
CHAPTER ONE 

FIRST -ORDER PARTIAL DIFFERENTIAL EQUATIONS.
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1.2 SOLUTION OF LAGRANGES LINEAR EQUATION.
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which on integration we obtain the required complete solution of the given 
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differential equation.
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1.3.2    JACOBI'S METHOD,

In the last section  we  discussed the Charpit's method for solving a PDE involving two independent

variables  and  say . The present method Jacobi's  is quite similar. It isx x
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the following very important theoerem in differential calculus:
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This method applies to   of the form 1.2.23  whose central idea is to construct two more auxiliary 

v

PDE



  

( ) ( )

( )

2 1 2 3 1 2 3

3 1 2 3 1 2 3

relations of the form

                       , , , , , , 0                                                                1.2.24

                       , , , , , , 0                 

G x x x p p p a

G x x x p p p b

=

= ( )

( ) ( )( ) ( )1 2 3

1 1 2 2 3 3

                                               1.2.25

                        , , , , , 1 1 3                                                       1.2.26

and such that  becomes

j jp x x x a b j

p dx p dx p dx

= =

+ +

( )2 3 1 2 3

1

1

2

2

 exact DE when .

Whenever such function ,  can be determined then there exists , , , ,  such that

                               

                               

             

j jp

G G x x x a b

x

x











=


=




=


( )

3

3

1 1 2 2 3 3

                                                                                    1.2.27

                  

then with  the DE  0 becomes 0 which then yj j

x

p p dx p dx p dx dv d dv




 









= 
 

= + + − = − =

( )

( ) ( )

ields

                                                                                                                    1.2.28
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1.3.1  SUCCESS OF JACOBI'S METHOD

We show here that if    0 and 0 are two independent integrals of the eqn 1.2.39  and are such
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Recall that from our hypothesis , ,  are solvable from 1.2.35 1.2.37 0 ,  0. Hence, the

system 1.2.40  gives 0,  0,  and 0  is an exact differential equation for 

all
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 . Here lie the success of the Jacobi's method.
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CHAPTER TWO 

PARTIAL DIFFERENTIAL EQUATIONS OF SECOND 

AND HIGHER ORDERS. 
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=

 

( )
( )

1

 :

1
              . ,

,

m n m n

Case V

x y F D D x y
F D D

−
 =  



In this case we apply the Binomial theorem to the inverse operator and then operate on .

These methods are evidently shorter ways of obtaining the respective .

:

1 Solve the 

           

m nx y

PIs

Examples

PDE

( )

( )( )

( )

2 2 2

2

3

1 2

 3 3 .

Observe that the given differential equation may be put in the form

             3 .

The complimentary function is given as

               

x y

x y

x

D D D D u xy e

Solution

D D D D u xy e

x y e x 

+

+

 − − + = +

 − + − = +

− − + ( )

( )( )

( )( )
 

( )( )

( )( )
 

 

2

2

1 1

The particular integral is given as

1
               

3

1 1
            .

3 3

1
           

3

1
           1 1

3 3

       

x y

x y

y

xy e
D D D D

xy e
D D D D D D D D

xy
D D D D

D D D
xy

D D

+

+

− −

−

 +  − + −

 = +     − + − − + −

 − + −

 +   
= − − −   

   

( )
 

 

 

2
2

2

2

1
    1 ........ 1

3 3 9

1 2
           1

3 3 9 9 3

1 2
           1

3 3 3 3

1 1 2
           

3 3 3 2 3

          

D DD D D D
xy

D D D

D D DD D DD D
xy

D D

D DD D D
xy

D D

y x x
xy

D

 +    +
 = − + + + + + 
   

    + 
= − + + + + + + 

 

   
= − + + + + 

 

 
= − + + + + 

 

( )( )

( ) ( ) ( )

( ) ( )

2 3 2

2

2 2

2 2

1
 

3 2 3 3 6 3

and

1
              

3

1 1 1
             . .

3 1 2 3

1 1
             .1 .1

1 2 3

x y

x y x y

x y x y

x y xy x x x

e
D D D D

e e
D D D D

e e
D D D D

+

+ +

+ +

 
= − + + + + 

 

 
  − + −

   = = −    + − − + −

   = − = −    + + + − +

 



( ) ( ) ( )

1

2 2

2

2 2 3
3 2

1 2

1 1
           1 .1 .1

             .

