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Abstract 

One distinct family of methods for the numerical approximation of general and special second order ordinary 

differential equation is the Falkner-type methods which consists of a couple of rational formulas, one to follow the 

solution and the order to follow the derivative. In this paper, we explore this method by introducing a number of off-

step points in order to increase the number of function evaluation in the derivation process of a two-step Falkner-type 

method through the interpolation and collocation technique. The two main Falkner formulas and the additional ones 

to complete the block procedure are obtained from a continuous formulation. The basic properties of the proposed 

method were investigated and found to be zero-stable and of order 9p   which implies convergence.The 

performance of the new method was shown through some numerical examples and found to have higher accuracy than 

the existing methods considered in the literature. 
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1. Introduction  

Differential equation of the form  

          0 0, , , ,y x f x y x y x y a y y a y           (1) 

where    , , : ,x a b y a b   and  : ,f a b    are sufficiently differentiable functions; is usually used to 

model numerous problems such as chemical kinetics, orbital dynamics, circuit and control theory and Newton‟s 

second law of motion. However, in most cases, the differential equations so formed for these real life problems often 

do not have analytical solution. Therefore one of the possible ways to tackle this problem is to consider a discrete 

domain rather a continuous one. Hence for practical purposes such as engineering, a numerical approximation to the 

solution is often sufficient. Although it is possible to integrate (1) by reducing it to a first-order system and applying 

one of the methods available for such systems, it however, seems natural to employ numerical methods to integrate the 

problem directly as this result to more efficiency of the method (Ramos et al., 2016, Mohammed et al., 2010, 

Mohammed et al., 2019, Badmus and Yahaya, 2009, Awoyemi, 2001). Scholars have proposed numerous numerical 

methods for approximating initial value problems such as (1); these methods range from discrete schemes (Lambert, 

1973; Butcher, 2008; Fatunla, 1988) to predictor corrector methods (Onuman;yiet al., 1994; Fatunla 1994; Awoyemi, 

and Idowu, 2005; Areo and Adeniyi, 2013; Omar and Kuboye, 2015; Ndanusa and Tafida, 2016) and then block 

methods ((Badmus and Yahaya, 2009; Jator and Li, 2012; Mohammed, 2011; Mohammed and Adeniyi, 2014; 

Badmus, et al., 2015; Akinfenwa, et al., 2013; Omar and Adeyeye, 2016; Akinfenwaet al., 2017). 

 One distinct family of methods for the numerical approximation of (1) is the Falkner-type methods (see Falkner, 

1936) which can be written in the form: 
1
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where h  is the step-size, ny  and ny  are numerical approximations to the theoretical solution and its derivative at the 

grid point 
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      and 

j

nf  is the standard notation for the 

backward differences. 

There exist similar implicit Falkner formulas (see Collatz, 1966) given by  
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We note that the formulas given in (4) and (5) are the Adams-Bashforth and Adams-Moulton methods respectively for 

solving the problem  

       , ,y x f x y x y x   

which are used to obtain the values of the first derivatives. 

 The usual and unusual implementation of these methods have been considered in the literature. For instance, in 

molecular dynamics, when the acceleration at time only depends on position and not on velocity, the direct integration 

methods are usually implemented in a semi-implicit formulation. This is the case for the well known Velocity Verlet 

algorithm (Swope, et al., 1982). This method uses the one-step explicit method in (2) to compute the positions.  
2
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n n n n

h
y y hy y

            (6) 

and the one-step implicit method in (5) to update the velocities  

 
2

1 14
2

n n n n

h
y y y y 
              (7) 

Beeman (1976) proposed the modification of the Verlet family of methods for the calculation of velocities. The 

method used to compute the positions at time nx h is the following two-step explicit method given in (2) 
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           (8)  

while the formula to update the velocities is the following two-step method 

 1 1 12 5
6

n n n n n

h
y hy f f f  
            (9) 

In this paper, we present the hybrid-block form of the Falkner formulas where generalized 6 off-step points 

are considered within 0 2x  in order to increase the number of function evaluation.  

