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PLENARY PAPERS
Disease Dynamics and Its Impact on Economy with Optimal Control:
A Mathematical Model

Oluwole Daniel Makinde
Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395, South Africa

Abstract
Outbreak of infectious diseases are more destructive on the economic growth of nations around the

world. This economic impact severity was observed during the recent global Covid-19 pandemic,
leading to the rise in public health expenditure, diminished productivity, loss of life, business closures,
trade disruption, obliteration of the tourism industry, revenue decline due to the government's inability
to raise revenue because of quarantine and curfews. Since infectious diseases are not likely to disappear
in the near future, proactive measures are required in order to save lives and safeguard economic
prosperity. In this talk, a deterministic mathematical model for Covid-19 transmission dynamics with
its global economic impact is qualitatively analysed via stability theory of differential equations.
Positivity and invariant region of solutions together with disease-free and endemic equilibria were
determined. The model basic reproduction number Ry was obtained and the sensitivity indices of its
embedded parameters were determined. It is observed that the model exhibits a forward bifurcation;
this validates the stability of the Covid-19 disease-free equilibrium whenever Ro <1. Using Pontraygin’s
maximum principle with two variable control strategies (i.e. protective strategy and environmental
fumigation), the optimal control analysis is implemented and their cost effectiveness determined.
Numerical results displayed graphical suggest that the use of protective control is the most cost-effective
strategy to combat the Covid-19 pandemic and boost the economy.

Keywords: Disease dynamics, Economic impact, Basic reproduction number, Sensitivity
analysis, Bifurcation analysis, Optimal control analysis, Cost-effectiveness analysis
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COVID-19 PANDEMIC IN NIGERIA: PUBLIC HEALTH RESPONSE TOWARDS
EPIDEMIC CONTROL
Adajime T. Paul
Department of Epidemiology and Community Health, College of Health Sciences,
Benue State University, Makurdi.

Abstract

The Coronavirus pandemic of 2019 brought intense fear throughout the world by its devastating
health consequences on humans while overwhelming the health systems of many counties in
the world. The first instance of the virus in Nigeria was an imported case from Italy on 27
February 2020. The incidence of COVID-19 grew steadily in Nigeria, moving from an
imported case and elitist pattern to community transmission. The United States had the highest
number of infections and deaths in the world. This was followed by Brazil, India, Mexico, and
Peru. As of 24 February 2023, there were 10.8 million COVID-19 cases on the world, with
228,738 deaths, and 9.8 million recoveries (93.8%). In Nigeria, 180,661 have been confirmed
and 2163 deaths have been recorded in 36 states and the Federal Capital Territory. The Federal
Government of Nigeria established the Presidential Task Force (PTF) for the Control of
Coronavirus (COVID-19) disease on 7th March 2020. The PTF is the focal point of
government’s efforts to tackle the COVID-19 pandemic. Nigerian households faced increased
economic precarity: unemployed workers migrated back to the low productivity agricultural
sector, and reports of food insecurity increased substantially. Before COVID-19, about 40
percent of Nigerians were living below the national poverty line, and millions more were
vulnerable to falling into poverty. Simulations suggest that the crisis pushed more than 10
million Nigerians below the poverty line. Food assistance, conditional cash transfers and school
feeding programme were additional interventions implemented to cushion the effects. The
Federal Government also responded by setting up treatment sites across the country for the
diagnosis and treatment of this ailment as well as supported many prevention interventions
including vaccination programme. These interventions impacted the lives of the people
positively, however came with challenges that are yet to be completely addressed.

Key Words: COVID-19 virus, pandemic, control, intervention, vaccination.

COVID-19 PANDEMIC IN NIGERIA: PUBLIC HEALTH RESPONSE TOWARDS
EPIDEMIC CONTROL

INTRODUCTION

The coronavirus pandemic of 2019 brought intense fear throughout the world by its devastating
health consequences on humans while overwhelming the health systems of must counties in
the world.! The WHO defines an epidemic as “the occurrence in a community or region of
cases of an illness, specific health-related behavior, or other health-related events clearly in
excess of normal expectancy. A pandemic is defined by the WHO as “an epidemic occurring
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worldwide, or over a very wide area, crossing international boundaries and usually affecting a
large number of people.?

History of Epidemics in Nigeria

Over the years, epidemics and later pandemics have really shaped the history of health in
Nigeria, creating superfluous burden of morbidity and mortality in the country and disrupting
the existing socio-economic, religious and political activities in the country.? On 31 December
2019, the World Health Organization (WHQO) was notified of a novel coronavirus disease in
China that was later named COVID-19. This outbreak was declared a pandemic on 11", March
2020. The first instance of the virus in Nigeria was an imported case from Italy on 27 February
2020. The incidence of COVID-19 grew steadily in Nigeria, moving from an imported case
and elitist pattern to community transmission. By April 11, 2020, 318 confirmed cases and 10
deaths from COVID-19 have occurred in Nigeria. 2

Epidemiology

The “2019 Novel Coronavirus” was first identified in January 2020. Early cases were
associated with a seafood and live animal market in Wuhan City, China. The first cases were
reported in December 2019. From December 18, 2019, through December 29, 2019, five
patients were hospitalized with acute respiratory distress syndrome and one of these patients
died.® By January 2, 2020, 41 admitted hospital patients had been identified as having
laboratory-confirmed COVID-19 infection, less than half of these patients had underlying
diseases, including diabetes, hypertension, and cardiovascular disease. More than 200 countries
have been affected with over 700 million cases, and approximately 7 million deaths, and 180
million recoveries worldwide.* The World Health Organization reported that at the end of
2021, the United States had the highest number of infections and deaths in the world. This was
followed by Brazil, India, Mexico, and Peru. As of 24 February 2023, there were 10.8 million
COVID-19 cases on the continent, with 228,738 deaths (CFR: 2.1%), and 9.8 million
recoveries (93.8%). Africa accounted for 1.3% of cases reported globally (757.2 million) and
1.2% of deaths (6.8 million). Of this total, the WHO African Region (WHO AFR) accounted
for 82.7% of cases (8.9 million) and 76.2% of deaths (174,191 deaths).®> In Nigeria, 180,661
have been confirmed, 165,122 cases have been discharged and 2163 deaths have been recorded
in 36 states and the Federal Capital Territory.*

NATIONAL STARTEGIC RESPONSE FOR THE CONTROL OF COVID-19 IN
NIGERIA

On the 23" of January 2020, the World Health Organization International Health Regulations
(IHR) Emergency Committee advised that all countries should be prepared for containment,
including active surveillance, early detection, isolation and case management, contact tracing
and prevention of onward spread of 2019-nCoV infection, and to share full data with the WHO.

Xi
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After the pronouncement of this declaration, a nation COVID-19 control team was set by the
president of Nigeria.
The Presidential Task force
The Federal Government of Nigeria established the Presidential Task Force (PTF) for the
Control of Coronavirus (COVID-19) disease on 7th March 2020. The PTF is the focal point of
government’s efforts to tackle the COVID-19 pandemic and has an initial mandate of six
months. The overall goal of the PTF is to stop further transmission of COVID-19 within
Nigeria, ensure provision of basic treatment to those infected, and reduce the overall social and
economic impact of the pandemic on the country.®
The PTF was chaired by Boss Mustapha with minister of health and the chairman of NCDC as
members. The core mandate was:
e Provide overall policy
e Enable delivery of control priorities through; provision of treatment centers, set up of
emergency operations center, provision of commodities for IPC, sensitization and
awareness creation, and set up of diagnostic laboratories for COVID-19.
Other mandates include:
e Approve recommendations for funding and budget, provide recommendation for
interventions such as; school closure, social distancing suspension and flight limitations
e Define targets and monitor the progress for meeting up targets
e Partnership engagement with states, bilateral and multilateral bodies and other
countries and agencies.
e Keep the public informed of emergency development regarding preparedness and
response. °

Functional Areas
e PTF National Pandemic Response Center
e Epidemiology and Surveillance
e Risk communication and Community Engagement
e Laboratory
e Resource mobilization
e Security, Logistics and Mass Care
e Infection, Prevention and Control
e Research
e Case Management
¢ Finance Monitoring and Compliance
e Point of Entry

The PTF established the National Pandemic Response Centre (NPRC), the technical
coordinating structure responsible for providing strategic guidance on the national response,
estimating MDA resource needs and allocations, and coordinating all response stakeholder
efforts. Stakeholders included MDAs, donors, development partners, nongovernment

xii
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organizations, and civil society. The organized private sector established the Coalition Against
COVID-19 (CACOVID) to coordinate their engagement. The NPRC, led by the PTF national
coordinator, included Secretariat, led by a chief of secretariat (CoS) and an incident manager,
who coordinated 9 functional pillars. Each pillar was led by different government MDAs with
mandate and oversight for their pillar; for example, NCDC oversaw surveillance and laboratory
and FMOH led case management. Staff from the US Centers for Disease Control and
Prevention (CDC), US Agency for International Development (USAID), WHO, UNICEF, e-
Health Africa, CREDO, and the Bill and Melinda Gates Foundation supported the NPRC. The
PTF convened a multidisciplinary advisory group to provide evidence-based briefing papers,
informing real-time decision making. The group comprised health policy and service experts,
including epidemiologists, modelers, public health experts, social scientists, foreign and
domestic academicians, and NPRC staff. ’

The National Pandemic Response Centre (NPRC)

To provide effective technical guidance and direction, the NPRC developed a comprehensive
pandemic response plan (PRP), the blueprint for the coordinated national COVID-19 strategy,
in addition to the NCDC-developed public health incident action plan. The PRP included
activities beyond health, such as disaster management, humanitarian affairs, information,
security, finance, trade, and investment. The PRP described complementary response roles of
national and state governments (Table 2), private sector, and development partners. The PRP
divided the response into 6 phases based on the national and WHO epidemic response plans,
with specific tasks for each phase following specific trigger events.®

Phase 1: Preparedness and No Cases

This phase, focus on monitoring global trends and preparation for surveillance; as well as early
detection of high-risk passengers for follow-up, isolation of symptomatic passengers, and
transfer of passengers to designated isolation centers for testing.®

Phase 2: Mitigation & Response to Sporadic Cases

This phase focused on the activation of health and non-health multi-sectoral structures to
identify and contain the viral spread through public sensitization on preventive and protective
measures by providing timely information and provision of consumables for the response.®

Phase 3: Intensified Response to Cluster(s) of Connected Cases

Activities in this phase were focused on intensified and heightened surveillance towards
containment; expedited sample collection, testing, and reporting; mass care to alleviate
containment measures; and prompt isolation and management of suspected/ confirmed cases
with improved outcomes.®

xiii
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Phase 4: Peak of the Pandemic due to Community transmission

This phase is activated as a result of increased cases of community transmission in one or more
states. It calls for a recommendation for the declaration of a national emergency and heightened
response in both health and non-health sectors.®

Phase 5: Post Peak

In this phase, there is a decline in new/confirmed cases by at least 10% per week for at least
two consecutive weeks. The activities involve continuous health activities such as surveillance,
laboratory testing, case management and infection, prevention, and control measures. 8

Phase 6: Post-Pandemic Recovery

This involves phasing out pandemic activities, building the preparedness and resilience
capacity of existing health and non-health institutions/infrastructure. It also focuses on
rebuilding social welfare and promoting economic growth in the country.®

EFFECTS OF COVID-19 PANDEMIC AND RESPONSES

Work and COVID-19 in Nigeria.

Findings from a sample of household heads interviewed in successive rounds of the Nigeria
COVID-19 National Longitudinal Phone Survey (NLPS) indicate that employment contracted
sharply and job turnover increased. Even though many Nigerians returned to work after the
easing of strict lockdown measures in the early phase of the COVID-19 crisis, most households
remain in an economically precarious situation.® Many households reported lower income.
Nigerian households faced increased economic precarity: unemployed workers migrated back
to the low productivity agricultural sector, and reports of food insecurity increased
substantially. To curb this, some institutions stated offering online and home delivery services
to reduce contact with people'®. Also, NIRSAL microfinance bank covid-19 loan in Nigeria, a
federal government intervention program through the CBN to curb the consequences of Corona
virus on households, small and medium scale enterprises and impact positively on the life’s of
its citizenry. 1!

The Effect of COVID-19 on Education and Social life

In response to the pandemic, the government implemented multiple measures, both at the
federal and state levels, including the adoption of a Contingency Plan to ensure that the school
community was protected. The plan aimed to ensure the continuation of education, provide
safe water and hygiene facilities in schools, and train and sensitize the school community on
preventive measures.'?> During the school closures, Nigeria strived for learning continuity
despite the abrupt closure, with distance learning reaching approximately 60 percent of school
children, a strong performance compared to other countries in the region. The use of online
teaching methods were employed to solve this challenge!®. Lockdowns on religious and public
events where put in place nationwide to curtail the spread as well as other regulatory measures.

Xiv
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The Nigerian government implemented bans on international travels from all countries,
especially high-risk countries.*

The Tertiary Education Trust Fund (TETFund), NCDC and other stakeholders constituted the
National COVID-19 Research Consortium, with members drawn from the academia and
research institutes. The consortium is mandated to undertake research on all aspects of COVID-
19 to ensure effective prevention and control. °

Effect of COVID-19 Pandemic on health

Nigeria ranks among the top ten countries heavily affected by COVID-19 in Africa. Nigeria’s
COVID-19 response focuses on strengthening laboratory systems and enhancing risk
communication and surveillance. The available indicators—such as the total number of deaths,
the case fatality rate, and the total number of confirmed cases—show that Nigeria has fared
reasonably well in responding to the COVID-19 pandemic despite a significant decline in the
delivery of essential health services. Yet, COVID-19 has had a substantial negative impact on
service delivery for both disease control programs and essential health care services. The
federal government funded the construction of molecular laboratories in all the states to ensure
quick diagnosis of epidemic prone diseases . In addition, the Central Bank of Nigeria (CBN),
Nigeria's apex regulatory bank, announced a 1.15 trillion naira (approximately 3 billion dollars)
COVID-19 Pandemic Intervention Fund intended for Healthcare Sector Research and
Development Intervention Scheme (HSRDIS) aimed at strengthening the public healthcare
system with strategic funding of research and development of improved or new drugs,
diagnostics and vaccines for infectious diseases in Nigeria, especially COVID-19.%°

Nigeria’s Social Protection System during COVID-19 and beyond.

Before COVID-19, about 40 percent of Nigerians were living below the national poverty line,
and millions more were vulnerable to falling into poverty. Simulations suggest that the crisis
pushed more than 10 million Nigerians below the poverty line. Recognizing the extraordinary
scope of this challenge, the government has launched important new initiatives through the
National Social Investment Programs, but critical financing gaps and institutional challenges
continue to undermine the effectiveness of the social protection system.'® Most safety nets are
limited in scope, and social-protection programs cover only a small fraction of their target
populations. While technological innovations can improve the effectiveness of social
protection programs and enhance their ability to reach poor and vulnerable households, the
government must establish a fiscally sustainable social protection system that integrates the
disparate programs implemented at the federal, state, and local levels.'3

Other programs and policies include:

e Economic Stimulus Bill. The bill was proposed on March 24, 2020, to provide
socioeconomic relief to Nigerian citizens and businesses due to the negative impact of
COVID-19 on businesses and livelihoods. The bill was aimed at reducing taxes by 50%
for businesses registered under the Companies and Allied Matters Act to enable them
to sustain their businesses and prevent staff layoffs.!

XV



Proceedings of International Conference on Mathematical Modelling Optimization and
Analysis of Disease Dynamics (ICMMOADD) 2024

e National Conditional Cash Transfer. The federal government announced the plan to
transfer 20,000 Naira to poor and vulnerable households on the National Social Register
(NSR). The NSR has about 2.6 million households, which the federal government
promised to increase to 3.6 million during COVID-19 lockdown (Dixit et al., 2020).%*

e Food Assistance. The Federal Ministry of Humanitarian Affairs, Disaster Management
and Social Development announced the decision to provide food to vulnerable
households due to the lockdown that hindered socioeconomic activities and
incapacitated finances of families.!!

e School Feeding Program. The school feeding program has been in existence before the
onset of COVID-19 in Nigeria. Students in Nigerian public schools were given free
daily meals provided by federal school-funded school feeding programs. This program
targeted 24 million school children.*

MANAGEMENT OF COVID-19 PANDEMIC

One of the cardinal steps in the response to an epidemic is case identification. Cases are
identified through screening of individuals who have symptoms and signs that are related to
the disease been investigated.

Symptoms associated with COVID-19

Presenting signs and symptoms of COVID-19 vary. Most persons experience fever (83-99%),
cough (59-82%), fatigue (44-70%), anorexia (40-84%), shortness of breath (31-40%),
myalgias (11-35%). Other non-specific symptoms, such as sore throat, nasal congestion,
headache, diarrhoea, nausea and vomiting, have also been reported. Loss of smell (anosmia) or
loss of taste (ageusia) preceding the onset of respiratory symptoms has also been reported.
Additional neurological manifestations reported include dizziness, agitation, weakness,
seizures, or findings suggestive of stroke including trouble with speech or vision, sensory loss,
or problems with balance in standing or walking. Older people and immunosuppressed patients
in particular may present with atypical symptoms such as fatigue, reduced alertness, reduced
mobility, diarrhoea, loss of appetite, confusion, and absence of fever.!’

Screening: The primary objective of the COVID-19 global response was to slow and stop
transmission. This was to be achieved through finding, isolation and testing of every suspected
case, and provision of timely appropriate care of patients with COVID-19. A simple set of
questions based on the WHO case definition are used to identify a suspected case.*® This is best
done by establishing screening protocols at all health access points and during contact tracing
activities. The case definition of COVID-19 is “any patient with acute respiratory illness (acute
respiratory illness in an area of moderate or high COVID-19 prevalence with no other
explanation) within the last 10 days (fever and either cough, difficulty breathing or shortness
of breath); and in absence of an alternative diagnosis that explains the clinical presentation and
residing or working in the last 14 days in an area identified by NCDC as a moderate or high
prevalence region”.  Persons with symptoms that meet the case definition for suspected
COVID-19 enter into the COVID-19 care pathway and should immediately be given a medical
mask. 8
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Laboratory diagnosis

Diagnostic technical guidance for the diagnosis of COVID-19 pandemic include:

1. Antigen-detection in the diagnosis of SARS-CoV-2 infection.

2. Use of SARS-CoV-2 antigen-detection rapid diagnostic tests for COVID-19 self-testing

It is recommended that, for all suspected COVID-19 cases, at minimum, respiratory specimens
for nucleic acid amplification testing (NAAT) should be collected.® It is important to note that,
in the first week of symptom onset relatively high viral loads are generally observed in the
upper respiratory tract (URT) specimens. For the collection of URT samples, the collection of
nasopharyngeal and oropharyngeal specimens. For the lower respiratory tract (LRT), samples
are more likely to be positive after the first week of illness. °

COVID-19 Self-testing
Strong recommendation for COVID-19 self-testing, using SARS-CoV-2 Ag-RDTs, was
offered in addition to professionally administered testing services (low to moderate certainty
evidence). COVID-19 self-testing, as with any testing, should always be voluntary and never
mandatory or coercive.'®

Management of mild COVID-19: symptomatic treatment

Patients with mild symptoms may present to an emergency unit, primary care/outpatient
department, or be encountered during community outreach activities, such as home visits. It is
recommend that patients with suspected or confirmed mild COVID-19 be isolated to contain
virus transmission according to the established COVID-19 care pathway. This can be done at
a designated COVID-19 health facility, community facility or at home (self-isolation). '
Because of co-infections with COVID-19, in areas with other endemic infections that cause
fever (such as malaria, dengue, etc.), febrile patients are tested and treated for endemic
infections per routine protocols irrespective of the presence of respiratory signs and symptoms.
Patients with mild COVID-19 are given symptomatic treatment such as antipyretics for fever
and pain, adequate nutrition and appropriate rehydration.:s

Management of moderate COVID-19

Patients with moderate disease usually present to an emergency unit or primary care/outpatient
department. Some were encountered during community outreach activities, such as home
visits. 2° Patients with suspected or confirmed moderate COVID-19 were usually isolated to
contain viral transmission. These patients usually do not require emergency interventions or
hospitalization; however, isolation was necessary for all suspect or confirmed cases.
Management of severe COVID-19

For severe cases, immediate administration of supplemental oxygen therapy is key during
resuscitation to target SpO2 > 94% and to any patient without emergency signs and
hypoxaemia (i.e. stable hypoxaemic patient) to target SpO2 > 90% or > 92-95% in pregnant
women. %

Key recommendations:
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e Adults with emergency signs (obstructed or absent breathing, severe respiratory
distress, central cyanosis, shock, coma and/or convulsions) are placed on emergency
airway management and oxygen therapy during resuscitation to target SpO2 > 94%.

e After stabilizing the patients, target > 90% SpO2 in non-pregnant adults and > 92-95%
in pregnant women.

e Appropriate oxygen delivery devices are used to administer oxygen (e.g. use nasal
cannula for rates up to 5 L/min; Venturi mask for flow rates 6-10 L/min; and face mask
with reservoir bag for flow rates 10-15 L/min). In adults, techniques such as
positioning, e.g. high supported sitting, are used to optimize oxygenation, ease
breathlessness and reduce energy expenditure.

e In adult patients with evidence of increased secretion production, secretion retention,
and/or weak cough, airway clearance management are placed on secretion clearance
techniques such as gravity-assisted drainage and active cycle of breathing technique.

PREVENTION AND CONTROL
Key IPC strategies to limit or prevent transmission of COVID-19
The response to the COVID-19 outbreak must be optimal using certain strategies and practices.
At the facility level, IPC programme with a dedicated and trained team or at least an IPC focal
point should be in place. The five IPC strategies required to prevent or limit transmission of
COVID-19 in health care facilities include the following:

e Early recognition and source control of COVID19.

All patients who present to a health facility during this COVID-19 outbreak were screened for
the disease using the case definition. Such patients were isolated and arranged for the
commencement of further care if need be and for transportation to a designated COVID-19
treatment center. 2

e Application of standard precautions for all patients at all times

Response regarding standard precautions is to reduce the risk of transmission of
microorganisms from both recognized and unrecognized sources of infection. Elements of of
the response include:

Hand hygiene

Hand hygiene is includes either cleansing hands with an alcohol-based hand rub (ABHR)
containing at least 70% alcohol, or with soap, under running water and drying with disposable
towels 22

Respiratory hygiene

Response emphasized respiratory hygiene measures such as use of medical mask and display
graphic information on the need to cover nose and mouth.

Environmental cleaning
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This involves, consistent and correct environmental cleaning and disinfection. All surfaces in
health-care facilities especially high-touch surfaces, should be routinely cleaned and
disinfected.?*

Waste management

Health-care waste produced during the care of patients with suspected or confirmed COVID-
19 is considered to be infectious and should be collected safely in clearly marked lined
containers and sharp safe boxes.?

e Implement administrative controls.

Most health facilities ensured that they have an IPC programme, with their healthcare workers
adequately trained on basic IPC procedures and able to implement standard precautions as well
as droplet and contact precaution. Adequate provision of appropriate commodity supplies for
prevention of disease transmission e.g. Medical masks, certified N95masks, gloves, hand
hygiene equipment, respiratory hygiene and waste disposal materials.

e Use of environmental and engineering controls including ventilation
Control strategies such as adequate spatial separation of patients, adequate ventilation and
appropriate cleaning of the environment should be implemented.?! The following engineering
controls should be put in place:

Provide isolation rooms that are well ventilated (wide open windows that open to the outside,
away from other wards with doors closed and preferably with an anteroom. Rooms should
provide air flow of at least 160 L/s per patient with at least 12 air exchanges per hour and
controlled direction of air flow (air flow should be away from the healthcare worker towards
the patient to the outside through the open window. Air should not flow from the patient’s room
into the hallway or other rooms/wards.??

Provide physical barriers or partitions to guide patients through triage areas.

Provide closed suctioning systems for airway suctioning for intubated patients.
e COVID-19 Vaccinations

The largest vaccination response program in Nigeria was that of COVID-19.22 On March 2,
2021, about 4 million doses of the AstraZeneca/Oxford vaccine arrived in the country, through
the COVID-19 Vaccine Global Access (COVAX) facility, a partnership between Coalition
between Epidemic Preparedness Innovations (CEPI), Global Alliance for Vaccines and
Immunizations (GAVI), United Nations Children’s Fund (UNICEF), and WHO.? This is an
attempt to ensure equitable distribution of the COVID-19 vaccines globally.* Frontline health
workers were prioritized groups to receive the vaccines due to their exposures in the course of
investigation and treatment. Since the arrival of the first wave of vaccines, the country has
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received more than 67 million doses of COVID-19 vaccines, out of which 31.1 million people
have been fully vaccinated. Currently, apart from Oxford vaccine, six (6) more vaccines have
been approved for use of in Nigeria. These include: Moderna vaccine, Pfizer/BioNTech,
Gamaleya, Janssen (Johnson & Johnson),’

CHALLENGES OF COVID 19 RESPONSE

Corruption and lack of government willingness to invest adequately in social protection
programs has resulted in poor coverage and low impact of social protection programs in
Nigeria.!! The National Conditional Cash Transfer Program during the lockdown did not
achieve the set objective due to the lack of transparency in the system from non-digitalization
of the process.!* Testing and contact tracing were faced with some challenges such as
inadequate equipment, shortage of funds, and inadequate expertise.'* The COVID-19 vaccination
programme had so many challenges including; entry of substandard and falsified vaccines into
markets, theft of vaccines within the distribution systems, leakages in emergency funding
designated for the development and distribution of vaccines, nepotism, favouritism, and
corrupted procurement systems.? In Nigeria, COVID-19 vaccine uptake was generally low. In
December 2021, due to this challenge, over one million doses of AstraZeneca vaccines became expired.
The acceptance rate was poor (20%-58.2%). Identified reasons for this for the poor uptake include:
conspiracy theories, side effects and misinformation spread on social media.?® Other reasons for poor
uptake include: education, religion, and prior COVID-19 diagnoses. 2

CONCLUSION

It is evident that Nigeria was not as well prepared for the COVID-19 outbreak response due to
poor health care system and key determinants of health.?” This pandemic presents an
opportunity for policy makers to look inward and strengthen Nigeria health system that will
stand emerging pandemic of any magnitude.
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Abstract

The World Health Organization declared COVID-19 as a public health menace in early 2020, due to
the havoc the disease had caused resulting to the death of million of people across the globe. Due to
its chaotic spread, and its co -infection with other diseases increased much more mortality rate. In
particular, COVID-19 and tuberculosis diseases has similar symptoms, although they have different
incubation periods. This paper was formulated to study the co-infection of COVID-19 and TB to
investigate their synergic dynamism described by Mathematical model. An extensive study was
conducted on both the analytical and numerical analysis of the model. The sub-models of the
individual diseases were first analyzed and their both sensitivity and simulation analysis were carried
out. The basic properties of the co-infection model was studied, its basic reproduction number was
also computed using next generation method. It was proved that the co-infection with it’s individual
dieases can be eliminated when the basic reproduction number is less than one and greater than one
at disease free equilibrium and at endemic equilibrium point respectively.We show that tuberculosis
has postive impact on the transmission of COVID-19. It was observed also that the co-infection exbit
forward bifurcation. From the sensitivity and simulation analysis it was demonstrated that the contact
rate has positive influence on the transmision of the individual and the co-infection diseases.

Keywords: Bifurcation, co-infection, COVID-19, sensitivity, stability, Tuberculosis.

INTRODUCTION

Several pathogens may be responsible for diseases outbreak in human [2] and animals
[5]. Tuberculosis and COVID-19 can infect human simultaneously. Tuberculosis (TB) had infected
over 10 million people and responsible for 1.2 million death cases worldwide [1]. Similarly, a
population of over 100 million people infected with COVID — 19 with over 2 million death cases has
been reported globally. During the COVID-19 pandemic in 2019, caused by novel beta coronavirus
known as, severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2), which took place first
in Wuhan (Hubei), China. Since December 2019, there was increase in the number of individuals
infected with the disease that became a threat to global public health and the world economy [21].
During the pandemic, the most suitable and safety measure is the lockdown measure that has a
positive impact in curtailing the spread of COVID-109.

It is well known that Tuberculosis (TB) is caused by Mycobacterium tuberculosis that is transmitted
from an individual to another via the released of microscopic droplets into the atmosphere through an
infected person. This occurs when the infected patient coughs or sneezes then the tuberculosis
bacterium disseminate [16]. Most people infected with these bacteria do not show any signs or
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symptom this is described as latent tuberculosis stage. In a situation where the sign appears, this is
known as the active tuberculosis stage. This is a condition where the cough is bloody; there is a
weight loss, nocturnal sweats and fever are displaced [2]. The possibility of an individual exhibiting
symptom or not is the function of the person’s immune system. There are people whose immune
system prevent the replication of the bacteria and consequently hinders the occurrence of the disease
(latent TB stage) and in some other people their immunity is weak, so the bacteria develops and
multiplies, causes the person to become infected [16]. TB is preventable and curable, yet it has
defiled many efforts made for its total eradication because of the presence of latent TB patients and
active TB infectious individuals. Treatment is usually administered to those with active tuberculosis
through the use of antibiotic. Prevention of TB includes vaccination, isolation and chemoprophylaxis
e.t.c.

COVID- 19 diseases has a similar transmission mode and symptoms like that of tuberculosis. For
COVID- 19, the disease is transmitted also from one person to another when a healthy individual is
in close contact with an infected person (either dead or alive patients). Instances have shown that
human corpses are transmissible source of the virus also. The spread of COVID- 19 is possibly
occurs through human faces shed to the environment. In upholding African traditions and customs of
burial practices such as washing of dead bodies before dressing, has in deep sense fuelled the
transmission of the virus in Africa. An individual infected with COVID — 19 diseases can be
asymptomatic or symptomatic. In asymptomatic, the victim is infected with the virus, but does not
exhibit any symptoms like fever, cough and shortness of breath but can transmit the virus to others
making it difficult for isolation. In symptomatic, the infected person shows symptoms like fever,
cough and shortness of breath and liable to spread the disease to others. Prevention measures for
these diseases include vaccination, good hygiene, and use of face masks, physical distancing.
Furthermore, treatment measures consist of prescription of antiviral medication, isolation and
quarantine measures [4].The two diseases are very contagious and they can spread primarily through
close contact with the infected person. It has been shown from researches and clinical evidences that
TB co-exists with COVID-19, promoting twice or more increase in fatality and a 25% decrease in
the recovery of the individual diseases. The harm is more devastating than the mortality rate of
COVID-19 and TB globally. This association of these two diseases became one of the popular co -
dynamic during the COVID- 19 pandemic. Although, several co - infections existed before COVID-
19 emergency. Yet, COVID-19 co-infection with other diseases had exceeded the previous record of
co-infection that ever existed [22].

Several studies had been conducted on COVID-19 co-infections and other infectious disease in
various literatures. For instance, the co-dynamics Cholera-COVID-19 model control was formulated
and analyzed by [10]. Similarly, Dengue-COVID-19 was designed and analyzed by [19], TB- HIV
model in [3] and TB-COVID-19 in [9]. Marimuthu et al. [12], formulated a TB-COVID-19 co-
infected by estimating people with and without intervention control measures. It was shown from
their study that with no intervention the co-infection occurred at a relative small time while with
intervention it takes a longer time. In particular, it was estimated from the model that at the peak of
the epidemic about 27,968 TB-COVID-19 cases were reported with intervention mechanisms and
20,880 cases in absence of proper interventions.

Goudiady et al. [9], proposed a mathematical model on COVID-19 and Tuberculosis by
incorporating public campaign awareness, COVID - 19 prevention and treatment of tuberculosis and
COVID - 19 using optimal control. The basic properties of the model were discussed and the
stability analyses were shown. Five strategies were employed as control measures during the
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investigation. It was found that the strategy which focuses on the prevention of COVID - 19, its
treatment and co - infection prevention offers a better preventive measure with a lower cost.

Bandekar and Ghosh [6], designed a co - infection model on TB and COVID - 19 considering
waning immunity and face mask in the dynamics. Detailed stability analysis and bifurcation were
carried out on the sub-models and discussions were also made on the impact of the most sensitive
parameters like infection rate, waning immunity and face mask efficacy. The optimal control
incorporate relative time control, improved TB treatment, and enhance COVID - 19 test and isolation
facilities to combat the disease transmission were discussed. The result of their simulation shows that
different control measures used are potentially instrumental in lowering the spread of the disease.
They suggested that during pandemic, attention should be given to treatment of individual diseases in
order to curtail co - infection of COVID - 19 with other diseases.

Inayaturnmat et al. [11], designed a seven (7) compartmental flow chart of tuberculosis and COVID-
19 co — infection model with isolation and treatment. Two equilibria points were obtained at the
disease — free equilibrium and endemic equilibrium points. In first instances, they show that at this
equilibrium both tuberculosis and COVID- 19 infection are absent while the second connotes a
situation where not only tuberculosis and COVID — 19 infections are found but the co — infections
also existed. Analytical and numerical analyses of the co — infection were carried out. They used
Latin hypercube sampling (LHS) to study the effect of the parameters of the model and they assumed
that the parameters follow uniform distributions where 1000 samples were sorted by ranking. Partial
rank correlation coefficient (PRCC) was used to obtain the correlation between the parameter with
the compartments. Three compartments were selected for analysis namely: those infected with
tuberculosis, COVID — 19 and the co — infection. They observed that the recovery rate and the
infection rate of each COVID-19 and tuberculosis are the most sensitive. Optimal control was also
carried out on the co — infection model as a control measure on tuberculosis and corona-virus.
Simulation conducted revealled that isolation reduces the numbers of individuals infected with
corona-virus and treatment has a long time impact on the population.

Rwezaura et al. [20], discussed a nine (9) compartmental populations with vaccination on corona-
virus infected population and treatment for TB infected patients. The two equilibria points of the two
diseases were analyzed in which it was shown that the local asymptotic stability at the disease — free
and endemic equilibria exist when the reproduction numbers are below unity. They further, show that
the TB sub — model undergoes forward bifurcation. Their model was tested using fmincon
optimization toolbox in MATLAB in other to fit the daily confirmed cumulative cases of corona-
virus of Indonesia from February 11, 2021 to August 26, 2021 and many parameters were estimated
from. Through the application of Pontryagin’s Principle, they established the possibility for co —
infection of the model by stating conditions necessary for the existence of optimal control and the
optimality. Several control measures were employed like: face-mask, vaccination on corona-virus
population, treatment on both TB and corona-virus were incorporated in the model. The numerical
simulation results show that the control measure against incident corona-virus prevented the
occurrence of new cases of over 27, 878, 840 while preventive measure on TB and treatment averted
5,379,795 individuals from contacting corona-virus as new cases.