Thus, the general solution is

1
,                

3 3 3 3 2 6

2   Solve the 

     

x y x y

x y

x x y

D
e e

D D D

ye

x xy x x y x
u x y x y e x y ye

PDE

 

−

+ +

+

+

 
   = − + = −       

= −

 
= − − + − − − + + + + + 

 

( ) ( )

( )( ) ( )

( )( )

( ) ( )

( )
( )

2

1 2

2

           1 Cos 2 .

Observe that the  is of the form

               1 1 Cos 2 .

The reduced DE is

               1 1 0

1
Cos 2

1

y

y

x x

D DD D u x y e

Solution

PDE

D D D u x y e

D D D u

CF e y e x y

PI x y
D DD D

 −

 − + − = + +

− − + = + +

− − + =

= − + − −

= + +
 − + −

( )
( )

( )( )( )
( )

( )
( )

( )

( ) ( ) ( )( )
 

( )
 

2

2

2 2

2

1
       Cos 2

1

1 1
             Cos 2 Cos 2

1 2 1 1

1
      Sin 2 .

2

1 1
        1

1 1 1 1

1 1
        1 1

y

y y

y y

e

x y
D DD D

x y x y
DD

x y

e e
D DD D D D D D

D
e e D D

D DD DD D D

  

 +  − + −

   = + = +   − − − + −

= +

  =    − + − − + + + −

  
= = − − + − 

 − − +  
 

 

( ) ( ) ( ) ( )

( )

( )

2

1

1 2

2

2

1

1
        1

Thus,

1
, Sin 2 .

2

3   Obtain the solution to the 

             .

The reduced equation is

             0.

y y

x x y

ax a y

e xe
D

u x y e y e x y x y xe

PDE

D D u xe

Solution

D D u

 

−

−

+


 



= − = −

= − + − − + + −

− =

− =
 



( )

( )
2

2

2

2 2

2

1

2

The operator  is irreducible. Hence, 

            , 0 .

Hence,  is a solution of , 0 has the complimentary function

                

1
           

r r

ax a y

a x a y

c r

r

D D

F a b a b b a

u xe F D D

u A e

PI
D D

+


+

=

−

= − =  =

= =

=

=
−



 

( ) ( )
 

( )
 

( )
 

( )
 

( )

2 2

2 2

2 2

2

2

2 2 2 22

1

22 2

2

22 2

1
. .

1 1
           . . . .

2

1 1
           . . . 1 .

22 2

1
           . 1

22

ax a y ax a y

ax a y ax a y

ax a y ax a y

ax a y

xe e x
D D

e x e x
D aD a D aD a D a

D
e x e x

D aDD aD D D aD

D D
e

D aDD aD D

+ +

+ +

−

+ +

+

  =
  −

= =
+ + − −+ − +

 
= = − 

++ − +  

 
= + +

++ ( )
 

( )
   

 

 

2 2

2

2

2

2

1

2

2

2

2

..... .
2

1 1
           . . . 1 .

2 22

1
           . 1 ....... .

2 2 4

1 1
           . .

2 2

1
           .

2 2 2

ax a y ax a y

ax a y

ax a y

ax a y

x
aD

D
e x e x

aD aD aD

D D
e x

aD a a

e x x
aD a

x x
e

a a

−

+ +

+

+

+

 
 +
 +
 

 
= = + 

+  

 
= − − − 

 

 
= − 

 

 
= −



( )

( ) ( )

2

2

2 2

2

2

2
1

1

4

           1 .
4

Hence, the general solution of the PDE is

               , 1 .
4

r r

ax a y

ax a y

a x a y ax a y

r

r

x
e x

a a

x
ax e

a

x
u x y A e ax e

a

+

+


+ +

=

 
= −  

 

= −

= + −
 

 

 

 

 

 

 

 



CHAPTER THREE 

SECOND – ORDER DIFFERENTIAL EQUATIONS II 

 

( ) ( )

3.1   PARTIAL DIFFERENTIAL EQUATIONS OF THE CAUCHY-EULER TYPE

Equations of the of the Cuachy-Euler type are the PDEs of the form

                   , ,                                          F xD yD u f x y = ( )                             3.1

where  is a polynomial in the indeterminate  and .

In this case we make the following transformations:

                   ln ,  ln ,   and              

F xD yD

s x t y
s t

 



 
= = = =

 
( )

( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

2 2 3 3

2 2 3 3

                                     3.2

It is therefore immediate from 3.2  that     

                  ,  1  and 1 2

                  ,  1  and 1 2

xD u u x D u u x D u u

yD u u y D u u y D u u

     

     

= = − = − −

  = = − = − −
( )

( ) ( )

  3.3

Substituting 3.3  into 3.1  transforms it into linear equation with constant coefficients with  and  as 

the new independent variables.

Examples.

