9th Malaysian Software Engineering Conference, Dec. 2015

A Component Based SQL Injection
Vulnerability Detection Tool

Muhammad Saidu Aliero, Imran Ghani, Murad Khan, Mustapha Atiku and Mannir Bello

Faculty of Computing
Universiti Tecknologi Malaysia
81310 Skudai, Johor Bahru Malaysia
msaidua2000@gmail.com

Abstract- SQL injection attack (SQLIA) is one of the most severe attacks that can be used against web database driving
applications. Attackers’ use SQLIA to get unauthorized access to and perform unauthorized data modification. To
mitigate the devastating problem of SQLIA, different researchers proposed variety of web penetration testing tools that
automation of SQLI vulnerability assessment that result in SQLIA. Recent study shows that there is need for adaptation
of object orienting approach in development of application program in order to reduce the cost of integration and
maintenance, as well as improve the efficiency of application programs. Most of the proposed SQLIV (SQL injection
vulnerability) detection tools by academic researchers seem to focus on improving efficiency or effectiveness of SQLIV
detection tool thereby paying less attention to advantage of adopting reusable component. Therefore, this paper propose
component based (CBC) SQLIV detection tool that has the potential to enable developer to reuse component where
necessary and allow integration and maintenance fast and in less cost. The proposed tool was tested on three different
vulnerable web applications after which its effectiveness was compared against seven(7) different SQLIV detection tool
accordingly, the result of evaluation proves that the tool has all the potential to detect SQLIV vulnerabilities on different
scenarios that other of scanners ware unable to detect.

Keywords- SQLIV, SQL injection, Web-based, Vulnerability, Component based.

unauthorized data manipulations [4, 5, 6, and 7].
SQLIA comes in variety of types depending on what

L BIIRODUCTION attacker wants to accomplish, but the main cause of

Technology and networks enable organizations
to adopt Web based applications as framework on
whichthey conduct their day to day activities. For
instance, E-commerce, health care, transportation,
social activities are now readily available on Web-
based database driving applications.Various study
shows that the security of Web applications is, in
general, quite poor and demand to use these
applications is very high[1,2,3]. These applications
process data and store the result in back-end database
server where the organization’s related data are stored.
Depending on the specific purpose of application,
most applications can be invoked by anyone
worldwide to draw the attention of attackers who wish
to take advantage of these vulnerabilities. One of the
techniques to exploit these applications (Web-based
driving database applications) is called SQLIA (SQL
injection attack). SQLIA is a situation whereby an
attacker modifies programmer intended queries in
order to have access to restricted data or perform

978-1-4673-8227-4/15/$31.00 ©2015 IEEE

SQLIA is result of improper validation of input by
user which programmer should take care of while
developing application [8]. Different researches
proposed different techniques of development of the
tool that automate testing of SQLIV in Web
application. However these techniques not only have
limitation on triggering some type of SQLIV but also
seem focus on developing tool in traditional way
without considering object oriented approach.

To tackle this we proposed component based
SQLIVdetection tool with enhanced features that
enable the reuse of these components, provide easier
integration of new tools, and provide flexibility for
improvements and most importantly carryout
penetration testing in more effective and efficient
way.

I RELATED WORK

Web based penetration testing tools can be
classified into three categories; academic, open source
tool and commercial [9,10]. Academic tools represent
those tools proposed by individuals in a field of
research such as SQIVS [11], Enhanced
MySQLinjector [12], secubat[13]wave[14],
Amnisia[15]etc. Majority of academic tools are
language specific, their developments are ongoing
process and public access to these tools is
unavailable. However, method used in development of
such tools are publically available to shade light to
individuals or academic researchers who want to
improve existing tools or proposed new methods with
enhanced features. Unlike academic tools, open
source tools such as Vega, Zap, Wa3p, Wapit, Nikito
etc [16] are available for public use inform of source
code application under copyright for free of charge.
However, architecture, algorithm or development
approach are not available to public. Individuals or
researchers are permittedto study and improve open
source tool with consent of the owner. Beside, Open
source and academic Web penetration testing tool,
there are also commercial tools such as AppScan,
Acunetix,Bugblast, Netsparker etc.These tools are
totally different from academic and open source tools
in the sense that users can only utilize the full
functionalities of these tools by purchase, also
architecture, algorithms or method wused by
development of these toolsis not available to public
and no vendor allows improvements of their
tool[16,17,18]. The advantage of commercial tool
over other tools is that; they provide user with
extensive help and functionalities that are not
available in academic and commercial tools [19].