Ram et al. [18], assessed the impact of COVID - 19 on tuberculosis diseases using a proposed
mathematical model. The stability analysis theory was used to analyzed the model qualitatively and
4
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quantitatively. They show that at endemic equilibrium point the model is stable and unstable when
Ry, < 1and R, > 1 respectively. Also, they used Lyapunov function to described global stability at
endemic point of the system. The bifurcation analysis was carried out and discussion was made on
the behavior of the model's stability. The result from the simulation analysis evidently shows that
both COVID - 19 and tuberculosis diseases mollified by controlling the transmission rate.

From the forgoing literatures, it is evidently clear that none of the authors commented on the impact
of latent - symptomatic co-infection. In this research, we modified [13] by introducing an additional
co-infection: latent TB - symptomatic COVID - 19 populations. This study is significant in that it
captures the population of those latent-symptomatic COVID-19 which is a condition that is most
severe than latent-asymptomatic condition. More importantly, [2] has shown that individuals with
weak immune system in latent TB stage are liable to be infected with other diseases than those with
strong immune system in latent TB stage, in that TB bacteria to progress to active stage within a
short period. In this work we conducted to basically focus on the stability and bifurcation analysis.
Furthermore the impact of TB on COVID - 19 is also shown with numerical simulation using some
data from Nigeria during the outbreak and recent TB data

2. Materials and method

We consider a mixed population where an individual in the populations has equal chances of
interacting with each other. The transmission of the modified model is described by adopting a
deterministic compartmental modeling technique, at any time t. An extension of [13] consist of nine
human populations was considered: susceptible individuals (S), those who are infected with COVID
- 19 that does not show symptoms but are infectious with COVID - 19, known as asymptomatic 1,,
COVID - 19 symptomatic Is that shows both symptoms and are infectious, TB infected individuals
who does not show signs of symptoms and does not transmit TB is known as latent TB (Ly), active
TB (I7), latent - asymptomatic co - infection (Ly,), latent - symptomatic co - infection (Lys), active
TB - symptomatic COVID-19 co - infection (I5) and recovered individuals (R). Bearing these in
mind, the entire population in time t is denoted by

N(t) = S(0) + Lp(O) + Ip(0) + Lo(0) + [s(E) + Lpa(t) + Lys(®) + Izs(®) + R() (1)

The contact between the susceptible individuals and active TB patients enhances the susceptible
individuals to be infected with TB by a force of infection A, described in equation (2). The effective
contact rate for TB transmission is denoted by S;. The latent TB becomes infectious when they are
not treated and become infected with symptomatic COVID-19 resulting to latent TB - symptomatic
population L;s(t) [8] at the force of infection of b,A. where B, is the effective contact rate for
COVID-19. Due to effective contact with those infected with COVID -19, the susceptible individuals
acquire COVID-19 infection with a force of infection A, represented in equation (3) with effective
contact rate is S.. Also, the rate at which those in latent TB population L;(t) moves to active TB is
at the rate of t and recovers at the rate of y. The latent TB population becomes co-infected with
asymptomatic COVID-19 and symptomatic COVID-19 with a force of infection by;A. and b,A.
respectively. The active TB individual recovers at the rate of w while the rest transfers to active TB -
symptomatic COVID-19 co-infection population I;¢(t) at the rate of v and §; as the rate due to die
by active TB.
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The susceptible acquire asymptomatic COVID - 19 through contact with asymptomatic infected
individuals at the force of infection A.. 1,(t) progress to symptomatic COVID - 19 and the latent
TB - asymptomatic corona-virus co-infection Ly s(t) at the rate of ¢ and force of infection a Ay
respectively or recovers at the rate of ¢. The symptomatic corona - virus becomes infected with
latent TB and active TB with the force of infection at a,A; and the rate of n respectively. These co-
infection diseases; latent TB - symptomatic COVID — 19 and active TB - symptomatic COVID-19
denoted by Lrs(t) and Ipg(t) where it is assumed here that I;5(t) is more infectious and severe
than L;¢(t). Death induced by symptomatic corona-virus occurs at the rate of §.. The latent TB -
asymptomatic corona-virus progresses to latent TB - symptomatic corona-virus at the rate of 6 and
migrate to Is(t) and I-(t) at the rate of c¢p and d¢ respectively. The co-infection experienced
induced death rate at §; or recovers at the rate [1 — (¢ + d)]¢. The compartment L;s(t) moves to
Irs(t) at the rate of o and death induced rate &, or recovers at the rate of k. The population I;¢(t)
migrate away from the class at the rate of ey, fi and death induced rate &5 or recovers at the rate

[1—(e+ Al

The new model schematic diagram is demonstrated in Figure 1, we assumed that interaction between
individuals is considered to be homogeneous and all populations die naturally at the rate of u. The
conditions of individuals with latent TB are aggravated to active TB and susceptible individuals
becomes infected with TB through contact with active TB individuals by a force of infection A,
given as:

Ar(©) = FELe @) + (D) + Irs(6)) @)

where B is the effectual contact rate for TB bacteria. Similarly, susceptible populations becomes
infected with COVID-19 through contact with asymptomatic or symptomatic individuals by a force
of infection A, given by

Ac(t) = % (La(@®) + Is(®) + Lra(®) + Lrs(©) + Ir5(0)) ©)

where . is the effectual contact rate for COVID-19 transmission. The co — infected individuals with
tuberculosis in the asymptomatic and symptomatic COVID-19 infections (L,4(t), Lys(t) and Ir5(t)
classes) are assumed to transmitted COVID-19 at the same rate A, as those with only COVID-19
infection (I,(t) and I5(t)). The co - infection class Irg(t) can transmit tuberculosis at the same rate
Ar as individuals with active TB alone (I(t) class). From the description and the assumptions of
the model it follows that the governing mathematical non-linear differential equations is given by:

B = A= Ar +2)S —uS

LT = 425 = (by + b)AcLy — ALy

dlt

— = Tbr + fYlrs + dpLrs — By

dly

E = /1(;5 - a]_/’{TIA — CIA

%: EIA+C¢LTA+C13IA+el/)ITS_a2/1TIS_DIS (4)
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dZ:A = al)lTIA + bllCLT - ELTA

% = aleIS + bZACLT + QLTA - FLTS
CIS = gLys + ks + vl — Glrg
dR

o = Platvlr +wlp + §ls+ klrs + [1 = (c + d)|pLry + [1 = (e + f)]Plrs — uR
where, A5, A as described in (2) and 3) and A=u+y+t,B=u+ér+v,C=u+e+¢,D=
U+6c+n+&EE=pu+6+0+¢p,F=u+6,+0+k and G =pu+ 63+ . Also the initial
conditions S(0) > 0, L(0) > 0, I(0) = 0,1,(0) = 0,15(0) = 0, L7,(0) = 0, L75(0) = 0, I;5(0) =

0 and R(0) = 0.

A _.@
H
Ao

(e + f)]v

TS wtd

Figure 1: The schematic diagram describing the TB-COVID-19 model

Table 1:Description of parameters and values of TB-COVID-19 maodel

Parameters Description Values Saurces
A Recruitment rate of susceptible population 500 [1]

U Natural death rate of individuals 0.17937 [1]

Bc COVID-19 rate of transmission 0.38974 [4]

O¢ Death rate due to COVID-19 0.043 [10]

Or Death rate due active TB 0. 570776 Estimated

Br TB rate of transmission 0.39818 [1]

61 Death rate due Ly, 0.023 [13]
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&, Death rate due to Ly g 0.035 Estimated
03 Death rate due to I 0.251 [13]

€ Transfer rates from I, to I 0.46 [17]

1) Recovery rate of I, 0.13978 [13]

& Recovered rate of I 0.2016 [17]

¢ Rate at which L, leaves to I 0.01 Estimated
In Infectious rate of TB from COVID-19 0.001 [18]

Y Rate at which I leaves the class 0.5 [18]

0 Rate at which Ly, migrate to Ly class 0.02 [18]

v Infectious rate of COVID-19 from TB 0.001 [19]

K Recovered rate of Lyg 0.35 Estimated
14 Recovered rate of Ly 0.256 [23]

T Fraction of L that progress to I 0.11538 [1]

a, The rate at which I, becomes infected with Ly 0.379 Estimated
a, The rate at which I; becomes infected with L 0.13 Estimated
by Transfer rate of L to Ly, 0.49 Estimated
b, Transfer rate of Ly to Lyg 0.35 Estimated
) The rate at which I recovers 0.09 [12]

o The rate at which Ly progress to I 0.002 [12]

C Recovery rate of L, from latent TB 0.14 [18]

d Recovery rate of Ly, from asympt. COVID-19 0.032 [12]

e Recovery rate of I¢ from active TB 0.021 [13]

f Recovery rate of I from sympt. COVID-19 0.032 [13]

The basic properties of Tuberculosis-COVID-19 co-infection model

2.1 Positivity and boundedness of the co-infection model

Lemma 1. If S(t), L1(0),1:(0),14(0), I5(0), L74(0), L75(0),I;5(0) and R(t) are not negative with
the stated initial conditions above then the solutions (S(),
L1(0),17(0),1,(0),I5(0), L74(0), L75(0), I+5(0), R(t)) of the co-infection are all positive for all t >
0.

Proof. We illustrate this with the first ode in equations (4) as follows;

2 = A= (Ar +1)S - uS,

The above equation can be further written as;
ds

—=—uS
Solving this equation using separating the vcgiable method of integration and applying the initial
condition with respect to t, we have
S(t) = Sge >0 (5)
Using the same approach for equation (4), the remaining solutions of the odes are;
Ly(t) = Lore™* >0
Ip(t) = Ipre >0
8
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Li(t) = Ije ¢t >0
L(t) = Ihse Pt >0
Lya(t) = Lorae " >0 (6)
Lrs(t) = Lorse™ >0
Irg(t) = Iyrse™ %t >0
R(t) = Rye ™™ >0
Therefore, it is very clear that the solution set ® = {(S, Ly, I, Iy, I, L14, L1s, I7s, R) of the model
(4) is positive for all t > 0.

Invariant region

The system (4) is considered epidemiologically and mathematically well-posed, when all parameters
and variables of the model are not negative for all time t. The co-infection model will be analyzed in
a suitable feasible region as follows:

Lemma 2: The region ® = {(S, L1, Ir, 14, I, L7, Ls, Irs, R )ERT:N(¢t) < %} IS a positive invariant
for the system (4) with non-negative initial condition in R?..

Proof: Consider, (S, Ly, Ir, 14, Is, L, Lts, Irs, R )eR%.as any solution for our model (4). Then the
sum of the differential equation of system (4) is given by

C;_IZ =A- U.N - (STIT + Scls + 81LTA + SZLTS + 831’1‘5) <A- HN (7)
From the initial condition of the variables, it follows that N(t) > 0 and since it was established that
the region & is positive invariant and attracting, N(t) = 0 is obviously bounded for every t > 0.
Furthermore, adopting Birkhoff and Rota’s comparison theorem as found in [20], the solution of

equation (7) is,
N(t) < N(0)e Ht + 2(1 — emHt) (8)

Indeed, N(t) s%i

positively invariant. It follows that the region @, has a solutions in the model system (4) with initial
conditions in & will remain in the region for all time t > 0.

t then follows that N(0) < % . Hence we can conclude that the region @ is

3. Model Analysis
To properly understand the behavior of the model, we shall investigate the sub-models by analyzing
their equilibrium points before proceeding further to discuss the analysis of the co-infection
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3.1. COVID-19 sub-model

In absence of those infected with TB from equations (4), the COVID-19 model equation reduces to:
(4S5 _ A _ _

= A—A.S—uS

B=AS—(utet )y
$ g )
EZEIA_(H+6C+S;)IS

dR
(5 = Pla+$Is — UR

with N(t) = S(t) + IL,(t) + Is(t) + R(t). The feasible region of COVID-19 sub-model is given as
¢ ={(S, Iy Is,R)eRL:N(E) < %}

3.1.1 The Local stability of COVID-19 sub-model
The disease-free equilibrium (DFE) represents the model steady state solutions in the absence of the
disease. By setting the odes to zeros, the disease-free equilibrium denoted by E is given as

A

E, = (;, 0,0,0).

The basic reproduction number denoted by RS is the threshold parameter of the expected number of
secondary COVID-19 infections produced in a completely susceptible community by a typical
infected person. This threshold parameter plays a crucial role in the mathematics of epidemiology
[22]. If RS < 1, this illustrate a condition when an average of COVID-19 infected individuals
produces less than one new infection during the infectious period and the disease goes to extinction.
If RS > 1, then each infectious COVID-19 patient produces an average of more than one new

infection and the disease spreads and persist in the population [22]. Considering F;and V; as the
matrices of new infection in the infected compartments and the remaining transfer terms represented

by:

Bc
(v Uat L) ,:< (L+e+ @)y )
Fi <N 0 and v, (w+dc+n+Is—€ly

Then evaluating the matrices denoted by F and V using Jacobian matrix of F; and V; at DFE and
further determined the eigenvalues of the matrices. It is found that the largest spectrum radius for the
COVID-19 sub-model is given as
g _ _Bcutdctntite) (10)
(ut+e+@)(u+dc+n+§)

By interpretation, RS represent the average number of secondary asymptomatic and symptomatic
COVID-19 cases produced by asymptomatic or symptomatic person at his or her effective infectious
period at the time the person entered an entirely COVID-19 susceptible population which is
governed by eight parameters.

Theorem 3.1. The disease free equilibrium E, of the model 9, is given by equation 10, is locally
asymptotically stable (LAS) if RS < 1 and unstable if R§ > 1

Proof: From the above theorem we shall use Jacobian matrix to establish this fact. Consider a point
D = (S,14,15, R) and a Jacobian matrix denoted by J (D) of equation 9, we have

10
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—U —Bc —Bc 0
Jg, (D) = 8 'BCE_A _@C % (11)
0 % 0 —u

where A=u+e+@and B =pu+ 5 + &+ n. Since the first and the last elements of the diagonal
matrix in 11 are both negative it implies, 4, , = —u, hence we can deduced the other two eigenvalues
by matrix reduction shown in the matrix below;

Je @) = (Pe =4 Fe) (12
It follows that the,
Trace of Jg, (D) = tr(D) that B < (2u + € + ¢ + &) and the det(Jz,, (D)) = 1 — R§
By implication, if R§ < 1 then det(Jg,, (D)) > 0 if R§ <1 and det(Jg,, (D)) < 0if R§ > 1 is
unstable.

3.1.2. Endemic Equilibrium Point (EEP)
The infection of corona-virus is considered to persist in a given population is usually described by
the endemic equilibrium point. Consider E; = (S,14,15,R) > 0 as the EEP of the system (9). Thus,
we rewrite equation 9 in endemic form as:

(g% = A
u+ g
IZ _ A¢S*
A
\ IF = AcS*e (13)
s = —*t—
AB
« _ AcS"e
k R - Au

Therefore, simplifying these endemic states in equation 13 in terms of A;. we have,
t = RG-1 (14)
€7 (O (uto+e)+ut)(Sc+m)
The result obtained from equation (14) shows that force of infection is positive at the endemic
equilibrium point if and only if RS > 1. The above analogy proves the endemic equilibrium point of
the corona-virus sub-model.

3.2. Tuberculosis sub-model
Similarly, in absence of those infected with COVID-19 from equations (4), the model reduces to a
TB sub-model given by:

11
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(B A= 1.5 —
— A—ApS —uS
LT — ApS — CLy
{ar (15)
—L =1Ly — DI
ac  ChT T
dR
where /’sz%,N=5+LT+IT+R,C=u+y+ tandD =pu+dér+v+ow.

3.2.1. The Local stability of Tuberculosis sub-model
At the state where there is no infection it gives the disease=free equilibrium point of TB sub-model

given as E, = (5y,0,0,0) where S, = ;—\ The local stability of a system depends on the basic

reproduction number that is usually to predict the eradication or persistence of a given disease in a
population. Adopting, the next generation approach, using FandV to represent matrices for
infection and transmission is expressed as;

BritS CL
F = and V = ( T )
( p > DIy — 7Ly

Following the same argument shown about corona-virus sub-model in section 3.1, then the basic
reproduction number for TB sub-model is given by:

RY = bt (16)

- (u+y+t)(u+dr+v+w)
Equation (16) described the TB disease transmission potential of tuberculosis is governs by seven
parameters. The equation portrays the new infection that occurs at the presence of a single infectious
person in a completely susceptible population. The elimination of any epidemic in a given population
is only possible when R? < 1 and increases exponentially if R] > 1 [22].

Theorem 3.2. The disease-free equilibrium of the Tuberculosis sub-model is locally asymptotically
stable (LAS) if the threshold quantity is less than unity.

In biological terms, for RY < 1 implies that the tuberculosis disease can easily be eradicated from the
community. This is possible if the initial size of the sub-population of the model is found on the basin
of the attraction of the DFE. We use linearization approach to examine the local stability of
tuberculosis by considering the Jacobian matrix Jg, = (S,Lr,Ir,R) and then determining this

Jacobian matrix E is given by;

-© 0 Br 0

0 —C B 0
=\ g ¢ _p o (17)
0 Y w —u

Since the first and the last elements of the diagonal matrix in 17 are both negative that is, 1, , = —pu,
hence we can deduced the other two eigenvalues by matrix reduction shown in the matrix below;

12
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Jew = (¢ Fr) (18)

It is obtained that the trace of Jr,=—-(2u+y+7t+w) <0 and the det(Jz,) =1—Rg,
therefore, det (Jg,,) > 0 if R§ < 1. This shows that the DFE point is asymptotically stable if, R <

1, which complete the proof.

3.2.2. Endemic Equilibrium Point of Tuberculosis sub-model
In order to obtain the endemic equilibrium point of the TB sub-model, we solve the odes in equation
(15) by replacing S, Ly, I, R and Ay by S*, L%, Iy, R* and A}, these equations becomes,

« _ A
57 = ut Ay
. _ ApS*
T ¢ 19
) « _ ApS't (19)
="
« _ ApS*(Dy+wr)
\R" = chu
Therefore, simplifying equation (19) in terms of A% , we have
« _ _ BA-RD
T ™ D(u+y)+r(ptw) (20)

Following equation (20), it shows that the endemic exist if and only if R} > 1and D(u +y) +
(u+ w) > 0.

3.3 The Tuberculosis and COVID-19 Co-infection Model

In this section we proceed to solve the equilibrium points of the full model (4) by setting the right
hand side of the model equations to zero:

A=A +2)S—puS=0

ArS — (by + by)A Ly — 1Ly =0

thy + fYlrs + dpLrg — c1plp =0

AcS —agArly — i3l =0

€ly + cPLyy + ci3ly + ePlrg — arApls — 14l = 0 (21)
ayArly + byA Ly — cislpy =0

arArls + by A Ly + 0Ly — c16Lrs =0

oLrs +nls +vip — ¢c17l75 =0

oly +yvLr + wlp + &g+ klps + [1— (c + D]PpLry + [1 — (e + H]Ylrs —pR =0

where A and A, are defined as shown in equation 2 and 3 above. The disease-free equilibrium point

of the full model is defined as EI¢ = (% 0,0,0,0,0,0,0,0). We apply the next generation method to

13
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determine the stability of the co-infection. Using equation (21), we defined two matrices F; and V;

for newly infected terms and the remaining transfer terms, given as

20 (by + by)AcLy + ALy
0 —TLy — flys — ddpLry + Blr
AcS a1Arly + Cly
F; = 0 |andV;, =| —€ly — cpLyy — ePlrs — ayArls + Dl
0 —Arly — biAcLy + ELpy
0 —ayArls — byAcLy — 0Ly, + FlLrg

0 —viIp — oLps — nls + Glrg
The Jacobian matrix of the two matrices at disease-free equilibrium is:

g B 0 0 0 0 O A 0 0 O 0 0 0
0O 0 0 0 0 0 O —r B 0 0 -dg¢ 0 -—fy
0 0 A B B P b o 0 C 0 0 O 0
F={0 0 0 O O 0 O|adV=l0 0 -¢ D -cp 0 -—ey
O 0o O O O o0 o0 0O 0 0 O E 0 0
O 0 0 O O o0 O O 0 0O 0O -0 F 0
O 0 0 O O o0 O O -» 0 -n 0 -0 G
Hence,
% K12 0 Kl4 O 0 K17
0 K, 0 K, 0 0 K,
0 K32 % K34 0 0 K37
Vi=l0 K, 0 K, 0 0 K,
0 K52 0 K54 % E;gF K57
0 K62 0 K64 0 % K67
0 K, 0 K, 0 0 K,
where
K - 7(DG —ewn) K - eyt K. - vtD
¥ A(BDG-Beyn-Dfyv) * ABDG-Beyn-Dfyv)’ ' A(BDG-Beyn-Dfyv)’
DG —eyn ey vD

2= Koy = Ky =
BDG - Beyn — Df v BDG — Beyn — Df yov BDG - Beyn — Df yv

14
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K - fyne K - e(BG - fyv) K - neB
% C(BDG-Beyn-Dfyv)’ * C(BDG-Beyn—-Dfyv)’ ¥ C(BDG-Beyn—Dfyv)’
K - fyn
42 — '
BDG — Beyrn — Df yv
BG - fyov nB

“~ BDG—Beyn-Dfyo’ ' BDG - Beysn—Dfyo’

_ DFGd¢ + Df wo0 + Fegn fy — Fdgeyn K - BFd¢ + Beyol — Fcg fwo + Fdgepv

%2 EF (BDG — Bey 1 — Df yv) o EF (BDG — Beyr — Df pv)
_ BDoO+BFcgn+DFdgp _ fyoD
* EF(BDG-Beyn-Dfyv)’ % F(BDG-Beyn—Dfyv)’
eyoB oBD

K = y K = ’
*  F(BDG-Beyn-Dfyv) * F(BDG-Beyn—Dfyv)

fyD ey B BD
Ky = v Ky = Ky =
BDG — Beyn — Df o BDG - Beyn — Df o BDG — Beyn — Df o

Five of the eigenvalues for the matrix FV~1 are zeroes. The other two eigenvalues are:
1

1
Al = Rl = 2AC(BDG-Bem-Dfv) [a1 + (az + as + Ay + as + (043 + a + ag + ag)i] (22)
1 1
Az = RZ = 2AC(BDG—-Beym-Dfym) [a1 - (az + as + Ay + as + (243 + a + ag + 069)2] (23)
Where

a, = ABB:(DG + GE + ne) + CDB+(BG + Gt + vt) — AYpBc(Ben + Dfv + fve) — CyBr(Ben +
Dfv + ene)

a, = A’B2BZ(D?G? + G?€? + ey?n? + €2) + 2A°B?BE(DG?€ + DGne + Gne?) —
2A%2B2R2mpe(DG + Ge + en)

as = A’ fP?v2BE(D? + 2DE + e?) — 2A2BDfyYvBE(DG + 2GE + ne) + 2A%ey fhvnpé(D +
€) — 2A%Bfyve?(Dn + G)

a, = 2AB?CpB:Pr(eyn?e — D>G? — DG%*e — DGne + Geyme — ep?n?) + 2BCDG L fr(2eyn —
ADGT)

as = ABCDB:Lr(DGfyYv + Geynt + Gfypve — eynfypv) — 2ABCDGTS:Lr(Dv + Ge + ne + ve)

ag = 2ABCtf:Br(eynu + Dfpev + Dnev + Gep) 2ABCey) B fr(n*te — n* Yt — nfpve +
2nvTe)

15
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a; = 2ACD? fBcPr(GyYvt — Yv? + v2T) + 2ACD fYvB Br(Ge — eyt + 2ne — vipe + vTE)

ag = 2ACeynfyYvrefcfr + B>C*B2(D?G? — 2DGeyn + ep?n?) + 2BGC?D?(t — 2fyv + 2v1)
+ 2BC?DneypBi(v — 2GT)

ay = C2BE(D?G?*1% + fY?v2D? + D?v21? + eyp?n?t?) — 2C%1C?B2[Deyn(v + v + GT — fhv)
+ D2v(Gfy — Gt + fypv) — Beyp?n?]

Therefore, the basic reproduction number R3¢ of the co-infection model (4) is given by;
R3¢ = max{Ry, R,} (24)
3.3.1. The Local stability of the TB-COVID-19 co-infection model at DFE
Using linearization method, the local stability of the disease-free equilibrium point for the co-

infection can be analyzed as follows. The Jacobian matrix of the co-infection from equation (4) is
shown below;

—u =P b b b —pc —pc e~ P 0
0 -A -4 0 0 0 0 0 0
0 T -B 0 0 de¢ 0 fy 0
0 0 0 —-C ﬂc ﬂc :Bc :BC 0

J gre = 0 0 0 & -D —Co B ey 0 | (25)

0 0 0 0 0 -E 0 0 0
0 0 0 0 0 0 -F 0 0
0 0 1% 0 n 0 o -G 0
0 » o ¢ 0 [-(c+d)]l¢ « [A-(e+fly -u

The characteristics equation of |/’lI - ]Eg"c| = 0 gives the first three eigenvalues from the first, last

entries and sixth row column six of (25) as A4, , = —u and 43 = —E. Hence the matrix (25) reduces
to:

A B O 0O 0 O
B 0 0 0 fy
-C ﬁc ﬂc :Bc
¢ -D 4 ey
0 0 -F O
0 n o -G

16¢

O O O O N
X O O o

As performed by [13], we further reduced the above matrix into two block matrices shown below:

16
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-A g 0 O

r -B 0 O -F 0
J e = and J__.. =
2E 0 0 -C g 36 o -G

0 0 & -D
The characteristics polynomials of /, ;rc and J;;rc matrices are;
Jogre = M+(A+B+C+D)A3+[AB+ (A+ B)(C + D) — Bce — frT]A? + [AB(C + D)
+CD(A+ B) — fce(A+ B) — B77(C + D)]A + [ABCD — BceAB — BptCD — BrBceT]

]3E0Tc = (F + 1)(G + 2) Therefore,

Jigre = F+ DG+ D{A* + (A+ B+ C+ D)X +[AB + (A+ B)(C + D) — fce — Brr]A?
+[AB(C + D) +CD(A+ B) — fce(A+ B) — Br1(C + D)|]A + +[ABCD — [-€AB — BrTtCD —
BrBcet} =0
It follows that ; = —F and A, = —G with a polynomial

PV =2+ a2+ a2 +azA+a, =0 (26)
where

a,=A+B+C+D
a, =AB+CD + (A+ B)(C + D) — Bce — BrT
az; =AB(C+ D)+ CD(A+B) — Bce(A+ B) — Brt(C + D)
a, = ABCD — f:€AB — B;TCD — frfc€eT
= AB{(1 — Rg) — BcD} — CD[(1 — R§) — AB] — Brfcet

Therefore, following the Routh-Hurwitz stability criteria, roots of (26) of the reduced matrix posses’
negative real parts if the following condition holds;

a; >0,a;>0,a,>0 (27)
and

a,a,a; > a: +ala, (28)
It follows that the conditions 27 and 28 holds if RS < 1 and R} < 1 consequently, we have proved
the expected result.

3.3.2. Global stability of the co-infection at DFE
In considering the global stability of the co-infection, we sub-divided the model (4) into two ode’s as
used by [13] as follows:

X — F(X,2)

dt

2= 6(X,2),6(x,0) &)
where X = (S,R) with XeR2 and Z = (Ly, I, 14, Is, Ly a, Lts, Irs) With ZeR%. these represent the
non-infectious and infectious compartments respectively. It follows that V, = (X,0) where X, =
(%, 0) as the disease-free equilibrium. For global asymptotic stability to exist, then,
H;: ‘;—’t‘ = F (X, 0), the equilibrium point V, is globally stable
Hy:G(X,Z) =AZ — G(X,Z),G = 0 for (X,Z)eQ where A = D,G(V,,0) is Metzler matrix, and the
feasible region is denoted by Q .

17



Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of
Disease Dynamics (ICMMOADD) 2024

From equation (4) we defined the matrix as:

ax
= =F(X,2)

So,

[quA +yLy + wlp + &l + kLpg + |

A—uS

F(X,0) = [A _0”5] and

dz
Z=G6(X,2)

ArS — (by + by)AcLy — ALy

tLly + fYlrs + ddpLry — Bly
AcS —ajArly — Cly

=|ely + CPLyy + elrs — ayApls — Dl
ayArly + byAcLy — ELgy

a,Arlsg + byAcLy + 0Ly — FLpg
vlp + oLlrs +nls — Glpg

Therefore, the Metzler matrix, is given by

G(X,Z) = AZ — G(X, Z) is obtained as follows;

(G1(X,2)]
G,(X,2)
Gs(X,2)
Gs(X,7)
Gs(X,2)
Ge¢(X,2)
G, (X, 7).

()
Il

From equation (30), since,

_AT(l - S) + (bl + bl)ACLT_

deLr,

Ac(l - S) + allTIA
Bclrs + azArls
byAcLy — ajArly

—QyArls — byAcLy

0

1-(c+d]pLry + +[1— (c + D)]Plrg

(30)

(—ayArls — byAcLy) < 0, it implies that the second criteria is not

satisfied. The implication is that V, and the disease-free equilibrium point EI¢ can’t be globally
asymptotically stable.

3.3.4. The bifurcation of the co-infection
We represent the populations in our model (4) with the following

S =x1,Lr = x3,Ip = x3,14 = X4, Is = X5,L74 = X¢,L7s = X7,I75 = X3, R = X

The modified model becomes:
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d
%Ef1=/\_(/1r+/1c)x1_ﬂx1

de

PTi fo =Arxy — (by + b)Acx, — (U +y +1)x;

% =fi=1x,+ fipxg+ dopxg — (u+ 67 +Vv)x3

%Eﬁl =Acx1 — aqArxy — (U + €+ @)Xy

% = fo = €xy + cpxg + ePxg — aArxs — (U + ¢+ + E)xg 31)
% = fo = agdrxg + bidoxy — (L + 81 4 6 + P)xg

% = f, = apArxs + byAcx, + 0xg — (U + 63 + 0 + K)x;

%Efg = 0x; + x5 + x5 — (U + 85 + P)xg

dxg

o = Jo = 0xa Hyxy + wx3 + $x5 + KXy + [1—(c+ D]dxe + [1 - (e + Hlhxg — puxo

where

Ar = ET(x; + x5 + xg) and A¢ = EE(xy + x5 + x4 + X7 + xg)

The Jacobian matrix of the above system (31) at the disease-free equilibrium E; at a chosen
bifurcation parameter . = 55 was obtained by equating RS = 1 and 8 = (tet@)(utdct m) hence,

u+Sc+n+e
—u =p =B _3;4 _3;4 _aIA _a1*4 —a5 0

0 a, A 0 0 0 0 B 0
0 r -a, 0 0 dg 0 fy 0
0 0 0 —ay _31*4 _a; _a; _a; 0

Jo=[0 0 0 & a cé 0 ey 0 (32)
o 0 0 0 0 —a, 0 0 0
0o 0 0 0 0 0 —a,, 0 0
0 0 v 0 n 0 o —8, 0
0 » o ¢ & [A-(c+dlp x [-(+fly -u

where

N 6
a14_(#+€+(ﬂ)(ﬂ+ C+77), 15_ﬁT+a141a22 _ﬁT_(M+y+T)1'a33 _M+6T+V+w

u+éc+n+e
Qg =js—(U+ e+ @), ass= u+0c+n+e age=u+6,+60+¢, a,, =u+36,+k+o,
agg =1+ 63 + .

We now denote the right hand eigenvalue w = (wy, w,, w3, wy, ws, Wg, W, Wg) Where,

— Brif¥(azz-Br)-Br(ass+D] | alslevasa+eass- a14(6+e¢+a55)]+a15a44a55 __ BT +az3)
wq = { }W Wy = —————=wg,
T az2a33+PTT 44055+ a7 4€ azzasz + Brt
Wy = LPaz2=br oy =  G1aC¥taiadssy, gy = G4aC¥ ZGuaCy, o — () we=wg > 0,

az2a33+pTT azzazz+prt az2a33+pTT

— l{flpwazz ﬁT(Tw+Yf1/)+a33)’)+ [1-(e+/)](assass+ai ) Pp—aisp(eP+ass)

W
uazzazz+prt) u(azzazz+Br7) } 8
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Similarly, the left hand eigenvalue v = (vy, v,, V3, V4, Vs, Vg, V7, vg)T IS given by v, =0, v, =

TV _ azov — €n — assn
———Vg, Vg = —=2—Vq, Vy = — ——Vg, Vg = /—2"—"—0V
azzazz+Brr 8’ 73 T azzazz+frr 8 4 ajs€+ asaass 8’ O ajs€+azaass O’
Vg = azavd¢ az7n(cpasa—ajze)+6[o(aiset a44a55)—a§4€77]} Vg, Uy = o(ajse+ a44a55)-ai4€nv8
* *
age(azzazz+prt) az7(ajs€+agqass) ’ az7(ajs€+asqass) ’

vg = vg > 0,v9 = 0. We now proceed to determine the direction of the bifurcation as we obtained
the values of a and b. Since v; = vy = 0 then we considered k = 2,3,4,5,6,8.

—_ 9 Ofk
a = Y j=1 VkWiW; awow, (0,0)

: _ 92f, 0%f, ]
The expansion of a = v, [W1W1 Fwiow, T T WaWo 3o
9% fg 9%fs ]
+ vg [W1W1 widwe + - wywg Fwowe (33)

Let us represent these components of a as a = ¢+ €, + €53+ €, + €5 + £5 + £, from equation
(33). The computed value of a from the values of #; fori = 1, ..., 7, is given as follows;

P, — —_ 2uTVBr Br—azz (b1+bp)(ey+ ass)(aga—a14)(pte+@)(u+8c+ 1) h

1= Ao = wnere
azzaz3z+pTT azpazz+prT (u+6(;+n+e)(a14e+a44a55)(a22a33+BTr)

AO -

— [BT(ahE + a44a55) (fP+(az2—Br)—Pr(ass+ 1)) +(azzass+Brr)(ais(epass+ alse—a§4(e+e¢+a55))+a15a44a55]
(ajs€ + asggass)(azzazz+prt)

Therefore, £, < 0,4, = 0.