   Transform the following   to linear form

  

PDE

 





( ) ( )2 2 2 2 2                 4 4 4 .   

Observe that the given PDE is of Cauchy-Euler type. We then define the following transformation:

                    ln ,  ln ,   and   

x D xyDD y D yD xD u x y i

s x t y
s t

 

  − + + + =

 
= = = =

 
( )

( ) ( )

( ) ( )

( ) ( )

( )

2 2

2 2 2

2 2

           

Using  in  we obtain

                     1 4 4 1 4 .

,                  4 4 .                

                2 .                   

s t s t

s t

s t

ii

ii i

u e e e

ie u e iii

u e

      

  

 

+

+

+

 − − + − + + = = 

− + =

 − = ( )

( ) ( )

( ) ( ) ( )

( ) ( )
 

1 2

1 1

2 2

2 2

      

This is a linear DE with constant coefficients.

                    2 2

                         2 + s 2       

1 1
  1  

2 2

s t s t

iv

CF s t s s t

s t s t v

PI e e

 

 

   

+ +

= − − + − −

= + +

 = =  
− −

  



   

( ) ( )

2

2 2

2 2

2
2

2
2

1 1

1 2 1
                           1 1  1

                           
2

The general solution is therefore,

                  2 + s 2
2

s t s t

s t

s t

e e

s
e s

s
u s t s t e s

i



 

 

   

−

+ +

+

+

 
=  − =  

 

 
= + + 

 

 
= + + + + + 

 

( ) ( ) ( )

( ) ( ) ( )

22 ln ln

1 1

22 2

1 1

2 2

2 2 3 2 2 3

1
,              2 ln ln  ln  2 ln ln ln ln

2

1
                   ln  ln  2 ln ln ln ln

2

1 1 1 1
                   .  

x ye u x y x x y e x x

x y x x y x A x x y

Example

u u u u

x yx x x y y y

   

 

+  
= + + + + + + 

 

 
= + + + + 

 

   
− = −

  
( )

( )
2 2

2 2

2 2 2 3

                           

   Suppose  and                    
2 2

Then

1
                or 

1 1 1 1
               

          

i

x y
s t ii

u u s u u u
x

x s x s s x x

u u

s s x x x x xs x x x

= =

     
= = =

     

       
= = = − 
      

( )

( )

( ) ( )

2 2

2 2 3 2

2 2

2 2 3 2

2 2
2 2

2 2

   

1 1
     

Similarly,

1 1
                             

Thus the given PDE is transformed into

                or 0             

whe

iii

u

xx x x s

u
iv

yy y y t

u u
u v

s t
 







  

− = 
  

  
− =

 

 
= − =

 

( )( )

( ) ( )

( ) ( )

1 2

2 2 2 2

1 2

2 2 2 2

1 2

re  and 

             0

Hence,

                

                  
2 2

                  

s t

u s t s t

x y x y

x y x y

 

   

 

 

 

 
= =
 

 − + =

= − − + −

   + −
= − +   

   

= + + −

 



 

3.2 SECOND-ORDER  WITH VARIABLE COEFFICIENTS.

Definition.

A partial differential equation with variable coefficients is that which contains atleast one of the partial 

derivative of the second order a

PDE

2 2 2

2

nd none higher than the second. This is simplified if we consider the case

of two independent variables.

We shall define the following:

                    , , ,

 

u u u p u u
p q r s

x y x x y y xx

     
= = = = = = =
      

( )
2

2

       3.4

                     ,

Our discussion shall be limited to that of the variable coefficients which are of first degree in

u

y x

p u q u u q
t

y x y x y y yy

  
 

  


           = = = = = =              

( )

 , ,

,                                                                                                 3.5

in which , ,  and  are in general functions of , , ,  and .

This will be illus

r s t

ie Rr Ss Tt V

R S T V Rx y p q u

+ + =

( )
2

trated by examples solvable by inspection.

Example.

1   Solve 2 2

The PDE is given by

                   2 2                                                  

Integrating wrt  we hav

s x y

Solution

u
x y i

x y

y

= +


= +

 

( ) ( )

( ) ( ) ( ) ( )

( )

2

2 2

2 2

e

                   2                                          

Finally, integrating wrt  yields

                   ,                 

,                ,

u
xy y h x ii

x

x

u x y x y xy h x dx g y iii

ie u x y x y xy


= + +



= + + +

= + +


( ) ( ) ( )

( )

2 2

2
2 2

2

2

                       

2      Solve 9 .

The PDE is given by

                   9                                                 

1
,                9              

x g y iv

xr p x y

u
x p x y i

x

p
ie p xy

x x

 +

+ =


+ =




+ =


( )

