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ABSTRACT 

The spread of infectious diseases has been tied to movement of people across borders. Statistical data 

have shown that there are a lot of factors that can make a disease to break out in a given community or 

country. In this work we analyzed measles data set of West African countries and we found that there 

is a synchrony in outbreak of measles in countries sharing borders. Also, from our analysis, we 

discovered that vaccination has great effect on the number of reported cases. 
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INTRODUCTION 

Infectious diseases had proven to shed more 

light on the concept of ‘spatiotemporal’. Spatial 

transmission of directly transmitted infectious 

diseases is ultimately tied to the movement of 

the hosts. A metapopulation consists of a group 

of spatially separated populations of the same 

species which interact at some level. The term 

metapopulation was coined by Richard Levins 

in 1970 to describe a model of population 

dynamics of insect pests in agricultural fields, 

but the idea has been most broadly applied to 

species in naturally or artificially fragmented 

habitats. It consists of a population of 

populations. The network of spatial spread (the 

disease’s spatial coupling) may therefore, be 

expected to be related to the pattern of human 

movement or traffic within the host 

metapopulation. 

The outbreak of Measles is noted to be seasonal 

and it can be synchronous across the host 

metapolulation. Movements across borders have 

reached a very complex degree, to the extent that 

monitoring has become unrealistic. Most 

countries in Africa have varying visa policies, 

but a lot of them have policies that are 

favourable to other African citizens. The 

harmonized international passport programme 

introduced by ECOWAS has lead to great trans-

border movements by citizens of member states. 

This is also true of most regional settings all over 

the world e.g. Southern African Development 

Commission, EU, etc. 

This practice has resulted in transportation of 

various goods, humans, diseases etc. 

continuously across borders. As we know, 

measles does not need a physical contact before 

it can be transmitted from one individual to 

another that is why it is being regarded as one of 

the most contagious diseases in the world [ 

www.wikipedia.com]. With this, it is very easy 

for people to ‘transport’ the disease across 

borders. Rubeola and rubella viruses are spread 

through the respiratory route. This means they 

are contagious through coughing and sneezing. 

In fact, rubeola virus is one of the most 

contagious viruses known to man 

[www.wikipedia.com]. As a result, it can spread 

rapidly in a susceptible population. Infected 

people carry the virus in their respiratory tract 

before they get sick, so they can spread the 

disease without being aware of it. More so, most 

West African countries do not have strict health 

policies when it comes to immigration within the 

sub-region. Measles dynamics have sparked a 

long history of data analysis and modelling 

across a range of disciplines. Mathematical 

epidemiologists have drawn by the importance 

of the disease and have dissected most of the 

main features of measles transmission within 

local communities (McLean et al. 1988; 

Mollison et al. 1993; Xia et al. 2004).  

Epidemiologists had attempted to study a lot of 

scenario when it comes to spatial dynamics of 
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measles.  Bjørnstad et al. (2002) and Dietz 

(1976), in their studies seasonality in 

transmission was considered, while Earn et al. 

(2000), Finkensta¨dt and Grenfell (2000), 

Finkensta¨dt et al. (1998), Grenfell et al. (2002), 

McLean and Anderson (1988) considered the 

host demography (birth rate and vaccination). 

Xai et al. (2004) related measles dynamics to 

consumer-resource dynamics by studying the 

spatiotemporal distribution of measles. 

There are basically two types of transmissions 

when it comes to measles; the first one is ‘local’ 

transmission among individuals within an 

enclaves i.e., cities, towns etc., and the second 

one is transmission between enclaves (inter-

cities, across countries etc.). In (Grenfell et al. 

1997; Earn et al. 1998; Swinton, 19998) a 

relationship was established between the 

regional dynamics of infectious diseases and the 

dynamics of ecological met populations. Xai et 

al. (2004) underscored the importance of 

infection process at local level and how it affects 

the spatiotemporal pattern of epidemics.  

The network of spatial spread (the disease’s 

spatial coupling) may therefore be expected to 

be related to movement within the host 

metapopulation. Spatial coupling was initially 

assumed to be a simple inverse function of 

distance (Okubo, 1980). Again it has been noted 

that emigration and immigration rates depend on 

population size (Hanski, 1998). Also distance 

between enclaves/countries can be a simple but 

effective assumption in spatial analysis 

(Erlander, 1990). 