2 *
_ __ 2penuywg (u+e+@)(u+8c +€)(ep+ass)(alz—asa) ]
b = Aajg€+agqass [ n(u+8c +§+e)(aje + asqass) Ay + A;[ <0 where
_ Br(faza—Br(fp+azz+1) a’i4(e1pa44+ a15€—a’i4(e+e1p+a55)) +a15a44ass _
A - azzaz3z+prT + a;45+a44a55 and A2 =

aaiy (fP+azz)(azs+Br)(e+ass)
(azzaz3+BrT)(a]s€ + asqass)

_ __2aBra44unvgwi(assep— alse)(fP+azs)(Brazz) H *
= - . if
Z (az2a33+BTT)(a]4€ + agqass5)? < 0Mfagep > 0ay,e
2
ls = _ZHVSWS(€¢+z55)(f¢+a33)A3A4 < 0 where A; =
a3 Braie(BrT+ azz) by(u+e+@)(u+dc +§)(aly—ass) and

(a22a33+ﬁT‘r)(ai4e + a44a55) ([L+SC +f+e)(a22a33+ﬁT‘r)(a"1‘4s + a44a55)

A, = azzvde az7n(cpasa—aise)+ 0la(alse + agqass)—ajqel
4 = +
age(azzaszz+BrT) az7(azz2a33+B77)
2
P, = —— 2HPrvsWE 14 4 A ] < 0 where
6 a77A(a22a33+/3TT)[ 5 6]

Ae = ba(u+et+)(u+8c +n)(fP+azz)lalse + asaass—(eyp+ass)] and A, = (aaaey +al €)BrU¥ +agz+1)-fPaz;]
5 (u+8¢ +&+e)(azzazz+BrT)(a14€ + asaass) 6 (azz2a33+B77)(a]4€ + Aa4ass)

Since fg for k = 8 does not have the product of x;x; hence £, = 0. Therefore, from the computation
of #;'s fori = 1,2, ..., 7 above are all negative, this implies that a < 0.

We now determine the value of b, using the formula and evaluating at k =4;

Ofk
hb=%%_ _v.w:
Z"'J_l k J aW]aﬁC
0fy
b = 9 oUW ———
Lij=1VaW] ow;0Bc
h=— envgwg(eyP+ ass)(asa—aqy) <0 if Ayy > ai4

(al4€ + agqass)?
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The bifurcation analysis of model (4) is summarized below using the theorem.

Theorem 3.3 Since the parameter a < 0 and b < 0, the bifurcation direction of model (4) at R§ = 1
is forward. It can be observed that a < 0and b < 0 as shown in the above section, implies the
direction of TB and COVID-19 co-infection diseases is a forward bifurcation at R§ = 1 for the fact
that the co-infection has no re-infection. The implication is that, a stable equilibrium point loses
stability as a parameter is varied, and two new equilibrium points, one stable and the other unstable
are created. The stable equilibrium point moves forward in parameter space as the parameter is
increased [11].

3.3.5 The impact of Tuberculosis on COVID-19
In order to ascertain the impact of tuberculosis on COVID-19, we adopt the approach used in [13].
This is obtained by expressing the basic reproduction number of RS in terms of RI which is easily
enhanced since the parameter u appeared in both RS and RZ.We can re-write equation (16) as

Rl = _ Brr (34)

(u+ dy)(u+dz)

whered, =y +1,d, = 67 + v + w. Solving for u in equation (34) and substituting it in equation
(10), we have,

RS = uihees) (35)

S di+d S di+d
[_«22 +(erp)rD-dtdz Rg][_vzz +(5¢+mrE-d1tdz Rg]

where S; = Rj(8¢ + n+€) — %1% and S, = R{(R{(d; + dy)? + 4B77). In order to determine

the impact of TB and COVID-19, we evaluate ;’% using equation (35) and simplifying sufficiently to
0

have;

BT(51+ @){1+R£[dl;—@—(6c+ 11)]+ Rg[dl;—dz—(eﬂp)]}

oRG _ (36)

T 212
oR} HiH;

where H, = [@+ (e+ )R — (@)Rg] and H, = [%+ (6c +n) R{ — (@)RS]

It had been shown here that the partial derivative of RS with respect to RY is positive. This analysis
portray that any increase in the population of the infected population will positively influence the
transmission of corona-virus.

4. Numerical simulation

In the previous sections, we focused on the analytical behaviors of the sub-models and modeled
dynamics (4). In this section, we shall perform some numerical solutions of sub-models and the co-
infection model. The solutions of the dynamics equations are solved with the help of ode45 solver in
MATLAB. The parameters values are also shown in table 1 above. The data used in this numerical
simulation of tuberculosis sub-model were obtained from the record given during the 2023
Tuberculosis Day celebration in March 24 in Abuja, Nigeria as cited in [1] and [15]. Similarly,
COVID-19 sub-model data were obtained from [4]. The initial data for the variable S =
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1.6 X 107, Ly = 3.5 X 10%,I; = 4.83 x 105 were collected from [1], I, = 266,15 = 217, [16],
Lys = 45, Irs = 25,[18] and R = 1.45 x 10° and L5 = 25 were estimated.
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Figure 2: Simulation results showing the effect of emhanced recovery rate on asymptomatic COVID-
19 population with respect to time when ¢ =m from 0.1 to 1.8 where (a) Susceptible (b)
asymptomatic (c) symptomatic and (d) Recovered populations.
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Figure 3: Plots showing the effect of treatment on the symptomatic population when the value of ¢
was varied from 0.5 to 1.2 with time for (a) Susceptible (b) asymptomatic (c) symptomatic and (d)
Recovered populations.
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Figure 4: The diagram present the changes in each TB sub-model population with respect to time by
varying T from 0.1 to 1.6 as it progresses from Latent TB to active TB where (a) susceptible
population (b) Latent TB (c) Active TB (d) Recovered Population.
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Figure 5: The simulation of model (4) showing the behavior of (a) Latent TB- asymptomatic (b)
Latent TB-symptomatic (c) Active TB-symptomatic and (d) Recovered population as 6 was varied
from 0.02 to 1.3.
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Figure 7: (a) A plot comparing the behavior of Latent TB-asymptomatic and Latent TB-symptomatic
COVOD-19 (b) a plot comparing the behavior of Latent TB-symptomatic and active TB-
symptomatic COVOD-19 and (c) a diagram comparing the behavior of Latent TB-asymptomatic and

active TB-symptomatic COVOD-109.
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Figure 8: (a) A plot comparing the behavior of three co-infection diseases with B, = B = 0.4,v =
0.001 and n = 0.002 (b) a plot comparing the behavior of three co-infection diseases with S, =
Br =14,v=1.001andn = 1.002

5. Discussion

Figure 2; illustrate the behavior of COVID 19 sub- model populations when asymptomatic corona-
virus individuals were treated as the rate of recovery ¢ = m was varied from 0.1 to 1.8. The
susceptible population (a) was positively affected but for asymptomatic (b) and symptomatic (c)
COVID - 19 declined in population since effective treatment reduces disease growth. In Figure 2d,
gives a situation where treatment enhances growth as all treated populations recovers.

Figure 3; demonstrated a situation where symptomatic corona-virus was treated as the rate of
recovery & was varied from 0.5 to 1.2. It was observed that the susceptible population (a) was
favored but for asymptomatic (b) and symptomatic (c) COVID - 19 declined in population to
extinction. The diseases ceased to exist as from days 10 as effective treatment was conducted. In
figure 3d, illustrate a situation where treatment enhances growth for all treated population.

Figure 4; demonstrated the behavior of the susceptible, Latent TB, active TB and recovery
population of people who gets infected with active TB. It can be seen that the susceptible population
declines (a) as they progress to latent population. The latent population (b) collapsed as more people
moved to the active population and became infected with active TB. In figure 4c, the population
increases as many individuals get infected with active TB at the rate of 0.8 within time 0 to 3 days
before it declined. In the recovered population (d) there is a decline in its population since more
persons are getting infected instead of recovering. This scenario had been demonstrated in section 4
owning to the fact that when the reproduction number of the sub-model is greater than one.

Figure 5 shows the effect of the rate of progression of latent TB - asymptomatic COVID- 19 to latent
TB - symptomatic COVID 19 when the parameters 8 was varied from 0.02 to 1.3 that is, the
populations denoted by L;4, Lrs, I7s and R. It is shown that the latent- asymptomatic population
increases due to the inflow from other populations and decreases at & = 0.02. The inflow from the
Ly, population to Lygincreases its population to a peak before it begins to decrease when 6 was
varied to 0.5 (5b). Similarly, at & = 0.9 and 8 = 1.3 for (c) and (d) the same scenario occurs. Since
all the populations were all infected, the recovery population decreases.
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The time series plots of TB and COVID -19 single infected populations are shown in figure 6 the
varying populations of each disease that eventually goes to extinction with time according to this
order I, 14, Ly and Is. Figures 6a, 6b, and 6¢ shows the graphs drawn for each respective pair of
diseases: Ly, and Lyg, Lpg and Ipg, and then Ly, and Irg from model (4). The simulation in each
of these pairs shows a gradual growth of each population to the 15" day before then began to
decrease till extinction. In figure 7a, Ly, goes to extinction at the 33" day and L ¢ at the 40" day
while in figure 7b, L, goes to extinction at the 35" day and while I at above 40" day and in 7c,
L4 goes to extinction at the 30" day and L ¢ at above 40" day. The phenomenon of these pairs of
co-infection finds its importance in diseases control strategies.

The simulations of figures 8a and 8b illustrate the behaviors of the three co-infected diseases when
the contact rate for tuberculosis and COVID-19 was fixed at 0.4, n = 0.001,v = 0.001 and when
these parameters were varied to . = Br =1, n =1.001andv = 1.001 respectively. The two
figures show a similar arrangement in which the population goes to extinction with time. In figure
8a, it takes 30, 35, above 40 days for L;4, Lys and I;4t0 go to extinction but for figure 8b, their
extinction period were reduced to 10, 20 and below 40 days. This shows that the three diseases can
co-exist and demonstrate the population nature of severity arranged accordingly in a given order
Lya, Lrs and I, [18].

6. Conclusion

The first part of this work examined the behavior of the spread of COVID - 19 and tuberculosis as
sub-models. The individual basic reproduction numbers (RS and RY) using the next generation
method was obtained. The important threeshold quantity RS and R, that determined the nature of
diseases transmission were computed. It was shown that the systems are locally asymptotically stable
if RS < 1and RI < 1 and unstable otherwise, which implies that the diseases can be eradicated at
DFE. It was also established that the dynamics exist at endemic equilibrium point if RS >
1and R} > 1. From the simulation analysis conducted, it reveals that the result obtained agrees with
the analytical analysis. Similarly, the properties of the the co-infection model was studied and its
threshold quantity RST was obtained by adopting the next generation technique. Both local and
global stabilities were conducted which were proved to be stable and unstable at R§” < 1 and R§T >
1 respectively. It was proved that tuberculosis has a positive impact on the transmission of COVID -
19. Several simulation cases were conducted to support the analytical result, and it is observed that
diseases co-relate appropriately. The result of simulation reveals that an increase in the rate of those
infected with active tuberculosis and those infected with symptomatic COVID-19 enhances the
increase of the co-infection diseases and verse versa [13] and [22]. Also, the three co-infection co-
exist and portray severity in an ascending order Ly4, Lt and I 4.
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Abstract

The prevalence of drug abuse and its related diseases and violence continue to escalate worldwide
despite existing control measures. In order to promote good health and well-being, eliminate poverty
or promote decent work and economic growth, and promote peace and justice among the United
Nations’ Sustainable Development Goals (SDGs), there is an urgent need to understand the dynamics
of those identified problems for more strategic and prompt control actions. Therefore this research
considers existing theoretical literature concerning the dynamics of the problems and adopts a
mathematical modeling framework and comes up with a system of differential equations that
presents the problems for more understanding of the dynamics of the problems in the human
population. Moreover, the equilibrium points and basic reproduction number of the model have been
obtained. The research effort concludes the problems of drug abuse, related infection and violence
can be eliminated in human population by taking care of the parameters in the basic reproduction
number of the model. However, the research effort can be extended where a particular disease can be
considered in place of I, and any relevant measures for controlling the problems.

Keywords: Illicit Drug-Abuse, Diseases, Violence, SDGs, Socio-Economic Development
1. Introduction

Controlling diseases to promote Good Health and Well-Being, controlling violence to promote Peace
and Justice, and eliminating Poverty to promote Economic Growth are among the 17 goals which the
world is moving towards sustaining by the United Nations (UN, 2023) but unfortunately, the
consequences of drug abuse in the human population world over including the related illnesses and
violence hinder development in many countries of the world based on revelation from the United
Nations Office on Drug and Crime (UNODC, 2013) as according to the World Drug Report (WDR,
2022), the epidemic of non-medical use of tramadol in North Africa, West Africa, the Near and
Middle East and South West Asia, continued to alarm great health risks in recent years. It has been
revealed that weed remains the most commonly abused drug where 200 million individuals
consumed it with more than 11 million people who inject drugs and 62 million individuals who use
opioids in 2019. It has been projected that the number of people who use or abuse drugs in Africa
will increase by about 75% by the year 2030 (UNODC, 2021) with the most unfortunate situation
that drug abuse occurs more frequently in young people than in other age groups (UNODC 2, 2023),
and in order to achieve those UNs’ objectives, this terrible situation of drug abuse needs to be
addressed urgently.
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2. Literature Review

Drug abuse is the illicit consumption of any naturally occurring or pharmaceutically prepared
substance for changing the consumer’s feeling, thinking, or behavior with no consideration given to
the resulting dangerous physical and mental side-effects it produces on the consumers (Salisu, et al.,
2021). Addiction is defined as a chronic, relapsing brain disease that is characterized by compulsive
drug acquisition and use, despite the numerous harmful consequences it results. It is considered a
brain disease because drugs change the brain’s shape and functions National Institute on Drugs and
Addiction (NIDA, 2014). This is considered as the next progression stage of drug abuse. Drug
dependence is regarded as a stage of drug abuse when the abuser can no longer perform without
consuming the addicted drug. This is considered as next progression stage of drug addiction. Drug
tolerance is the administration of a higher quantity of drugs to obtain the effect it has on the organism
which a lower dose or administration cannot produce as a result of tolerance by the body system of
the organism (Abraham, 2012). This is considered as next progression stage of drug dependence.
Mental illness is developed in abusers as a result of long time consumption of drugs of abuse. Drug
abuse and mental illness often co-exist as drug impairs the brain (NIDA, 2014). This is considered as
next progression stage of drug tolerance. Once a person is declared mentally ill, such a person is
considered insignificant or irrelevant in terms of productivity. Drugs or substances abuse especially
alcoholism do not only induce significant defects in the body’s immune cells (i.e., pathogens) by
interfering with multiple aspects of the immune response but also results increased risk and severity
of infections. Alcohol abuse severity of infection has been demonstrated particularly well for
infections or drug related illnesses of respiratory tract, especially bacterial pneumonia and
tuberculosis, prevalence of hepatitis C and HIV (Patricia, 2010). Violence is considered as any form
of unwanted behavior or action that causes physical or psychological discomfort, threat, harm,
deprivations, or even death to one-self as personal violence, or other individual(s) as interpersonal
violence. Violence could be domestic or otherwise (Salisu, et al. 2021). Different kinds of violence
have been claiming the lives of people all over the world where it has been projected that by the year
2030, The number of annual direct conflict deaths is anticipated to exceed 100,000 (Claire, 2017).
There is relationship between drug abuse and violence in the sense that involvement in drug abuse
can increase the risks of being perpetrator of violence, while experiencing violence can in turn,
increase the risks of initiating illicit drug abuse (Amanda, et al., 2009).

Understanding of the economic costs of- production of drugs of abuse, economic deprivation on the
abusers, drugs-related illnesses treatments, and drugs-related crimes control is necessary to develop
policies that reduce such costs and investing into the economy. Even though it is difficult to ascertain
due to the conservative interest in some of the estimates for individual substances, an estimated
turnover of around $400 billion per annum is considered realistic in drug production where the figure
can be compared to estimates of over $500 billion that are based solely on the average of minimum
and maximum prices in the United States (UNODC, 2023). It has been identified that drug addiction
amongst youths is one of the global menace that has negatively affected their development and
productivity (Eguda et al. 2022). Addictive substances such as alcohol and tobacco account for
nearly 5 million deaths annually worldwide and psychological researchers predicted that the ideation
of suicide in People Living with HIV (PLHIV) include- development of concurrent substance-use,
past history of personal depression, and hopelessness in life (Jamerlia 2021). Moreover, in Nigeria

30



Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of
Disease Dynamics (ICMMOADD) 2024

for instance, groups mostly affected by HIV/AIDS infection are injecting drug abusers, commercial
sex workers, and homosexuals where the three groups constitute only 3.4% of the population but
contributing about 32% new HIV/AIDS infections (Adewolfe, 2021).

Based on the literatures considered by the research, there is need to more comprehensively
understand the dynamics of drug abuse, drug-related diseases and violence for taking more
sophisticated and urgent control measure for strengthening of the economy instead of using huge
sums of money in production of drugs and control of drug-related diseases and violence world over.

3. Methodology of the Model Formulation
In order to formulate the model we based the research on the existing theoretical literature
concerning the dynamics of drugs-abuse and its related infections and violence; and we also use the
following assumptions to realize the model:

i.  Total population is sub-divided into eight (8) classes of individuals where Susceptible
persons are designated by S, Light drug abusers designated by L, drug Addicted persons
designated by A, drug Dependent persons designated by D, drug Tolerant persons
designated by T  drug Mentally ill persons designated by M, those who acquired various

kind of drug-related Illnesses designated by 1,and drug-related Violent persons designated
by V,;

ii. Due to disgusting state of higher class abusers (in D, T and M), there is no effective
contacts between susceptible persons and those in the higher classes of abusers;

iili.  New recruitment into the system is in the susceptible class; and

iv.  The population is not affected by migration.

3.1 The model variables and parameters

Variables/Parameters Description

S(t) Number of susceptible individuals at time t

L(t) Number of light drug abusing individuals at time t

A(t) Number of addicted drug abuse individuals at time t
D(t) Number of dependent drug abusing individuals at time t
T(1) Number of tolerant drug abusers at time t

M (t) Number of mentally ill drug abusers at time t

I (1) Number of drug-related Infected individuals at time t
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Number of drug-related Violent persons at time t

New recruitment rate into the population

Is drug abuse transmission rate

Is transmission modification parameter for addicted persons
Is natural death rate in all the subclasses

Is acquired infection rate from L to I,
Is acquired infection rate from A to I,
Is acquired infection rate from D to I,
Is acquired infection rate from T to I,
Is acquired infection rate from M to I,
Is progression rate from L to A

Is progression rate from A to D

Is progression rate from D to T

Is progression rate from T to M

Is acquired violence rate from L to V,
Is acquired violence rate from A to V,
Is acquired violence rate from D to V,
Is acquired violence rate from T to V
Is acquired violence rate from M to V,
Is drug abuse induced death rate in L

Is drug abuse induced death rate in A

Is drug abuse induced death rate in D

Is drug abuse induced death rate in T

Is drug abuse induced death rate in M

Is death rate due to infection in

Is death rate due to violence inV,
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3.2 The model flow diagram

(e + )y

Figure 1: Flow diagram of the model.

with X =(a+u,), Y =(a+u) and Z =(a+,).

3.3 The Model Equations

ds S

E:A—(7L+ypA)W—yS 1)
dL S

E=(7L+ypA)ﬁ—(al+ﬁl+a+,ul)L (2)
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dA

E:51L—(0'2+7r2+0(+,u2)A (3)
%—?:52A—(03+7r3+a+y3)D 4)
?j—-lt-:&sD—(04+7z4+a+y4)T (5)
dd—'\:|=§4T—(O'5+7Z'5+a+/,15)M (6)
dl,
E=61L+62A+0'3D+0'4T+05M—(a+,u6)|D (7)
dv,

" =L+ m,A+7,D+ 7, T +72,M —(a+ 115 )V, (8)
where,
N=S+L+A+D+T+M+1,+V, 9)

Subject to the initial condition,
S(0) =S, L(0) = Ly, A(0) = Ay, D(0) = Dy, T(0) =Ty, M(0) = My, 15 (0) = 150,V (0) =V (11)

4. Model Analysis
To analyze the model, we obtained drug abuse, infection and violence free as well as endemic

equilibrium points of the model, and basic reproduction number of the model at the problems-free

equilibrium point.

4.1 The Equilibrium Points
At infection and violence free, we equate the rate of changes, drug abuse, infection and violence
variables to zero in equations (1) to (8) and obtained the drug abuse infection and violence free

equilibrium point thus:

E,=(S,L,LAD,T,M,1,,V;) =(§,o,o,o,o,o,o,oJ (12)
y7i
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Whereas at the that point, every individual in the entire population stands the chance to be
susceptible therefore,

S<N (13)

In the presence of drug abuse, infection and violence, we equate the rate of changes to zero and

obtained the simplified form of the endemic equilibrium point thus:
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0 (B, +B,+B, +B, +B;)
6,959,950 (7 — g,L)
0, (Bs +B, + B, + B, +By) 14)

5193949572',0(7T— glL)

with,

B, =0,0,0,0,0,70(7 ~ g,L)A, B, =0,8,0,0,05L (49N 7 (7 -g,L)),

B, = 0-352A5lg4957[p(7[ - glL)’ B, =0,0, D519395”p(” - g1|—)’ B; = 0_554-'-5193947[/0(” - g1|-)’
B; = 7,0,9:9,9s%0(7 ~ G, L) A, B, = 7,6,040,95L (49N —y (7 —g,L)),

B; = 7[352A§194957Tp(”_ glL)’ B, = ”453Délgsgs7zp(7f_ glL)’ By = 7[5541-5193947[,0(”_ glL) ;

(15)
and,
0, =(o+m+a+uw), 9, =(0, +my+a+u,), 9y =(cs +my+a+), 9, =(0, + 7, +a+u ),
95:(0-5"'7[5"‘“"'/15)’ 96:(0"",”6)'97:(0“‘,“7) (16)

4.2 Basic Reproduction Number
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We used the next generation matrix approach according to (Driessche and Watmough, 2002) and
obtained the basic reproduction number based on which we analyzed the local stability of the model.
The Jacobian matrix of the transmission matrix of the model (1) to (8) evaluated at (12) and (13)

while considering S =N is,

y 9w 0 0 0 0O
o0 0 0 O O OO
0 o0 0 0 O OO
F={0 0 o6 0 0 00O
0O 0 0 o 0 OO
o, o, o o, oo 00
n n, n, n, ns 0 0

And the inverse of the transition matrix is,

i000000

0,
OLOOOOO

g,
OOLOOOO
0,
V_1:000i000
g,
0000i00
Os
OOOOOLO
J6

000000i
9,

Now the basic reproduction number (R,) which is the threshold eigenvalues of the (FV‘l) matrix

is,

1
Ry =— 7+\/L(7gz +4p51g1)] (16)
9, g,

In order to ensure stability of the problems-free steady state of the model, the basic reproduction

number has to be kept less than zero by watching the parameters involved especially the most

sensitive amongst.
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5. Results and Discussion

Mathematical model depicting the dynamics of drug abuse, related infection and violence has been
posed and problems-free and endemic equilibrium points of the model have been obtained. The basic
reproduction number of the model has been obtained and used in order to guide on achieving the

problems-free society.

6. Conclusion

We obtained a mathematical model that describes the dynamics of drug abuse, related infection and
violence, and realized the steady states as well as the basic reproduction number of the model which
translates to possibility of eradication of the problems in human population. Moreover, controlling
drug abuse will go a long way in controlling its related diseases and violence which can speeds up
achieving some of the SDGs in the world. However, this research effort has been done without

specifically considering any disease that is acquired through drug abuse in place of I, and specific

control measure(s) for the problems. Therefore, the model gives room for further studies and possible

extensions.
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Abstract

Lassa fever, a viral infection transmitted by rodents, has emerged as a significant global health
concern in recent times. It continues to garner significant attention daily basis owing to its rapid
transmission and deadly nature. In this study, the Homotopy Perturbation Analysis was conducted to
examine the spread and control of Lassa fever. The human population was categorized into
susceptible, exposed, infected, and recovered compartments, while the rodent population was divided
into susceptible and infected recovered compartments. By applying the Homotopy Perturbation
Analysis to the nonlinear differential equations associated with these compartments, we were able to
obtain the analytical solution for the spread and control of Lassa fever. The nonlinear differential
equations were integrated into the Homotopy Perturbation framework and solved to form a power
series solution. Finally, the final approximate solutions were obtained and simulation results were
generated from the general solution graphically.

Keywords — Homotopy Perturbation Method, Lassa fever, Nonlinear Differential Equations
1. INTRODUCTION

In light of their rapid transmission and the severity of diseases such as HIV/AIDS, measles,
tuberculosis, cholera, diarrhea, COVID-19, and Lassa fever Lassa fever infection continues to
receive a lot of attention daily (Olumuyiwa et al., 2020; Agbata et al., 2021). Lassa Fever is a
zoonotic illness characterized by acute hemorrhagic symptoms, which is caused by the Lassa virus.
This virus is primarily transmitted from animals to humans, with the Mastomys natalensis serving as
its reservoir host. (Rodent) (Akinpelu and Akinwande, 2019; Anorue and Okeke, 2020). According to
reports, one in every five infections leads to a severe case of the disease, wherein the virus impacts
crucial organs like the liver, spleen, and kidneys (WHO, 2017). The virus can be transmitted to
individuals by coming into contact with household items, food, water, or air that has been
contaminated by the droppings or urine of infected multimammate rats (Mastomyces natalensis).
Additionally, direct contact with infected rats or exposure to the virus blood, tissue, secretions, or
excretions of a person with Lassa virus can lead to person—person transmission. Contaminated
medical equipment, like reused needles, also poses a risk of transmission (CDC, 2019; Collins and
Okeke, 2021; Anorue and Okeke, 2020; Bakare et al., 2020).

The period of incubation for Lassa fever can vary between 6 to 21 days. The initial symptoms
typically include fever, weakness, and malaise, followed by headache, sore throat, muscle pain, chest
pain, nausea, vomiting, diarrhoea, cough, and abdominal pain. In severe cases, patients may
experience facial swelling, fluid accumulation in the lungs, bleeding from various parts of the body,
low blood pressure, presence of protein in the urine, shock, seizures, tremors, disorientation, and
even coma in advanced stages (Sulaiman and Ibrahim, 2018; WHO, 2017). Fatal cases typically
result in death within 14 days of onset. The disease becomes particularly severe in the late stages of
pregnancy, with over 80% of cases experiencing maternal death and/or fetal loss during the third
trimester (Sulaiman and Ibrahim, 2018; WHO, 2017).
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Ribavirin appears to be an effective antiviral drug for treating for Lassa fever virus during the initial
stages of the illness (WHO, 2017). In the event of a Lassa fever outbreak within a community, swift
isolation of infected individuals, proper infection prevention and control measures, and thorough
contact tracing are essential to halt the spread of the disease. It is crucial to promote “community
hygiene” practices that deter rodents, such as securing food in rodents-proof containers, disposing of
garbage away from homes, and maintaining clean living spaces. Additionally, family members
should take precautions to avoid contact with blood and bodily fluids when caring take precautions
to avoid contact and bodily fluids when caring for sick individuals, while healthcare and laboratory
workers must adhere to strict infection control protocols to minimize the risk of exposure to
contaminated materials (WHO, 2017; CDC, 2019; Adebayo et al., 2015).

Dr. Ji Huan He, a Chinese researcher, introduced Homotopy Perturbation Method (HPM) in 1998 to
solve both linear and nonlinear differential and integral equations. This method, which involves a
series expansion, is particularly useful in tacking non-linear partial differential equations Jiya (2010).
The HPM method utilizes a power series to convert the original non-linear differential equation into
a series of linear differential equations Padma et al. (2021). This method combines the traditional
perturbation and the homotopy method Anorue and Okeke (2020), providing a direct approach to
obtaining analytical or approximatively solutions for a wide range of problems in various domains,
by integrating topological homotopy with traditional perturbation techniques Otoo et al, this
approach has proven successful in solving linear and nonlinear functional equations, yielding exact
solutions and ensuring accurate quantitative predictions using the Homotopy Perturbation technique
(HPM) Mechee and Al-Juaifri (2018). The accuracy of the Homotopy Perturbation Method (HPM)
has led to its application in epidemic modeling.

2. Literature Review

In the study conducted by Mechee and Al-Juaifri (2018), they suggested utilizing the Homotopy
Perturbation method approach for the SIR model with vital dynamics and constant population. The
application of this approach yielded an effective and highly precise approximate solution. Padma et
al. (2021) also employed the Homotopy Perturbation Method to solve the SIR infectious disease
model by integrating vaccination. The (HPM) was utilized to derive an approximate solution for each
compartment of the model. The resulting approximate solution was then utilized to visually represent
the model, providing a better comprehension of the dynamics of the infectious disease. Furthermore,
Ayoade et al. (2020) introduced Homotopy Perturbation Method to a SIR mumps model and the
theoretical outcomes validated the effectiveness and suitability of HPM in solving epidemic models.
Ojo et al. (2021) developed a deterministic model using systems of ordinary differential equations to
investigate the transmission dynamic of Lassa fever in the population. The population was divided
into human and rodent compartments. Their findings suggest that implementing control strategies
and methods aimed at reducing rodent populations and minimizing transmission from rodents to
humans would contribute to the effective management of Lassa fever in the population. In a separate
study, Padma et al. (2021) utilized the modified Homotopy perturbation method to solve and analyze
the transmission of the SIR model of this disease. The derived analytical expression of the population
of the susceptible group S(t), the infected group I(t), and the recovered group R(t) at all-time values.
The Homotopy Perturbation Method was then applied to the nonlinear differential equations
representing the different compartments. By incorporating the nonlinear differential equations into
Homotopy Perturbation constructor, they obtained the analytical solution for the transmission
dynamics of Lassa fever in the form of a power series. Peter and Awoniran (2018) utilized the
modified Homotopy perturbation method to solve and examine the transmission of the SIR model of
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the particular disease. The analytical expression for the population of the susceptible group S(t), the
infected group I(t), and the recovered group R(t) is derived for all time. Hence, this study aims to
employ the Homotopy Perturbation Method to deduce the analytical solution of the spread and
control of Lassa fever. The study also addresses the impact of different parameters, we conducted
numerical simulation using MAPLE 17 and compared the results with our analytical findings. In this,
article, we employ the homotopy perturbation analysis to investigate the spread and control of Lassa
fever.

2.1. Basic Ideas of Homotopy Perturbation Method
The fundamental concept of HPM is demonstrated in this section.

Consider (1) that provides the differential equation

k)

A(U)-f(r)=0,TeQ (1)

subject to the boundary condition (2).

B[U,%j=0, rel @)

A is a general differential operator, B is a boundary operator, f(r) is a known analytical function

and I" represents the boundary of the domain Q. The operator A can be split into linear (L) and
nonlinear (N) components. Hence, equation (1) can be expressed as (3).

L(U)+N(U)-f(r)=0 (3)
An artificial parameter p can be embedded in (3) as (4).

L(U)+p(U)-f(r)=0 4)
Where P €[0,1] is an embedding parameter (also called as an artificial parameter)

Using the homotopy technique, proposed by He (1999), we construct a homotopy;
H :v(r, p): Qx[0,1] - R which satisfies (5)

H(V.P)= (1-P)[LV)-L(U, ]+ PLAW)- (1)) 0 ©
And (6)

H(V,P)=L(V)-L(Uy)+PL(U,)+p[N(V)-f(r)]=0 (6)
At p=0

H(v,0) = L(v)-L(u,) =0 (7)
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And at p=1
Hv,)=L@U)+N@u)-f(r)=0 (8)

The transition process of p from zero to unity is just that of v(r, p)from u,(r)to u(r). In

topology, this is referred to as deformation L(v)—L(u,)and L(u)+ N(u)— f(r) is called homotopic.

Following the HPM, we can introduce the embedding parameter p as a small parameter and express
that the solutions of equations (7) and (8)can be written as a power series p as indicated in (9)

V =V, + pV + PV, +... 9)

The results in the approximate solution of equation (1) may then also be obtained as (10)

U =limv =y, + py; + p2V, +... (10)
p—1

Which is the convergence series solution
3. Methodology
3.1 Disease Model

The nonlinear differential equations system is derived from the compartments model and
incorporated in the Homotopy Perturbation Method. Subsequently, the equations were resolved to
obtain analytical solutions for individual compartments. The spread of Lassa fever involves the
interplay between human populations and rodent populations Usman and Adamu, (2018).

In this study, a six-compartmental model for the spread and control of Lassa fever is constructed
using ordinary differential equations. The total human population at time tdenoted by N is divided
into four compartments namely; susceptible S, (t), exposed E, (t), infectious 1, (t), and recovered

R, (t) . Thus, the total human population N, (t) is given as:

Ny ()= S, () + E,(t) + 1,(t) + R, (t)

(11)

Again, the total rodent population at a time t denoted by N, (t)which is divided into two
compartments, namely: susceptible rodents S, (t) and infectious rodents I, (t). Thus, the total rodent
population N, (t) is given as:

N, ()= S, )+ R.(®) (12)

3.2 Formulation of the Model
1)Susceptible Human (S,)

This indicates the individuals within the entire human population that are susceptible to the
disease. The population of susceptible humans S, is populated by immigration or birth at a rate

@,, and from recovered individuals due to their loss of immunity at the rate y,R,. The
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susceptible human population is depopulated by infection following effective contact with
infected individuals at the rates. The parameter (, represents the effective transmission

probability of humans, which could be through direct contact with contaminated food by the
urine or excretes of an infectious infected rodent, or laboratory transmissions that is sharing of
medical equipment with infectious individuals without adequate sterilization Mayowa and Emile,
(2022).We assume that all susceptible humans are further reduced by natural death at rate y, .