( ) ( )

( ) ( )2

2 2

                                     

The DE in  has an integrating factor  

,                9                                                          

,                9 3

ii

ii IF x

ie xp xy iii

ie xp x y dx x

 =

= = ( ) ( )

( ) ( )

3 2

2 2 3 2

                             

,                9 3                              

y f y iv

ie xp x y dx x y f y v

+

= = +



( )

( ) ( )

( ) ( ) ( )

( )

2 2

3 2

3 2

2

2

1
,                   3

1
                  ,

,                   , ln

3    Solve 

The  is                  

Integrating with resp

u
ie x y h y

x x

u x y x y h y dx
x

ie u x y x y h y x y

x
s t

y

Solution

p q x
DE i

y x y




= +



 = +

= + +

− = 

 
− =

 



( ) ( )

ect to  and treating  as a constant and conversely yields

                            

This is Lagranges linear equation with auxiliary equation

                             
1 1

y x

x
p q f x ii

y

dx dy du

xf
y

− = − +

= =
− −

( )

( )

( )

( ) ( )

 

From the first two ratios we obtain

                 0             

,                               

From the first last ratios we have

                 

       

iii

dx dy iv

ie x y c v

x x
du f x dx dx f x dx dx

y c x

− − =

+ =

= − = −
−

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

              1                      

Integrating we have

                     1 ln   

                     ln

The general solution is the

c
f x dx dx vi

c x

c
u f x dx dx f x dx x c c x y

c x

x x x y y





 
= + − 

− 

 
= + − = + + − + 

− 

= + + +

  

( ) ( ) ( )

( )

refore

                     ln , .

We note that 3.5  is a second - order quasilinear . It is linear if it can be put in the form 

                                            

u x x y y F x y

PDE

Rr Ss Tt Pp Uu V

= + + +

+ + + + = ( )

( )

( )

( )

2 2

2 2

2 2

2 2

                                            3.6

in which , , , ,  and  are functions of   and .

  Sin

  

Observe that  is a second order 

xy

R S T P U V x y

u u u u
a x e u

x yx y

u u u u
b x xy u x y

x yx y

a

   
+ − − =

  

   
+ + + = +

  

( )quasilinear  while  is a linear second-order .PDE b PDE



( )

3.3    MONGE'S METHOD.

In this section we shall discuss the Monge's general method of solving

                                                                                          3.7

in wh

Rr Ss Tt V+ + =

( )
2 2 2

2 2

ich , ,  and  are functions of , , ,  and  with ,  and  retaining their ususl definitions.

,

                 ,  and                                                   3.8

R S T V x y u p q r s t

ie

u u u
r s t

x yx y

  
= = =

  

( )

( )

 

From 3.7  we recall that

                                                                   3.9  

                                                         

p p
dp dx dy rdx sdy

x y

q q
dq dx dy sdx tdy

x y

 
= + = +
 

 
= + = +
 

( )

( )

( )

( ) ( )

          3.10  

From 3.9  we have

                  and                                                   3.11  

Substituting 3.11  into 3.7  yields

                 

dp sdy dq sdx
r t

dx dy

dp sdy dq
R Ss T

dx

− −
= =

− 
+ + 

 
( )

( ) ( )

( ) ( ) ( )( )
( )

2 2

2 2

                                       3.12

or              0

,             0

,             

sdx
V

dy

Rdpdy Rs dy Ssdxdy Tdqdx Ts dx Vdxdy

ie Rdpdy Vdxdy Tdqdx Rs dy Ssdxdy Ts dx

ie Rdpdy Vdxdy Tdqdx s R d

 −
= 

 

− + + − − =

− + − − + =

− + − ( ) ( )( ) ( )

( )

( ) ( )

2 2
0        3.13

If there exists a relation between , , ,  and  such that the terms in parenthesis in 3.11  vanish indep

endently then it satisfies both 3.13  and 3.7 . It therefore follows th

y Sdxdy T dx

x y u p q

− + =

( ) ( ) ( )
2 2

at

                  0                                                           3.14

                  0                                                              3

R dy Sdxdy T dx

Rdpdy Vdxdy Tdqdx

− + =

− + = ( )

( )

1

2

.15

These are refered to as the Monge's subsidiary equations.

We now assume that 3.14  is resolvable into factors thus;

               0  
                          
                0    

dy m dx

dy m dx

− = 


− = 
( )

( ) ( )

1 1

                                                 3.16

The first equation in 3.16  combined with 3.13  and with  will yield an integral of the

form  and  in which  and  are arbitrary co

du pdx qdy

g a h b a b

= +

= =

( ) ( )1 1 1

1

nstants. Then a relation of the type

                                                                                                     3.17

where  is arbitrary will be an integral. This is c

h f g

f

=

( )

( ) ( )

alled an intermediate first  integral.