Basically, there are two common approaches use
in development of Web penetration testing tool
whether its academic tools, open source or
commercial or combination of both. These approaches
can be classified into two, static and dynamic
approach. Tools that implement dynamic approach are
usually known by attacks tools because they analyze
server response to find flaws, vulnerabilities through
attacking target application.They do not need target
source code to perform security analysis. On the other
hand, toolsthat implement static approach need to
analyze the source code of target application and
identified flaws or vulnerabilities via control flow of
information, taint analysis, modeling checking or
using their combination [20,21,22].

I1. OUR APPROACH

Our SQLIV detection tool specifically
implements dynamic approach and consists of four
main components: Web crawling, attacking analysis
and reporting (See Figure 1).

A. Component 1- Web crawling
In order to send an attacks to target application, it is
required to identify all links and forms that are
potential. Thismay suggest why it is important for
penetration tester to make sure that all links and forms
potential to SQLIV is identified either automatically
or manually[11]

Once given URL (Seed URL) of Website is given to
our SQLIV tool, it starts by going through seed URL,
extracts all links and forms of application, and stores
them in a database. It is very important to know that
attacks can only be launched against previously
identified links and forms that are potential to SQLIV.
Study shows that coverage crawling activities is the
one of the major challenges, of SQLIV tool that is
implements dynamic approach especially in modern
applications that require partial page refreshments or
login authentication [23,24]. To avoid such challenge
we designed our crawler to first go through seed URL
and extract all links and forms and later we extract
only forms and links that are potential to SQLIV,
unlike crawler design approach used in [8] which
contributes to low coverage existing SQLIV in tested
application. This is simple becausethe proposed tool
crawler was designed to look for the only page with
injection parameters which makes tool to logout of the
session and manual crawling need to be applied to
extract unvisited links by tool.

B. Component 2- Attacking
The proposed tool consist of three sub-attacks
components error based, blind and tautology SQIA
component each with well designed database of
different attack type.

1) Error based SOLIA:

Error-based SQLIA: is type of attack used to test
SQLIV in Web application based on return SQL
related errors from the application server as a result of
violation of developer intended queries[25].Our
SQLIV toolhas database of error related SQLIA of 65
different attack patterns. The purpose of this attack is
to trick database server to return SQL query related
error messages in response to attack request.
Occasionallydifferent database server such as
MySQL, Oracle, and SQL Server etc requires
different attack patterns that trigger SQL query related
errors in server response. Once link or form that is
potential to SQLIA is parse the tool start by visiting
the link page content, extract parameters list such as
“Username”, “Password”, “Search” fields etc as well
as Http “Get” and” Post “parameter and the third step
in this component is to append attack to parameters
list and send request to the database server. It is
important to know that attacking activities in attack

component are going parallel to analysis
activities.Analysis component also consists of three
sub-analysis components each performing different
analysis as we have three sub-attack components.
Once a response is received by database server,
analysis component takes place to check if page
content consists SQL query related error. Our tool
continues to inject error based attack until all attacksin
database is exhausted or if SQL query related error
was found the tool breaks the loop and takes the next
link or form in question.

Sometimes due to developer configuration SQL
related errors would not be returned to user request
but application is still vulnerable.In this case,tool
moves to next attack type which is blind SQL
injection attack [25,26].

2) Blind SOLIA:

Blind SQLIA: is the situation where by tool tries
to ask series of true and false questions to database
and monitor the behavior response of each question
[25]. The trick is that if two different request (true and
false request) was found to same response tool it can
be deduced that the target link is not vulnerable while
if difference exist it can be deduced that the target link
is indeed vulnerable to SQLIA. Therefore thetool
uses blind SQLIA database that consist 35 valid/true
request that works for most of the popular Relational
database server constructed using “Order by”.
“equality”*Union” and “If” operator. Once tool sends
valid request to application, it stores the response of
that request to database and continues by injecting
invalid request and comparing the response of first
request and previous request until all attacks in
database are exhausted or if difference in response
found the tool break the loop and parse next link in
question.