 

2. Development of the method  

In developing the new 2-step Falkner type computational method for solving general and special second order 

differential equation in (1), we shall consider the power series as a basis function in the form  

 
1
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r s
j
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           (2) 

on the partition  

0 1 1... ...n n Na x x x x x b        of the interval of integration  , ,a b  with a constant step size h , given by 

1 ; 0,1,..., 1.n nh x x n N    'ja s  are unknown coefficients to be determined r  and s  are numbers of 

interpolation and collocation points respectively. We impose that the interpolating function (2) coincides with the 

analytical solution at the end point  1nx r   to obtain the equation  

 n ny x y           (3) 

Also if the function (2) satisfies the differential equation (1), we demand that in order to obtain the Falkner type 

method, we collocate the first derivative of (2) at nx  to obtain the following equation  

 n ny x y            (4) 

and collocate its second derivative at the grid points (0,1,2) and at the carefully selected off-step points 

2 3 4 6 7 9
, , , , ,

5 5 5 5 5 5
v

 
  
 

to obtain 

 n vj n vjy x f 
           (5) 

We emphasize that equations (3), (4) and (5) lead to a system of eleven equations which is solved using the matrix 

inversion method to obtain 'ja s . The proposed 2-step Falkner method is constructed by substituting the values of 

'ja s  into equation (2) and then simplified to obtain the continuous representation of the method in the form 

     n n n j n j n v n vy x y xy x f x f    
          (6) 

Differentiating (6) we get the first derivative of the continuous scheme as      n n j n j n v n vy x y x f x f    
     

      (7) 
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Evaluating (6) and (7) at 
2 3 4 6 7 9

, , ,1, , , , 2
5 5 5 5 5 5

 
 
 

respectively, we obtain the 2-step block hybrid Falkner-type method 

defined in general matrix form as  

   2

1 0 2 0 2 0 2 1m m m m mAY A Y h B Y h C F C F  
         (8) 

and  1 0,1 2 0 2 1m m m mB Y B Y h D F D F 
          (9) 

where ,m mY Y   and mF  are vectors defined as 

2 3 4 6 7 9 8 7 6 4 3 1
5 5 5 55 5 5 5 5 5 5 5

1 2 2 1, , , , , , , , , , , , , , ,
T T

m n n m n nn n n nn n n n n n n n
Y y y y y y y y y Y y y y y y y y y             

    
   

,

2 3 4 6 7 9 8 7 6 4 3 1
5 5 5 55 5 5 5 5 5 5 5

1 2 2 1, , , , , , , , , , , , , , ,
T T

m n n m n nn n n nn n n n n n n n
Y y y y y y y y y Y y y y y y y y y             

                     
   

, 

2 3 4 6 7 9 8 7 6 4 3 1
5 5 5 55 5 5 5 5 5 5 5

1 2 2 1, , , , , , , , , , , , , , ,
T T

m n n m n nn n n nn n n n n n n n
F f f f f f f f f F f f f f f f f f             

    
   

 

1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0
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0 0 0 0 0 0 0 1
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1

1687517 103178 64924 500114 27131 343162 17422 233509

6615000 165375 70875 590625 56700 2480625 1488375 99225000

7819983 87609 458217 131949 190497 481221 20323 326673

15680000 78400 280000 87500 224000 1960000 980000 78

C

   

   



400000

41098 2346656 835568 47392 259556 174752 663776 74078

55125 1488375 354375 21875 212625 496125 22325625 12403125

672065 129025 8065 34123 76975 58295 29515 15809

677376 63504 2592 12096 48384 127008 762048 2032128

3035

   

   

07 15234 16929 15066 6879 17334 1462 2349

245000 6125 4375 4375 3500 30625 30625 245000

4278239 5720897 2998849 3656723 3690337 2168887 82663 1475929

2880000 1944000 648000 900000 1555200 3240000 1458000 129600000

6187023

313

   

   

749169 212139 7236783 685017 4374 173151 1275021

6000 196000 35000 1400000 224000 6125 1960000 78400000

2605 50650 3830 358 22825 2770 5210 521

1176 11907 567 63 6804 3969 35721 31752
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20
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60399 5
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4. Analysis of the method 

4.1. Local truncation error and order of accuracy. 

Following the definition of Fatunla (1991) and Lambert (1973), we define the local truncation error associated with 

the conventional forms of (8) and (9) to be the linear difference operators 

        2
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;
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L y x h y x jh h y x h f x jvh  


             10) 

and 

      2
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             (11) 

respectively. Assuming that  ny x  and  ny x are sufficiently differentiable, we can expand the terms in (10) and 