Similarly, second equation in 3.16  combined with 3.13  will give another intermediate integral of the

type



 

( ) ( )

( ) ( )

2 2 2

2

                                                                                                                             3.18

in which  is also arbitrary.

Solving 3.17  and 3.18  we obtain  

h f g

f

p

=

( )

and  in terms of  ,  and . These values of  and  are then

substituted in  which on integration yields the required solution.

We however here note that if 3.16  is a perfect square it is c

q x y u p q

du pdx qdy

a

= +

( )

onvinient in some cases to compute only

one intermediate integral and integrate it with the help of Lagrange's method to get the complete solution.

Examples.

1      Solve

                    r a b s abt xy+ + + = ( )

( )

( )

( ) ( )

( )

   

.

  We recall that

               and        

,

               and        

Substituting  into  we have

                 

i

Solution

dp rdx sdy dq sdx tdy ii

ie

dp sdy dq sdx
r t iii

dx dy

iii i

dp sdy dq sdx
a b s ab

dx

= + = +

− −
= + =

− −
+ + +

( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

2 2

2 2

 

,             0 

,             0          

The Monge's subsidiary equation are thus;

                

xy
dy

ie dpdy s dy a b sdxdy abdqdx sab dx xydxdy

ie dpdy xydxdy abdqdx s dy a b dxdy ab dx iv

dpdy xyd

 
= 

 

− + + + − − =

− + − − + + =

− ( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( )

( )

2 2

2 2

2

0                    

                0          

Considering  in the form

                0   

we may have

                0   

xdy abdqdx v

dy a b dxdy ab dx vi

vi

dy adxdy ab dx bdxdy vii

dy adxdy

+ =

− + + =

   − + − =
   

− = ( )

( ) ( )

( )

2

1

                                      

                 0                                  

which gives respectively

                0                            

       

viii

ab dx bdxdy ix

dy adx y ax c x

− =

− =  − =

( )

( ) ( )

( )( )

2

2

1

         0                         

Substituting  into  we obtain

                 0

dy bdx y bx c xi

x iv

adpdx abdqdx xa c ax dx

− =  − =

+ − + =

 



( ) ( )

( )

( ) ( )

1

2 3

1

2
3

,              0                       

Integrating  yields

                    
2 3

1
,                                   

2 3

Therefore, the 

ie dp bdq x c ax dx xii

xii

x x
p bq c a A

x
ie p bq y ax ax A xiii

+ − + =

 
+ = + + 

 

+ = − + +

( ) ( )

( ) ( )

( ) ( )

3 2

1

3 2

2

first integral is

1 1
                                 

6 2

Similarly, the other intermediary integral is

1 1
                                 

6 2

From  and  we ha

p bq ax x y f y ax xiv

p aq bx x y f y bx xv

xiv xv

+ + − = −

+ + − = −

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 3 2

2 1

2 3

2 1

3

1 2

ve

1 1
                  

6 2

,

1 1 1
                                 

2 6

Similarly, we have

1
                

6

,             

p b a b a x b a x y bf y bx af y ax

ie

p x y b a x bf af xvi
b a

q b a b a x f y ax f y bx

ie

− + − − − = − − −

= − + + −
−

− − − = − − −

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

3

1 2

2 3 3

2 1 1 2

2 3

1 1
                       

6

                  

1 1 1 1 1
               

2 6 6

1 1 1
,            

2 6

q x f y ax f y bx xvii
b a

du pdx qdy

x y b a x bf af dx x f y ax f y bx dy
b a b a

ie u x y b a x
b

 = + − − − −

= +

   
 = − + + − + + − − −    − −   

= − + +
−

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

3

2 1 1 2

3 4 4

2 1 1 2

3 4 4

1 2

1 1
 

6

1 1 1 1 1
            

6 24 24

1 1 1
,            .

6 24 24

2      Solve

          

bf af dx x f y ax f y bx dy
a b a

x y b a x x bf af dx f y ax f y bx dy
b a b a

ie u x y b a x x y ax y ax 

   
 − + + − − −    −   

 = − + + + − + − − − − −

= − + + + − + −

 

 

( )

( )

( )

( ) ( )

4        sec 2 tan .            

              and        

,                and        

Substituting  into  we have

t r y q y i

dp rdx sdy dq sdx tdy ii

dp sdy dq sdx
ie r t iii

dx dy

iii i

− =

= + = +

− −
= + =

 



( ) ( ) ( )( ) ( )

4

2 24 4

4

              sec 2 tan .