2) Exposed Human (E,)

The Exposed humans are those that carry the bacteria but are not capable of infecting susceptible
humans. The exposed human population is proven from an infection occurring from the
susceptible population. This populace is reduced by natural death y, and the disease progression

to the infectious population at the rate ¢, . It is imperative to note that, exposed humans are

infected with the Lassa fever virus but are not showing symptoms yet. Following the disease
incubation period which is between 6 — 21 days (Sulaiman and Ibrahim, 2018; WHO, 2017).
Such individuals progress to infectious population. This is the stage whereby they start showing
symptoms of the disease.

3) Infected Human (1,)

An infected human is any individual who has the pathogen and shows symptoms of the disease.
The infectious human compartment is generated as a result of the rate from the exposed human
population. The population is reduced by the recovery rate due to treatment at rate », and

disease-induced death (death caused by Lassa fever) at the rate p, and natural death at the rate
Hy, -

4) Recovered Human (R,)

Following early treatment of individuals and diagnosed of Lassa fever disease, such individuals
recover and progress to increase the recovered human population. However, since recovered
individuals can be re-infected of the disease Mayowa and Emile, (2022) the recovered human
populace is reduced by loss of immunity at rate y, and natural death at the rate g, .

5)Susceptible Rodent (S, )

Susceptible rodents’ population is established by the birth of rodents at a certain rate ¢,.This group is
reduced by natural death at a specific rate 4, , and is additionally decreased after being infected

with Lassa virus from coming into contact with an infectious human or rodent at the rate. The
parameters (, represents the effective transmission probability from human-to rodent and the

effective transmission probability from rodent-to-rodent.

5) Infected Rodent (1,)

The infectious rodent population is derived from infection occurring from the susceptible rodent
population, while depopulated by natural death of rodents at rate z, .
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3.3 Nonlinear Equations of the Model

The nonlinear system of differential equations is obtained by merging the equations for the various
compartments.

ds
d_th=¢h + 2Ry = 04 Sy — 14,5, =0
dE
d—th:fhsh _(§h +/uh)Eh :O
dl,
Ezé‘hEh _(7h T Pn +:uh)|h =0
dr
d_hzﬂ/hlh _(:uh +Zh)Rh =0
t
ds
L=¢ —(S —uS =0
dt ¢I’ r-r /’lr r
dl
t=(S, —uS =0
dt r-r ll'lr r
(13)
Where,
&, Recruitment rate of humans through birth or immigration
Zh Immunity waning rate of humans
0, Disease progression rate from exposed to infectious human
7 Recovery rate of infectious humans
My Natural death rate of humans
Ph Disease induced death rate for humans
Ly Transmission probability from human-to-human and human-to-rodents
C, Transmission probability from human-to-rodent and rodent-to-rodent
o, Recruitment rate of rodents through birth
U, Natural death rate of rodents
Let the initial conditions or approximate are as follows;
Sh(o) = So’Eh(O) :eo’ Ih(o) = io’ Rh(o) = ro’Sr(O) = ko’ Ir(o) = l‘o (14)

3.4 Assumptions of Homotopy Perturbation Method

To ascertain the analytical solution of the model, the embedding parameter " p * from (5) is utilized

as a small parameter based on the Homotopy perturbation approach. It assumed that the solution of
the equations can be represented as a power series in the form of (15)
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V =V + pV, + pAV, +... (15)

Setting p =1results in the approximate solution of equation (15)

U =limv =y, + pv; + p2V, +... (16)
p—>1

This method retains all the advantages of the traditional perturbation method while removing its
limitations.

3.5 Application of the Homotopy Perturbation Method to the Compartmental Disease Model
Equations

The Homotopy Perturbation Method is utilized to equations (13) by employing Homotopy
constructor equation in order to obtain an approximate solution,

H(v,p) = (1= P)[L(Y) — L(w)] +P[L(Y) + N(¥) = F(r)] = 0 )

In order to initiate the process of deriving the analytical or approximate solution of the model, we
employ Homotopy Perturbation assumption stated in (9) as per the assumption;

S,(t)=S,+ pS, + p’S, +... (18)
E.(t)=E, + pE, + p°E, +... (19)
I, (t)=1,+pl+p°l, +... (20)
R, (t)=Ry+ PR+ p°R, +... (21)
S, (t) =K, + pK, +K?S, +... (22)
1, (t)=F,+Fl,+Fl, +.. (23)

With the initial conditions given by
S,(0)=0,E,;(0)=0,1,(0)=0,R,;(0),S,,(0)=0,1,(0) =0V, =1,2,3,......

Next, nonlinear differential (13) are substituted one after the other into the homotopy constructor in
17);

Firstly, substituting the first equation (13) into (17) gives

ds ds
(1— p)a"‘ p|:a+¢h+Zth_ﬁhSh_:uhsh}:O (24)
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ds ds ds

E‘pa‘* pa-}_pﬂw-}_plth_pghSh_p:uhSh:O (25)
ds

EWL Pd, + px.R, — Pl S, —pu,S, =0 (26)

Again, substituting (18) and (21) into (26)

%(50 + P8, + S, +..)+ P+ 7, (Ro + PR+ PR, +..) = Ly (Sy + S, + p°S, +..)
P, (So +pS, + pzsz +)
(27)

Then again, grouping the coefficient powers of p in (27)

0. ds

p:—=0 (28)

pl:_l+¢h+ZhR0_€hSO_:uhSO:O (29)

ds
pz:d_t2+Zth_£hsl_:uhSl:O (30)

Also, by substituting second equation (13) into (17)
dE

(1- p)a+ p[ 6,8, — (8, + 14, )E, ] =0 (31)
dE dE dE

E‘pa‘i‘pE‘Fpﬁhsh_p(5h+ﬂh)Eh:0 (32)
dE

E"‘ pfhsh_p(é‘h—’_:uh)Eh:O (33)

Again, substituting (18) and (19) into (33)

%(E0 + PE, + P°E, +...)+ Pl (S, + PS, + p°S, +...) -~

—p(8,+1,)(E, + PE, + p’E, +..) =0
Then again, grouping the coefficient powers of p in (34)

o.dEy _

p*: =0 (35)
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. dE,

pt: " —L+0,S,—(8, + 14, E, (36)
P ddit—M S, (6, + ) E 37)

Also, by substituting third equation (13) into (17)
dl,

d'[ =0,E, (7h+ph+ﬂh)|h:0 (38)
dl

(1-p) 5+ P(&E = (7 + o+ a4)1, = 0) (39)

dldidl

PPyt P(S,E,)—p(ry+ o+ )1, =0 (40)

dI

E+P(§E) p(7h+Ph+ﬂh)|h=0 (41)

Again, substituting (19) and (20) into (41)

d
a(l0 +ply + PP, +..)+ p3, (Eq + PE, + P°E, +...) = p (3 + oy + ) (1o + Pl + P71, +..)

(42)
Then again, grouping the coefficient powers of pin (42)
—= 43
P (43)
1. dl
p -d_+5E (7h+ph+:uh)|0 (44)
2. dl,
p 'E-’_é‘hEl_(}/h-’_ph-’_luh)ll (49)
Also, by substituting the fourth equation (13) into (17)
drR
(1_ p)a*‘p[ﬂlh_(ﬂh‘*‘}(h)Rh]:O (46)
dR drR drR
E‘pa pa"' p?’hlh_p(ﬂh"‘?{h)Rh (47)
dR
E"‘pyhlh_p(ﬂh—'—)(h)Rh (48)

Again, substituting (20) and (21) into (48)
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%(R(ﬁ- PR, + PR, +...)+ pyy (1o + ply+ P21, +...) = (44, + 20 ) (Ry + PR+ P°R, +...)

(49)
Then again, grouping the coefficient powers of p in equation (49)
drR
0.-0-0 50
P e (50)
d
pl:d—l:\t)l+;/h|0—(yh+;(h)R0=O (51)
dR
pz:d_tz_'_}/hll_(:uh_'_lh)Rl:O (52)
Also, by substituting fifth equation (13) into (17)
ds ds
1-p)— — - S —uS =0 53
)% | S-S, s, 9
ds ds ds
——p—+p— -pl.S, —puS, =0 54
o P TP T Pg T PLS S, (54)
ds
E*— p¢r - pErSr - p,u,S, =0 (55)

Again, substituting (22) into (55)

d
a(K0 + pK, + p°K, +.)+ pg, — pl, (Ko + pK, + p°K, +...) -

—pty (Ko + PK, + p°K, +..)
Then again, grouping the coefficient powers of p in equation (3.292)

O-d_K_o

e (57)

dK
pl:d_t1+¢r_(€r_:ur)K0=0 (58)
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dK
p?: t2+¢r—(6r—yr)KI:O (59)

d
Also, by substituting sixth equation (13) into (17)

dl
(1_ p)a"_p[grsr_ﬂrlr]zo (60)
dl dl dl
o pE i pEprs —pul =0 61
a Pt Pt PLS T pal (61)
dl
E—i—pﬁrsr_p/’lrlr:o (62)

Again, substituting (22) and (23) into (62)

%(FO + pF, + p°F, +...)+ pl, (KO + pK, + p°K, +)

—p,ur(K0+ pK, + p2K2+...)=O

(63)
Then again, grouping the coefficient powers of p in equation (63)
0. dF,

—=0 64
P (64)
pl:%+ErKo—,urFO (65)
pz:%ﬂerl—urFl (66)

Firstly, the equations obtained by combining the coefficient powers of p are integrated with respect
to time t. The equation related with powers p°® " are integrated first and from the initial conditions

of homotopy perturbation;

Thus, integrating equation (28) that is J.((jj—? =0

(67)

S, (t)=s, (68)
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Integrating equation (35) that is .[C;—f =0 (69)
En(t)=¢ (70)

Integrating equation (43) that is J.% =0

(71)

I, ) =1, (72)
. . . rdR

Integrating equation (50) that is IE =0 (73)

R,(t)=r, (74)

Integrating equation (57) that is j% =0

(75)

S, (1) =k, (76)
Integrating equation (64) that is j% =0 (77)
l,,(t)=f, (78)

The procedure is continued by integrating the equations associated with powers s*with respect to
time t; Thus, integrating (29) that is

[ =+ 1R =080 S, (79)
[ds, =[dh + 2Ry = €48, — 14,8, it (80)
Substituting (68) and (74) into (80)

J.ds1 =[d, + 2k — (1S — 1S, [0t (81)
slz'f[ﬂ1 + ko — (1S — 14,5, Jdt (82)
S, (t) =[dh + xulo — (S0 — 1S Jt+C (83)

At (1)=0;S(0)=0; c¢=0
Sl(t):(%+lhro_€hso_ﬂhso)t (84)
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Integrating (36)

9 s, (6, +m)E, (85)
dt
[dE, =(0,8, (8 + ) E, )t (86)
Substituting (68) and (70) into (86)
E, = [ (€48 (8, +14,) &, ot (87)
E () =((05, (S, + 1, )& )t +cC (88)
At t=0;E (0)=0;c=0
E (1) =(005,— (8, + 1, )& )t (89)
Integrating (43)
N S (4 i), (90)
dt
[dly=(8Es (7 + 20 + 1) 15 )t (91)
Substituting (70) and (72) into (91)
1, = [ (S8 = (7 + 20 + 14y )t (92)
1, (t) = (8.8 — (7 + oy + 14 )| )t +C (93)

t=0;1,(0)=0;c =0

1, (8) = (5,8 = (7 + 00 + 1) o )t (94)
Integrating (51)

%Whlo—(uwzh)Ro (%)
JdR =(7lo = (1t + 20 ) Ry )t (96)
Substituting (72) and (74) into (96)

Ro= [ (7o = (st + 20 1 )t (97)
Ri() = (7o = (44 + 1)1 )t +C (98)

t=0;R,(0)=0;c=0
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R(t) =(7do— (4 + )10 )t (99)
Integrating (58) that is

%:(ér—ﬁrKo—,urKo (100)
[l = [ — £, Ky — 1. K, ot (101)
Substituting (76) into (101)
k= [ — €.k — a1k, Jit (102)
k() = — €, ko — Ko ]t +C (103)

At (t)=0;K,(0)=0; c=0

k,(t) = (4, — £,k — 1.k, )t (104)
Integrating (78)

df
Jg =Koty (105)
[df, =(¢,Ky— 11,y )t (106)

Substituting (76) and (78) into (106)

F= [ (£ko— 4, T )t (107)
F(t) =(C, ks — Ty )t+c (108)

Att=0;F(0)=0;c=0
Rt = (Krko —H fo)t (109)

Lastly, the coefficients with power p* are also integrated with respect to t.

Integrating (30)
ds,

E—I_Zth_ﬁlSl_:uhslzo (110)
ds
d_tZZ_ZhRf"ElSl"’:uhSl (111)

Substituting R, (t);S,(t) into (111)
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ds, :J._Zh (7h|o _(/Jh +Zh)r0)t+€h(ﬂ1 + 2l — (1S, _,Uhso)t"'ﬂh (% + 2l — (1S, _/Jhso)t
(112)

ds, ZI(_lh (7/h|0 —( +Zh)ro)+fh (B + 20T = L1So = 180 ) + ity (& + o — L1So _ﬂhso))tdt
(113)

1
ds, :Etz (_Zh (7h|o _(,Uh +Zh)r0)+gh (¢h + Xnho _ﬁhso_,uhso)+,uh (¢h + 2l — LS, _ﬂhso))+c

(114)
At t =0,5,(0) =0,c =0
ds, :%t2 (—;(h (Zndo = (2t + 20 )10 )+ € (B + 201 = L0So = 1050 )+ 2y (6 + 20Ty — Lo —yhso))

(115)
From (37);
%=—€h51+(5h +u,) E, (116)
Substituting E,(t)and S,(t) into (116)
% ==L, (@ + 2o = (S0 — 1,50 )t = (S, + 1) (€0So = (S, + 1, ) & )t (117)

% = [[ =0 (B + 20T = 080 — 1430 ) t= (S, + 14, ) (£486 = (S, + 14, ) & ) Jtct (118)

% = —%tz (=0 (+ 0o = £aSo = 1430 )= (8 + ) (£0S6 = (30 + )& ) |+ € (119)
At; t=0;E,(0)=0;,C=0
%:—%tz [ =L (h+ 0o = CaSo = 1430 )= (8 + ) (£056 = (30 + )&y )| (120)
From (45)
%z—é‘hEl+(7h+ph+,uh)|l (121)
Substituting I,(t) and E,(t) into (121)
% = =8, (£, = (8 + 14, ) S0 )t + (7 + 20 + 11, ) (5080 = (7 + oy + 1 ) 1o ) (122)
J.dl2 = j[—&h (€4Sy = (S, + 1) S0 ) + (7 + 20 + 1) (5,8 = (7 + +uh)lo)t}tdt (123)
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1,(t) :_%tz |:5h (ghso _(5h +:uh)30)+(7h + Pn +:uh)(§he0_(7/h + Pn +ﬂh)|o)]+c (124)

At; t=0;1,(00=0,C=0

1,(t) :_%tz [5h (fhso _(5h +ﬂh)so)+(7h + Pn +/Uh)(5heo_(7/h + Pn +,Uh)|0):| (125)

From equation (52);

dR,
dt

Substituting I,(t) and R,(t) into (126)

7h|1+(ﬂh+Zh)R1 (126)

%:—J/h(csheo_(ﬂfh+ph+,uh)|0)t+(,uh+;(h)(}/h|0—(ﬂh+;(h)l‘o)t (127)
[dR, = [ (=71 (88 = (70 + Po+ #1)16))+ (2t + 22) (do = (2t + 22 )1 ) ot (128)
Rz:%(_7h(§heo_(7h+ph+,uh)|o))+(,uh+}(h)(7/h|0—(,uh+}(h)r0)+c (129)

At; t=0;R,(0)=0;C =0

R, :%(_% (5heo _(7h + O +/uh)|0))+(:uh +Zh)(7h|0_(/uh +Zh)r0) (130)

From equation (59);

%m 0K, - K, =0 (131)

Substituting K, (t) into equation (131)

dkz :_¢r +ﬁr (¢r _ﬁrko _ﬂrko)t+ﬂh (¢r _ﬁl’ko _'ul’ko)t (132)
Idkz =J-|:_¢r +fr (¢r _frko _:urko)—'_:uh (¢r _ﬁrko _:Urko):ltdt (133)
dk, :_%t2[¢r +€r(¢r_frko_ﬂrk )+/uh ¢ =L ko~ :|+C (134)

At t = 0,k,(0) = 0;c = 0

1
dkz = _Etz |:¢r +Er (¢r _L?rko _:urk0)+luh (¢F _L?fko _’u"ko)] (135)

From equation (66);
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d_ + fK /,lr Fl (136)

Substituting F,(t) and K,(t) into equation (136)

dF,

dt r(¢r_€rk0_:urk0)t+ﬂr (ﬁrko_:ur fo)t (137)

[dR, =[ (=, (8 =0 kg = a1k )+ 14, (£, kg =, T, ) Yot (138)
1

szz_Etz (fr(¢r_€rk0_:urk0)+ﬂr (frko_ﬂr fo))-I-C (139)

At; t=0;F,(0)=0,C=0

1
dF, = _Etz (ér (¢r — Lk _/”rk0)+lur (frko —H fo)) (140)

From (18) to (23), the approximate solution at P =1is written as;

S, (t)=S, +S,(t)+S,(t) +... (141)
E, (t)=Ey(®)+E, (1) + E,(t) +... (142)
L (t) =1, () + 1) + 1, () +... (143)
R, (1) =Ry () + R () + R, (t) +... (144)
S, (1) = Ky () + K, (1) + K, (t) +... (145)
I (1) =R (t)+F(t)+F(t)+.. (146)

Hence, the final approximate solutions of (141) to (146) are obtained as follows;

1
S, (1) =5+ (¢ + 2k — (486 _,Uhso)t_i(lh (7h|0_(:uh +Zh)r0)+6h(¢h + 20T = (oo = 13S0 )+t (B + Zalo = (S0 _:uhso))t2
(147)

1
E, (t) =& +(ghso _(5h +ﬂh)so)t_§[€h (¢h + Znfo = (hSo _ﬂhso)t_(é‘h +ﬂh)(€hso _(é‘h +ﬂh)eo)]t2
(148)

1
Ih(t):|o+(5heo_(7h + Pn +,Uh)|o)t_§[5h (fhso_(5h+ﬂh)so)+(7h + Pn +,Uh)(5heo_(7’h + Pn +,Uh)|o)]t2
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Ry (t): r0+(7h|o_(ﬂh "‘Zh)ro)t_%(?/h (5heo_(7h + 0 +:uh)|0))+(:uh +Zh)(7h|o_(,uh +Zh)ro)t2

(150)
1
Sr (t) = k0 +(¢r _ﬁrko _/urko)t_EI:¢r +Er (¢r _ﬁrko _ﬂrk0)+ﬂh (¢r _Erko _:urko):lt2 (151)
1
Ir (t) = fO +(€rk0 — K, fo)t _E(Er (¢r _Erko _:urko)—'—:ur (grko —H, fo))t2 (152)

Therefore, equations (147) through (152) represent the analytical solution for the different
compartments. These equations are structured as a series of solutions, each representing specific
compartments considered analyzed in the study. By simulating various parameters values based on
these equations, one can ascertain their impact on the population being studied.

4. Results and Discussion

This section shows, the parameter values, graphs generated from the general solution (147) to (152)
and discussion of the results.

Table 1. Parameter values for the series solutions Variables/ Parameters

Parameters  Value Reference

&, 1.20 (Peter et al., 2020a)

Zh Assumed

d, 0.00385 (Peter et al., 2020a)

7 Assumed

A 0.003465 (Lakshmikantham et al., 1989
0 0.00019231 (White et al., 1996)

l, 0.025 (Abdulraheem, 2002)

C, 0.0182 (Peter et al., 2020a)

3 0.00001 (Abdulraheem, 2002)
U, 0.0038 (Lakshmikantham et al., 1989)
S, (0) 100 (Peter et al., 2020b)

E, (0) 20 (Peter et al., 2020b)

1,(0) 10 (Peter et al., 2020b)

R, (0) 5 (Peter et al., 2020b)

S, (0) 1000 (Peter et al., 2020b)

1.(0) 20 (Peter et al., 2020b)
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4.1 Results

This section shows graphs generated from the general solution of our equation (147) to (152) using
MAPLE.

52 4_-*
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Fig. 1. Simulations of result show the relationship between the Exposed Human Compartment and
time (t) for various values of ¢, =0.025, ¢, =0.045 and ¢, =0.065.
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Fig. 2: Presents a graphical representation of the Exposed Human Compartment over time (t) for
various values of ¢, =0.00385, ¢, =0.00585 and &, =0.00785.
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Fig. 3: Represents the graph of the Infected Human Compartment over time (t) for various values of
0, =0.00385, &, =0.00585 and ¢, =0.00785.
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Fig. 4 Displays the graph of the Infected Human Compartment over time (t) for various values of
7, =0.05, y, =0.07 and y, =0.09.
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Fig. 5: Present the graph illustrating the Infected Human Compartment against time (t) for varying
values of y, =0.05, », =0.07and y, =0.09.
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Fig. 6: llustrates the graph of the Infected Rodent Compartment over time (t) for various values of
¢, =0.0182, ¢, =0.0382and ¢, =0.0582.

4.2 Discussion of the Results

Figure 1. The graph distinctly demonstrates that an increase in (, leads to a higher population in the

exposed human compartment, subsequently reducing the susceptible human class. This reduction is
attributed to contact, which may occur through direct exposure to contaminated food via urine or
excretes of an infectious rodent, as well as through laboratory transmissions involving the sharing of
medical equipment with infected individuals without proper sterilization.

Figure 2. The graph conspicuously indicates that with an increase in J,, the population of the

exposed human compartment decreases, subsequently resulting in an increase in the infected human
compartment due to the progression of the disease within the population.

Figure 3: The graph clearly indicates a decrease in the infected human compartment with time (t), but
experiences an increment when increases ¢, . This is a consequence of the disease progressing from

the human exposed class

Figure 4. The graph illustrates a reduction in the infected human compartment over time, and it
further diminishes as the recovery rate increases. This highlights the effectiveness and efficiency of
the recovery rate.

Figure 5. The graph illustrates that the number of individuals in the recovered human compartment
decreases over time. However, it increases as the recovery rate rises, showcasing the effectiveness
and efficiency of the recovery rate.

Figure 6.The graph distinctly shows that as ¢, increases, the infected rodent compartment becomes
populated, leading to a reduction in the susceptible rodent class. This occurs due to the effective
transmission probability from human to rodent and the effective transmission probability from rodent

to rodent.
5. Conclusion

In this paper, the equations representing the different compartments are transformed into first-order
non-linear differential equations. The system of non-linear equations is then solved using the
homotopy perturbation method, the final approximate solutions are derived and the simulation results
are compared, revealing a satisfactory agreement,
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Abstract

The study examines the impact of different education strategies on controlling marital conflict, focusing
on the effective contagion rate as an indicator of conflict spread. The analysis compares the outcomes of
educating 80% of married men and 20% of married women versus educating 20% of married men and
80% of married women about the dangers of divorce. The findings reveal that the former strategy fails to
reduce the effective contagion rate to zero, indicating ongoing conflict propagation within the population.
In contrast, the latter approach shows a significant reduction in the effective contagion rate initially,
although it starts to rise again along the trend. To achieve optimal control of marital conflicts, a balanced
approach is recommended, with a 50% coverage rate of education for both genders. This balanced strategy
aims to strike a gender equilibrium, ensuring a substantial portion of the population receives education on
the dangers of divorce. Implementing this comprehensive education approach holds promise for
minimizing conflict spread, promoting healthier marital relationships, and fostering stable family units.
However, further research is needed to consider additional factors and long-term effects in understanding
and addressing marriage conflict dynamics.

Keywords: Marital conflict, Education strategies, Mathematical model
Introduction

Marriage is a complex and dynamic institution that involves the union of two individuals, often with the
intention of creating a lasting and fulfilling partnership. However, conflicts within marriages are inevitable
and can have significant ramifications on the well-being of both spouses and their overall relationship.
Marriage conflicts encompass a wide range of issues, including disagreements over finances, parenting
styles, communication breakdowns, infidelity, and differences in values and expectations. Numerous
authors have contributed to our understanding of the causes of marriage conflict. According to Gottman
and Silver (2015), conflicts often arise from deep-rooted differences in core values and incompatible
personality traits. Additionally, Fincham and Beach (2010) highlight the role of situational factors, such
as financial stress or work-related demands, in triggering conflicts within marriages. In their seminal work,
Johnson and Greenberg (2013) emphasize the significance of attachment styles and the impact of past
experiences on present relationship dynamics. These authors collectively underscore the multifaceted
nature of marriage conflict, emphasizing the importance of examining both individual and contextual
factors.
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Marriage conflicts can have far-reaching consequences for the well-being of individuals and the stability
of the relationship. Extensive research by Amato and Previti (2003) demonstrates that unresolved conflicts
often contribute to marital dissatisfaction, increased likelihood of separation or divorce, and negative
effects on physical and mental health. Conflictual marriages can also adversely affect children's
development, as highlighted by Cummings and Davies (2010). Their studies reveal that ongoing marital
conflict can lead to increased behavioral problems and emotional distress among children. These findings
underscore the urgency of understanding the consequences of marriage conflict and developing effective
interventions.

Marital conflict is a universal phenomenon that transcends cultural, socioeconomic, and geographic
boundaries. It is an essential area of study, as understanding the nature and dynamics of marital conflicts
can shed light on the challenges faced by couples globally. Marital conflict manifests in diverse ways
across different cultures. Research conducted by Hofstede (2001) on cultural dimensions revealed that
societies vary in their approaches to conflict resolution, ranging from more collectivist cultures that
prioritize harmony and avoiding conflict to individualistic cultures that emphasize open confrontation. For
example, in collectivist cultures, such as Japan and Korea, maintaining harmony within the family unit
takes precedence over expressing individual needs, potentially leading to suppressed conflicts.

On the other hand, in individualistic cultures like the United States, direct and assertive communication
may be more common during marital conflicts. These cultural variations highlight the importance of
considering context and cultural norms when studying marital conflict. The increasing interconnectedness
brought about by globalization has had a profound impact on marital relationships worldwide. As societies
become more globalized, traditional gender roles and expectations within marriages undergo
transformation. For instance, the entry of women into the workforce and the erosion of traditional gender
norms have contributed to shifts in power dynamics and decision-making processes within relationships.
These changes can lead to conflicts as couples negotiate new roles and responsibilities.

Marital conflict, like a social infection, can spread through social interaction, affecting individuals and
their relationships. Drawing upon the metaphor of infection, this perspective suggests that marital conflict
can be contagious, with negative emotions and behaviors transmitted between partners and even to others
within their social networks. Understanding marital conflict as a social contagion offers valuable insights
into the dynamics of conflict spread, its consequences, and potential strategies for prevention and
intervention. Similar to the transmission of infectious diseases, marital conflict can be transmitted through
various channels of social interaction. Research by Feinberg and colleagues (2007) has shown that
conflicts between spouses can spill over into interactions with children, affecting parent-child
relationships and potentially spreading conflict to the next generation. Additionally, conflicts within a
marriage can influence the behavior and emotional well-being of family members, friends, and
acquaintances who witness or are indirectly exposed to the conflict (Lavner, Karney, & Bradbury, 2016).
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Through verbal and nonverbal communication, emotional contagion, and observational learning, marital
conflict can be transmitted and replicated in social networks, perpetuating a cycle of discord.

The spread of marital conflict has significant consequences for individuals and their social environments.
Individuals who are repeatedly exposed to conflict within their social networks may experience heightened
stress, emotional distress, and negative affect (Lavner et al., 2016). Witnessing or being involved in
ongoing marital conflicts can lead to increased conflict sensitivity and negative relationship expectations,
affecting the quality of their own relationships (Rhoades, 2008). Moreover, the social contagion of marital
conflict can contribute to the erosion of social support networks, as conflict spreads and affects
relationships beyond the marital dyad.

Understanding marital conflict as a social infection provides insights into potential strategies for
prevention and intervention. Just as public health efforts focus on preventing the spread of infectious
diseases, interventions aimed at reducing marital conflict should target both individuals and their social
networks. Couples therapy and relationship education programs, such as those developed by Markman
and colleagues (Markman, Rhoades, Stanley, Ragan, & Whitton, 2010), can equip couples with conflict
resolution skills and enhance relationship satisfaction, thereby reducing the transmission of conflict to
others.

Authors have proposed various strategies for resolving marriage conflicts and promoting healthier
relationships. Notably, Gottman and Gottman (2017) advocate for a constructive approach, emphasizing
the importance of open communication, active listening, and mutual respect in resolving conflicts.
Similarly, Markman, Stanley, and Blumberg (2010) propose the use of structured interventions, such as
couples therapy and relationship education programs, to facilitate effective conflict resolution and enhance
relationship satisfaction. Furthermore, Christensen and Jacobson (2000) advocate for the implementation
of preventive measures, such as premarital counseling, to address potential sources of conflict before they
escalate. These authors highlight the significance of proactive strategies in reducing the prevalence and
intensity of marriage conflicts.
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2. Model Formulation

The total population is compartmentalized into six sub-populations, which consist of susceptible male
(Sm), married male (Mm), divorced male (Dm), susceptible female (Sf), married female (M), divorced

female (Dy) as shown in the diagram below:
M
B(1-%)(5; +mD; ) A(l- &Hﬂ +1,D¢
N
-
B(1-%)(S5,,+mD,,) A (18 )( Dy +17,Dp |
N /
1
l >
-+
u i u

Figure 1: Schematic diagram of the Marital Conflict Model
A full description of the parameters used in the model are given below

Parameter Description

A Recruitment number of human

oy Birth rate of male

B Contact rate of susceptible and divorced individuals

5, Contact rate of divorced individuals

H Per capita natural mortality rate

9, Control rate for reducing conflict by men

9, Control rate for reducing conflict by women

m Modification parameter for the reduction of conflict by men
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1, Modification parameter for the reduction of conflict by
women

&, Rate at which divorced men remarry

b, Rate at which divorced women remarry

N Total human population

The corresponding mathematical equations of the schematic diagram can be described by a system of
Ordinary Differential Equations (ODEs) given below:

ds, . A(-9)(Sc+mD:)Su
a P N H3u ()
d';/ltm _ ﬂl(l_‘gl)(sl; +771DF)SM _:Bz (1_92)(D['\\A] +772DF)MM +¢1DM _/UMM
)
dD, _ A, (1-%)(Dy +17,D: )M,
e N ~(A+u)Dy 3)
ds. ., A(=9)(Su+mDy)S;
o=(1-p)A N Hr 4)
dl;/lF _ /31(1_‘91)(5;\\/; +1,Dy, )SF _ﬂz (1_'92)([)'!\\/!' +772DF)MM +4,D. — uM
(5)
dD. 5, (1-9)(Dy +7,D: )M,
. N (¢:+4)D ©)

R
3. Effective Contagion Rate ( eff )

The threshold quantity (Re“ )is the effective contagion rate of the model (1) — (6) for the stability analysis
for controlling marital conflict. It measures the average number of new conflict generated by a typical
marital conflict in a population comprising of completely susceptible married couples.
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Using the next generation operator technique described by (Diekmann & Heesterbeek, 2000), the effective

contagion rate (Re” )of model (1) to (6), which is the spectral radius ('0 ) of the next generation matrix.
This is given by:

F=

Reff -

3.0
3.1

B, (1_‘91)MM0 B, (1_‘92)772MM0

N° N°
ﬁZ(l_‘gl)MFo ﬂz(l_‘gz)ﬂzMFo
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.
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o L
K,
ﬂz(l_'gz)(k1772MFo+k2MMo)
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Results and Discussions

Estimation of Variables and Population-dependent Parameters Values

S/N | Parameter | Value Source
1 A 3000 Estimated
2 Y 300 Estimated
3 B 0.005 Estimated
4 B, 0.0027 | Estimated
5 H 0.9 Estimated
6 9, 0.3 Estimated
7 9, 0.00005 | Estimated
8 m 0.01 Estimated
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9 1, 0.6 Estimated

10 &, (0,1) Varied for computational reasons
11 b, 0.5 Assumed

12 N 5000 Assumed

3.2 Effect of the rate of control strategies on susceptible married couples on the dynamics and

control of marital conflicts

Effective Contagion Rate
%]
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—4#— Controlling marital conflict among 80% of men and 20% of women
—&@— Controlling marital conflict among 20% of men and 80% of women
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Figure 2: Effect of three different control strategies on the dynamics and control of marital

conflict

The analysis of Figure 2 highlights the impact of different education strategies on controlling marriage
conflict. Focusing on educating 80% of married men and 20% of married women about the dangers of
divorce proves to be ineffective, as the effective contagion rate never reaches zero. This indicates that
conflict continues to persist and spread within the population. In contrast, when 20% of married men and
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80% of married women receive education on the dangers of divorce, there is a notable reduction in the
effective contagion rate. However, it is important to note that even though the effective contagion rate
drops to zero initially, it starts to rise again along the trend.

To achieve optimal control of marital conflicts in a society, a balanced approach is recommended.
Implementing a 50% coverage rate of education for both married men and women demonstrates promising
results in minimizing the spread of marital conflict. This strategy aims to strike a balance between the
genders, ensuring that a significant portion of the population receives education on the dangers of divorce.
By adopting this approach, it is expected that the effective contagion rate can be effectively managed and
kept at a lower level. Overall, the findings suggest that a comprehensive education strategy involving both
married men and women is crucial for effective control of marriage conflict. The specific balance of
educational coverage can play a vital role in minimizing the spread of conflict within a society and
promoting healthier and more stable marital relationships.

4. Conclusion

This research provides valuable insights into the impact of education strategies on controlling marriage
conflict. The findings clearly demonstrate that focusing solely on educating a specific gender group is
ineffective in reducing the spread of conflict within a population. While educating 80% of married men
and 20% of married women shows limited effectiveness, a more balanced approach of educating 20% of
married men and 80% of married women yields better results in reducing the effective contagion rate
initially. However, it is crucial to note that the effective contagion rate starts to rise again along the trend,
indicating that sustained efforts are necessary to maintain control over marriage conflict. To achieve
optimal control, it is recommended to implement a balanced approach, with a 50% coverage rate of
education for both married men and women. This approach acknowledges the importance of addressing
both genders and ensuring that a substantial proportion of the population receives education on the dangers
of divorce. By adopting this comprehensive education strategy, societies can strive towards minimizing
the spread of marital conflict and promoting healthier and more stable marital relationships. It is crucial
for policymakers, educators, and professionals in the field of relationship counseling to recognize the
significance of providing education to both genders and tailor intervention programs accordingly.