As we all know, epidemiology study involves 

comparing, planning, implementing, evaluating, 

and optimizing various detection, prevention, 

therapy, and control programs. Epidemiological 

modelling can contribute to the design and 

analysis of epidemiological surveys, suggest 

important data that should be collected, identify 

trends, make general forecasts, and estimate the 

uncertainty in forecasts. So, in this work an 

attempt is made to analyze trends in measles data 

(like synchronicity, prevalence, etc) for West 

African countries.  Infectious diseases dynamics 

in a single individual is fairly simple and well 

understood, so connecting models to data-set of 

infectious diseases is an interesting study area 

for epidemiologists and this is alluded to by 

Grenfell et al. (2002).  The scope of this study is 

to perform a comprehensive analysis of measles 

data-set of West African subregion. 

MATERIALS AND METHOD 

Data Collection  

The data-set used in this study was obtained 

from the WHO website [www.who.int]. The 

data captured number of reported cases of 

measles’ outbreak for each country in the 

subregion from 1980 to 2015. The vaccination 

data captures the percentage of vaccinated 

individuals that are less than 1 year old in the 

population. Some of the data were missing 

(there were no data for some years in some of 

the countries under consideration) and so  a code 

was written to take care of the missing data. 

Detrending 

Trend in a time series is a slow, gradual change 

in some property of the series over the whole 

interval under investigation.  

Trend is sometimes loosely defined as a long 

term change in the mean, but can also refer to 

change in other statistical properties. 

Detrending is the statistical or mathematical 

operation of removing trend from the series. 

Detrending is often applied to remove a feature 

thought to distort or obscure the relationships of 

interest.  

Detrending is also sometimes used as a 

preprocessing step to prepare time series for 

analysis by methods that assume stationarity. 

Anderson [1], describes differencing as a way to 

remove nonstationarity from time series in 

general. 

RESULTS AND INTERPRETATION 

At this point, there is a need for a pictorial 

representation of the data, so the number of 

reported cases was  plotted (frequency) against 

the year to see the trend in the data and how each 

country is faring from year to year as campaign 

towards eradication of measles is being 

intensified.  

In addition to the graphical representation of 

reported cases, a graph of the prevalence is also 

presented. 

Prevalence is the measure of how commonly a 

disease or condition occurs in a population. 

Prevalence measures how much of some disease 

or condition there is in a population at a 

particular point in time.  It is calculated by 

dividing the number of persons with the disease 

or condition at a particular point by the number 

of individuals examined. 
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The graphs of the incidence rate/number of 

reported cases for various counties are presented 

in Figures 1-6 and the prevalence profiles are 

provide in Figures 7-10. 

 

 

Figure 1: Number of measles reported cases in Benin Republic, Burkina Faso and Cape Verde between 

1980 and 2015. (The break in the lines is as a result of missing data from the data-set) 

 

 

Figure 2: Number of measles reported cases in Cote d'Ivoire, Gambia and Ghana between 1980 and 

2015. (The break in the lines for Cote d'Ivoire is as a result of missing data due to war while the relative 

low and missing data recorded for Gambia is due largely to political instability like coup. 

 

 

Figure 3: Number of measles reported cases in Guinea, Guinea-Bissau and Liberia between 1980 and 

2015. (The missing data record in Guinea-Bissau was due to Civil war triggered by army uprising. Also 

the missing data recorded in 1990 and 1991 in Liberia was due to Civil wars) 
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Figure 4: Number of measles reported cases in Mali, Mauritania and Niger between 1980 and 2015. 

(Niger is known for high rate of measles outbreak) 

 

 

Figure 5: Number of measles reported cases in Nigeria, Senegal and Sierra Leone between 1980 and 

2015. (Nigeria remain the leading country when it comes to measles outbreak, this is due to the large 

population of Nigeria; the low cases reported in Senegal was due to war between government and two 

separatists and the missing data in Sierra Leone was due to extension of Liberia’s war into Sierra Leone, 

which lead to brutal civil war for 10 years.) 

 

 

Figure 6: Number of measles reported cases in Benin Republic, Burkina Faso and Cape Verde between 

1980 and 2015. (The break in the lines is as a result of missing data from the data-set) 
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Figure 7: Prevalence of measles in Benin, Burkina Faso, Cape Verde and Cote d’Ivoire with Cape Verde 

reporting highest level of prevalence at some point in the time series. 

 

 

Figure 8: Prevalence of measles in Gambia, Ghana, Guinea and Guinea-Bissau with Ghana reporting 

highest level of prevalence at some point in the time series.  