,         sec 2 tan sec 0       

The Monge's subsidiary equations are

              sec 2 tan 0            

dq sdx dp sdy
y q y

dy dx

ie dqdx dpdy y q ydxdy s dx dy y iv

dqdx dpdy y q ydxdy

− − 
− = 
 

− − − − =

− − = ( )

( ) ( ) ( )

( )

( )( ) ( )

2 2 4

2 2

2

    

              sec 0                                      

Observe that  is of the form

              sec sec 0                    

,

              sec 0, sec

v

dx dy y vi

vi

dx dy y dx dy y vii

ie

dx dy y dx dy

− =

− + =

− = + ( )

( ) ( )

( )

2

22 4 2

2

2

0                   

Substituting the first of  into we have

              sec sec 2 tan sec 0

,           sec 2 tan 0

,           cos 2 tan sin 0       

y viii

viii v

dqdy y dpdy y q y y dy

ie dq dp y q ydy

ie dq y dp q y ydy

=

− − =

− − =

− − = ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

1

2

2

1 2

               

,           cos tan                      

Similarly, the second of  and  give

              cos tan                      

1
,           tan + tan  

2

ix

ie p q y f x y x

viii v

p q y f x y xi

ie p f x y f x y

− = −

+ = +

= − + ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2

2 1

2

1 2 2 1

2

2

      

and 

1
,           tan tan  sec y      

2

1
           tan + tan  tan tan  sec y

2

1 1
                    sec tan sec

2 2

xii

ie q f x y f x y xiii

du f x y f x y dx f x y f x y dy

dx dy y f x y dx dy



 = + − − 

     = − + + + − −    

 = − + + +  ( )

( ) ( )

( ) ( )

2

1

1 2

2 2

tan

,            tan tan

Prove that the solution to the  2 0 is given as the intersection between the planes

   , .

y f x y

ie u x y x y

Exercise

PDE q r pqrs p t

u c y xf c c

 



  − 

= + + −

− + =

= + =

 

 

 



( )

3.4  GENERAL FORM OF SECOND-ORDER  WITH VARIABLE COEFFICIENTS ADMITTING

        A FIRST INTEGRAL AND ITS SOLUTIONS.

In section 3.3 we saw that a relation of the form

                              

PDE

h f g= ( )                                                                                             3.19

in which  and  are differentiable functions of , , ,  and  and  an arbitrary differentiable functig h x y u p q f

( )

( ) ( )

on

is called a first intermediate integral of a second-order  if the latter is obtained by eliminating  

and   from 3.19  together with the relation obtained by differentiating 3.19  partially wrt  

PDE f

f x

( )

and .

We now discuss the general form of second-order  if admitting first integral and its method of solu-

tion due to Monge.

Differentiating 3.19  partially wrt  and  yields

                  

y

PDE

x y

h

x

 
+


( ) ( )

( ) ( )

( ) ( )

           3.20

                                 3.21

Eliminating  between 3.20  and 3

h h h g g g g
p r s f g p r s

u p q x u p q

h h h h g g g g
q s t f g q s t

y u p q y u p q

f g

      
 +  +  = +  +  +  

       

        
+  +  +  = +  +  +  

        

 ( )

( ) ( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

2

.21  yields

                                                                                      3.22

where

, , , , ,
                   ,  

, , , , ,

 

Rr Ss Tt U rt s V

g h g h g h g h g h g
R q S q p

p y p u q y q u u p

+ + + − =

     
= +  = +  +  +
    

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

,

,

, , ,
                     ,                                                                 3.23

, , ,

, , ,
                      

, , ,

Hence, 3

h

x p

g h g h g h
T p U

x q u q p q

g h g h g h
V p q

y u u x y x




 
   

= +  = 
   

  
=  +  +
   

( ) ( ).22  is the most general form of second-order PDE that possesses a first intermediate  integral.

We thus proceed as in Monge's method for solving equations of this kind by determining the first integral.