One of the common challenges we noticed faced
by many tools during penetration testing was
bypassing the login authentications especially to those
tool that apply one step crawling. Not only one step
crawling contribute to failure to bypass login
application but also include lack of different attack
patterns needed to bypass login application as most of
the time one attack pattern that bypass MySQL
version 1 might fails to bypass MySQL version 2 or
attack pattern that can bypass all MySQL server
version might fail to bypass other relational database
server such as Oracle, MySQL server, Sybase [27]
etc. Another common issue is that understanding most
common approaches application developers use to
adopt while developing query to handle user
authentication to applications. For example,
application developer might decide to write query that
connects valid user to application if and only if, one

226

record is returned from database.However, a
successful attack to bypass login authentication using
SQLIA always return all records in database[28] and
mostly connects last user of record in MySQL server
but varies among relational databases.

During our penetration testing we observed that
some tools inject successful attack that can bypass
application but failed to connect or log into
application as result of this rule applied by application
developer.

3) Tautologies

Tautology SQIA: is the type of attacks that always
shows true value when successfully executed by
database server in its form it is constructed using
keywords “OR 1=1", mainly used for authorized
database extraction and bypassing authentication
[25,28,29].

In this context therefore our SQLIV tool has
database of tautology SQLIA type of 150 different
patterns tested and worked on most commonly used
relational database server. 40 of these attacks pattern
contains keyword “limit by 1™ which handles the rule
enforced by application developer. The third
attackcomponent used by our tool is tautology attack
containing well constructed different attack pattern
that enable tool to bypass login authentication of same
database server with different versions as well as
different database server.

There are four basic ways that automatic scanning
tool can predict whether login is successful, these
includes: HTTP Basic authentication, NTLM
authentication, Form authentication, Setting an HTTP
cookie[30] Our SQLIV detection tool uses form
authentication. We choose specific text search
approach, before choosing this approach. meanwhile
we found it very common for most of Web
application to use text like”logout™. signout™ “log
out”.’sign out”, “profile” , after user had log into the
application and it is difficult to find Web application
that uses these text before user log into the system.
Each time our tool injects tautology attack it checks to
confirm if one of the above texts exists in page
response. Our tool continues to inject attack of this
type for the purpose of bypassing login authentication
until all attacks in database exhausted. Once above
text found in page response the tool break the loop
and take next link in question.

C. Component 3-Analysis

Study show shows that most of the SQIV detection
tool implementing dynamic approach rely on returned
SQLI related errors in order to predict whether
application is vulnerable or not[11,30]. Our SQLIV

detection tool is capable of performing three different
analyses, based on SQL related error messages,
similarity between two requests on one page and
based on appearance of specific texts as explained
(See B in section III).

Reporting Component: each time our tool find SQL
query related error response it store the link or form in
database called vulnerable page database and store the
attack that trigger that SQL related error in database
exploits database it performs same action if two
request (valid and invalid) request have different
response so also same technique apply when one of
the following texts”logout™,’signout™ “log out™,”sign
out”, “profile” found during authentication bypassing,
When all links or forms that are potential to SQLIA is
been tested the tool give choice for user choice to
generate report in PDF or Word file displaying
vulnerable link or form and what attack trigger that
vulnerability.

| <<Componesd>>

<<Component>>
~ Cawling — Attacking

<<Campensat>

<<Compenent>>

Generate Report

Exror Bassd
$QLA

<«Component>>

| <<Componeat>>

Generate Report

ax wing

W theteonticatio
Byp

Fig. 1 Component Based SQLIV Tool

I11. EXPERIMENTS

During our penetration testing we used open source
and commercial Web penetration tools as shown in
Table 1 to evaluate our tool against known numbers of
vulnerabilities Web applications. Despite there are
number of vulnerable applications designed to allow
individual or vendor to validate their tool against
required vulnerabilities we choose to design three
custom Web applications (See Table II) due to the fact
that most of the individual or vendors adjust the
effectiveness of their tool with respect to