 

 

Figure 9: Prevalence of measles in Liberia, Mali, Mauritania and Niger with Niger reporting highest 

level of prevalence at some point in the time-series and also with the highest reported cases in this 

segment. 
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Figure 10: Prevalence of measles in Nigeria, Senegal, Sierra Leone and Togo, though Nigeria has the 

highest reported cases, Togo has the highest prevalence rate at a time.  

Loess

LOESS denotes a method that is also known as 

locally weighted polynomial regression. At each 

point in the data-set (comprising m points), a 

low-degree polynomial is fitted to a subset of the 

data, with explanatory variable values near the 

point whose response is being estimated. The 

polynomial is fitted using weighted least 

squares, giving more weight to points near the 

point which response is being estimated and less 

weight to points further away. The value of the 

regression function for the point is then obtained 

by evaluating the local polynomial using the 

explanatory variable values for that data point. 

The LOESS fit is complete after regression 

function values have been computed for each of 

the  data points. Many of the details of this 

method, such as the degree of the polynomial 

model and the weights are flexible. 

The subsets of data used for each weighted least 

squares fit in LOESS are determined by a nearest 

neighbour algorithm. A user-specified input to 

the procedure called the "bandwidth" or 

"smoothen parameter" determines how much of 

the data is used to fit each local polynomial. The 

smoothen parameter,  , is a number between 

, with  denoting the degree 

of the local polynomial. The value of  is the 

proportion of data used in each fit. The subset of 

data used in each weighted least squares fit 

comprises the  (rounded to the next largest 

integer) points whose explanatory variable 

values are closest to the point at which the 

response is being estimated. 

 is called the smoothen parameter because it 

controls the flexibility of the LOESS regression 

function.  

The local polynomials fitted to each subset of the 

data are almost always of first or second degree; 

that is, either locally linear (in the straight line 

sense) or locally quadratic. Using a zero degree 

polynomial turns LOESS into a weighted 

moving average (www.wikipedia.com). 

The use of the weights is based on the idea that 

points near each other in the explanatory 

variable space are more likely to be related to 

each other in a simple way than points that are 

further apart. Following this logic, points that 

are likely to follow the local model influence the 

local model parameter estimates the most. Points 

that are less likely to actually conform to the 

local model have less influence on the local 

model parameter estimates. 

The traditional weight function used for LOESS 

is the tri-cube weight function which is given as: 

. 

In this work the LOESS fit per country is 

presented.  Figures 11a-11e show the LEOSS 

fits. 
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Figure 11a: Loess Fit for Benin, Burkina Faso and Cape Verde. 

 

 

 

 

 

 

Figure 11b: Loess Fit for Cote d’Ivoire, Gambia and Ghana. 

 

 

 

 

 

 

 

 

Figure 11c: Loess Fit for Benin, Burkina Faso and Cape Verde. 

 

 

 

 

 

 

 

 

Figure 11d: Loess Fit for Mali, Mauritania and Niger. 
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Figure 11e: Loess Fit for Nigeria, Senegal and Sierra Leone. 

 

 

Figure 11f: Loess Fit for Togo. 

 

In this study the method of detrending called 

differencing was used; which is a method of 

making a data set (time series) that is non 

stationary in mean stationary by taking the first 

difference. The value of the trend line was then 

subtracted from the original data, giving a time 

series of residuals from the trend. This 

“difference” option is attractive for simplicity, 

and for giving a convenient breakdown of the 

variance. The residual series is in the same units 

as the original series, and the total sum of 

squares of the original data is the same as the 

trend sum-of-squares plus the residual sum-of-

squares.  In addition to this, we normalized and 

‘centred’ the detrended data on zero (mean = 0, 

variance = 1). Finally we plotted the standard 

deviation of points from zero versus year as 

shown in Figures 12a-12f 

 

 

Figure 12a: Profile of Standard deviation of Detrended-normalized-centred data for Benin, Burkina 

Faso and Cape Verde. 
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Figure 12b: Profile of Standard deviation of Detrended-normalized-centred data for Cote d’Ivoire, 

Gambia and Ghana. 
 

 

Figure 12c: Profile of Standard deviation of Detrended-normalized-centred data for Guinea, Guinea 

Bissau and Liberia. 
 

 

Figure 12d: Profile of Standard deviation of Detrended-normalized-centred data for Mali, Mauritania 

and Niger. 

 

Figure 12e: Profile of Standard deviation of Detrended-normalized-centred data for Nigeria, Senagal 

and Sierra Leone. 



Bolarin et al., 2016  53 
 

ISSN:  LAJANS 1(1):44-57 

 

Figure 12f: Profile of Standard deviation of 

Detrended-normalized-centred data for Togo. 