( )

( )

Recall that

                                                   3.24

and

                                                   3.25

,

                  

p p
dp dx dy rdx sdy

x y

q q
dq dx dy sdx tdy

x y

ie

dp sd
r

 
= + = +
 

 
= + = +
 

−
= ( )

( ) ( )

2

 and                                  3.26

Putting 3.26  into 3.22  we have

                        

y dq sdx
t

dx dy

dp sdy dq sdx dp sdy dq sdx
R Ss T U Us V

dx dy dx dy

−
=

   − − − −   
+ + + − =      

      



 



( ) ( ) ( )

( ) ( ) ( )( ) ( )

2 2 2

2 2

,

  0

,

  0    3.27

Monge's subsidiary equations are:

                       
  

ie

Rdpdy Rs dy Ssdxdy Tdqdx Ts dx U dpdq sdpdx sdqdy s dxdy Vdxdy

ie

Rdpdy Tdqdx Udpdq Vdxdy s R dy Udpdx Udqdy Sdxdy T dx

M Rdpdy

− + + − + − − + − =

+ + − − + + − + =

=

( ) ( )
( )2 2

 0 
    3.27

                        0

In view of the presence of the terms  and   cannot be factorized . We may however try

to factorize 

Tdqdx Udpdq Vdxdy
b

N R dy Udpdx Udqdy Sdxdy T dx

Udpdx Udqdy N

+ + − = 


= + + − + = 

( )

( ) ( ) ( )
2 2

                             0                                                      3.28

  where  is an undetermined multiplier.

,

  0     3.2

N N

ie

R dy Udpdx Udqdy Sdxdy T dx Rdpdy Tdqdx Udpdq Vdxdy







+ =

+ + − + + + + − = ( )

( ) ( )

( ) ( )

( )

9

Suppose this has factors

1
                          0        3.30    

Comparing 3.29  and 3.30  we obtain

                                                       

Rdy mTdx Udp dy dx dq
m

R
mT S V

m


 





 
+ + + + + = 

 

+ = − + ( )

( )

                      3.31

                                                                                                         3.32

                                                         

m

R
U







=

= ( )

( ) ( )

( ) ( )2 2

                                            3.33

Eliminating  and  from 3.31  through 3.33  we observe that  satisfies the quadratic equation

                           0        3.34

Reca

m

UV RT US U

 

 + + + =

( ) ( )

( )( ) ( )

1

1 2 1

1 1 1 1

2

ll that 3.34  has in general two roots , . Putting  and  in 3.30  we have

                          0        3.35

Similarly, replacing  with   we have

     

R
m

U

Udy Tdx Udp Udx R dy Udq


    

   

 

= = =

+ + + + =

( )( ) ( )2 2 2 2

1

1 1 1 1 1

2 2 2 2

                     0        3.36

We now obtain two integrals of the form  and  by solving the pair  and 

 and integrals of the type  and 

Udy Tdx Udp Udx R dy Udq

R
g a h b m

U

g a h b

   


  

+ + + + =

= = = = =

= = ( )

( ) ( )

1 2

1 1 1 2 2 2 1 2

  obtained from solving the pairs , . Hence, we get the

two integrals of the type  and  where  and  are arbitrary. These are solved to 

determine  and  as functions of ,  and  t

h f g h f g f f

p q x y u

 

= =

hereafter substituting into  which when inte-

grated gives the complete solution.

In implementing this procedure we note the following:

du pdx qdy= +



( ) ( )1 1 1

1 1 1 1

1    If 3.34  has double roots, it is only possible to obtain one integral of the form  which can

      be obtained from either  or  to give the values of  and  to render  i

h f g

g a h b p q du pdx qdy

=

= = = +

1 2 1 1

1 1

1

nteg-

      rable.

2    Since  we get a more general solution by taking liner relation between and  in the form 

        and integrate by Lagrange's method.

3    If the first integral  

g h

g mh n

h

 =

= +

( ) ( )

( )

1 1 2 2 2

1 1 1 2 2 2 2

 and  and unsolvable for  and  then one of the first integ-

      rals  may be combined with  or  to determine the values of  and  and then

      integrating  

f g h f g p q

h f g g a h b p q

du pdx qdy

= =

= = =

= + ( )

( ) ( ) ( ) ( )2 2 2 2 2 2

to obtain the complete solution integral .

1    Solve the differential equation

                   1 2 1 1 0         

From the general 

                     

Examples

u q r pqus u p t u s rt q p i

Solution

PDE

+ − + + − − + + + =

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

2 2 2 2 2

2 2

             

we have 

                    1 , 2 ,  1 , , 1 0     

Substituting into the -equation

                      0                

w

Rr Ss Tt U rt s V ii

R u q S pqu T u p U u V q p iii

UV RT SU U iv



 

+ + + − =

= + = − = + = = − + + =

− + + =

( ) ( )( ) 
( )

( )

2 2 2 2 2 2 2 3 4

2 2 2 2

2

e have

                      1 1 1 2 0         

,                   2 0                       

,                   0                                

    

u q p u q p pqu u

ie p q pqu u v

ie pq u

 

 