(11) as Taylor series about the point nx  to obtain the expression  

       ( )

0 1; ... ...q q

n n n q nL y x h C y x C hy x C h y x            (12) 

and 

       ( 1)

0 1; ... ...q q

n n n q nL y x h C y x C hy x C h y x             (13) 

respectively; 

where the constants qC  and qC 0,1,...q   are given as follows 
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According to Henrici (1962), we say the methods (8) and (9) are of order p if 0 1 1 2... 0, 0p p pC C C C C       

and 2pC  is the error constant and 
   22

2

pp

p nC h y x


  the principal truncation error at the point nx .  
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From our analysis, the block method (8) and (9) have a uniform order 9p  with relative small error constants 

2 11

671233 3737673 7614548 541157
, , , ,

106589355468750 336875000000000 479652099609375 26195400000000
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131591796875 5011875000000000 336875000000000 306977343750

T

pC C
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2293 2168887 173151 521
, , ,
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4.2. Zero Stability 

Zero-stability is concerned with the stability of the difference system in the limit as h tends to zero (Akinfenwaet al., 

2018). Thus, as 0h , the method (8) tends to the difference system 
   1 0

2 0m mA Y A Y             (14) 

whose first characteristic polynomial     is given by 

   1 0A A              (15) 

Definition (Zero-stability): The block method (8) is said to be zero stable if the roots of the first characteristic 

polynomial     satisfies 1, 1,2,3,...j j    and for those roots with 1j  , the multiplicity must not exceed 2 

(Fatunla, 1991).  

   

 

7 1 0

0,0,0,0,0,0,0,1

   



  


          (16) 

Therefore, our method (8) is zero stable since is satisfies 1.j   

4.2. Consistency: The block method (8) is consistent if it has order of accuracy 1.p  According to Henrici the method 

is convergent, since the necessary and sufficient condition for convergence is for the method to be zero-stable and 

consistent. 

 

5. Numerical Examples  

We consider various problems of the type (1) to test the performance of the two-step block hybrid Falkner-type 

method and the errors obtained from the solutions are compared with some of its kinds in the literature. For the 

purpose of comparative analysis, the following notations are adopted.  

 HFBM2,1: 2-step, one off-step hybrid block Falkner-type method by Nicholas (2019) 

 HFBM2,2: 2-step, 2 off-step hybrid block Falkner-type method by Nicholas (2019) 

 HFBM2,4.: 2-step, one off-grid hybrid block Falkner-type method by Nicholas (2019) 

 HFBM2,4.: 4-step, two off-grid hybrid block Falkner-type method by Nicholas (2019) 

 BFM6: Block Falkner method for k=6 by Ramos et al., (2016) 

 

Problem 1. (Source: Ramos et al. (2016)) 

Consider the non-linear homogeneous problem given by  

     
2 1
, 0 1, 0 , 0 1

2
y x y y y x        

with the exact solution  
1 2

1 ln
2 2

x
y x

x
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Table 5.1: comparison of absolute errors for problem 1 

X Numerical solution James et al. 

(2013) 

h=0.1 

BFM6 

h=0.05 

Mohammad 

and Zurni 

(2017), 

h=0.05 

HFBM22 

h=0.1 

New 

Method  

h=0.1 

0.1 1.0500417292784912678 1.110*10
-15

 3.114*10
-12 

2.220*10
-16

 2.000*10
-12

 4.112*10
-19

 

0.2 1.1003353477310755792 5.995*10
-15

 6.660*10
-12

 2.220*10
-16

 3.000*10
-12

 1.388*10
-18

 

0.3 1.1511404359364668019 2.554*10
-14

 9.833*10
-12

 6.661*10
-16

 6.000*10
-12

 3.305*10
-18

 

0.4 1.2027325540540821840 7.105*10
-14

 2.173*10
-11

 1.110*10
-15

 9.000*10
-11

 6.972*10
-18

 

0.5 1.2554128118829953275 1.157*10
-13

 3.570*10
-11

 4.440*10
-16

 1.400*10
-11

 1.412*10
-17

 

0.6 1.3095196042031116868 1.199*10
-13

 4.859*10
-11

 8.881*10
-16

 2.200*10
-11

 2.860*10
-17

 