227

vulnerabilities in these applications which may not
predict effectiveness of the tool in other application
as different developer have different ways of writing
same query[9,11]. First is online human resource
application consisting of six 6 known SQLIV (see
table) one 1 error based SQLIV three 3 blind SQLIV
and two 2 vulnerable login authentication, second is
online birds farming application with four (4) known
SQLIV (see table) 1 error based, 3 blind SQLIV and
one vulnerable login authentication and third is online
news application with three know SQLIV (see table)
one error based SQLIV and 1 blind SQLIV and one
vulnerable login authentication, using PHP, all
applications are running on window 7 32 bit operating
system and 6GB Ram, first and second application
running on apache 2.4 with MySQL 5.5.19, and third
application running on Apache 2.2.3 with MySQL
5.0.77. Against this background, it may be argued that
the major contribution of our work is ability to bypass
login authentication on different scenarios as failed by
most of the tools we compared to proposedtool. The
query that connect employee to application using
user.php was developed without enforcing any rule
and remaining three login authentication admin.php in
HR, login.ph in farm and login.php in news was
developed using rule that enforce rule that user should
be connected to application if only one row in
database is returned.

TABLE 1.TOOLS USED TO TEST SQLIV VULNERABLE APPLICATIONS

Tool Vendor/owner Version

Vega Subgraph N.A
Zap OWASP 2.4.0
Nikito CIRT 2:1.5
Wapiti Informatica Gesfor

2.3.0
Acunetix WVS Acunetix 7.0
W3af w3af.org 1.6
AppScan IBM 9.0

TABLE II. THREE CUSTOME VULNERABLE WEB APPLICATIONS
WITH KNOWN VULNERABLIITIES

Test
bed

SQLI
vulnerability

Login
required

Vulnerable page

HR 6 2 Admin.php
User.php
Users_Seach.php
Schedule.php
Department.php

Emp_History.php

Farm 4 1 Login.php
Breed_category.php
Find_breed.php

Purchase_history.php

News | 3 Login.php
1 News_description.php
Browse.php
TABLE lI. RESULT OF TESTING AGAINST THREE
VULNERABLE APPLICATIONS USING CHOOSING TOOLS
AND OUR APPROACH

TooL HR FARM NEWS
Vega 1/3/0 1/2/0 0/0/0
Zap 1/3/0 1/0/0 0/0/0
Nikito 1/2/0) 1/0/0 0/0/0
Wapiti 2/5/1 3/7/0 /0/0/0
Acunetix WVS | 1/3/1 1/2/0 0/0/0
W3af 3/3/1 3/4/0 0/0/0
AppScan 1/3/0 1/2/0 0/0/0
Aliero 1/3/2 1/2/1 0/0/1

Table III shows that Vega and appScan detect both
error based and blind SQLIV exist in HR and Farm
application but failed to bypass any of login
authentication in three applications , with no any
detection of vulnerability in News application. Zap
and Nikito detect both error based and three blind
SQLIV, two blind SQLIV respectively in HR
application, also both detect error based in farm
application but and failed to bypass login
authentication in any of three applications with no any
vulnerability detection in News application. Wapiti
failed to bypass three login authentications one in
each applications, however managed to bypass one
login authentication in HR and detect both error based
and blind SQLIV exist in HR and Farm with ten false
negative SQLIV and with no detection of any
vulnerability in news application. Acunetix tool
detect all error based and blind SQLIV, bypass one
login authentication and failed to bypass another in
HR, similarly it detect error based and blind SQLIV in
Farm application and failed authentication in Farm
with no any detection of wvulnerability in news
application. W3af detect all error based and blind
SQIV in both HR and Farm with Five false negative
and with no detection of any vulnerability in news
application and also failed to bypass any login
authentication in three applications. Our proposed tool
detects all vulnerability in HR and Farm and also
successfully bypasses all login authentications in all
three applications but failed to detect error based and
blind SQLIV in news applications. Some of the