However, it is important to acknowledge the limitations of this study. The analysis focused on the impact
of education strategies on the effective contagion rate, neglecting other potential factors that contribute to
marriage conflict. Future research should explore additional variables, such as cultural and socioeconomic
factors, as well as consider long-term follow-ups to assess the sustainability of the effects observed.
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Abstract

A mathematical model based on the Susceptible-Latent-Infected-Chronic-Treatment-Exclusion-
Recovered (SLICTER) compartments for hepatitis B was formulated. The population is assumed to be
recruited by birth. Existing hepatitis B data was used in validating the model to fathom the transmission
dynamics of HBV as it will aid in preventing, controlling, eradicating the disease, help in policy
formulation and improve lives. It was proved that the global dynamics were completely determined by the
basic reproductive number R_0. If R_0 < 1, the disease free-equilibrium is locally and globally stable and
the disease always die out. And if R 0 > 1, an endemic equilibrium exist and is locally bistable in the
interior of the feasible region, and the disease remain at an endemic equilibrium state if it at the onset
exist. Sensitivity analysis were performed on the model parameters in the basic reproductive number R _0
to determine the effect of different parameter values on the spread of HBV. Four control strategies was
considered and the analysis shows that the implementation of maximum vaccination at birth, combined
treatment and exclusion along with regular sensitization (awareness) will help greatly in eradicating the
virus. The system was solved using the classical Runge-Kutta scheme of order four, forward in time of 50
years and the algorithm were implemented using MATLAB.

Key words: Basic reproductive number, Bi-stability, Control Strategies, Dynamics, Hepatitis B, Model,
Sensitivity Analysis,

1.0 INTRODUCTION

Hepatitis is an inflammation of the liver caused by viruses, bacterial infections, or constant
vulnerability to alcohol intake, drugs, or toxic chemicals, such as those obtained in aerosol sprays and
paint thinners. Inflammation is the painful, red growth that results when tissues of the body become
wounded or infected.

Hepatitis B, is one of the major and common infectious disease of the liver worldwide. It constitutes a
serious public health problem and more dangerous on account of its tendency to become chronic,
sometimes giving rise to cirrohsis of the liver or worse still, liver cancer. Hepatitis B is a potential life-
threatening infection caused by Hepatitis B virus (HBV), Adagba and Joseph (2022). The World Health
Organization, WHO (2022) reported that as many as 296 million people were living with Hepatitis B
infection in 2019, With 1.5 million new infections each year and resulted in an estimated 820,000
deaths mostly from cirrhosis and hepatocellular carcinoma (primary liver cancer). HBV infection
exhibits an acute infection stage and a chronic liver infection, which is determined by the degree of
virus replication and the intensity of host immune response. Infection in newborns, who are incapable
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of constructing a defective immune response, is more likely to result in chronic infection (90%) than
that in adults (5%), in whom most primary infections are self-limited. Safe and effective vaccine is
available for all age groups to prevent HBV infection and development of chronic disease. More than
150 countries have vaccine immunization programs, with routine infant vaccination designated as a
high priority in all countries. When viral replication is observed in a patient, efficient therapy is needed
to control the risk of disease progression. It is estimated that, if left untreated, approximately (15-25)%
of chronically infected individuals would develop liver cirrhosis and HCC after decades of infection.
And there is abundant evidence that antiviral therapy, in patients with long-term virological response,
can improve liver histology by providing indirect support and possibly even reversing liver damage,
Zhang and Suxia (2018). HBV is transmitted by parenteral or mucosal exposure to HBsAg positive
body fluids from persons who have acute or chronic HBV infection. It replicates in hepatocytes through
a unique reverse transcription process. The clinical course of acute hepatitis B is indistinguishable
from that of other types of acute viral hepatitis. The incubation period typically ranges from 60 to 90
days. Clinical signs and symptoms occur more often in adults than in infants or children; infants and
young children usually are asymptomatic. Approximately 50% of adults who have acute infections are
asymptomatic.

The pre-icteric, prodromal, phase from initial symptoms to onset of jaundice usually lasts 3 to 10 days.
It is nonspecific and is characterized by abrupt onset of fever, malaise, anorexia, nausea, abdominal
discomfort, and dark urine beginning 1 to 2 days before the onset of jaundice. The icteric phase is
variable but usually lasts from 1 to 3 weeks and is characterized by jaundice, light or gray stools,
hepatic tenderness, and hepatomegaly (splenomegaly is less common). During convalescence, malaise
and fatigue may persist for weeks or months, while jaundice, anorexia, and other symptoms disappear.

Most acute HBV infections in children and young adults result in complete recovery with elimination
of HBsAg from the blood and the production of anti-HBs, creating immunity to future infection. In
contrast, as many as 90% of HBV infections in infants progress to chronic infection. Perinatal
transmission from mother to infant at birth (vertical transmission) is highly efficient. Prior to the
widespread availability of postexposure prophylaxis, the proportion of infants born to HBsAg-positive
women that acquired HBV infection was approximately 30% for those born to HBeAg negative
mothers and 85% for those born to HBeAg positive mothers. With post exposure prophylaxis,
comprised of HepB vaccine and Hepatitis B Immune Globulin (HBIG) at birth, followed by
completion of the HepB vaccine series, 0.7% through 1.1% of infants develop infection; infants born
to mothers with high viral loads are at greatest risk for infection despite receipt of HepB vaccine and
HBIG, Penina and Sarah (2021). The epidemiology of hepatitis B is said to be geographically diverse,
essentially regarding population prevalence, age and mode of contraction and the likelihood of
progression to the chronic infection. The disease has caused epidemics in Asia and Africa and it is
endemic in China.
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2. Literature Review

Many researchers have made utmost attempts and contributions to fathom the epidemiology of
hepatitis B. In this chapter we present some theories and models related to our study work.

One of interest is the work published by Oyelami (2014). A book detailing some techniques needed in
analyzing the stability of a dynamical system. In his work, he considered several of these techniques
viz; stability through (¢—0) argument, stability via Routh Hurwitz criterion, stability via fundamental
matrices and finally by the use of scalar functional called lyapunov stability technique. For clarity
purpose consider the initial value problem (IVP) below.

Where /'€ C(IXQ ,E"),€2 is open and connected subset of E£”. Assuming f has the

property that the solution x(¢,#),x0) exists and is unique, that is if x(¢o,x0) is a solution and f satisfies
the hypotheses of the Picard-Linderloft existence and uniqueness theorem.

The core or central question of stability is there a special solution @(z,7,x0) existing on the interval
[#0,+0) such that a small perturbations would result in small deviations from system behaviour ? If
such a solution exists, then we say such a system is stable, otherwise it is unstable.

Wiah et al. (2011) contributed their quota to the understanding of the dynamics of HBV by presenting
a simplified mathematical model of immune responds to Hepatitis B Virus (HBV) infection. Their
work focused on the control of the infection by the interferons, the innate and adaptive immunity. The
model was compartmentalized as appropriate and the resulting model equations were solved
numerically. The mathematical analysis of their model showed that both disease-free and endemic
equilibrium point exist and they derive conditions for their stability. They went ahead to perform
sensitivity analysis on the model parameters, to account for the variability and speed of adaptation.

The model is based on human immune response against HBV infection, they considered a simplified
model of population-dynamics type which consists of the following interactions; The liver cells are
assumed to be in one of four possible states: healthy (H), infected (I), dead (D), or resistant (R) to
infection. The total number of liver cells (i.e., H + I + D + R) is assumed constant. The virus particles
(V) interact with healthy cells and infect them. Infected cells release new virus particles upon their
death. Proliferation of healthy cells causes regeneration and decrease in the proportion of dead cells.
Dead cells stimulate the activation of APC (M). APC stimulate the production of interferon a and S
(F) that interact with healthy cells and convert them to a resistant state. APC also stimulate the
proliferation of effector cells (E) that destroy infected cells. Finally, they stimulate the production of
plasma cells (P) which, in turn, produce antibodies (A) that neutralize (kills) virus. This neutralization
is modulated by the antigenic compatibility (S) between virus and antibodies currently produced by
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the organism. S quantifies the affinity between antibodies and virus. These interactions are used in the
construction of a system of 10-dimensional ordinary differential equations describing the dynamics of
the main variables, which correspond to the components of the immune response.

Stability, sensitivity analysis and numerical simulation was carried and they found that although each
component of innate and adaptive immune response contributes to the recovery of HBV infection, the
simulations suggest that, in the absence of one component of innate immunity, the remaining two
defense mechanisms are sufficient for viral clearance.

Another model of interest to this study was published by Inam et al. (2021). They presented a work on
the mathematical analysis of hepatitis B epidemic model with optimal control. The paper described a
mathematical model developed to control global HBV problem by education campaign (awareness),
vaccination, and treatment. They employed a compartmental model expressed by a set of ordinary
differential equations (ODEs) based on the characteristics of of the HBV infection. With regards to the
transmission dynamics of HBV.

A lot has been done by several researchers to fathom the spread of HBV in to order to contribute to
knowledge, bring its spreads under control, aid decision making and improve livelihood. Come what
may, a lot more need be done as we still have many homes that still share household items like cups,
spoons, plates, towel, etc. Hence, we have a long way to go in preventing, controlling and eradicating
the virus. In order to fathom HBYV epidemiology, attempt need be made to incorporate virtually all the
key factors that have effect on its transmission but some of the models presented did not capture one
or more salient features of the epidemiology of hepatitis B or did not incorporate both the vertical and
horizontal mode of transmission and either no vaccination or treatment compartments. Furthermore,
some of the researchers that included vaccination either as a compartment or as a strategy forgot that
the HBV vaccine does not confer lifelong immunity. As it wane overtime, a proportion of the recovered
compartment moves back into the susceptible compartment and become susceptible. In an outbreak of
an endemic disease, its difficult for the Government to provide treatment for everyone because of the
high cost of treatment, shortage of hospitals to admit all the patients as observed in 2020 during the
outbreak of Covid-19 and lack of access to rural areas are few among several reasons. The proportion
of people especially children and young adults who are not receiving treatment or does not have access
to treatment with higher tendency of having contacts with other members of the population greatly
affects the spread of the virus by increasing transmission rate, thereby making it difficult to forestall
transmission and eradicate the disease. For this age structure, It is known that they can undergo
spontaneous clearance as a result of strong immune response and move to the recovered compartment
after some time. This help to reduce the amount of exposure to the virus, lower the cost needed to treat
the entire population, and may also help to prevent the transmission of the virus to others. For these
reasons, the need to include the two compartments (The adults receiving treatment and the isolated
children and young adults) in the epidemiological model of HBV become imperative.
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3.0 Methods

We present a mathematical model that involves the integral characteristics of the virus. The model
will help to study the epidemiology of the disease, in turn, the results will help in understanding its
patterns and there after aid in seeking for the control strategies that will prevent its spread and eradicate
the disease.

In our study, we extend the model presented by Inam et al. (2021). In extending their work, we included
two compartments (Treatment and Exclusion) leading to SLICTER model. Also, we considered the
waning effect of HBV vaccine as well as four interventions (Awareness, Vaccination, Reduction in
contact rates, Anti-viral treatment and Isolation) for the control strategies. These will help to have a
better understanding of the epidemiology of HBV. In using the SLICTER model we divide the host
population into seven compartments of individuals: the susceptible compartment (S), the latent
compartment (L), the infectious individuals with acute cases compartment (I), the chronic
compartment (C), the compartment of individuals that are receiving treatment (T), the compartment of
individuals that are not receiving treatment but being isolated, but for the sake of confusion with the
(I) compartment, we use (E) to represent this compartment and finally the recovered compartment (R).

The (S) compartment includes individuals that are liable to catch the disease but for time being are
disease free. The (L) compartment consists of individuals that have caught the disease due to successful
contact with an acute or/and chronic carriers but at present not contagious. The (I) compartment
comprises of individuals who have the disease and are contagious. The (T) compartment consists of
individuals that are receiving anti-viral treatment. The (E) compartment includes children of above age
5 and young adults that are not receiving anti-viral treatment but being excluded (isolated). The (R)
compartment comprises of individuals that have recovered from the disease as a result of anti-viral
treatment, spontaneous clearance and vaccinated individuals. So that the total population N(t) at any
given time is:

N(t) = S(t)+ L(t) + I(t) + C(t) + T(t) + E(t) + R(t)

The population will be recruited by birth at the rate x, proportion of birth without vaccination at the
rate w. The parameter v shows the proportion of children who are un-immunized born to infected
mothers. As a result of effective awareness campaign we assumed that the newborns are to be
successfully immunized at rate uw or unsuccessfully at rate (1 — w), the population uwvC is assumed
to enter into the chronic carrier compartment and the rest uw(1 — vC) stays in the susceptible
compartment. where £ and ¢ are the disease transmission rates relative to infected individuals in I(t)
and C(t) compartments respectively. o is the transfer rate to the acute (infection) compartment while
Q1 and € are rate of infectious individuals moving to treatment and isolated compartment respectively
and 0 is the transfer rate to the chronic (infection) compartment. The rate of chronic individuals moving
to the treatment and isolated compartment are a; and a». 71 and 7, are the recovery rate due to antiviral
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treatment and spontaneous clearance respectively. y is the vaccination rate and 4 is the rate of waning
of HBV vaccine. uo and u1 are the natural mortality rate and the HBV induced death rate. The
assumptions made in using the model are:

1. There is no inherited immunity and immunity via vaccine is not lifelong
2. The members of the population mix homogeneously
3. The rate of birth and death are equal.

4. We assume that the people progressing from the infectious class to the chronic class is lower
than the sum of the individuals moving to treatment and isolated compartments respectively.
Also, the rate of individuals moving out of the chronic compartment is greater than the rate at
which individuals moves in. It is equally worthy to note that we assume those receiving treatment
and being isolated can die as a result of natural death but not HBV induced death. The figure
below represents the flow diagram of the SLICTER model of hepatitis with vital dynamics.
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Figure 1: Flow diagram of SLICTER model of HBV with vital dynamics

Based on the descriptions, assumptions and the model flow diagram the following model equations
are obtained.
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% — pw(l = vC(1) + AR(t) — (o + BI(t) +2BC(t) +7)S(t) (D
% = (BI(t) +eBC(t))S(t) — (no + o) L(2) @
% — oL(1) — (jo + 0+ + Q) I(1) *
% = v C(t) + 0I(t) — (o + p1 + 1 + a2)C(t) @
% =MI(t) + nC(t) = (no +71)T(2) v
if = QI (t) + axC(t) — (no + ) E(t) ©
izf =nT(t) + E(t) +vS(t) — (1o + A)R(t) v

Combining the equations above give the system of HBV dynamics equations below.

;

8 = (1 —vC(t) + AR(t) — (1o + BI(t) +£BC(t) +7)S(t)

L — (BI(t) 4 eBC(1)S(t) — (o + o) L(t)

dt

U = GL(t) — (po+ 0+ Q + Q) (1)

dt

(45 = povC(t) + 01(t) — (po + p1 + o1 + aa)C(1)

T = 0 I(t) + o C(t) — (o + ) T(E)

dt

B = Ol (t) + axC(t) — (o + 72) E(1)

(% = nT(0) + nE() +35() = (uo + NR(Q) (8)

With the initial conditions S(0) = So> 0, L(0) = Lo> 0, 1(0) =7o> 0, C(0) = Co=> 0, T(0) = To> 0, E(0)
=FEo>0,R(0)=Ro>0.

3.1 Model Analysis
3.1.1 Positivity and Boundedness of solutions

Theorem 1. Let 7(0) = ( S(0), L(0), 1(0), C(0), T(0), E(0), R(0))< R be the initial condition for
model (8). Hence, the set of solutions { S(t), L(t), I(t), C(t), T(t), E(t), R(t)} is non negative for all t >
w

0 and N < ro.
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Proof: Let t1=sup {t > 0:S(t0) > 0, L(t0) > 0, I(t0) > 0, C(t0) > 0, T(t0) > 0, E(to) > 0, R(t0) > 0, Vto €
[0,7] }. Since S(0), L(0), 1(0), C(0), T(0), E(0) and R(0) are all non negative then #; > 0. If #; < oo, using
the variation of the constant formula of the first equation of model (1) at #; we have;

% L = vO(E)) + AR(E) ~ (o + BT(E) +=B0() +2)S(0)

This is linear and can be written as;

1S
‘d—t = (1o + BI(t) + £BC(t) +7)S(t) = pw(l — vC(t)) + AR(t) o)
with IF = eR (u0+p1(¢)+¢fC(t)+y)dt multiplying both sides of (9) by IF
and rearranging we have;
d ot . it
=S elrot Nttt o xtdy | — 1,0(1 — vC(t AR()] elrot )+ g x(y)dy
= [soe o1 = vO(0) + AR(D)] ¢ R
Therefore,
iy iy
S(h]f:’{'““-"ﬂhfﬂ" wl{yldy S((]) _ [ [,ua:[l —vC(r)) + }AR(I‘]]
JO {1 l)
. [E,_[.uc:+-r)r+j]}'\'[.r:}dr.r] d
Hence,
151 151 h
S(t,) :5[[})[?[-110-7‘1“-4‘?: xluddy [ﬂ[-pu-ﬂh-fu 1{yJ~f-.r;] [ pw(l — vC{r))
Jo (12)

+AR(r) E(,m:+':r)'r+_ﬂ;—\{y]tf.f;] dr >0

We can go on to prove for other state variables using the same approach for any time #1, that each state
variable satisfy the initial condition as in the case of S above. Furthermore, we show that the region

denoted by the set 7(¢) is positively invariant for the formulated HBV transmission model (8) with
m(t) =2 0€ RY

From (8) we obtain,
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dN
— = — N — 1, C(t
dt HW — Ho 1 C(1) (13)
But u1 and the state variable C are positive in (8), thus, we have;
dN
— = w — N
T (14)

Since (14) is linear, solving by the use of integrating factor and using the initial condition N(0) = No
we have;
Hw 1

N < — — —(mw — poNog)e ™
ZENT (15)

T pw .
Conclusively, we have‘]\’ (t) = no 3 t— OO, This means that

[ > . . . o .
ifj\ ~ o , then the solution either enter 7(¢) in a finite time or N(t) approaches. So, it can be concluded

that 7(¢) attracts all the solutions infth and hence all the properties are being hold for the system become
positive invariant (This means that the state of the system is in the positive state at any time t, and will
remain in that state for all future times), unique and bounded in the region by z(¢). Thus, given certain
constraints, the feasible region or state space of the system is;

7 B
0<N < o, Furthermore,

w=1{(S,L.I.C.T,E,R)e R.:0< N <"
Ho (16)

3.2 Disease-Free Equilibrium

We will have a disease free equilibrium when there is no case of HBV infection and to solve for the
equilibrium points, we equate RHS of (8) to 0 as we have in (17).
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P

p(l — vC() + AR(t) — (po + BI(t) + £8C(t) +7)S(t) = 0

(BI(t) +£8C(1))S(t) = (o + o) L(t) =0

aL(t) — (po + 0+ + Q)I(t) =0

povC (1) +0I(t) — (o + 1 + 0y +a2)C() =0 (17)
QI(t) + o C(t) — (o + 7)T(t) = 0

Qo I(t) + a2C(t) — (po + ) E(t) = 0

nT(t) + = E(t) + 1S(t) — (s + N R(t) =0

.

Solving equation (17) for DFE points and noting that in the absence of HBV disease,

L=I=C=T=E=0. We have the disease free equilibrium points denoted by; Do =
(S°,L%1°,C° 1°, E° R®) as:

Dy — { pw(po + A) _
(o +7) (o +A) — A

0,0.0,0,0, THe }

(1o +7)(po +A) —vA (18)

The Basic Reproductive Number?i' "

The basic reproductive number of hepatitis B virus epidemiological threshold is represented
by the symbolR(ﬁ? BY = pF Vfl, and p denotes the dominant eigenvalue, F and V are the new

infection and transmission term respectively. To derive the expression in terms of parameters for the

of the SW};} (8), we have;
(81 +2BC)S)|
) (BI(t) +eBC(t))S(E) — (1o + o) L(1)
F= , Vo= oL(t) — (o + 0 + Q1 + Q) I(2)
. pwvC(t) + 01(t) — (po + p1 + o + a2)C(t)
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0 8 =5
F*=5"10 0 o

0 0 0

—(ptp + o) 0 0
vVt = o —(po + 6 + €25 + £23) 0
L 0 (7] pwr — (pg + p + aq + (.1-2]J

At hepatitis B DFE, the Jacobian matrices for F and V are evaluated giving the following,

re A=uot+ 0+ Q1+ Q2 E = puo+ pu1+ o1+ az. Then we have;

Bof{el+=E—pue) 8 I juov—S—ed) 5" ge8t
M pro+a )| e —=) Al e —-=) it —=

Fv—1= 0 0 0

(20)

The largest absolute value (spectral radius) of the eigenvalues of the matrix (20) gives the basic
reproductive number ;
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RHBYV — ﬂffﬂf(#o + A)(ef + ZE — pwv)
Ao + 0)(E — ) (1o + ) {fio + ) — 7N o

Where A(uo +o)(E—uwv)(yA+(uo +y)(uo +4)) > 0, (21) embodies the average number of secondary
infections caused by an acute and/or chronic patient when introduced into the susceptible population.

Theorem 2. If %' < 1 then the equilibrium point Dy is locally asymptotically stable otherwise
unstable ifftg 7" > 1

—po — 0 —BS® —jwv — e3S° 0 0 0
0 —pg — o 3S° eps® 0 0 0
0 a —A 0 0 0 0
Jo, = 0 0 a pwy — = 0 0 0
0 0 th fat — o — T 0 0
0 0 Vo 2 0 — g — T 0
¥ 0 0 0 T To — g — A

(22)

Proof:

The desired Jacobian matrix Jpo of the model (8) at DFE is;

By expanding the determinant of the characteristic equation |J(Do)—/| = 0, we obtained 11

=—uo—y <0,2=—uo—11 < 0,A43=—uo—1 < 0,44=—uo—12 < 0, The remaining

three eigenvalues are eigenvalues of
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—pio—a PBS° eBS°
Jp, = o —A 0 (23)

0 f  jpwr—Z=

Again, by expanding the determinant of the characteristic equation |JDi| we have the characteristic
polynomial;

Where;
Ki=A+o+ pg+ & — pwr,
Ko =ZA 4+ Z0 + Zpg + Ao + Apy — BoSY — Apwr — pwve — pwvpy and

Ky =ZAo + ZApg + BuvwoS? — e00S® — ZB0S” — Apwrvo — Awvpg

B+ K2+ KA+ K=0 (24)

The characteristic polynomial in (24) follows the Routh-Hurwitz criteria where the associated Hurwiz
matrito (24) is;

I‘*"l .l'r‘h'l-g ]
1 ft'z ] (25]
0 .llrll.’]_ I‘:::,

Comparing (24) with the polynomial P(1) = PuA"+ Py 1 A" '+ +Py2A" 2+ Poforn =3, Ps= 1, P,= K}, P,
= K>, Po= K3. The necessary and sufficient condition for the polynomial to have roots with negative
real part are;

(i). (P3)1D1 >0=>K;>0

(ii). (P3)2D2 > 0,== K1K> > Kj,
(ll]) (_P:;)SD:.; > O, — KPIKQI{;J, - Kg > 0, = K;-} > O
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Hence, it suffices to conclude that the DFE is locally asymptotically stable it6'"" > 1 and the
necessary Routh-Hurwitz conditions are met otherwise its unstable.

Theorem 3. If 25" < L then the equilibrium point Do is globally asymptotically stable otherwise

unstable ifR67Y > 1

Proof: The Lyapunov function defined below will be used to prove the theorem.
Vi)=(S—S"—R)+L+I+C+T+E+R (26)

. - . . 4V _ dS | dL dI  dC
Differentiating equation (26) and using model (8) we obtain; “dt dt U de U At U at

dT | dE __ dR
dt+dt+dt

dv

o = pw — N — i C

% _ 7[‘y)\+(un+’)‘r3.(_,uﬁ:_)\))\](3730,}?0) _ ,U,UJV _ ,UlC
A (po+7)) (po+A)(S—S°—RO
2 — [t X Yt 1N + 1, C) < 0

dv .
Therefore, ar = Oif Rg'PY < L Hence, by the well known LaSalle’s invariant principle, we

conclude that the point Dy is globally asymptotically stable.

3.4. Endemic Equilibrium

The endemic equilibrium point is the point where the system (8) settle down into a steadystate where
the virus exists in the population. This is denoted by Dy =

(S*L* I*,C*, T * E* R*).

Expressing the other state variables in terms of /* From (8) we obtain;
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(
g — azagaqpwar YO I* +yAr1Q [(a1+a10) [*]+azmaQ2(a; +ae0) T*
o arazazas((aras+e001*)—aiazas)

I* = Bagsazaspw(ai I*+2)(a; —yv0I* )y M {1101 (a1 +a10)+aoroQ2 (a1 +aed) H*

a%aza:}a;ﬂm [(a1as+ep0I*)—aiazas)

C* _ or*

al

* Qi (ar1+a0)I*
T aias

Er = f2latasd)I”

ajas

R* — 93T Q1 [(a1+ad)I*|+asmafz[(a1 +a2d)I*]+ajazazyS*
L - ala2a3a4 (27)
a1=E — uwv,ax= po+ 11,a3= po+ ©2,a4= po+ A,as= uo+ plas= po+ o.
Substituting the expression of L* above into the third equation of system (8), we obtain;
I* = —B+VB?2—4AC
= 24

Where;

A = (e + a1)(@raz2a3a488) (Aearasas + yopwy),
B = (0 4 a1){Aaiasazasag(as — azaz) + o fasazaspw(eyvd — ai) — yAlari (1 +60) +
asmala(a; + aqf)]},

C = Azajasazag[yA + as(po + )| REEY

Theorem 4. If%'°" > 1 then the endemic equilibrium pointDS is locally asymptotically

stable otherwise unstable.

Proof: To check for the possibility whether system (8) exhibits a backward or forward bifurcation or
possibly a bi-stable endemic equilibrium states, we adopt the following method:

{leaLx211$(330x4:T‘r57E$ﬁ:Rx7 (28)

Therefore, system (8) is transformed as;
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1 = pw(l — vay) + Ay — (po + Bas + eBrg + )
L2 — (Brs + fza)xr — (po + o)y

dos — gy — (o + 6+ + Qo)

] % = pwrry + 0xs — (po + p1 + o + o)y
Lo = Mag + agwg — (po + 71)s
Lo = Qywy + oy — (po + T2) T
dzy ,
\ TE =TT + 7o + 21 — (o + A)ag (29)

We choose £ as the bifurcation parameter and solving for f*=f in (21) when Ri'PY = 1ye obtain;

g — Alpo + o)y
o(ed + a,)S° (30)

-pp 0 =88 —p, 0 0O O
0 —-ps BS" ps 0 0 0
0 o —-A 0 0 0 0
Jpps==10 0 0 ps 0 0 0 (31)
0 0 U @ -ps 0 0
0 0 () (1 0 —ps 0

vy 0 0 0 7w ™ —pr

P = po+7.p2 = pwr+eB5°.ps = po+ 0, ps = pwr —=,ps = po+T11.Ps = o+ 7o, pr =

Ho + }kpg = EﬁgSu.

We linearize the system (29) around the disease-free equilibrium when £* = § and obtained,
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The center manifold theory will be used to analyze the dynamic of the system (29) near f = f* because
of its simple zero eigenvalues. In addition, we obtain the left and the right eigenvectors of Jpo s*
associated with the zero eigenvalue. The right eigenvector is given by;

W = (w1,w2, w3, wa,ws,we,w7). From (31) we have;

[—pl 0 —B*5" —p, 0 0 0 ] [u.-l] M From
, (32)

. w¢E

—prwy — 3* 8wy — powy =0, have
the

—pawy + 3*S%ws + pawy =0

giws — A =100

\ Ows + pawy =0 (33)
Qws 4+ oqwy — psws =0

aowy + (wy — pewg =0

Yy + T + Taws — Prwy = ()

\

following equations;

From (33),
((pwr—2)B8* SO+ (pwr4£* S9))ws
(o+7) (pwr—E)

{e0—pwr+E}5*S%w;
(mwv—=E)(pote) 7

wy =

Wy =

w3:w3>0,

— _ fuws

Wy = pwr—=7
wWe = {80 = (pwrv—2) tws

5 — —

° (pwv—E)(po+11) )
We = as{pwr—=—0Q0 bws

6 = Tler—)(uztr)
Wy = {— (pwr+E)pspepr (wv+2) 8* SO+ peprp1 (for —Q1pa) +p1psproas (pa—602 Jws

P1PapspPeP7
Let G = (g1,22,23.84.85.86,27)" be the left eigenvector associated with the zero eigenvalue
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—p 0 0o o0 0 0 y ¢ 0
0 —p3 o 0 0 0 0 go 0
—3*SY B*SY —A 8 a0 g3 0
Jpgsr=| —p»  ps 0 py ar D 0 gi| = |0 (34)
0 0 0 0 —ps 0 To gs 0
0 0 0 0 0 —ps ™ g6 0
0 0 0 0 0 0 —p o] |0]
of Jpo p*, and we have;
r
—p1g91 +799: =0,
—pag2 +0g3 =0
—3*S%; + 3* 5%, — Ags + gy + Q195 + asge = 0
\ —P201 + Psg2 + pags + a1 gs + Qgs = 0 (35)

—Psg5 + Tag7 = 0

—pegs + 7297 =0

—prgr =0

\

From (34) we have the following equations;
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Solving system (35) above yields;

G=(“ e 000) .93 > 0.

By the property W - V = 1, we can find the expressions for w3 and g3 that satisfies the equality if we
choose;

wi=1 and

_ (E04+E—pwr)(pot+0)? (v —E)
g3 = (e0+E—pwv) (E—pwv ) A+ (po+o) (pwr—2) (e+a1 ) —0A(po+o)

Now, we proceed to obtain the associated bifurcation parameters, a and b,which are defined

as;
- 9 fr(Dy)
Z )AJ!gj Cr) aT )
k,ji= j
7 (36)
9 fr.(Do)
b= D g g
ki=1 :
Where,

e associated bifurcation coefficients a and b, we obtain the non-vanishing partial derivatives of model
system (37) evaluated at disease free equilibrium (Dy). Hence, it follows that;
82 82 8‘2 f

a =w19193 02,07 3(DU) w1945 D10, (Do) + w9193 oy 1813(D0)
2 o
+W2G194 5"1‘1(9-27‘4(DO)
82f1 82f1
b =gy 18‘3*(D)+w2(h0 183*(D) (38)

Therefore, a = 0, b = 0 and since the bifurcation coefficients are both zero, it indicates that system (8)
exhibits a bi-stability endemic equilibrium states. This means that the system can exist in a stable state
with a low prevalence if the number of individuals with HBV immunity is large, therefore can keep
the virus in a low state, or stable state with a high prevalence if the number of individuals with
immunity is very low. Hence, we conclude that the endemic equilibrium point Dy s locally

asymptotically stable when R crosses the

threshold o ”" = 1.
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3.5 Permanence of the System

A system 1is said to be permanent if it can maintain itself or does not die out over time. For if system
(8) is a weak permanence system, the endemic equilibrium may be unstable or non-existent when
perturbed from the equilibrium. At the other hand, if system (8) is a strong permanence system, the
endemic equilibrium will be stable over time due to any

perturbation.

We assumed that system (8) is a strong permanence system if there are constants Mi,m1 > 0 such that
for each positive solution of (S(t), L(t), I(t), C(t), T(t), E(t), R(t)) of system (8) with
initial conditions S(0) = So> 0, L(0)=Lo> 0, I(0) = 1o > 0, C(0) = Co> 0, T(0) = To >

0, E(0) = Eo > 0, R(0) = Ro > 0 satisfies;
My = lim SupS(t) = lim InfS(t) = my
t—r+o0 t—r-+o0

M, = #Eg}m SupL(t) = fl}g})@ InfL(t) = my

My = lim Supl(t) = lm InfI(t) = my

t—+co t——+o00

M, > tlim SupC(t) = flim InfC(t) = my
—+o0 —+o0

M, = lim SupT(t) = flil+n InfT(t) = m
L —r+00

t—+o00

M, =z lim SupE(t) = lim InfE(t) = m,

t—+o0 t—-+o0

M, =z lim SupR(t) = lim InfR(t) = my
t—+o0 t——+o0

3.6 The Herd Immunity Threshold (V.)

In a large population of individuals where there is an outbreak of HBV, if a large enough number of
individuals have immunity, then the incidence of HBV will reduce. Hence, the possibilities that a chain
of HBV transmission will be interrupted is very high, resulting in a self-contained, small outbreaks
that will die out quickly. Thus, individuals that are not immune will be protected by the wall that is set
up by the vaccinated ones. The herd immunity threshold (V%) is the percentage of the population that
needs to be immune to control transmission of HBV. Paul et al. (2011), used an equation for estimating
the herd immunity threshold. The equation, in terms of HBV basic reproductive number is given as;

1

Ve=1- Ré‘IBV
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Where V. is the critical vaccination level. Therefore, we have;

Bopw(po + A) (€0 + = — pwr) — Apo + 0)(E — pwr) (YA + (o +7) (o + A))
Bo(ed + = — pwr)

V. =
(39)

As the amount of HBV vaccination increases, the herd immunity threshold increases. This means that
the level of HBV vaccination is directly proportional to the herd immunity thresh-

old.

4.0 Results and Discussion

4.1 Sensitivity Analysis

Here, we present the sensitivity of the parameters involved in the %" of model (8). It will help to
know which of the parameters have significant impact on the spread of HBV. To calculate the
sensitivity index of any given parameter say p, we use;

Y (L Y
’ p Rg'™! (40)

e . . pHBV,
Hence, the sensitivity index peculiar to each parameter infl " is calculated as follows:
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gé}fjv _

\IlRl);{BV _ Ho .