0.7 1.3654437542713961096 6.857*10
-13

 1.310*10
-10

 1.554*10
-15

 3.500*10
-12

 5.932*10
-17

 

0.8 1.4236489301936016784 3.475*10
-12

 2.313*10
-10

 4.440*10
-15

 5.900*10
-11

 1.284*10
-16

 

0.9 1.4847002785940514471 1.222*10
-11

 3.286*10
-10

 8.660*10
-16

 1.010*10
-10

 2.943*10
-16

 

1.0 1.5493061443340541188 7.728*10
-11

 1.335*10
-09

 1.266*10
-14

 - 7.267*10
-16

 

 

Problem 2. (Source: Ramos et al. (2016)) 

Consider a linear homogeneous problem given by  

   , 0 0, 0 1, 0 1y y y y x         

with the exact solution   1 xy x e   

Table 5.2: comparison of absolute errors for problem 2 

x Kayode and 

Adeyeye. 

(2013), h=0.1 

BFM6 

h=0.1 

Mohammad 

and Zurni 

(2017), h=0.01 

HFBM,4 

h=0.1 

New Method  

h=0.1 

0.2 8.171*10
-07

 2.427*10
-11

 1.388*10
-16

 2.000*10
-12

 5.556*10
-19

 

0.3 3.103*10
-06

 4.001*10
-11

 3.331*10
-16

 1.000*10
-12

 1.178*10
-19

 

0.4 6.569*10
-06

 5.746*10
-11

 4.996*10
-16

 1.010*10
-12

 1.930*10
-18

 

0.5 1.143*10
-05

 7.741*10
-11

 7.772*10
-16

 1.400*10
-11

 3.093*10
-18

 

0.6 1.796*10
-05

 9.517*10
-11

 1.332*10
-15

 2.100*10
-11

 4.457*10
-18

 

0.7 2.644*10
-05

 1.221*10
-10

 1.776*10
-15

 3.000*10
-12

 6.372*10
-18

 

0.8 3.722*10
-05

 1.604*10
-10

 2.887*10
-15

 4.000*10
-11

 8.582*10
-18

 

0.9 5.067*10
-05

 2.013*10
-10

 3.775*10
-15

 5.000*10
-11

 1.152*10
-17

 

1.0 5.255*10
-05

 2.466*10
-10

 5.107*10
-15

 - 1.489*10
-17

 

 

Problem 3. (Source: Adediran and Ogundare,(2015)) 

Consider a highly stiff initial value problem given by  

   100 1000 , 0 1, 0 1, 0 1y y y y y x           

with the exact solution   xy x e  

Table 5.3: comparison of absolute errors for problem 3 with h=0.1 

x Numerical solution Adediran and 

Ogundare. 

(2015) 

Mohammad and 

Zurni (2017) 

New Method  

0.1 0.90483741803595957330 2.050*10
-11

 1.055*10
-14

 1.400*10
-19

 

0.2 0.81873075307798185950 4.390*10
-11

 1.776*10
-14

 8.300*10
-19

 

0.3 0.74081822068171786593 6.550*10
-11

 2.342*10
-14

 1.400*10
-19

 

0.4 0.67032004603563930116 8.380*10
-11

 2.798*10
-14

 4.200*10
-19

 

0.5 0.60653065971263342286 9.860*10
-10

 3.131*10
-14

 7.400*10
-19

 

0.6 0.54881163609402643237 1.100*10
-10

 3.397*10
-14

 2.600*10
-19

 

0.7 0.49658530379140951345 1.190*10
-10

 3.564*10
-14

 1.250*10
-18

 

0.8 0.44932896411722159065 1.240*10
-10

 3.675*10
-14

 7.800*10
-19

 

0.9 0.40656965974059911030 1.280*10
-10

 3.730*10
-14

 1.580*10
-18

 

1.0 0.36787944117144232048 1.300*10
-10

 3.741*10
-14

 1.120*10
-18
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Table 5.4: comparison of absolute errors for problem 4 with h=0.05 

x Numerical solution Adeyefa 

(2017) 

HFBM4,2 HFBM4,3 New Method  

0.1 0.90483741803595957228 3.240*10
-15

 1.365*10
-16

 8.130*10
-18

 8.800*10
-19

 

0.2 0.81873075307798185656 1.794*10
-14

 7.844*10
-17

 7.680*10
-18

 2.110*10
-18

 