228

reasons most of the tools failed to bypass login
authentication is that they do not have well
constructed tautology attacks to successfully bypass
login authentication and other do not use tautology at
all in their attack databases. Another reason is that all
three authentications queries used in three Website
(see table) tested tool on use the check that if return
row is not equal to one authentication would not
succeed. To confirm failure of authentication we
perform similar experiment used in (2) to monitor the
communication between tool and target application
using wireshark and we found that Vega, Acunetix
and AppScan send successful attacks that enable
bypassing login authentication but because of the rule
applied by query developer authentication get failed
all the time. It is important to know that considering
all scenarios while developing attacks pattern for
bypassing login authentication is very important i.e
using such as “LIMIT BY 1" allows returning of one
row for successful SQLIA as required by developer .
As shown in table 4 non-of the tool was able to detect
any etror based or blind SQLIV due to the fact that
request to the database was designed in such a way
that no Http post or get was used to retriev the
information from database. This shows that most of
the Web penetration tools depend on Http post and get
to send request to database.

IV. CONCLUSION

In this paper we proposed component based for
SQLIV detection tool for the purpose of enhancing
component reusability, fast integration and
maintenance in less price. The evaluation of our
SQLIV detection tool with seven selected SQLIV
detection tools against three testbed applications
shows significant difference in which our tool detects
most of the vulnerabilities that other scanner ware not
able to detect. The future work is to update our tool
so that it would be able to detect other web
applications vulnerabilities such as XSS(cross-site-
scripting) and file inclusion vulnerabilities.

ACKNOWLEDGEMENT

This research fully supported by
“UniversitiTeknologiMalaysia, Johor Bahru,
Malaysia. Authors would like to acknowledge Faculty

of Computing for supporting this work.

was

REFERENCES

[1] Tudor, J. 2013. Web Applications Vulnerability statistic 2013.
Retrieved on 02/09/2015 from; http://sitic.org/wp-

content/uploads/Web-Application-Vulnerability-Statistics-
2013.

[2] OWASPD-Open Web Application Security Project 2014. Top
ten most critical Web Application Security Risks. Retrevied
on 2/09/2015 from; http://cwe.mitre.org/cwss/archive. htm

[3]Cenzic’s. 2014. Application Vulnerability Trends Report: 2014.
Retrieved 29/07/2015, from https://www.info-point-
security.com/sites/default/files/cenzic-vulnerability-report-
2014.pdf

[4] H. Shahriar, andM. Zulkernine 2012. Information-theoretic
detection of sql injection attacks. High-Assurance Systems
Engineering (HASE),2012 IEEE 14th International
Symposium on, IEEE, 40-47.

[5]AJoshi, V. Geetha2014. SQL Injection detection using
machine learning, Control, Instrumentation, Communication
and Computational Technologies (ICCICCT), 2014
International Conference on, IEEE, 1111-1115

[6] M. A Prabakar, M. Karthikeyan, M. and K. Marimuthu 2013.
An efficient technique for preventing SQL injection attack
using pattern matching algorithm, Emerging Trends in
Computing, Communication and Nanotechnology (ICE-
CCN).2013 International Conference on IEEE, 503-506.

[7] W.G.Halfond, J. Viegas and A. Orso 2006. Classification of
SQL Injection Attacks and Countermeasure, IEEE
International Symposium on Secure Software Engineering
(ISSSE 2006), pp. 87—96.

[8]R. McClure, and I. H. Kruger 2005. SQL DOM: compile time
checking of dynamic SQL
statements. SoftwareEngineering2005.Proceedings.27th
International Conference on IEEE ISBN:1-59593-963-2page
88 —96.

[9IN.Antunes and M. Vieira 2010. Benchmarking vulnerability
detection tools for web services. Paper presented at the Web
Services (ICWS), 2010 IEEE International Conference on.

[10] V. Livshits, and M. S. Lam 2005. Finding Security Errors in
Java Programs with Static Analysis. In Proceedings of the
14th Usenix Security Symposium, pages 271-286.

[11]Z. Duric2013. A black-box testing tool for detecting SQL
injection vulnerabilities. Paper presented at the Informatics
and Applications (ICIA), 2013 Second International
Conference on IEEE.

[12]JA.Liban, and H. Shadi. 2014. Enhancing Mysql Injector
vulnerability checker tool (Mysql Injector) using inference
binary search algorithm for blind timing-based attack. Paper
presented at the Control and System Graduate Research
Colloquium (ICSGRC), 2014 IEEE 5th.