7 po+ o

REPY _ (2 — pwv) (el + = — pwr) + pwr (e + 22 — 2uwr)
I

B (E — pwr)(e0 + = — pwv)

7

(2 — pwr)(e0 + Z — pwr) + pwr (el + 22 — 2uwr)

II]RSIBV _
w (2 — pwv) (0 + = — pwr)
ll}Rl?‘BV _ 59
¢ = — pwv’
PR _ Aet) — (et + = — pwr)
4 A(e0Z — pwvr)
]]!HSIBV _ j_l,wl/ .
v (2 — pwr) (20 + = — pwr)’
lIIRgIBV _ — €60 .
m (2 — pwr) (el + Z — pwr)’
GREEY _ —THo ’
v (ko +7) (1o +A) —7A
HGIBV . —Ql
o T A
RHBV -,
Yo, =
IIJR(J]LIBV - —(]186
o (E - pwr) (e + = — pwv)’
lDR(fjisv - —arpel)
o2 (2 = ) (e0Z — pwr)’
gy _ A((po +9) (o + A) —A) — pro(po + )
g (ko + A) (1o +7) (o + A) —7A)
lllfjéisv = AI - A(_) - Ag
Where

o0 + E+ po + A — pwr)

i (po + A) (g0 + = — pwv)
A, — po(A + 0 + po)
A(po + o)
A, = HoE = por)@po +5 + ) + (o +7) (o + ) = 7Y

(1o +7)(po + A) = YA)(E — pwr)
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For the purpose of simulation, the parametric values and sensitivity index of the parameters involved

inf3'"" are given in Table 4.1.

b e o . pHBV
Table 1: Sensitivity indices of the parameters in/to

Parameter  Value Source Sensitivity index
u 0.0121 Inam et al. (2021)  +1.05
B 0.091 Inam et al. (2021) +1
E 0.00003 Inam et al. (2021) +4.3%x1077
2 0.2 Inam et al. (2021) +0.26
N 0.46 Inam et al. (2021) +0.11
Q 0.85 Inam et al. (2021)  +10.96
yl 0.06-0.03 Hussam et al. (2020) +0.08
1o 0.0693 Inam et al. (2021) -6.14
Ui 0.01 Inam et al. (2021) -2.1x1078
(] 0.003 Inam et al. (2021) - 0.01
I 0.01 Hussam et al. (2020) -0.08
al 0.0936  Hussam et al. (2020) - 8.4x107°
o2 0.0411 Assumed -8.5x107®
Q 0.0736  Hussam et al. (2020) -0.36
Q 0.0321 Assumed -0.16

e . . pHBV . . . .
The sensitivity index of each of the parameters involved infl0 " aids in the analysis of

HBV extinction or persistence in the population. From Table 4.1, it is worthy to note that the

RHBV

parameters u, f, €, o, v, @, A with positive sensitivity indices are directly proportional to the‘to . This

means that an increase or decrease in the values of these parameters will result in an increase or

decrease in the Réjm, thereby increasing or decreasing the burden of HBV in the population. On the
other hand, the parameters wo, u1, 6, y, a1, o2, Q1, > with negative sensitivity indices are inversely
proportional to the/%6"”" . This shows that an increase in the values of these parameters will decrease
RiPY. Hence, decreasing the burden of HBV in the population. While decreasing the values of these

. . HBV : : :
parameter leads to an increase in the Ry""  Therefore, leading to increase of HBV burden in the

population.
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4.2 Numerical Simulations

Here, we investigate qualitatively the effect of control strategies on model (41) in order to demonstrate
the importance of the control measures or strategies. To solve the system, we will use the Runge-Kutta
scheme of order four with forward in time [0,50].

The initial condition for the state variables of model (8) are S(0) = 100, L(0) = 30, I(0) =20, C(0) =5,
T(0) =15, E(0) =5, R(0) =15, along with the parametric values of 71 =0.9738, 72=0.500 and with those
in Table 4.1. And for the weight constants f1 = 0.091,5> = 100000,53 = 1,54 = 0.005,55 = 0.100,5s =
0.05,67=91,p5=2000,59= 0.100,L10= 70,511 = 5.

First, we present the plot of the state variables of hepatitis B without control then follow it up with
plots of each state variables in the system without and with controls.
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Figure 2: The plot of the state variables without controls
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Figure 3: The plot of Susceptible class without and with controls
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Figure 6: The plot of Chronic class without and with controls
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Figure 9: The plot of Recovered class without and with controls

4.3 Discussion

In this work we have been able to extend a mathematical model of HBV by incorporating HBV waning
parameter and two more compartments (Treatment and Exclusion). In addition we considered four (4)
control measures for the model with the prime target of reducing the susceptible population and
increasing the recovered population as seen in Fig 3 and Fig 9. The result shows that after some time
those in the recovered class loss immunity as the HBV vaccine wane and become susceptible again.
This is one of factor that accounts for the decline in the recovered class as seen in Fig 9. In addition, it
was noticeable that before the introduction of our proposed control strategies there is a reduction in
latent Fig 3, infectious Fig 4 and chronic individuals Fig 5 which we traced to the incorporated
treatment and exclusion compartments in our model.

Furthermore, the analysis of our model shows that there is local and global stability for the disease free
equilibrium and the endemic equilibrium by bifurcation analysis is bi-stable. This means that the
disease can exist in low or high state in the population. The sensitivity analysis reveals the parameters
that has significant role in the epidemiology of HBV. From Table 1, the parameters with positive index

. . HBV . . o .
are directly proportional to the Iy while the parameters with negative index are inversely
proportional to the basic reproductive number.

Also, we observed from the numerical simulation that the proposed four (4) control strategies
(Awareness, reduction in rate of contacts, vaccination and treatment and isolation) played a vital role
in bringing the spread of HBV under control. These control strategies if implemented will arrest the
spread of HBV in the population even before the forward 50th year under consideration.

Finally, it is the responsibility of the government to provide her citizens medical policies and care
when there is an outbreak of an epidemic. Providing all these control strategies might be expensive
and unrealistic. Hence, we suggest the implementation of maximum vaccination at birth, combined
treatment and exclusion along with regular sensitization (awareness) of her citizens about the
epidemic.

5.0 Conclusion

We have seen from the analysis how different parameter values increase or decrease the HBV burden
in the population. Increasing the parameter values with positive sensitivity index will increase the HBV
burden in the population vice versa while increasing the parameter values with negative sensitivity
index will play a greater role in reducing drastically, the challenges post by HBV. The most significant
among these parameters with positive sensitivity index we attempt to minimize is the birth without
vaccination at uw and among the parameters with negative sensitivity index, the vaccination rate y is
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the most significant we attempt to maximize; As the rate of birth without vaccination increases, the
burden of HBV increases vice versa while at the other hand, as the vaccination rate increases, the
burden of HBV in the population decreases and vice versa. The dynamics of HBV is completely

determined by the basic reproductive number% " as an increase inf% " will lead to an increase of
HBYV burden vice versa. Furthermore, as a result of the vaccination, anti-viral treatment and isolation
of HBV incorporated in the model, even before implementing the proposed control strategies; it was
observed that the Susceptible and Recovered population decline over time and tends to be equal while
the other compartments tends to zero over the forward in time of 50 years as seen in Fig. 4.1. With the
implementation of the control strategies, it was noticed that there is a rapid decline in the number of
individuals within each compartment as expected. Hence, the need to adopt and implement the
proposed strategies in order to bring the spread of HBV under control within a short time.

The SLICTER model with its sensitivity and control analysis gave us a better understanding of HBV
dynamics and serves as a tool needed in bringing its threat under control with the aid of the proposed
control strategies. Primarily, adequate attention should be given to HBV sensitization and maximum
vaccination at birth in order to meet up with the critical vaccination level v. and this should be done
alongside social distancing in order to minimize the rate of contact. And in a case of a failed vaccination
and one become infected, it is advisable to go for anti-viral treatment and isolation. Putting these
measures together will help in bringing the virus under control, improving lives and eventually
eradicating the disease from the population.
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Abstract

We reviewed an epidemic diphtheria model to carry out more rigorous mathematical analysis. We obtained
a control parameter R,, which determines the persistence or extinction of diphtheria disease. The presented
model has diphtheria infection-free and diphtheria infection presence equilibria. The latter equilibrium
state is stable locally asymptotically if R, > 1 and the former one is locally asymptotically stable
whenever R, < 1. Sensitivity analysis results indicate that of more interest, the rate of isolating
individuals infected with diphtheria and the fraction of vaccinated susceptible persons are the most
sensitive parameters other than the effective contact rate. Moreover, we showed that there is an inverse
relationship between each of these parameters and the vaccinated reproductive number, R,,. Indeed, an
increase of one or both of them results in reducing the value of R, and leads to containing the spread of
the bacteria in a community.

Keywords: diphtheria, stability analysis, sensitivity index

1. Introduction

Diphtheria is a contagious disease produced by bacteria known as Corynebacterium diphtheriae. Such
bacteria make toxin which causes sickness to people. Diphtheria infection can spread in a population from
person to person, through respiratory droplets, such as coughing or sneezing. People also contract the
bacteria by touching open wounds of infected individuals. Therefore, people with high risk of infection
include those in the same household or come into contact with the infectious and persons having direct
exposure to excretions from the suspected infection site like mouth and skin of the infected person (CDC,
2024). Diphtheria disease incubate for a period of 2-5 days.

Diphtheria is classified based on the nature of appearance for clinical purposes depending on the site of
the infection. These are respiratory diphtheria which is further divided into three including: Nasal
diphtheria, Pharyngeal and tonsillar diphtheria as well as Laryngeal diphtheria and cutaneous diphtheria.
Onset of respiratory one is slow with characteristics of mild fever, sore throat, difficulty swallowing,
malaise, loss of appetite and hoarseness (if the larynx is involved). For respiratory diphtheria a pseudo
membrane (a thick, gray coating forms by dead tissues) will appear within two to three days of illness in
the throat or nose causing difficulty in breath and swallow. Moreover, a toxin produces by bacteria slays
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healthy tissues in the respiratory system and damage heart, nerve, and kidney if gets into blood stream
(CDC, 2024).

Immunization of all ages is a preventive measure for diphtheria disease. Diphtheria is treated with
antibiotics to kill and get rid of the bacteria irrespective of infection site. Diphtheria antitoxin is used to
treat respiratory diphtheria infections as it stops the bacteria toxin from damaging the body (CDC, 2024).

Diphtheria infection was among the leading causes of childhood death worldwide before the advent
diphtheria toxoid vaccine in 1923. A diphtheria disease dynamics model with quarantine was presented in
(Adewale et al., 2017). The model analysis reveals that high quarantine rate of exposed individuals lowers
the reproductive number thereby reducing the size of infectious persons. Therefore, intensifying
quarantine rate of exposed individuals prevent the endemic persistence of diphtheria disease in a
community. In 2018, Ilahi and Widiana (2018) proposed an epidemic model of diphtheria disease for
assessing vaccination effect on bacterial infection. The model analysis and simulation results indicate that
vaccine has positive impact in containing the spread of diphtheria. In the following year a simple SIR
model of diphtheria transmission dynamics with natural immunity of infectious individuals was proposed
by Husain (2019). He concludes that the rate of recovery and effective contact parameter play important
role for controlling disease persistence.

Recently, an optimal control mathematical model of diphtheria was also presented in (Izzati, Andriani and
Robi’aqolbi, 2020), with quarantine and vaccination strategies as control measures. The analysis indicates
that an optimal control strategy could minimize diphtheria disease persistence. A mathematical model of
diphtheria disease dynamics was also proposed to get insights on the dynamics of the bacteria (Izzati and
Andriani, 2021). Stability results of the model equilibria were presented. Numerical simulations showed
that disease persistence could be affected by basic vaccination coverage and natural immunity of the
population. In a similar note, Kanchanarat et al., (2022) proposed a transmission dynamics model of
diphtheria aimed at assessing the effect of imperfect vaccine on disease spread. The analysis reveals that
diphtheria could be eradicated if the immunization coverage exceeds the required level of optimal
immunization coverage. Two influential factors for containing diphtheria infections are determined via
sensitivity analysis. Moreover, numerical simulations indicate that the time period spent by infected
individuals before the appearance of clinical signs has an effect on the required maximum level of
immunization coverage for diphtheria elimination.

In this paper, we extended the model of Izzati and Andriani (2021) by incorporating diphtheria
transmission of exposed individuals. Moreover, we addressed some drawbacks of their model in terms of
formulation and analysis as follows:
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We changed quarantine of infected individuals to isolation as exposed individuals supposed to be
quarantined,

We obtained the endemic equilibrium point and proved its stability result which were not
presented in their paper,

We proved the existence of transcritical bifurcation phenomenon as they mentioned without
proof,

Sensitivity analysis of the model parameters were carried out

Remaining part of this paper is organized in this way: Section 2 describes the model of diphtheria disease.
We carried out the model analysis in section 3. Then we provide the concluding remarks in the last section.

2. The model of diphtheria

The human diphtheria infection model as presented by Izzati and Andriani in 2021 classified the human
population, N into five distinct classes of susceptible (S), exposed (susceptible humans who come into
contact with infected individuals, E), infected (I), isolated (J), and recovered (R) individuals. Thus, the
total human population at time ¢ is

N()=S()+E(@)+1(t) +](t) +R(D).

It is assumed that

1.
1l
1il.

1v.

V.
Vi.
Vii.
Viil.

who do not get vaccinated are included in the susceptible groups (S)

vaccinated are immune and move to recovered class (R)

the transmission of diphtheria disease is via effective contact between the susceptible and infected
individuals.

exposed humans with strong natural immunity do not become infectious and are moved to the
susceptible class. While those who have weak natural immunity could be infectious for a time
period.

the infectious individuals (1) receive treatment and progress to isolated class.

the isolated individuals reduce by either recovery or diphtheria infection.

recovery confers permanent immunity. That is, there is no reinfection after recovery.

individuals of each class can die naturally at the rate, 7. Moreover, infected individuals can die due
to the diphtheria disease infection at the rate 6.

Based on the above assumptions, the model is presented in equation (1) and the rates of transfer between
the five classes is shown in Figure 1. The parameters of model (1) are presented in Table 1.
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ds )
E=(1—p),uN—/15—TS+qu
dE
EzAS—aE—q.')E—TE
(Cii—i:aE—yI—TI—HI ; (1)
dJ
priniini At/
dR
af - PHN +n] — 1R J
B(EE+I)

with A =

, nonnegative state variables and model parameters.

Table 1. Values of model parameters as in (Izzati and Andriani, 2021)

Parameter Description Nominal value
Fracti f

p rac‘flon 0 03
vaccinated human

U Rate of birth 0.019

T Natural death rate 0.006
Progression rate

0.5

¢ from E to I !

B Effective contact rate 0.23
Rate at which exposed 0.3

become susceptible
4 Isolation rate 0.3

Modification parameter 0.5
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Mortality rate due to 0.05

0 Diphtheria
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¢E

T8 S

(1-p)ulN

Figure 1: Flow diagram of model (1)

3. Analysis of the model
3.1 Equilibrium points of model (1)

When there is no diphtheria infection (E = I = 0) so that an infection-free equilibrium denoted by H =
(S0, Eo, 1o, Jo, Ro) 1s given by

1-pu pU
(== )
T

H = ,0,0,0,—
T

If the disease is present, we denote by H* = (§*, E*, I*,]J*, R*) an endemic equilibrium of model (1).
Then using Maple 18 software, we obtain

kip(1 —p)lr(a + kzk3) + ay(n + ©)] + kksp(a + 1)

57 t{k3(tki(aky + 1) + (@ + Dlk2aB + (R — D] + kyay(n + 1)}
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_ kikyksu(R, — 1)
 ky(thy(aky, + 1) + (@ + D[kaf + (R — D)) + kyay(n + 1)

_ akikyksp(R, — 1)
 ko{ks(tky(aky + 1) + (a + Dk,af + (R, — DD + kyay(n + 1)}

aykikyksu(R, — 1)

E*

I*

S = ey Gk (al, + D) + (a + DlkpaB + (R, — D) + kyay(n + 0}
e = MPkEKSKRs(Ry — 1) + W + kikao (Ro — D(any — kokspg))
ky{ks(thky(ak, +1) + (a + D)[kyaf + (R — D)) + kyay(n + 1)}
. _ & __ B(eky+a) _ _ _ . .
with R, = p ,Ro = o Jki=a+dp+t,ky=1t+y+60,k;=1t+1n. For this endemic

equilibrium to exist, R, > 1 such that R; > 1 and any — k,ksp¢ > 0.

For linear stability of these equilibrium points, a threshold parameter called basic reproduction number
(here vaccinated reproductive number) is required which can be obtained using the method proposed in
(Van den Driessche and Watmough, 2002). Let F be a matrix for the infection term and V a matrix for
transition terms. Then

F= N N andV=[-a k, 0]
0 0 0 0 - k
0 0 0 3
So that
1-— gk, +a
szp(FV‘l)zﬁ( p)(ek; )_

kik,

This threshold parameter R,, is an average size of secondary infections an index infective is produced in
a population of people at risk for which a fraction is vaccinated.

3.2 Local stability of equilibrium points

Here, we present the local stability results of the infection-free equilibrium and diphtheria infection
presence equilibrium. In the absence of diphtheria disease, the linearized system (1) gives the following
Jacobian matrix, denoted by J(H)
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-T q¢q —q¢3 0 0
0 g qs 0 0
J#H)={ 0 a -k, 0 0 (2)
0 0 y —ks 0
o 0 o n -t

with q; = =Be(1—p) + ¢,q, = Be(1 —p) —ky,q3 = B(1 —p).

It can be seen by inspection that the first three eigenvalues of the matrix J(H') are the following: —t, —T1,
—k5 and the remaining two eigenvalues are of the sub-matrix of J(H') denoted by J,(H). This matrix is
obtained by deleting the first row and first column, the last row and last column and the fourth row and
fourth column of the matrix J (). Thus

and
det(Jo) = —kzq; — aqs = k1k,(1 - R,) >0,

if R, < 1. Thus, J, has eigenvalues with negative real parts and so as those of J(H). It follows that, the
infection-free equilibrium H is asymptotically stable locally if R,, is less than unity.

Also, evaluating Jacobian matrix of system (1) around infection presence equilibrium, H *gives

—w;—T wy+¢ —W3 Wy w2
w1 —w,—k; W3 —wW; —wW;
J@) = 0 I —k, 0 0
0 0 y —ks O
0 0 0 e -
with w, = %, Wy = aI\Ili , W3 = % Then using elementary row operations with Maple 18

software on J(H'*), we obtained an upper triangular matrix J*. Thus, the diagonal entries of this matrix
which are the eigenvalues of J(H*) are the following.

N*21(k; + w1) + atl*S* + a?I*(N* — §*)

—(6 + wy), Nt T o) :
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N*ZTkz(k1k3 + (l)]_) i aTkzs*I* + azkzl*(N* - S*)
N*2t(k, + w1) + ataS*I* + a?I*(N* — S*) ’

N*2tky(ky + kzw) + @ + atS*I*(By + kyk3)
N*2t(k; + wq) + ataS*I* + a2[*(N* — S*) '

B <1 N a,BS*I*();e + Tk3)>’

Where & = ak;(ak,[*(N* —S*) — ftS*(N* = I7),

Y = N*2tk, k3 (ki + wy) + atS* I*(By + kyk3) + ©

These five eigenvalues are negative if @ is greater than zero and so, H * is asymptotically stable locally.
3.3 Bifurcation analysis

As mentioned without proof in (Izzati and Andriani, 2021) a bifurcation occurs due to the existence of
unique endemic equilibrium point which is called transcritical (forward) bifurcation. It is also known as a
change of stability as the infection-free equilibrium exchange stability with the infection presence
equilibrium at bifurcation point. This point is biologically called inversion boundary as a point after which
the disease invades the population.

Theorem 1

Model (1) exhibits a transcritical bifurcation at the disease-free equilibrium # if the bifurcation parameter
x kik,
A (1-p)(ekzta)

Proof

Let f be a vector defined from model (1) as

(1—-p)uN — 1S — 1S+ QE
AS —aE — ¢E — 1E

f(S,E,I,],R; B)=| aE —yl — I — 61 3
yl—t1—n
puN +nj — 1R

The Jacobian matrix J(H) evaluated at H, as presented in (2) has the determinant

3
det(#) = 52 l_[ k; (R, — 1),
i=1
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kika

o) (elta) The trace of J(H) is given by

whichiszeroif R, =1lorf =

tr(J(#)) = - # 0.

3
2T+2ki—,38(1—p)

Thus, one of the eigenvalues of the Jacobian matrix J(H) is a simple zero. This allow us to establish the
existence of a transcritical bifurcation at the equilibrium # using Sotomayor theorem (Perko, 2001). To
verify the conditions for transcritical bifurcation given in this theorem, let V = (vy, v, V3, V4, v5)T be an
eigenvector of the matrix J(H') corresponding to the zero eigenvalue. Then using the standard computation
of an eigenvector, we obtain

T
pA-pP) o) _

v=(o 1 24D

kz )

Then, let W = (wy, w,, ws, wy, ws)T be an eigenvector of the transpose of the Jacobian matrix J(#). Such
an eigenvector associated to the zero eigenvalue is the following

T
wo(BUTDer k) et o o

— — 5
X, ky, kyks thyks ©

The derivative of the vector field f(S,E,1,J, R; B) in (3) in relation to the bifurcation parameter § at the
infection-free equilibrium, H is

fs(H; =0 0 0 0 0)F

And so,
0
T
G R (R o § =0 ©)
0
where Q; = B(l—p)(tzkz)—km_
afp of g of g af g f g

Now, Dfs(S,E,L,J,R; B)V = —=v; + —p V2t st <5 Vs + — - Vs. Evaluating this expression at

as
H and using equation (4), we get

(1l —p)(kae+1) p(l—p)(kye + 1) ’
7k, Tk, 00 0) '

Dfy(at; ) =
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Thus,

u( = p) e+ 1)
tk,

a ay aqy \7| #A-p)leet D)
WT[Dfs(H; ,8)]:(Q1 1 ky, koks 5k2k3)

Tkz
0
\ 0
0
_ _ #A-p)([(a+ka)=pkal(kze+1)+B+kz) + 0. @)

Tkz

Also D2f(x; B)(V,V) is defined in [4] as follows: D%f (x; B)(V,V) = lec,i,jazlvivj.

6xi6xj
Expanding and evaluating this using (4) at the point /', we obtain
Q2
-2
D*f(H; BV, V)= 0 |,
0
0
_ 2B(1 —p)lket+ (1 —p)(1 + e+ 7))
QZ - k
Ui
Hence,
Q2
S a ay any \T| Q2
w [D f(}[; ,B)(V: V)] - (Ql 1 kz k2k3 Tk2k3 ) )
0
=Q,(Q,—1) #0. (8)

Equations (6), (7) and (8) are the conditions for transcritical bifurcation which are satisfied (see, Theorem
1, Perko, 2001). Hence, the result.

3.4 Sensitivity analysis

The occurrence of transcritical bifurcation indicates that the diphtheria disease extinction or persistence
depends on the vaccinated reproductive number, R,, . However, a model parameter with greatest effect on
this number would have the same effect on the diphtheria disease persistence. To investigate such a
parameter, we can apply sensitivity indices as presented in (Chitnis, 2008).
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Following Chitnis (2008), the associated sensitivity indices of the parameters of R, are as follows:

dR B
Ry _ v r
Dy = 3p X =, +1
dR
(I)RV = v X ﬁ = _L
P 6.8 Rv 1- 4
dR k
P = ¥ x £t
de R, ck,+a
R — R, N tlek,® + aky + k)]
§ 98 "R, kik,(ck, + a)
ot R ¥ @
14 oy R, k,(ek, + )
dR 0 0
cI);eV = v X — = _a—
0 R, k,(ek, + a)
g, Ry @ __a(eky—¢ -1
* da R, k,(ek, + @)
dR
CI)R" — v x i — _g
¢ 099 R, ky

We evaluated the above sensitivity indices using values of the model parameters in Table 1. Then, resulting
values of these indices are shown in Table 2 on increasing sensitiveness.

Table 2 Values of sensitivity indices of R,, on increasing sensitiveness

Parameter Sensitivity index

B +1
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14 -0.642162
P -0.428571
¢ -0.342466
£ 0.237968

a -0.111347
0 -0.107027
T -0.019693

As depicted in Figure 2, there is direct relationship between the reproductive number R, and each
parameter [, € and a. That is, an increase of any of these parameters results in the rise of the value of R,
leading to the disease persistence and vice-versa.
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Figure 2. Sensitivity analysis of R,,, showing direct relationship with 8, € and a

Figure 3 indicates inverse relationship between the reproductive number R, and each parameter
p,d,v,0 and ¢. It follows that increasing the value of each of these parameters will decrease the value of
R,. Thus, contain disease persistence a population. We are interested in the control parameters y and p
for easy disease eradication. The diphtheria disease could be eliminated from a community by either high
isolation rate of infectious individuals or vaccinating high proportion of susceptible individuals. Moreover,
combining the two strategies will be the best way of diphtherial disease eradication in a community.
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Figure 3. Sensitivity analysis of R, showing inverse relationship with p,7,y,0 and ¢

4. Conclusion

We presented an extended version of the model of diphtheria transmission dynamics proposed by Izzati
and Andriani (2021). For the extension, we incorporate the transmission of bacteria by exposed individuals
and changed quarantine of infected individuals to isolation. In addition to the infection-free equilibrium
presented in (Izzati and Andriani, 2021), a unique infection presence equilibrium also exists. We proved
the occurrence of transcritical bifurcation phenomenon as mentioned without proof in (Izzati and
Andriani, 2021). Moreover, the most important parameters for diphtheria disease eradication were
explored via sensitivity analysis. Such parameters are isolation rate of infectious individuals y and
proportion of vaccinated individuals p. In fact, the high isolation rate of infectious individuals or
vaccinating high proportion of susceptible individuals would contain the spread of the bacteria. For further
research, a booster vaccination can be incorporated in the model.
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Abstract

Pneumonia poses a significant threat to children aged zero (0) to five (5) in the developing world, leading
to high morbidity and mortality rates. Despite this, there has been limited focus on optimal control
measures for childhood pneumonia. To address this gap, a new five-compartmental mathematical model
to explore the impact of contact and transmission rates on the dynamic spread of pneumonia is developed.
The disease-free-equilibrium model was analyzed, and the basic reproduction number (R,,) was

computed using the Next Generation Matrix (NGM) method. Sensitivity analysis highlighted the
substantial influence of contact and transmission rates on the basic reproduction number (R,,) . Numerical

simulations conducted using Maple and the introduction of optimal control strategies demonstrated that
increasing immunization campaigns can effectively reduce the dynamic spread of pneumonia infection.

Keywords: Optimal control, Pneumonia, Simulation, Transmission rate

1. Introduction

Pneumonia is an infection of the lungs that is caused by bacteria, viruses, fungi or parasites. It is
most dangerous for older adults, babies and people with other diseases or impaired immune systems (rudan
et al.,2011). Pneumococcal is spread through contact with people who are ill or who carry the bacteria in
their throat. One can get pneumococcal pneumonia from respiratory droplets from the nose or mouth of
an infected person. It is common for people, especially children, to carry the bacteria in their throats
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without being sick. After a person is infected and diagnosed with pneumonia, he should be on medication
for a particular period of time; the infection is contagious for 10 to 14 days after the infected person stops
getting treatment (WHO, 2006, UNICEF, 2011).When a person breathes pneumonia-causing germs into
his lungs and his body's immune system cannot prevent its entry, the organisms settle in small air sacs
called alveoli and continue multiplying. As the body sends white blood cells to attack the infection, the
sacs become filed with fluid and pus causing pneumonia. Pneumonia has Bacterial, Viral, Fungal, and
other primary causes. Other substances that caused pneumonia are smoke, abuse alcohol, those that have
other medical conditions, such as chronic obstructive pulmonary disease (COPD), emphysema, asthma or
HIV/AIDS (Singh and Aneja, 2011). This pneumonia is not common but may occur among those with
weak immunity due to AIDS, immunosuppressive drugs and other medical problems (Ebby, 2005).

Pneumonia is of two type viz: typical and atypical. Typical pneumonia produces cough, fever,
dyspnea, sudden onset of chills, pleura tic chest pain and usually no constitutional symptoms but
historically atypical pneumonia is nonproductive of cough, lesser fever, less dyspnea, less chill, less
pleurisy, chest pain but its constitutional symptoms are myalgia, arthralgia and rhinitis which are very
common. Physically, typical pneumonia comes with more respiratory distress, higher fever and
consolidation findings while all these are not present in atypical pneumonia. People who are older than 65
years of age and those that have recently recovered from a cold or flu have an increased risk of developing
pneumonia and children younger than one year of age have a weakened or impaired immune system.

2. Literature Review

In order to know the dynamical spread of pneumonia disease, many researchers have worked on the
mathematical model of this infectious disease. Tilahun (2019), worked on seven compartmental
mathematical model. He stated in his research that in other to make endemic equilibrium unstable so that
it merges to disease free equilibrium, high efficacy treatment vaccination programme are necessary as
optimal control. He showed that reduction in contact rate of either pneumonia or meningitis has a great
effect on controlling pneumonia and meningitis co-infection at population level. Mohammed (2019)
worked on 14 compartmental model basically malaria-pneumonia co-infection and their optimal control
at population level. It was established in her research that all the control strategies mentioned should be
applied simultaneously for quick eradication of both diseases in the society. Marcus and Newton (2021)
also examined the dynamics of the pneumonia disease from a mathematical perspective via a deterministic
SEIR model. They observed that pneumonia free equilibrium is locally asymptotically stable for R, is less

than one and pneumonia endemic equilibrium is globally asymptotically stable in the invariant region
whenever R, >1. In their research, sensitivity analysis revealed that transmission rates and the rates at
which exposed individuals become infectious as the most sensitive parameters via center manifold theory.

Getachew et al., (2017) also worked on modeling and optimal control of pneumonia disease with cost-
effective strategies. A nonlinear mathematical model for the transmission dynamics of pneumonia disease
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in a population of varying sizes was proposed and analyzed. Their research based on five deterministic
mathematical compartmental models used control mechanisms to control disease prevention through
education, treatment, and screening. They concluded that a combination of prevention and treatment are
the most cost-effective intervention strategies to combat the pneumonia pandemic.

3. Methodology

In this paper, we consider the childhood stage, and vaccinated individuals which cannot gain
permanent immunity for life because there is a certain age that vaccine can wane, denoted by omega “w”.
The vaccine for pneumonia is perfect for a certain period and not be considered as hundred percent perfect.
Meanwhile, we are considering childhood stage pneumonia, and we neglected the vaccination of adult
individuals.

The formulation of our model is based on the following assumption that the human population is
not assumed to be constant since migration, emigration, morbidity and mortality rates occurred. The
susceptible human is increased by the recruitment of people (either by birth or immigration) into the
population at the rate 7, , recovered people from pneumonia disease at the rate of a and the vaccinated
individuals who gained immunity for life at the rate of w as well. This class of susceptible humans
decreased by natural death gy and transmission rate of the infected individual at A, . The fraction p of the

newly recruited individuals are assumed to show no symptoms joined the vaccinated class of pneumonia.
This class of individuals reduced by the natural death of vaccinated individuals with pneumonia and
decreased at the rate ® of which the vaccine wanes. The population of exposed pneumonia individuals
increased by the infection of fast progressor at the rate of (1 - €). This class is decreased by humans'
natural death rate 4, and the rate ¢: at which disease progressed or spread into the population. The
population of infected individuals with pneumonia is increased by the fraction & of the newly infected
individuals and the progression rate of the disease into the population at the rate of ¢;. This infected class
was reduced by the natural death rate of infected individuals at the rate of 1, pneumonia induced
mortality at the rate of 6; and some individuals in this class received treatment at the rate of t1, which
moved to recovered class. The group of individuals that received treatment at the rate of T1 which left
infected pneumonia class joined the class of recovered individual. So this recovered class also decreased
by the natural death of people in this class and by total recovered individuals from pneumonia at the rate
a which moves to susceptible class. Then:

das
d_tp = (1 — p)T[H - /1pSH - ‘UHSH + aRp + (I)I/p, (31)
av,
—2= pry — puVp — wlh, (3.2)
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dE

d_tp = (1- SZ)APSH - ,uHEP - ¢1EPa (33)
dal

d_: = 82/1’)51.1 + ¢1Ep - MHIP - 61IP - IPT]_a (34)
s 1y Ry~ Ry (3.5)

where S, V, E, I and R stand for susceptible, vaccinated, exposed, infected and recovered class
respectively.

3.1 Transmission Rates

Transmission by single infected individual acquire infections with pneumonia is represented
by 4, and given as

__ wpC(Ep+nslp)
Yp == (3.6)
Where C is the probability that one individual is being infected with pneumonia by a single infectious
human and w, s the effective contact rate for pneumonia while 73is the modification parameter which led
to the risk of infectiousness of individuals in the infected class.

-
1

Bl

g

'

Figure 3.1.The flow chart of the model.
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3.2 Existence and uniqueness of the model
We adopted the idea of Derrick and Grossman to analyze the solution of the existence and uniqueness of
pneumonia model as follows

D = {(SH'Vp'Ep'Ip’Rp) : |SH _SHol =a, |V;7 _Vpol < b, |Ep _Epol =, |Ip _Ipol <d, |Rp -

Ry|<elt—tl<f (3.7)
Proof
ds
d_:’ = fiSu, Vo, Ep, Iy, Rp) = (1 — p)my — Ay — A,Sy — ppSy + aRy, + oV,
W _

ac f2(Su Vo, Epy Iy, Ry) = pty — upVy — wly,

dE

d_tp = f3(Su Vo, Ep, Ip, Rp) = (1- &)y Sy - uuEp - $1 Ep,

aly _

Fr Ja (St Vo, Ep, Ip, Ry) = €24p80 + b1Ep - pylp - 811p - IpTy,

dR
d_tp = fS(SHp ‘/pﬂEpﬂIp)Rp) = T11P _‘HHRP - aRP'

Then
Of N[ Lo Y[ o)
25, (0,0,0,0,0) Uy 95, (0,0,0,0,0) 95, (0,0,0,0,0)
df1 0f> 0f3
_61/;, |(0,0,0,0.0) = w _an |(0,0,0,0,0) = —(ug + w) _an |(0,0,0,0,0) =0
df1 0f> 0fs
\ 3E. E, l©0,0000) =0 5 3E, |0,0,0,00) = 0 (35, l0,0,000) = —(un + D1) 3
0y Oy =0 I | o000y = 0
oL, (0,0,0,0,0) al, (0,0,0,0,0) a1, (0,0,0,0,0)
o ey o
| 3R, (0,0,0,0,0) J aR, (0,0,0,0,0) )\ oR, (0,0,0,0,0)
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( a%: l0.0,0,00) =0 ) ( ngZ l0,0000) =0 )
g_izko,o,o,o,o) =0 g_‘];:ko,o,o,o,o) =0
9 Z%: |0,0000) = @1 r 3 :%Z l(0,0,000) =0 > (3.8)
g_{: |(0,0,0,0,0) =—(up+ 6+ 11) g—fz |(0,0,o,o,o) = -7
L ;)T{: l(0,0,0,00) = 0 ) kgT{i l(0,0,0,00) = —(un + a))

Hence, the problem has a unique solution and the model is mathematically and epidemiologically well
posed.