 

Synchrony 

An interesting feature of the data is the degree to 

which peaks and troughs in cases appear 

coincident in time. A randomization test of the 

pairwise correlations in oscillations of the time 

series found significant evidence of phase 

synchrony (p=0.0 39), implying some 

synchrony in measles epidemics over extremely 

large spatial scales.  

The degree of phase synchrony tends to decay 

(if existing) with distance between countries 

(pairwise coherence), although this relationship 

is not significant at the 5% level (P=0.1414) 

when tested with appropriately conservative 

randomization procedures for the time series. 

To investigate synchrony, the approach of 

Hampson et al. [11] was followed. The pairs of 

detrended, normalized-‘centred’ time series 

were compared by using the sum of their 

products through time. Positive products 

indicate phase synchrony, and negative products 

indicate phase asynchrony. Simulated pairs were 

generated with the time series shuffled by an 

offset of between 1 and 36 years for all possible 

variations, and the sum of the product was 

calculated. An overall statistics, and significance 

level, was therefore generated from the sum of 

the pairwise products of all countries included in 

the analysis. Identical results were obtained by 

using cross-correlation functions and measures 

of region wide synchrony. Additionally, the 

pairwise test statistics were plotted against the 

log of the distance between countries (from the 

central point in each country, with distance 

calculated by using the Haversine formula). To 

test the a priori hypothesis that correlation 

between countries decreases with distance, we 

calculated the slope of a weighted regression of 

the pairwise correlation statistic and the log 

distance between countries. We then 

randomized the distance between countries and 

recalculated the slope for 10,000 runs to estimate 

the probability of generating such a slope by 

chance (shuffle slope). Though there is a phase 

synchrony (positive values indicated that). there 

is no sufficient evidence of correlation between 

geographical distance and phase synchrony. 

 

 

Figure 13: Overall Statistics 
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Figure 14: Relationship between geographic distance and phase synchrony. The red line is the weighted 

regression line (using the square root of the number of points in the time series) of the correlation 

statistic against the log distance between countries. 

 

Figure 15: Histogram of 10,000 shuffles. 

 

Effect of Vaccination 

We examined the effect of vaccination on the data set for each country and the findings are presented 

in Figures 16 -21. The findings revealed that the era of vaccination had really impacted on the number 

of cases reported after the introduction of vaccination (though there were sparks but vaccination had 

been able to keep the cases low). 
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Figure 16: Vaccination profile of Benin, Burkina Faso and Cape Verde. 

 

 

Figure 17: Vaccination profile of  Cote d’Ivoire, Gambia and Ghana. 

Cote d’Ivoire was able to embark on an uninterrupted vaccination coverage (unlike some countries); 

Gambia was able to record vaccination coverage that was above 70% since mid 80s and that has helped 

in keeping the number of reported cases low; Ghana was able to embark on vaccination coverage that 

average 50% since late 80s.  

 

Figure 18: Vaccination profile of Guinea, Guinea-Bissau and Liberia. 

Guinea was able to achieve a 50% coverage for the first time in early 90s but drops along the line and 

the drop coincides with the year the highest number of cases was reported; Guinea-Bissau was able to 

begin uninterrupted vaccination in mid 80s; Liberia was able to start vaccination in the late 90s. 
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Figure 19: Vaccination profile of Mali, Mauritania and Niger. 

 Mali was able to begin a steady 50% and above coverage in the mid 90s, though they have been able 

to attain the percentage before then but it was not sustained; Mauritania was able to achieve 50% 

coverage in mid 90s and did not go down since then; Niger could not achieve up to 50% vaccination 

coverage until 2006. 

 

Figure 20: Vaccination profile of Nigeria, Senegal and Sierra Leone. 

 

Nigeria was able to achieve 50% vaccination 

coverage in late 80s but could not sustain it, they 

were able to achieve 50% again after 16 years 

from the first time they achieved it; Senegal 

began a sustained 50% coverage in late 80s; 

Sierra Leone could not begin vaccination until 

late 90s. 

 

Figure 21: Togo began sustained vaccination 

coverage in 1987 

Conclusion 

An extensive analysis on West African Measles 

data set was performed and some interesting 

results were obtained. It wasfound out that 

vaccination has serious effect on the number of 

reported cases in each of the counties 

considered. The occurrence of measles outbreak 

depicts synchrony across countries under 

consideration but there was no sufficient 

information to show that there is correlation 

between geographical distance and phase 

synchrony. The work was based on secondary 

data, but similar analysis could be carried out on 

primary data provided the data capturing 

mechanism is well designed.  
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