0.3 0.74081822068171786286 6.910*10
-14

 3.090*10
-16

 2.745*10
-17

 3.210*10
-18

 

0.4 0.67032004603563929664 2.372*10
-13

 2.400*10
-16

 1.074*10
-17

 4.100*10
-18

 

0.5 0.60653065971263341881 7.810*10
-13

 4.203*10
-16

 9.310*10
-18

 4.790*10
-18

 

 

Problem 4. Dynamic Problem (Source: Nicholas (2019)) 

A 10kg mass is attached to a spring having a constant of 140N/m. The mass is started in motion from the equilibrium 

position with an initial value of 1m/sec in upward direction and with an applied external force    0.5sinF t t . The 

resulting equation due to air resistance 90y N  is given as 

   
1

9 14 sint, 0 0, 0 1, 0 0.1
2

y y y y y x           

with the exact solution   2 79 99 9 13
cos(t) sin( )

50 500 500 500

t ty t e e t       

 

Table 5.5: Numerical solution of problem 4 with h=0.001 

x Numerical solution 

0.01 -0.0095608891946498468041664969408183840 

0.02 -0.018285603224426365353666983008451928 

0.03 -0.026233952945284610061734300806231079 

0.04 -0.033461640772405912220290869637185496 

0.05 -0.040020539768239219056775516866554309 

0.06 -0.045958953836075225438313904734123363 

0.07 -0.051321860297053846359402482277050722 

0.08 -0.056151136042101352630537395135211578 

0.09 -0.060485768369730929574669608793358429 

0.10 -0.064362051545524582478780919666828961 

 

Table 5.6: comparison of absolute errors for problem 3 with h=0.1 

x HFBM2,1 HFBM2,2 HFBM2,4 New Method  

0.01 1.304*10
-10

 4.500*10
-13

 1.700*10
-13

 2.567*10
-31

 

0.02 3.323*10
-10

 1.000*10
-13

 4.000*10
-13

 8.954*10
-31

 

0.03 6.448*10
-10

 6.000*10
-13

 2.000*10
-15

 1.855*10
-30

 

0.04 1.003*10
-09

 1.500*10
-12

 7.130*10
-13

 3.081*10
-30

 

0.05 1.438*10
-09

 9.000*10
-12

 1.000*10
-15

 4.525*10
-30

 

0.06 1.899*10
-09

 1.400*10
-12

 4.000*10
-13

 6.144*10
-30

 

0.07 2.412*10
-09

 2.001*10
-12

 1.010*10
-12

 7.901*10
-30

 

0.08 2.933*10
-09

 1.500*10
-12

 4.000*10
-13

 9.762*10
-30

 

0.09 3.489*10
-09

 1.600*10
-12

 5.000*10
-13

 1.170*10
-29

 

0.10 4.041*10
-09

 1.400*10
-12

 3.000*10
-13

 1.368*10
-29

 

 

Problem 5. Van Der Pol Oscillator (Source: Mohammed et al.,(2019)) 

     22 1 0, 0 0, 0 0.5, 0.025, 0 1y y y y y y x             

This problem has no exact solution, our result is however validated usingRunge-Kutta (RK45) and compared with 

Mohammed et al., (2019).  

 

Table 5.7: Result for the Van Der Pol Oscillator Problem with h=0.1 

x RK(5) 4(2019) New Method  

0.0 0 0 0 

1.0 0.431051 0.431051 0.43105 

2.0 0.47631 0.476309 0.47636 

3.0 0.076077 0.076076 0.076241 

4.0 -0.41546 -0.41546 -0.41532 

5.0 -0.53857 -0.53857 -0.53866 
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6.0 -0.16135 -0.16134 -0.16167 

7.0 0.386024 0.386025 0.38573 

8.0 0.595231 0.59523 0.59530 

9.0 0.254655 0.254653 0.25509 

10.0 -0.34157 0.34158 -0.34110 

 

6. Conclusion 

In this paper, we have developed a modified 2-step hybrid block linear multistep method of Falkner type to solve 

initial value problem of general and special second order ordinary differential equations. Our method is found to be 

zero stable, consistent and convergent. The numerical results show that our method is computationally reliable and 

gave better accuracy than the existing methods found in the literature. 
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