3.3 Disease Free Equilibrium

The disease free equilibrium (DFE) is the stage where there is neither disease nor infection in the society.
This shall be denoted as gythen,

as av, dE; dal dR
Cho = TP ZP="P=0 gnd A,=0 (3.9)
dt dt dt dt dt

PTTH (Mg— p+ W)y
=— Sy="—= qand E,=0
P7 ouyte’ “H pr(p+w) p

Also
EZApSH + ®1EP - (‘HH + 6 + Tl)Ip = O
Since I, = 0, then

T, — (u +@)R, = 0,Then R, =0

. _ _ ((u—ptw)my  pry
‘& = (S Vp By Iy Rp) = (F22258, L2 0,0,0) (3.10)

3.4 Existence of endemic equilibrium

The endemic is the stage where pneumonia infection has become pandemic in the society which shall be
denoted as &; and determined as follows:

& = (SinVy Bl Ry)

where
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dSy _dV, dE, dl, dR,
dt — dt dt dt dt
At endemic steady stage the expression A, is denoted by A™

¢ sty

68 = wp - (311)

LetK; = (up + ¢1), Ko = (uyg + 61+ 11), K3 = (up + @) and K, = (uy + w)

then
(1—= p)ny —A,S5 — uSp+ aRy =0
(1- )5S}, — pEy — 1By =0,
where
Sy = (1- p)n'fl +a:R;‘,*+ wvg, . _ (1- sz)/l;,s;,, yr —PmH
(4p+ un)Ey p Ky L

82).;5;_} + ¢1E£; - (H + 6 + Tl)I; =0

where

. (@-g,)A5s; A . .
Epz% R, :(p o, —(u+a)R, =0

1 3 ., and
Then,
|* = Sy (KngA’p + A, _¢1822p)where P K,&, +(1—82)¢1
KlKZ ! K1K2

also,

. I " . _
Ry =12 B8 _p s, F>2=T[“’2+(1 gz)‘*”lJ

K, K, Where Ko\ K, KK,

from equation (3.1), N =S. +V, +E;, + 1, +R;,

Then,
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Ay N =@, C(E p +7151 ) z"{swm'* L AmE) S v p gt +P2/1*S*HJ
K, K,

= a)pC(—(l_gzK)ﬂ S n +773Pl/1*pS*Hj
1

Divide through by A xS 1 , we obtain

1+PA = wpc(m+nsaJ

1

Where P, = gstl+ 1=

+ P +P,, then

1

A-¢&,)
@,C +n,P,
T :1[wpc(1_52)+773P1K1 _1j _ F K, >t 1
P K P . (3.12)

3.4 Derivation of basic reproduction number

We adopt the idea of the next generation matrix used by Driessche and Watmough to calculate the basic
reproduction number (R,)) of the pneumonia model. The Jacobian derivative of F and V are

0 0 0 0 K, 0 0 0
- 0(1-¢,)0,C (1-&,)n0,C 0 v 0 K00 3.13)
0 &oC &,0,Cny 0 0 -4 K, 0
0 0 0 0 0 0 -7 K,
Then,
I 0 0 0]
(1-e, )a)pC . L-e, )a)ansqﬁl (l—gz)a)an3 0
FV -1 — Kl KlKZ K2
&,0,C . £,0,C1n,¢, &,0,Cn,
Kl KlKZ KZ
10 0 0 0]

the basic reproduction number (Ry) is
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a)pc(gznsKl + K, +1m30, — &,K, _52773¢1)

R =
oP K1K2

(3.14)

where Ky = (s + 1), K, = (i, +5+7), and K, = (s, +a) (3.15)

(3.14) is the basic reproduction number of pneumonia model in this paper which measures the average
number of new infections generated by a typical infected individual in the society.

3.5 Local Stability of disease free equilibrium
This shall be established using the theorem below.

Theorem 1.The model (3.1-3.5) is locally asymptotically stable (LAS), ifR, <1 and unstable when
Rep >1.

Proof: Now, to determine the local stability of &, the following jacobian matrix Jpis computed

corresponding to its equilibrium point.

- Uy, o 0 0 a
0 —(u, +o) 0 0 0
J,=| 0 0 — (1, +9) 0 0 (3.16)
0 0 ¢, —(u+5+7) 0
| 0 0 0 T —(u+a)_

We obtain the characteristic equation using|3 o= g|| —0,for Iis 5 by 5 identity matrix.

Now,
Al =

O OO0 o~
O 0O o N O
O O N O o
O N O O o
N O O o o

, (3.17)

Hence, |J, — ﬂ,l‘ = 0becomes:
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-ty =4 0] 0 0 a
0 ~(y + )= A 0 0 0
0 R 0 0 |-0
0 0 ) —(y +0,+7,) -4, 0
0 0 0 7 —(uy +a)- A
(3.18)
From (3.18), 4, ==, while Ay A ’ A and A are obtained from
~(u, + )~ 4, 0 0 0
0 ()~ Ay 0 0 =0 (3.19)
4, —(uy +6,+1) -4, 0
0 T, —(uy +a)- A

Hence, the corresponding eigen  values of this equation are as  follows
A==ty b ==y + @), g =—(uy +4), 4 =—(uy +6,+7) and 4y =—(u, + @) (3.20)

Since all the roots are negatives, real and distinct,. Hence, the disease free equilibrium of the pneumonia
model (3.1-3.5) is locally asymptotically stable (LAS).

3.6 Global Stability of disease free equilibrium for Pneumonia

Theorem 2: The disease free equilibrium of the system of equation (3.1-3.5) is globally asymptotically
stable (GAS) whenever R(, < 1 and unstable if Ry, > 1.

Proof.

It follows that S = Ny —V, — E, — I,, — R, at steady state. The proof is based on using the comparison
theorem describe in (Lakshkanthanet al, 1989) to prove the global stability. The rate of change of the
variables representing the infected components of the system can be written as follows:

v,

ar Pty — UpVp —w Vp

dE .
2= —e)A(Ni —Vp — Ep — I, = Rp) — uEp — $1Ey

dt
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av, .
—= ey (N =V, —Ey — I, — R,) — 1 Ep- uyl, — 81, — 141,

dR,
D* ={(W,E, I,,R,) ERY : V, + E, + I, + R, < Nj} (3.21)

For the model the associated reproduction number Ry, the DFE of the model is globally asymptotically

stable, inD* if Ry, < 1, using the comparison method gives

_dﬁ_
e Vo 2
d_: Ep Ep
a.l=F=V) |- F; I (3.22)
—£ P p
dt
5y ol U
| dt .
where
-K, 0 0 0
(F-V)= A-&)o.C-K, (1-¢&,)n,0,C 0
0 £,0,C + ¢, &n0,C—-K, 0
0 0 7, - K,

(3.23)

According to CastiloCharezetal(2002) , all eigenvalues of the matrix (F - V) have negative real parts, then

~K, -4 0 0 0
0 1-&)oC-K, -2  (1-&)n,0,C R (3.24)
0 £,0,C + ¢, &11305C — Ky — 4 0
0 0 7 —Ky—A

From equation (3.24) we find the determinant and arrive at the following characteristic equation
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4 3
A +(k3—ezoapn3c+k2—mpc+ezmpc+kl+k4)x +(
—k3z—:20)pn3c—l—k3k2—k3copc—|—k3z—:2copc—|—k3kl—l—k3k4
—n3o)pc¢l+n3copc¢182—82(opn3ckl—szo)pn3ck4
—kzmpc+k282copc+k2kl+k2k4—k4wpc+k482wpc
2
—|—k4k1)k —|—<—k3n3copc¢1—|—k3n3copcq)182—k382wpn3ck1

k,€, o c—|—k3k2k1—|—k ks k
2

—k382mpn3ck4—k3k20)pc—|—k 3 ks ky

342 %
—k3k4(opc+k3k482c0pc+k3k4k1 +n3wpc¢l 82k4
—k4820)p1’]3ck1 —n3(opcq)1 k4 —|—k4k2820)pc—k4k20)pc
+k4k2k1) k—k3k4(—n3 oopcc])l g, +z—:2copn3ck1 +n3oopc¢l

—kzezmpc+k2wpc—k2kl)

(3.25)

Let the coefficient of A3 = a4, 12 = a3,A! = a, and a, = constant and applying Routh-Hurwitz
criteria of order four, we obtained

a, =K; +K, —£,0,Cn, + K, —(1-&,)0,C + K,

8, =-0,C((L-&, -m,K; + Ky 1K, + K, + K, = £,0,Cn,K; + KK = 5) + KoK, + KK + KK, + KK

a, =K, K,K; +K KK, +K,K;K, +K,K,K, —(1—,92)a)pC(773(;5lK3 +K, K, + KK, +m.6 K, + KK, —7,K K, —17,KK,
a, = KK, (—0,C(A-&,)(-1:4,) + £,m:K, —&,K, +K,) - K,K,)

Wheren=4:a, >0, az > 0 and a; > 0, aza, > a? + a3, then for a; > 0,we have

K,K, (_wPC((l_gz)(_n3¢1) +&,mK, —&,K, + KZ) - KlKZ) >0 (3.26)

we arrived at
a)pC{Kz —&,K, +&,m:K, + 1.0, _€2U3¢1} <1
KiK, (3.27)

we infer from (3.27) that Ry, < 1. We conclude that the linearized differential inequality above is stable
for Ry, < 1which is in agreement with the claim of Castilo Chavez et a/ 2002 and (3.20), since
eigenvalues of the matrix (F - V) have negative real parts.

3.7 Sensitivity analysis of the model

The sensitivity index is defined as the ratio of the relative change in Ry, to the relative change in the

parameter say w, the sensitivity values of each parameter in this work were shown in the table (2) below
and each one is calculated using.
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xFor = Qop oo W (3.28)

w ow Rop

Table 1: Description of parameters used and their respective values

Parameters Definitions Values Sources
Ty Human recruitment rate 2000 Assumed
Uy Natural death rate of the human 0.0002 [2]
p Fraction of vaccinated recruited individual 0.05 [20]
W The rate at which vaccine wanes for pneumonia 0.01 [20]
x Rate of recovered moves to the susceptible class 0.2 [20]
& Fast progression for pneumonia 0.338 [5]
b1 Progression rate for pneumonia 0.01096  [7]
(2] Treatment rate for infected pneumonia 0.0238 [15]
01 Induced mortality rate for pneumonia 0.33 [7]
Wy Capital contact rate for pneumonia 0.049 [20]
C Probability of one individual transmit infection 0.1205 [20]
N3 Modification parameter for pneumonia 0.008883 [1]
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TABLE 2: ppeumonia model parameters with their respective sensitivity values

PARAMETERS SENSITIVITY VALUES
1, -0.02367185947
7, 202325904914
8, —0.00607332582
s 0.259907081
& —0.4931129892
4, —0.737664323¢
o, 1.0000000C
C 1.0000000C
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3.8 Optimality of the model

To obtain an optimal control for the system, the controls u; where i = 1, 2, 3 were introduced to curtail the
spread of the diseases. Then, u; stands for the prevention effort in order to protect susceptible individual
from contacting the pneumonia disease. Also u, represents the control on the awareness of pneumonia
vaccine (immunization) through education/campaign by organizing seminars and conferences while us is
the control on treatment made to minimize pneumonia infection. After incorporating u; into the equation
(3.1), then optimal control model goes thus:

dsy

= A-pry+ (1= u)A,Sy — upSy + aR, + wlj, (3.29a)
%” = pry — upVy — U0, (3.29b)
2P = (1— wy)(1- £)2pSy - Ep - 91>, (3.29¢)
%" = (1 = wy)eaApSu + P1Ep - pylp - 611p -(1 — u3)lp1y, (3.29d)
2 = (1- us)nulp — pyRp — @Rp. (3.29)

3.9 Analysis of Optimal Control
To study the optimal levels of the controls, the control set U is lebesque measurable and it is defined as

U= uy(t), up(t), uz(t) foru;, /=1,2,3 and 0 <t < J. The aim is to obtain a controlu; on Sy, V},

Ep, Rp and I that minimize the proposed objective functional J. The objective function J is given as;
t
J(uy, uy, us) = flf{fﬂ/p + szp + f31p + Z§=1Aiui2}dt (3.30)

Here the constants f;, f5, f5 are positive weights on individual that received vaccine for pneumonia,
exposed pneumonia and infected human by pneumonia. Weight co-efficient 4;,7 = 1, 2, 3 are measure of
relative cost of the interventions associated to control u; is quadratic because it was assumed that costs
are non-linear in its nature. The aim here is to minimize the number of f1V,, f,E, and f31, costs of
control uy (t), u,(t), uz(t). Thus optimal controls (u,, u,, us) shall be seeking to such that,

J(uq, uy, ugz) = Min{J(u;:i = 1,2,3) such that u € U}
where U = {(ul,uz,u—:;) such that eachu;:i =1,2,3 (3.31)

is measurable with0 <u; <1 t€ [0, tf] - [0,1] }
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The termsA,u?, A,u3, and Aju3 are the costs on campaign for pneumonia immunization, exposed
pneumonia.

3.10 Hamiltonian and Optimality System

In order to establish the optimality of the system and to show that the system is also Hamiltonian, we
implore the idea of the maximum principle where the necessary conditions are satisfied by optimal pair
would be arrived. Also, this principle shall converts equations (3.29b) and (3.29¢) into the problem of
minimizing point wise to a Hamiltonian A with respect to u;. Therefore, to find an optimal solution, firstly,
we shall seek for the Lagrangian and Hamiltonian of the system for the optimal control problem. Then
the Lagrangian (L) of the optimal problem is given by

L=fV, + LE, + fsl, + X3, Aju? (3.32)

In order to have minimal value of Lagrangian the Hamiltonian H for the control problem is obtained as
follows

ds av, dE dl dR
H=L(fiV% + fifp+ falp + i1 Auf) + y1 =+ ya— P+ y3—2 + Va0 + ¥s—E(3.33)
dSy dy abp dlp dRp iven in equati
where the value of a4 @ has been given in equation (3.33)

Theorem 3

Given the control model (3.1), there exists an optimal control pair u* = u; € U for 7 = [1, 3] such that
J(w;) = Min{J((uy uz, us)} subject to control system (3.33)

Proof

To prove the existence of an optimal control pair, we verify the following highlighted properties of the
model:

(1) The set of the entire controls variable and corresponding state variables are non-empty

(11) The set of controls is convex and closed

(111)  The optimal system (right hand side of the state problem) is bounded by linear function in the
state and control variables. Whereas this determines the compactness needed for the existence
of the optimal control.

(iv)  The integrand in the objective functional (3.33) is concave on the control set.

V) There exist positive numbers and a constant w such that the integrand of L =

(Vp, Ey, Ly, uq, Uy, u3) of the objective functional are satisfied such that

Jw) = Pz — P, for i=1223. (3.34)
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because the state variables are biunded, this completes the existence of an optimal control.
Theorem 4

For an optimal control set uy, Uy, u3 and optimal state solution S, Vp, Ep, I, and Ry, of the corresponding
state system (3.1-3.5) that minimizes the objectives functional J(u4, u,, u3) over U.

Proof

By Pontryagin’s maximum principle, the form of the adjoint equations and transversality conditions are
standard results. Then, differentiating the Hamiltonian function A with respect to each states variables
V1, Y2, Y3, Ya and ys respectively which are evaluated at the optimal control function uq, u, and u;.So,
re-written the adjoint system and with the following transversality conditions

y1(tr) = ¥a(tr) = v3(tr) = yalty) = ys(tr) = 0 (3.35)
Solving %, for i= 1, 2, 3 and evaluating at the optimal control on the interior of control set, where

0 <u; <1 gives

0H

EN = 241uy — Sp(—y1 +y3(1— &) + J’452)Ap (3.36a)
0H i}
E 242u; — Vo w(y, — y2) (3.36b)
Uz
0H .
E R 243u3 — [T (Y4 — ¥s) (3.36¢)
Uz
Then,
uj = max {0, min (1, L2202 )t Vsl (3.37a)
1
Vyw(y; —
u; = maxy 1, min 1,M (3.37b)
24,

(3.37¢)

Dt —
u; = max {1,min <1,—p 1 y5)>}

24,

In compact notation

*

u; = max {0, min (1,y1)}
u; = max {0, min (1,y,)}

uz = max {0, min (1, y3)}
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where y;,y, and y; can be deduce from equation (3.36).

4. Results and Discussion

4.1 Numerical Analysis and discussion of results

Z0RHOCHONTHE amuy Y
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Figure 2: The graph of Ry, against w,
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Figure 3: The graph of R, against c.
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Figure 5: The graph of E,, against time(t) with different values of w,.
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Figure 7: Graph of optimal control on individuals that received pneumonia vaccine against time t in years.
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According to the sensitivities analysis (table 1) of the model, it could be seen that transmission
rate (w,) and effective contact rate (C) have greater influence on the basic reproduction number of
pneumonia (Ry,) because their sensitivities values are 1.000 and 1.000. Hence these two parameter (i.e.
wy, and C) are the most sensitive parameters on the analysis of Ry, while the higher these parameters, the
higher the basic reproduction number (R,) which measures the average number of secondary infectious
individual generated by a single infected person. This shows that the more the transmission and contact
rates, the more the pneumonia epidemic in the society, awareness should be made to the public by the
government or communities leaders so that anywhere there is pneumonia infection or disease, the rate of
contact by innocent people should be avoided or reduced. Also, the infected individual with pneumonia
should be separated in order to reduce the transmission rate of pneumonia because this disease is an
airborne type.

Figure 2 shows the effect of pneumonia contact rate on basic reproduction number of pneumonia. It
reveals that the increment in contact rate yields increment in reproduction number of pneumonia. Since
basic reproduction number measures the average number of secondary infectious individual caused by
single-infected individual, then the more individual contact pneumonia disease if the higher the basic
reproduction number. Hence, there would be an epidemic of the disease if the rate at which individual
contact pneumonia increased. The figure 2 also shows that the more the infected individual transmits the
pneumonia infection, the more the spread of this disease in the society. Hence, the basic reproduction
number (Ro,) will be greater than one and endemicity of pneumonia would occur
in such community. So, the transmission rate must be reduced in order to avoid or reduce the
quick spread of pneumonia. The figure 3 shows the effect at which vaccine for pneumonia
wanes on the individual that receives pneumonia vaccine. Vaccine for pneumonia is well
posed but can wane at anytime. Hence, the person that received vaccine for pneumonia can
contact this disease whenever the vaccine wanes. So, whenever the vaccines wanes shows there would be
no immunity for such vaccinated people and the tendency of contacting the
pneumonia would be high. Therefore, the population of this vaccinated class gets reduced.
The high value of the rate at which vaccine wanes tends to reduce the population of vaccinated class.
According to the graph, the population of vaccinated class at w= 0.01 were
greater than the number of vaccinated population when the w= 0:21 .This implies that the
higher the rate at which vaccine wanes the lesser the population in the vaccinated class. Also, figure 5

reveals that increase in contact rate of pneumonia disease leads
to increase in the population of exposed class of pneumonia with respect to time especially
when the contact rate was highly increased to 0.599.

The graph 6 shows the effect of applying all controls on susceptible population in this research
work and without any control as well. It could be seen that when controls were applied, the population of
susceptible class grows faster than when no control was applied. The dotted green line represent when all
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controls were applied while the red one is for without control at all. So ,one can conclude that there should
be effective control application on pneumonia in the society in order to avoid the epidemic of pneumonia.
In figure 7, the effect of applying pneumonia vaccine (immunization) and education or campaign on its
awareness by organizing seminars and conferences on the vaccinated class of pneumonia in this work
were tested. It was seen that the red line that represent with control and dotted green line that represent
without control move at the same rate at initial stage which is due to the fact that the control is yet to take
effect since it is immunization. But immediately that the control took effect it leads to increase in
population of the vaccinated class. Meanwhile, graph 8 shows the effect of preventing effort from
contacting pneumonia (U, ) and treatment to minimize pneumonia infection U, on exposed individual to
pneumonia. It was observed that the red line which represents with control falls in a proportional rate, that
is to say the control is inversely proportional to population of exposed class. So the more the control rates
lesser will be number of exposed individual and vice versal. Whereas, the dotted green line that stands for
without control fall in a steady rate. Figure 9 reveals the effect of both prevention effort from contacting

pneumonia (U, ) and provision of treatment for pneumonia U, on infected individuals with pneumonia.

Since the population of this infected class can spread the pneumonia infection, then appling contols and
without controls fall at thesame rate before those that receives control move faster than those without
control.

5. Conclusion

Conclusively, the effect of applying pneumonia vaccine (immunization) and education or campaign on
vaccine awareness by organizing seminars and conferences on the society especially for children and adult
people in the society were shown in this work. The reason is that without campaign or education on
awareness of vaccine the children of within age five(5) and adult of sixty-five (65) years above may not
be aware till this pneumonia deadly disease kill them at home. Also, for the fact that pneumonia is a
contagious disease, if both infected and exposed individuals with pneumonia were not properly kept or
treated, thereby, epidemic of pneumonia will occur because there would be high contact rate.
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Abstract

The bacterium campylobacter is the cause of campylobacteriosis, a major cause of foodborne illness that
goes by the most common name for diarrheal illnesses. This paper develops and analyzes a new
mathematical model for campylobacteriosis. It is demonstrated that in cases where the corresponding
reproduction number is smaller than unity, the model's disease-free equilibrium is both locally and globally
stable. The numerical simulation results indicate that increasing the treatment rate for both symptomatic
and asymptomatic disease-infected individuals resulted in a decrease in the number of asymptomatic and

symptomatic individuals, respectively, and a rise in the population's number of recovered individuals.

Keywords: Reproduction number, stability, mathematical simulation, campylobacteriosis.

1.0 Introduction

The bacterium campylobacter is the source of campylobacteriosis, a major cause of foodborne illness that
is thought to be the most prevalent indicator of diarrheal illnesses (WHO, 2020). The World Health
Organization estimates that the burden of food-borne ilinesses claims the lives of approximately 33 million
healthy people and causes 1 in 10 people to become ill. The majority of illnesses resulting from eating
unsafe food are diarrheal diseases, accounting for 550 million illnesses per year, of which 220 million are
in children under the age of five (WHO, 2020). The majority of the time, campylobacter infections are
mild (asymptomatic); however, in very young children, the elderly, and people with compromised immune
systems, they can be fatal (symptomatic) (WHO, 2020, Health direct, 2024).

Common symptoms of campylobacter infection are; fever, cramping in the stomach, and diarrhea, which
is frequently bloody. After diarrhea, nausea and vomiting are possible. Following infection, symptoms
typically appear two to five days later and persist for approximately one week. Some people experience

complications like arthritis, irritable bowel syndrome, and temporary paralysis (CDC, 2023). The majority
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of people with campylobacter infections recover without the need for antibiotics, Centers for Disease
Control and Prevention reported that (patients are advised to stay hydrated for the duration of their
diarrhea), however severe cases may require antibiotic treatment. The groups most likely to experience
severe cases of the disease are the elderly (65 years of age and older), pregnant women, and individuals

with weakened immune systems (CDC, 2019).

Throughout the years, mathematical models of infectious diseases have offered helpful insights into the
dynamics of infectious disease transmission, prevention, and control (Gulmel et al., 2018 are one example
of this). However, only a small number of mathematical models have been created and applied to
campylobateriosis in order to comprehend the disease's dynamics of transmission, management, and
prevention; for instance, refer to (Rawson et al. 2019, Nyasagare et al. 2019, Osman et al. 2020, Chuma
and Mussa, 2021). In 2019, Rawson and colleagues created and studied a mathematical model of the
campylobacter in broiler flocks dynamics. In their investigations, the pathways of infection among co-
housed birds were modeled using a system of stochastic differential equations. Nyasagare et al. (2019)
developed and examined a mathematical model of campybacteriosis in animal and human populations
using the S-1-R approach. Using an S-1-R model for both human and animal populations, Osman et al.
(2020) developed and examined a mathematical model for campylobacteriosis using a modified finite
difference method with optimal control. Chuma and Mussa (2021) created and examined an epidemic
model that included sanitation control, treatment, and public health education to explain the dynamics of
the campylobacteriosis disease. They did not divide the exposed class into asymptomatic and symptomatic
classes in their work. A novel deterministic mathematical model for analyzing the dynamics of
campylobacteriosis transmission in a population is presented in this work. The following presumptions

form the basis of the model:

(1) The exposed class is split into asymptomatic and symptomatic classes, respectively. This is in
line with the information obtained from (Osman et al. 2020, Health direct, 2024).

(11) Asymptomatic individuals can recover without treatment and equally develop symptoms to
progress to the symptomatic class while symptomatic patients might need antibiotics treatment
(CDC, 2019).
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In all the aforementioned mathematical models of Campylobacteriosis, none of them considered the
assumptions (i) and (ii). Hence, in the present study, the exposed class have been split into the
asymptomatic and symptomatic classes. Also, treatment of the asymptomatic and symptomatic patients

are included as intervention strategies in our model to curtail the spread of the disease in the population.

2.0 Model Formulation

The total population at time t, denoted by N(t), is divided into the human (N, (t)) and animal (N, (t))

populations. The total population of humans is further sub-divided into the five mutually-exclusive
compartments of the susceptible (Sh(t)), exposed (Eh(t)), asymptomatic (Ia(t)), symptomatic (Is(t)),

and recovered (I, (t)) humans. Also, the total animal population is sub-divided into the susceptible (S, (t))
, infected (IV (t)) and recovered (RV (t)) sub-population. Thus,

N(®) =N, +N, ()
N, (1) =S, (O +E, (®)+ 1. (1) + 1,(t) + R, (1), 2.1
N, () =S,(®)+1,(O)+R,@©.

The susceptible population (for both human and animals) are recruited through immigration at rates
Ah(AV), respectively. Humans in E, class progresses to class |, and | at rate 6 while p is the
proportion of humans that progressed to class |,. The humans in classes |, and |, recover from
campylobacteriosis at rates y,and y,, respectively. Furthermore, natural death rate p, (,uv) occurs in all
the epidemiological classes of human (animal) population while humans (animals) in classes | and |,
suffer an additional Campylobacteriosis induced death at a rate &, (5, ), respectively. Humans and other

animals that are susceptible to the disease can contract campylobacteriosis by eating contaminated food
or water or by coming into close contact with infected humans or animals (i.e. those in the I,, I, and I,

classes), at arate S A and f,A, respectively, given by

Bl +1,+1,), (2.2)
and
B(1,+1,+1,) (2.3)

Animals recover from campylobacteriosis at a rate y,.
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Figure 1. Schematic diagram for model (2.4).

Table 1: Description of variables and parameters in the Campylobacteriosis model (2.4).

Variables/parameters Interpretation
S, Susceptible human population
E, Exposed human population

I Asymptomatic human population

a

I Symptomatic human population

S

R, Recovered human population

S, Susceptible animal population

I, Infected animal population

R, Recovered animal population

A, (A,) Recruitment rate into the susceptible human (animal) compartments
ﬂl( 2) Infection rates

0 Progression rate

P Proportion of exposed humans moving to class |,
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n Progression rate from |, to |

7(7,) Treatment rates for the human

Vs Treatment rate for the animals

Uy, ( ﬂv) Human (animal) natural death rate

78 (z//v) Loss of immunity

5,(5,) Human (animal) disease-induced death rate
A Force of infection

When all of these definitions and presumptions are combined, the system of differential equations in (2.4)
yields the new Campylobacteriosis model. Figure 1 displays the model's flow diagram, and Table 1 lists

the variables in the model.

%zAh_ﬂlfmh_ﬂhshﬂ//th’
dEdht(t) = pi4S, _[9P+9(1—,0) +/uh]Eh’
dldat(t) = OpE, —(7+ 7, + )1,
%Zﬁ(l—p)lfh+nla—(72+ﬂh+5h)ls,
M:71|a+72|s_(ﬂh+Wh)Rh1

dt
mzAv_ﬂzﬂsv_ﬂvsv—i_V/vRv’

dt
dlv(t) :ﬂz//isv _(7/3 +/uv +5V)IV,

dt
dzv—t(t)wslv—(ﬂvﬂ//v)Rv-

(2.4)

where the forces of infection for human and animals are as given in equations (2.2) and (2.3), respectively.

Theorem 2.1.: When starting with positive data, every solution in the model (2.4) stays positive over time.
Additionally, the model is a dynamic system on the area that has, Q =Q, UQ, < R> x R with,
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A
Ql:{(Sh,Eh,Ia,IS,Rh):Sh+Eh+|a+|s+|:eh =N, S—“},
Hy

Q2={(SV,IV,RV):SV+IV+RV=NV§A"}, (2.5)
H,

Proof. Following similar approach as in Gumel et al., (2018), it is easy to see that the following first-order
inequality equations follow from the equations for humans (susceptible individuals) and animals
(susceptible animals) in model (2.4):

ds

d—th+(,b’1}t+yh )S,, >0, and ddStV +(B,A+u,)S, >0

Applying integrating factor to the inequalities

o, (t) = exp [ [ﬂlz(r)wh]dr’asv (t) = expj[ﬂzﬂ(rhuv]dr,
and observing that
aSp(6) |2 4 (B4 + y)Sy| = 22k,
1,0 [ 2D 4 (a5 | = T,

then integrating from 0 to gives S, (t)>0 and S (t) >0 at all times, respectively, with respect to time.

Nevertheless, the remaining equations are not amenable to this direct method. However, the conservation
law is obtained by summing the model's first five and final three equations (2.4).

dN

dth = A, — 1, N, =91

dN (2.6)
Y=A, —uN -0.1

dt ' ILIV v a'v

Thus, the general a priori estimates below can be demonstrated to hold using a standard comparison
theorem.

0<N, (t) <N, (O)EXpwht_i_ﬁ(l_eXp—;zht)
fh (2.7)
0<N,(t)<N,(0)exp ™'+ _V(l_ exp‘f’v‘)

Hy
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We determine that there is only one global solution in the domain Q. The right-hand side of the model
(2.4) is locally Lipschitz (Stuart and Humphties 1998). Consequently, the dynamical system on Q in
A

\

. . : : A
model (2.4). Conversely, if a solution is found outside of the area Q, that is, N, <—" and N, < —*,
Hh Hy

\

. . o dN )
then the conservation law mentioned above implies that d_th <0 and < 0. Thus, it can be seen from

the estimates above that N, (t) tends to An and N, (t) tends to ﬂas t —o0.. As a result, the region Q

,uh :uv

is interesting.

3 Mathematical Analysis
3.1 Asymptotic Stability of Disease-free Equilibrium (DFE)
The DFE of the model (2.4) is given by

v \

E, =(S2,E2 12, 12,R2,S2, 10 R°)=(ﬁ,o,o,o,o,ﬁ,o,0).
/uh v
Using model (2.4) and an operator method for the next generation (van den Driessche and Watmough,
2002), the local stability of E,will be established. It follows that matrices F and V , the notation found

in van den Driessche and Watmough (2002) is used for the new infection terms and the remaining
transition terms, respectively.

o BA BA BA o 0 o
Hn Hp Hy ‘ 0 0
Fo|0 O 0 0 and V = 2 ,
0 0 0 0 ~-k; -7 k, 0
0 ﬂZAv ﬁZAv ﬂZAv 0 0 0 k6
Hy Hy Hy
where,

kK, =[0p+01—p)+ 1.k, = (1 +y, + 14,), Ky =0~ p), K, = (v, + 14, +6,),

(3.1).

k5 = (:uh +Wh)’k6 = (7/3 +1uv +5v)’k7 = (:uv +l//v)'

Hence, the effective reproduction number of the model (2.4), denoted by R_, is given by
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R — A KaKe 1, B+ A KK, 144, (3.2)
’ Hn KK Kg

The following findings are derived from the Theorem 2 Van den Driessche and Watmough's (2002)

Lemma 3.1: The DFE (El) of the model (2.4) is locally asymptotically stable whenever R, <1 and

unstable if otherwise.
The threshold quantity R, measures the average number of new Campylobacteriosis infections generated

by an index case in a completely susceptible population (van den Driessche and Watmough, 2002).
Specifically, R, denotes the mean quantity of newly acquired Campylobacteriosis infections within the
human (animal) population, resulting from the introduction of a single infected individual into a fully
susceptible human (animal) population. Lemma 3.1's epidemiological implication is that, if the initial sizes

of the model's subpopulation are within the DFE's (E,) basin of attraction, campylobacteriosis can be
eradicated from the population when R_ is less than unity. As a result, a small number of humans or

animals carrying the infection may enter the community; this will not cause significant outbreaks of the
disease, and it will eventually go extinct. It is vital to demonstrate that the DFE is globally-asymptotically
stable (GAS) if R. <1 and the initial subpopulation sizes do not affect the eradication of

campylobacteriosis.

Theorem 3.2. The DFE (E,) of the model (2.4) is globally asymptotically stable in Q whenever R, <1.

Proof. The proof of Theorem 3.2 will be established using the Theorem of comparison (Lakshmikantham
et al., 1989). The following is the matrix-vector form for the equations on the model's (2.4) infected

components:
dL® e vy (1 So ly (1S
5 _{(F V) (1 NJHI (1 NVJHZ}L(t), (3.3)

where L(t) = (E, (t),1,(t),1,(t),R,(t),1,(t),R, ()" and the matrices F and V are given in section 3.