[13]S. Kals Kirda E. Kruegel Christopher, and J. Nenad 2006.
Secubat: a web vulnerability scanner. Paper presented at the
Proceedings of the 15th international conference on World
Wide Web.

[14] Y. Huang, S. Huang, T. Lin, and C. Tsai 2003. Web
Application SecurityAssessment by Fault Injection and
Behavior Monitoring. In Proceedingsof the 11th International
World Wide Web Conference (WWW 03),May 2003.

[15] W. G. Halfond, and A. Orso, 2005. AMNESIA: Analysis and
Monitoring for NEutralizing SQL-Injection attacks”,
Proceedings of the 20thIEEE/ACM international Conference
on Automated softwareengineering, pp. 174-183, 2005.

[16J]OWSAP Open Web Security Project. Retrieved 29/06/2015,
from
https://www.owasp.org/index.php/Category: Vulnerability Sc
anning_Tools

[17]M.F Jnena 2013. Modern Approach for WEB Applications
Vulnerability Analysis retrieve on 27/8/2015
fromhttp://library.iugaza.edu.ps/thesis/109553.pdf

229

[18] Shay Chen 2011. Security Tool Benchmarking available at
http://sectooladdict.blogspot.my/2011/08/commercial-web-
application-scanner. html

[19] Russell Clarke and David Dorwin 2010. Is Open Source
Software More Secure? Retrieved on 28/7/2015 from
http://courses.cs.washington.edu/courses/csep590/05aw/white
paper_turnin/oss(10).pdf

[20]X. Zhang, and Z. Wang. 2010. Notice of Retraction A Static
Analysis Tool for Detecting Web Application Injection
Vulnerabilities for ASP Program. Paper presented at the e-
Business and Information System Security (EBISS), 2010
2nd International Conference on.

[21]L. Zhang, et al. 2010. D-WAV: A web application
vulnerabilities detection tool using Characteristics of Web
Forms." Software Engineering Advances (ICSEA), 2010
Fifth International Conference on. IEEE, 2010.

[22] F. Jose” S. Nuno . V. Marco , and M. Henrique"Analysis of
field data on web security vulnerabilities."Dependable and
Secure Computing, I[EEE Transactions on 11.2 (2014): 89-
100.

[23] A. Doupé, L. Cavedon,C. Kruegel, and G. Vigna, 2012.
Enemy of the State: A State-Aware Black-Box Web
Vulnerability Scanner. In USENIX Security Symposium (pp.

523-538).

[24] O. Brandman, O.J. Cho,H. Garcia-Molina, and S.
Shivakumar, (2000). Crawler-friendly web
servers. Performance and Architecture of Web Servers
(PAWS) 2000.

[25] D. Chad 2012. Practical Identification of SQL Injection

Vulnerabilities. Retrieved on 3/8/2015 from https://www.us-
cert.gov/sites/default/files/publications/Practical-SQLi-
Identification.pdf

[26]S. Kevin 2003. Are your web applications vulnerable?
available at http://www.net-
security.org/dl/articles/Blind_SQLInjection.pdf

[27] Preventing SQL Injection Attacks. Retrieved on 3/8/2015
from at http://www.applicure.com/solutions/prevent-sql-
injection-attacks

[28]R. Joseph Manoj et al 2014. An Approach to Detect and
Prevent Tautology Type SQL Injection in Web Service
Based on XSchema validation, International Journal Of
Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 1, Jan 2014 Page No. 3695-3699

[29] E.H Cheon, Z. Huang, and Y.S Lee 2013. Preventing SQL
Injection Attack Based on Machine Learning, International

Journal of Advancements in Computing Technology Vol. 5,
No. 9, pp. 967 - 974.

[30] http://w3af.org/howtos/authenticated-scans

[31] A. Ciampa, C.A Visaggio, and M. Penta, 2010. A heuristic-
based approach for detecting SQL-injection vulnerabilities in
Web applications. InProceedings of the 2010 ICSE

Workshop on Software Engineering for Secure Systems (pp.
43-49). ACM.