Furthermore,

Bhe - BNy BAL By

Hy Hy Hy My
H. = 0 0 0 0
1

0 0 0 0
0 0 0 0
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and

0
0
0

=
>OOO

T

N

1
o O O O
=
<>CDO(D

ﬁZAv
Hy Hy Hy

Since H,and H, are nonnegative matrices and S, (t) < N, (t)and S, (t) < N, (t) in €, it follows that

dL(t)

a4t <[(F =V)IL(t) (3.4)

The differential inequality system (3.4) is stable whenever R, < 1, based on the fact that all of the matrix
eigenvalues have negative real parts. Thus, according to comparison theorem of (Lakshmikantham et al

1989).

lim(E, (©), 1, (1), 1. (). R, (®). 1, (®). R, (1)) = (0,0,0,0,0,0). (3.5)

o . A A
It can be shown by substituting (3.5) into (2.1) that S, — —" and S, — —“as t —>oo. thus,
Hy Ay

. A A .
Lim (Sp(6), En(t), 1a (), 15 (), R (£), Sy (£), I (1), Ry (£) = (”—:,0,0,0,0,#—:,0,0) = Ej.

(3.6)

Hence, every solution to the equation of the model (2.4) and initial conditions in €2, approaches the DFE
(El) as t > oowhenever R, <1 .The epidemiological implication of Theorem 3.2 is that irrespective of

the number of infectives in the population, if the threshold quantity R, can be kept below unity,

campylobacteriosis will be effectively controlled in the community
4 Numerical Simulation

In this section, numerical simulations for the transmission dynamics of campylobacteriosis are performed
on model (2.4) with the parameter values from Table 2 and the assumed initial data. The model (2.4) is
solved numerically using MATLAB ODE45 solver. In Figure 2, an increase in the progression rate of the
asymptomatic individuals to the symptomatic class experienced an increase in the population of the
symptomatic individuals. In Figures 3 and 4 (as expected), an increase in the treatment rate of the
asymptomatic and symptomatic individuals led to a decrease in the number of infected (both
asymptomatic and symptomatic) individuals in the population. This suggests that if treatment of infected
(both asymptomatic and symptomatic) individuals is deployed early enough, it will lead to the timely
eradication of the disease in the population.
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Table 2. The parameter values of the model (2.4) per year.

Parameter Nominal value Reference

B 0.03 Osman et al. (2020)
5, 0.004 Parshotama (2011)
A, 0.002 Osman et al. (2020)
A, 0.005 Osman et al. (2020)
Uy 0.0001 Osman et al. (2020)
4, 0.0002 Parshotama (2011)
0 0.20 Assumed

P 0.6 Assumed

¢ 0.3 Assumed

7 0.4 Assumed

7, 0.7 Assumed

o, 0.001 Osman et al. (2020)
o, 0.003 Osman et al. (2020)
Vs 0.05 Parshotama (2011)
v, 0.004 Osman et al. (2020)
v, 0.007 Parshotama (2011)
n 0.5 Assumed
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Figure 2. Simulation of model (2.4) showing the population of exposed, asymptomatic, symptomatic and
recovered individuals. Here, the progression rate from the asymptomatic to symptomatic class 7 is varied

from 0.20 to 0.80.
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Figure 3. Simulation of model (2.4) showing the population of exposed, asymptomatic, symptomatic and
recovered individuals. Here, the treatment rate of the asymptomatic individuals, y, is varied from 0.20 to

0.80.
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Figure 4. Simulation of model (2.4) showing the population of exposed, asymptomatic, symptomatic and
recovered individuals. Here, the treatment rate of the symptomatic individuals, y, is varied from 0.20 to

0.80.

5 Conclusion

In order to better understand the dynamics of Campylobacteriosis infection transmission in a population,
this study offers a novel deterministic mathematical model with treatment as a control strategy. It is shown
that for model (2.4), if the corresponding reproduction number is less than unity, the disease-free
equilibrium (DFE) is locally asymptotically stable. The disease-free equilibrium was discovered to be
globally asymptotically stable whenever the corresponding reproduction number is less than unity using
the comparison theorem. The numerical simulation results show that a decrease in the population of
asymptomatic individuals and an increase in the population of recovered individuals occurred when the

treatment rate for both symptomatic and asymptomatic disease-infected individuals was increased.

Few mathematical models have been developed to date to investigate the dynamics of campylobacteriosis

transmission as well as its prevention and control. Therefore, additional investigation of the
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Campylobacteriosis model in this work is required to determine model parameters related to the
reproduction number that are essential to containing the disease's spread. In light of this, we suggest further

analysis our model as follows:

(1) Sensitivity analysis of the model parameters associated with the reproduction number be
carried out.
(i1) Further theoretical results, such as the type of bifurcation the model (2.4) can exhibit should
be explored.
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Abstract

This study utilizes the homotopy perturbation method (HPM) to numerically solve a nonlinear system of
differential equations representing the adaptive immune response in an intrahost chikungunya virus model.
Results highlight HPM's efficiency in solving the model, with graphical representations showing that
cytotoxic T lymphocytes (CTLs) and antibodies significantly strengthen the immune system, contributing
to a robust defence mechanism. Visual representations of the findings are provided.

Keywords: Adaptive Immunity Response, Chikungunya Virus Model, HPM.

1. Introduction

The Chikungunya virus, named for the contorted posture it induces, is transmitted by Aedes mosquitoes
(WHO, 2023). This mosquito-borne illness has led to global outbreaks in Africa, Asia, Europe, the
Americas, and the Pacific. While no specific antiviral treatment exists, efforts focus on preventing the
virus through strategies aimed at avoiding mosquito bites. As of January 2022, ongoing research is
dedicated to developing a vaccine (CDC, 2023). Chikungunya fever, attributed to the Chikungunya virus
(CHIKYV), exhibits clinical symptoms like fever, rash, headache, pain, myalgia, arthritis, conjunctivitis,
and vomiting, manifesting 5—7 days after mosquito contact (Hajji et al., 2022). Initially identified in
Tanzania in 1952, the virus re-emerged globally in 2004, posing a significant public health challenge.
Control measures, including mathematical modelling, are employed to curb its spread (Alade et al., 2023).
This article explores the various aspects of Chikungunya viral transmission preventive strategies, and the
latest developments in vaccine research.

2. Literature Review

Understanding the spread and control of fatal diseases involves mathematical modeling, often utilizing
ordinary or partial differential equations (Alaje et al., 2023; Olayiwola et al., 2023; Olayiwola et al.,
2024). Notable among these models are the Yunus et al., (2023) and Adebisi et al., (2024) studies on the
transmission dynamics of COVID-19.
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Solving mathematical models before simulation is crucial for investigating parameter influence. Obtaining
analytical solutions is challenging, prompting the use of numerical techniques like the homotopy
perturbation method (He 1999, 2003; Alaje et al. 2021, 2022, 2023; Olayiwola et al. 2023a, 2023b). For
instance, Kolawole ef al. (2023) analyzed the impact of vaccination, treatment, and human compliance on
COVID-19 transmission using the homotopy perturbation method. And this same method was applied to
study EIAV infection (Balamuralitharan et al., 2018) and hepatitis B virus (Aniji et al., 2020). Across
these studies, the method consistently demonstrated significant proficiency in handling both linear and
nonlinear models, establishing itself as a potent tool.

While researchers have explored within-host chikungunya virus dynamics (Alade et al., 2023; Olaniyi et
al., 2023), no study has applied a computational technique to provide an analytical solution to the model.
This study addresses this gap, utilizing the homotopy perturbation method to solve and analyze adaptive
immunity's role in the within-host Chikungunya virus model presented by (Alade ef al., 2023).

3. Methodology

The mathematical model that described the intrahost Chikunguya disease dynamics previously studied in
(Alade et al., 2023; Olaniyi et al., 2023) is

95, _ gst)-bsw ()

% =bS(tV (t)-al(t) - (t)Z(t)

d\;_t(t) =mi(t)-rv(t)B(t)-gB(t) @
di_?) ~n+ov (1)B()- B(t)

) s a2 )- szt

Subject to initial conditions
S(O):So’I(O):io’v(o)zvo’B(O):bo’z(o)zzo (2)

In the model, S(¢t), I(t), V (t), B(t), and Z(t) represent the levels of uninfected cells, infected cells, CHIKV
particles, antibodies, and CTLs. Production rates for uninfected cells, antibodies, and CTLs are denoted
by constant rates A, 1, and y, while CHIKV particles are produced at a rate ml. The per capita mortality
rates for S(t), I(t), V (t), B(t), and Z(¢t) are d, a, 1, §, and p, respectively. Uninfected cells become infected
at a rate bSV. Infected cells and CHIKYV particles are eliminated by CTLs at rates €/Z and antibodies at a
rate qV B, respectively. Antibodies and CTLs proliferate at rates cV B and wlZ.

3.1. Homotopy Perturbation Method
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For the computation of the model result using homotopy perturbation, we outline the methodology which
begins by considering the following differential equation:

D(@) = g(v), ved. 3)
Subject to the boundary condition
y(@,o,)=0 vell 4)
The differential operator, denoted as D, operates on an analytic function g(u). The boundary operator is

represented byy , and the external normal vector derivative, denoted ase,, is drawn fromd. The

boundary of the domain, referred to as @, is denoted by I'T.

Operator D(@) contains the linear and nonlinear parts such that

D(@) =+ (@) + 1 (@), ®)
This yields
U (@) +n: (@) =9(v), red. (6)
We can construct a Homotopy for (6) so that
H(f, p)=@- Pt~ (f) =t (@,)]+ p[D(f) - g(v)]=0. (7)
Where p e[04] is an embedding parameter. And (7) yields
H(f, p) =t ()= t1 (@) + plls (@,)]+ plrr (@,) — 9 ()] =0, )
As p — 0, equation (8) gives:
H(f,0)= ¢, ()~ £, (@,) =0 ©)
And when p —1,
H(f1)=D(f)-g(v)=0. (10)

The solution to (10) can be obtained iteratively by assuming a power series of p such that
F() = fo(®)+ pf@® + p* £, O +---p" () (11)

Evaluating (10) using (11), and comparing coefficients of equal powers of p and subsequently solving
yields the values of f, (t), f, (t), f, (t). And the approximate solution of (10) is:

f(t):lpin} f,@)="f,@®)+fE)+ O+ (12)
3.2. Model Solution via HPM
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In this section, we apply the homotopy perturbation method to obtain an approximate solution for the
Chikungunya virus model (1) using Procedure (3-12).

- p)dzi ) p(dzf ) (ﬂ—dS(t)—bS(t)\/(t))j _

- pd, p[d'“ SOV 0)-a1()- () -0

dt
)20 () 8-t - .
a-p) 20 o B ov () aB(t»j:o
a-p) 202U antz)-sz(0)| - o

We can assume the following power series of p as solution for the model variables in (13) such that
S()=2 p7s, (0 10=2 p"i, )V () =3 P, (1) BO)=X pb,(0): RO=D pr, 1) (14)
n=0 n=0 n=0 n=0 n=0

Evaluating (13) using (14) and subsequently collecting coefficients of powers of p, for n>1 yields the
following system

At n=1, coefficients of p'are:

950) _ 5 _ gs, (0)-bs, (O, 1)

dt

94) _ s (0, (1) iy t)- o 1)z, 1)

dt

90D, 1)1 0 1), 1) a3

%(t):mcvo(t)bo(t)—aoo(t)

dz(t)

22 =+ o026 (t)- 12, 1)

Solving system (14), using the initial conditionsS(0)=s,,1(0)=i,,V(0)=v,,B(0)=b,,Z(0)=2,, the first
approximate solution of the model is obtained as
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Sl(t = ( —bs Vo)t

iy(t)= (bs v, — al0 gigZy 1t

Vl(t):(rmo_rvobo_qbo)t (16)
bl(t) = (77 +CVoby — d)o)t

Zl(t) = (7 + iz, - ,LZO)t

At n=2, coefficients of p°are

ds,(t) _ (= ds, (t) = (s, (t I, (t) + 5, (t v, (1))

dt

90t) _ s, 00y ) 5, 0, 1)~ i) el (0 0) 41, (02 1)

dt
17
B)_ 1)y, v 0y 0) - ) v

) o, (00, ) v, (0, )- o0 0)

dt
=7+ alio ()2, (t) + 1, ()2, (1) - 12, (1)

dz, (t
dt

~—

Solving (17) yields the second approximate results given by

: t°
5,(t) = (= d (2 —ds, —bsyv, )= b(s, (i, — rvob, — by )+, (2 — ds, —bsyv, )=
2
b, - : . ,
()= b[s ol ~% qu)j—a(bsovo _aj —,siozo)_g('°(7 +hly = 12o) j t
+Vy (4 —ds, —bsy,) +(bsyv, —ai, —&yz, )z, ) | 2
v (77 +CVoh, — ébo) ?

] ; t
[ (bs,v, — alo—aozo)—r[ 0 ) ]—q(n+cvob0—8oo)}5

+(mi, - rv,b, — gh, )b,

)= (i, v, 0t o, v (0) -+ o, ~20,))

2

. . . t
Z, (t) = (w(lo (7/ + oz, — ,uZO) (bsovo ai, — &z, )Zo) ﬂ(?’ + 02y — [ ))E

This procedure can be continued till the desired number of iteration is achieved. And the solution for the
model variables is obtained as

)= 35,0 10= 3 97,0 V=3 0) BO-2pb,0: RO-3 ) (8)

3.3. Convergence of Solution

In this section, we assess the model results obtained in equation (14) through numerical evaluation. The
parameter values employed are based on those provided by Alade et al. (2023): A =1.826, u=1.2,c =
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1.2129,d=0.7979,y=0.5, w = 0.5, € =0.04441, m = 2.02, ¢ = 0.5964, r = 0.4418, n = 1.402, § = 1.251,
a=0.5,and b = 0.9. The initial conditions for cell state variables are set as follows: SO0=1.4, 10=0.8, V0
=0.6, B0 =1.0, and Z0 = 0.5. And the following results are obtained

S(t) =1.4-0.2990& + 0138047870@°-01045249116°
I (t)z 08+0.338360 +0.304516981@° —0.204168673@°

V(t)= 06+ .75452(-0.2034383355 + 00719805176t
At)=10+087874 +0.2276739078?+01461007755" (19)

Z(t) =05+0100t+0.022950000@t* +0.00304037483t°

Theorem 5: Let N be an operator from Hilbert space H in to H and let

Q(t)=(S(t),1t)V(t), At) Z(t)]" €R® contains the exact solution of model (1) then the solutioniQn (t)

n=0

obtained by via the homotopy perturbation method converges to Q(t) whenever ||Qn+1|| < g||Qn || 0<4,<1

Proof: As demonstrated by He (2003) and applied in Ayati et al, (2015), for everyne N, it has been
shown that the solution Q, converges provided that 0 < &, <1 whenever
[Qua

—t 0
e =Ty 1= (20)

0 [Ru.l=0

Applying (20) to (19) the following results on Table 3.1 are obtained.

Table 3.1: Numerical results of third order convergence test

Variables ~ Formula Results
S(t) g =[s,|/|s,| 0.757164244<1
I(t) g, =[i|/[i,] 0.670467284<1
V(1) g, =|v|/|v,| 0.353819839<1
B(t) £, =|b,|/|o,| 0.641710669<1

164



Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of
Disease Dynamics (ICMMOADD) 2024

Z(t) £ =|zs|/|z,] 0.132478261<1

The results presented in Table 3.1 not only validate the theorem but also confirm the convergence of the
model solution through the Homotopy Perturbation Method (HPM). This validation assures the accurate
predictions of cell interaction and development during numerical simulations.

4. Results and Discussion

4.1 Numerical Simulation

In this segment, we apply the numerical results using Python 3.11.5 software, running on an Hp-15 laptop
with Windows 11, equipped with a 12GB RAM, 1TB ROM and a 2.76 hertz processor. The graphical
representation of the simulation results is presented below.
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Figure 1: dynamics of uninfected cells to consumption rates of CTLs and Antibodies
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Figure 2: dynamics of infected cells to consumption rates of CTLs and Antibodies
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Figure 3: dynamics of infected cells to variation inhost supply of CTLs and Antibodies.
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Figure 4: Concentration of CHIKV particle to inhost variational supply of CTLs and Antibodies.

We have successfully applied the homotopy perturbation method to conduct numerical simulations on our
model. The results from these simulations illustrate the dynamics of uninfected cells (Figure 1) and
infected cells (Figure 2) in response to varying consumption rates of CTLs and antibodies. Additionally,
Figures 3 and 4 demonstrate the response of infected cells and CHIKYV particle concentration to changes
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in the host's supply of CTLs and antibodies. Specifically, Figures 1(a) and (b) show that an increase in
antibodies and CTLs results in a more effective defense against infected cells and CHIKV particles,
leading to a reduced rate of uninfected cell infection. In Figures 2(A) and 2(B), it is evident that the
elimination of infected cells occurs more rapidly when confronting CTLs and antibodies, respectively.
Higher concentrations of CTLs and antibodies are associated with a more significant decline in the
population of infected cells.

Figures 3(A) and (B) strongly support the findings of Figure 2, indicating that a higher supply of antibodies
and CTLs to the host effectively limits the proliferation of infected cells. A similar response is observed
for CHIKYV particle concentration in Figures 4(A) and (B). These results align well with the earlier findings
presented by Alade er al. (2023), suggesting that adaptive immune responses lead to a faster reduction in
the concentrations of infected cells and viral particles. This strengthens the claim that the homotopy
perturbation method is a valuable analytical and simulation tool.

4.2 Abbreviations
CHIKYV: Chikunguyan Virus
CTLs: Cytotoxic T-cells

EIAV: Equine Infectious Anemia Virus

5. Conclusion

In conclusion, this study has investigated the influence of adaptive immunity on the SIVBZ model,
employing the homotopy perturbation method. The demonstrated effectiveness of this method, supported
by a theorem proven through the Ratio test, highlights its efficiency in achieving convergence with less
computational effort. Utilizing the Python Software for simulation, our results underscore the crucial role
played by adaptive immunity in the effective eradication of the Chikungunya virus. This research
contributes valuable insights into the potential applications of the homotopy perturbation method for
understanding and optimizing adaptive immune responses in combating viral infections.
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1

Abstract

One of the key ideas in mathematical biology is the basic reproduction number, which can be utilized to
comprehend how a disease epidemic profile might evolve in the future. The basic reproduction number,
represented by R, , is the anticipated number of secondary cases that a typical infectious individual would

cause in a population that is fully susceptible. This threshold parameter is highly valuable in
characterizing mathematical problems related to infectious diseases. If R, <1,this suggests that, on
average, during the infectious period, an infected individual produces less than one new infected
individual, suggesting that the infection may eventually be eradicated from the population. On the other
hand, if R, >1, every infected person develops an average of multiple new infections, it suggests that the

disease may continue to spread throughout the population. We discuss the Reproduction number in this
work and provide some examples, both for straightforward and complicated situations.

1.0 The Basic Reproduction Number

One of the key ideas in mathematical biology that is used to predict the future of an epidemic is the basic
reproduction number. Diekmann O. & Heesterbeck, 2000), (Murray, 2002) state that the basic
reproduction number, represented by, is the anticipated number of secondary cases that a typical infectious
individual would cause in a fully susceptible population. This threshold parameter is highly valuable as it
describes mathematical issues related to the dynamics of infectious diseases.
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If R, <1, this implies that, on average, an infected individual produces less than one new infected
individual during the infectious period and the infection can be brought under control or totally eliminated
from the population. Conversely, if R, >1, then each infected individual produces, on average, more than

one new infection, and the disease persists in the population. For a single infected compartment, R, is

simply the product of the infection rate and the mean duration of the infection. But for complicated models,
this simple computation of R;is not applicable and the need for a more robust computation is required

and will be demonstrated in the second example after giving the analytical framework. We therefore
compute the basic reproduction number R,,using the next generation operator approach by (Van de

Driessche, 2002). The method is described as illustrated next.

1.1 Computation of Basic Reproduction Number

Suppose that there are a total number of N compartments in the S-I-R model under consideration with m
compartments corresponding to the infected classes.

Let

F (X) = the rate of appearance of new infections in compartment i .

V-+(X) = the rate of transfer of individuals into compartment i by all other means; (inflow).

" (x) = the transfer of individuals out of the compartment i. (outflow)
The disease transmission model is given by the system of equations
x = f.(x)=F(x)-V,(x) (1.1)
where,
V, =V, (x)-V,* (1.2)

One other important step is to obtain the disease-free equilibrium point X,. We then compute matrices F

and V which are M x M matrices, where M represents number of the infected classes, defined by

oF,
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and

j

v{%(xo)}with 1<i, j<m, (1.4)

and F is non-negative and V is a non-singular M-matrix (a matrix with inverse, belonging to the class of
positive matrices). Since F is non-negative and V is non-singular, then V "is non-negative and also FV

is non-negative. We then compute matrix FV ', defined as the next generation matrix (Diekmann O. &
Heesterbeck, 2000).

The basic reproduction number (reproduction ratio) R, is then defined as

R, = p(FV 1) (1.5)
where
p(A) = the spectral radius of matrix A, (or the maximum modulus of the eigenvalues of A).

The following steps are followed in computing the basic reproduction number using the next generation
operator approach:

1. Identify classes for which:

(1) An infection event increases this class (gain/inflow terms).

(1i1))  Loss from this class means of current or future infection (loss/outflow terms)
2. Compute the disease-free equilibrium

(98]

List the gain and loss terms for each class.

4. Create a matrix(F)of gain terms of each class partially differentiated with respect to each and
evaluated at the disease-free equilibrium

5. Create a matrix (V)of loss terms of each class partially differentiated with respect to each and

evaluated at the disease-free equilibrium

Invert matrix V to get V ™

Evaluate matrix G = FV !

Sl

R, is the dominant Eigen-value of G.
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2.0 Example 1

Consider the following SIR model

as _ B

el BSI — uS (D)
di

2= BSI=(u+yI @
arR _ .

- = VI —HuR 3)

We compute the basic reproduction number for the above model.

The disease-free equilibrium state for the model is given by (S,1,R)= (ﬁ ,0,0j =E,.

y
Gainstoclass 1= /S| @)
Loss from class | = (z+ )l (5)
F =(pst) 6)

And s0
Vi =(u+7) 7

Differentiating (6) and (7) partially with respect to | at E,

20

7]
V=(u+y) )
1
vlo 10
((uw)] 1o

The product of (8) and (10) yields
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Ve :(%j((u-lw)j: u(fiy) o

The basic reproduction number R, is therefore given by

R, =— L% (12)
plu+y)

Analysis and interpretation

The Disease-Free equilibrium DFE is stable if

__pn
Ro =t <1 (13)

1eif

(u+v)
B<EEL =B (14)

A

Which gives the threshold for the infection rate 3.

For the effective control of the disease from the population we must have
B < Bmax (15)

Otherwise, the disease will persist in the population.

3.0 Example 2 - Scabby Mouth Disease Model

3.1 Preamble

Abdurrahman et al. (2021) in their work titled A Mathematical Model of Scabby Mouth Disease
Incorporating the Quarantine Class obtained the Reproduction Number and analyzed the DFE stability.
The aspect of the work relating to this application is presented in this section.

The authors proposed a mathematical model to study the transmission and control of scabby mouth disease
in sheep, incorporating the vaccinated and quarantine classes. The Disease-free equilibrium (DFE) was
obtained and the reproduction number was also computed. The DFE was analyzed for local stability using
the condition that the DFE is locally stable if Ry < 1.

3.2 Model Equation Formulation
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Figure 1: Schematic Diagram

The governing equations are given as:

w=BrOV - (@+ws
%=%ﬂ—(y+p+u+6)l
Z—f=p1—(f+u+6)0
T=wS—(p+mV
Z—f=y1+rQ—uR

Table 3.1: Definition of Variables and Parameters.

(16)
(17)
(18)
(19)

(20)

Variables and Parameters | Description
S Susceptible class
I Infected Class
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Vaccinated Class

Quarantine Class

Recovered Class
Recruitment/Birth Rate
infection rate

Rate at which the infected class is quarantined

death due to complication from infection

Vaccination rate

loss of immunity

natural death rate

recovery rate

treatment rate

NRNT(S|E VIR INQ| <

Let

ki=(@+wky=F+p+p+0)ky=C+utd)k,=(p+p); 21)

3.4 Equilibrium state of the model

At equilibrium state,

dS _dl _dQ _dv _ dR

dt_dt_dt_dt_dt:() (22)
S So
I Iy
Let| Q | =] Q¢ (23)
%4 Vs
R R;

We have the following equations

B+ Vs =S — S5 = 0 (24)
%’0 —kli =0 (25)
ply —ks Q5 =0 (26)
wS; —k, Vi =0 27)
Ylp +7Q0 —uRy =0 (28)

176



Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of

From equation (25)
(aSy —ky)I; =0
=1 =0
From (24)

B+ dVy — kS =0

* k158—ﬁ
=V =——

0 ¢
From equation (27),

wS;

Vo =

comparing equation (32) and (33), we have

®So _ (k1So—PB)
ks ¢

* Bk4
SO - k1k4,—(l)¢
Substituting equation (35) into (33), we have

. __oB
0 k1k4,—(l)¢

Substituting equation (30) into (26), we have
k3 Qo =0
= Qp, =0

substituting equations (30) and (36) into equation (28),

URy =0
=Ry =0
. Bka
SS k1k4—(l)¢
Iy 0
Q | = 0
v wp
RE; k1k4—0)¢
0
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(29)
(30)

€1y

(32)

(33)

(34)

(35)

(36)

(37
(3%)

(39)
(40)

(41)
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*x ,3k5
Where ks = ky + w (43)

3.5 Computation of the Reproduction Number R,

he basic reproduction number is the average number of secondary infections produced when one infective
is introduced into the host population where everyone is susceptible (Benyah, 2009)

WhenR, < 1 The infection will die out over time while if Ry, > 1 the infection will persist in the
population. In this model the reproduction number is given as the largest eigen-value or spectral radius
of FV™1 . WhereF; is the rate of appearance of new infection in compartment i, V;is the transfer of
infection from one compartment i to another.

SN CIAYCAN
v = (42 (2 @
a__S‘I
pl
At DFE,
asg aky
00 (£ 0
F = Ng = (ks ) (46)
<p 0) p 0
So _ E
No ks “7
= (i) “
av;
a\_ (ks O
vi={dn | = (¢ k3> (49)
aq
_|(k2 0| _
v=|(g )= &k (50)
(ks O
AdjV = (03 k2> (51)
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— 0
_ k
vl = 02 1
k3
aky
FV-1 = <k2k5 >
0 0
|[FV-1 =11l =0
aks
kzks 0 ‘ = O
0 —A
ak4, _
) (@—A) =0
_ _ ak4
A =0,41, = ok

Therefore, the reproduction number

ak
R0:_4
kaks

3.6 Local Stability Analysis of the DFE

J(E®) = (S5 15 Q5 Vs Ro)

—al — k; —as 0
al aS—k, 0
J(E®) = 0 p —ks3
w 0 0 -
0 4 T

Substituting (39) into (54) we have that

afky
_kl _—k1k4—w¢ 0 ¢ O
a,[.?k4
0 oo~k 00 0
0 p —ks; 0 0
w 0 0 —k, O
0 y T 0 —u

o O O O
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(52)

(33)

(54)

(35)

(56)

(57)

(58)

(59)

(60)

(61)
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k
g, - 0 ¢ 0
kk, —od
k
o P 4, 0 0 o 62)
kk, — ¢
0 p ks 0 0
W 0 0 -k, O
0 y T 0 —u
aky(k1-PB)
—ky  —TRE 0 b 0
0 k2¢w+zl;4(k1_ﬁ) O O 0
0 0 ks 0 0 (63)
0 0 0 el
kq
0 0 0 0 —pu
—k;— A4 — %{;-ﬁ’) 0 ¢ 0
0 k2¢w+('(:k¢;l-(k1_ﬁ) _ AZ 0 0 0
0 —ks — A 0 0 (64)
0 0 0 pokaks ., 0
kq
0 0 0 0 —u— A
Al = _k1
1, = —kypw+aky(ki—p)
2 = )
13 = _k3 (65)
_ pw—k ik,
Ay = o
As = —p

For the Disease-Free state to be achieved 4, and 4,have to be negative. For 1,to be negative we have that

—ky,pw + aky(ky —B) <0 (66)
= ak,(k; — B) < k9w (67)
aky(k1—B)

Thga L (68)
Comparing (58) to (68)

= Ry < 1which implies that the disease will die out if this inequality holds.

On the other hand, 4, < 0 implies that
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= pw < kik, (69)
= ¢ < (w+u)(¢+p) (70)
= ¢w < pw + wu + ud + p? (71)
= —wp < up + p? (72)
w>—(¢+p) (73)

3.7 Conclusion

The DFE is locally stable if Ry = == < 1 which implies that
215
kaeks _ (v+p+p+0)(@+p+w)

* < @+ = ¥max

(74)

Hence, the infection rate should not exceed a,,,, in order to effectively control the disease.

4.0 Example 3 - A'TB model

Ashezual et al. (2017), in their work titled A Mathematical Model of Scabby Mouth Disease Incorporating
the Quarantine Class obtained the Reproduction Number and analyzed of the DFE stability.

((jj—? =7 —(1-K)aAS —ka,AS — 1S

dL

— =(1-K)ayAS — (pa A + y)L — 1l

dt

di (75)
P ke, AS + (po; A+ y)L— (0 + u+d)| + ¢, A0R

%—T =ul —a, AR — 1R

With, A= ,BCIW (76)

S(t) Number of susceptible individuals at time t

L(t) Number of exposed individuals at time t
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| (t) Number of infected individuals at time t
R(t) Number of recovered individuals at time t

The disease-free equilibrium state for the model is given by

(s,L,1, R):[%,0,0,0j: E,. (77)

This represents the state in which there is no TB infection and is known as the disease-free equilibrium
point.

(1—k)a1ﬁcﬁs

I
F = kaZ,BcWS (78)
0
0
and
(pasd+y)L+ul
V. = —(paA+y)L—a, AR+ (L + u+d)l (79)

' — 7+ (1-K), AS + ka,AS + 1S
—ul + o, AoR + R

We then obtain the partial derivatives of (78) and (79) with respect to (L, | ) and by substituting the disease-

free equilibrium point E;, we get a 2x 2 matrix since there are two infectious classes.

S
0 (1—|<)o¢lﬂcW

F= (80)

S
0 kazﬂCW

and
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V:((ﬂu) 0 J (81)

-y (U+,u+d)

Taking the inverse of (81) gives:

! 0
VA (7 ;;/U) . (82)

(7/+,u)(u+,u+d) (U+,u+d)

By computing the product of (80) and (82), we obtain

(1_ k)alcﬂy (1_ k)alcﬁ

G |+ pfo+u+d) (0+p+d)
FV ™= kat,Cfy ket o (83)

(v +uNo+u+d) (0+p+d)

From (83), we calculate the eigenvalues to determine the basic reproduction number, R,by taking the
spectral radius (dominant eigenvalue) of the matrix FV . This is computed by|J —ﬂ,l| = 0,hence the

matrix becomes

| (1_k)alcﬂ7 ) (1_k)alcﬁ
(7 +u)fo+p+d) (0+u+d) -0 (84)
ka,cBy ka,cp 2
(r+ufo+u+d)  (0+u+d)

From (84), we obtain two eigenvalues, 4, and A, which are given by

5, = SBlakly + ) ey 1K) (85)

(v +p)o+ p+d)

and
A,=0 (86)

Clearly, 4, is the dominant eigenvalue and therefore becomes the effective reproduction number R for the

model. This is called the effective reproduction number because of the control parameters contained in the
dominant eigenvalue.
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5.0 Example 4 Vector-Host Model

In their research, Akinwande (2017) described the relationship between a population of humans and
mosquitoes, with the human population represented as S, — |, — S, and the mosquito dynamics

represented in S, — |, a model where S, denotes susceptible humans, 1, is the human population that is

infected, and S, stands for both susceptible mosquitoes and I, infected mosquitoes.

According to such a model, the mode of transmission occurs in each population in two stages:
Humans become infected (I h) when they come into contact (i.e. A, , biting rate) with mosquitoes carrying
the infection, which then spreads to other susceptible humans (S, ). When a susceptible mosquito (S,,)

bites a human who is infected, it can spread the virus to other mosquitoes. Infected humans move into the
removed compartment at a rate « and the removed compartment move to the susceptible compartment at
arate I. Additionally, we take into account that while infected humans die at a rate v, mosquitoes and

humans also have constant natural death rates W, and w,,. Human and mosquito birth rates are b, and b,

, respectively.

S, =b, +rR, - 4.5, —W,S, 87)
| =451 —(w +a+o)l, (88)
R, =al, —(w, +r)R, (89)

while that for mosquitoes is

Sm =bm_/?“msmlh_wmsm (90)
I.m =/,i“msmlh _Wmlm (91)
with

T,=S,+1,+R, (92)
T,=S,+1, (93)
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The disease-free equilibrium state of the system (87) - (91) is:

. = (\?V—h,o,o,b—m,o] 94)
h m

The Jacobian for system (87) - (91) for new infections and transfer from one compartment to another is
provided by the next generation method as follows:

F=| o ©3)

and

w,S, —b, —rR,
(Wh +0¢+1))Ih

V,=|(w, +r)R, —al, (96)
Wy S = by,

Wmlm

Taking the partial derivatives with respect to | and |, and solving at the disease-free equilibrium

m

produces
F= 0 4 97)
4, 0
and
V:[(Wh+a+u) OJ (98)
0 W,

The inverse of (98) yields
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1
0
e (W, +a+0) 99)
1
0 il
Wm
The product of (97) and (99) gives
0 ﬁ
Fvt= Wi (100)
ﬂ—m 0
(W, +a +0)
Next, we compute
[FV - 2l|=0as
-2 ﬁ
WnlZ0 (101)
A
—n— -1
(W, +a+v)
The evaluation of (101) gives
A A
2 - =0 (102)
w,, (W, +a +0)
From (102), we obtain the eigenvalues
det An‘y (103)
w,, (W, +a+0)

From (103) we define our basic reproduction number, R, as the spectral radius (dominant eigenvalue) of

the next generation matrix FV ~ since the basic reproduction number cannot be negative. Therefore

ﬂ“m /1h

&:+J (104)
w,, (W, +a+0)

Interpretation and Analysis
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A . . .
(—h) represents the average number of newly infected humans that an infected mosquito spreads
W, +a+0

throughout the course of its infectivity from a population of humans that are only susceptible to the virus,

and ( )is the average amount of time that each infected person spends prior to 