− + + − + + − + =

− + =

− =

 ( )1 2

1 1

2 2

                                                         

The intermediate integral is thus given as

                         0
  
                          0

u
vi

pq

Udy Tdx Udp

Udx Rdy Udq

 

 

 

= =

+ + = 


+ + = 
( )

( )

( )

( )

( )

2 3
2 2

2 3
2 2

2

2

                  

,                      1 0

                         1 0

                         1 0
,
                         1

vii

u u
ie u dy p dx dp

pq pq

u u
u dx q dy dq

pq pq

pqdy p dx udp
ie

pqdx q dy

+ + + =

+ + + =

+ + + =

+ + +
( )

( )

                           
0

Also, we have

                         0                                                  

   

viii
udq

du pdx qdy ix





= 

= + =



( ) ( )

( )

( )

( )

From the  and  we have

                        0 ,

,                     0

Integrating gives

                                                           

Similarl

viiia ix

dx udp pdu ie viiia p ix

ie dx d up

x up a x

+ + = − 

+ =

+ =

( ) ( )

( )

( )

( )

y, from the  and  we have

                        0 ,

,                     0

Integrating gives

                                                               

viiib ix

dy udq qdu ie viiib q ix

ie dy d uq

y uq b xi

+ + = − 

+ =

+ =

( )

( ) ( )

From 

                        

and from                                                            

                                          

                      

x

a x
p

u

xi xii

b y
q

u

a x b
du dx

u

− 
= 





−
=


−
 = +

( ) ( )

( ) ( )

2 2 2

2 22

,

                      

                      
2 2 2

,                      

is the required solution.

By note 2 we can find a more general solution of the 

y
dy

u

ie

udu a x dx b y dy

u x y
ax by

ie u x a y b A

−

= − + −

= − + −

+ − + − =

( )

( )
( )

given . Hence, we assume

                        
       

or                   

which is a Lagrange's linear equationwith corresponding auxiliary equation given as

     

PDE

pu x m qu y n
xiii

p mq u my x n

+ = + + 


− = − + 

1

                  

From the first two we have

                       0

From first and last we have

                       

x y
dx dy du

dx dy du u u

u mu my x n n

dx dy
mdx dy y my c

u mu

x y
dx dy du

dx u u

u n

+ +

= = =
− − +

=  + =  + =
−

+ +

=

  



( )

( )

2 2 2

2 2 2

2

2 2 2

1
or                     

2

Integrating we have

                        2

The general solution is thus

                        2 .

2    Determine the ge

ndx xdx ydy udu d x y u

x y u nx c

x y u nx f y mx

= + + = + +

+ + − =

+ + − = +

( ) ( )2

neral solution of the differential equation

                                                  

where , , , ,  are constants.

Solution

We consider the equation

                        

ar bs ct e rt s h i

a b c e h

Rr

+ + + − =

+ ( ) ( )

( ) ( )

( )

2                                  

Comparing  and  we have

                        , , ,  and                       

But the -equation is in general given as

            

Ss Tt U rt s V ii

i ii

R a S b T c U e V h iii



+ + − =

= = = = =

( ) ( )

( ) ( )

( )

2 2

2 2

          0                                 

,

                       0                                       

Foe convinience we set 0 in  to obtain

             

UV RT SU U iv

ie

ac eh be e v

m e v

 

 



+ + + =

+ + + =

+ =

( )

( )

2

1 2

1

           0                                              

We assume further that  admitts roots  and    .

The first system of integrals is 

                        0    

m bm ac eh vi

vi m m

cdx edp m dy

− + + =

+ − =
( )

( ) ( )

2

1 1 2

  
                                      

                        0     

An intermediate integral is

                                                   

The seco

vii
ady edq m dx

cx ep m y f ay eq m x viii




+ − = 

+ − = + −

2

2

2 2

nd system of integral is given by  

                         0 

ie,                      constant

and

                        0 constant

Therefore the other in

ady edq m dx

ay eq m x

cdx edp m dy cx ep m y

+ − =

+ − =

+ − =  + − =

( ) ( )2 2 2

termediate integral is

                                                          

Clearly,  and  can not be easily solvedfrom the above intermediate integrals. Therefore we comb

cx ep m y f ay eq m x ix

p q

+ − = + −

ine any

particular integral of the second with the general integral of the firstsystem.



( )

( )

( ) ( )

2

1 2 2 1

,

                                                                                       

From  we obtain 

                           

                         

ie

cx ep m y A x

viii

f ay eq m x cx ep m m y A

a

+ − =

+ − + = − +

( ) 
( )

( ) ( )

2 2 1

                       
   

where  is an inverse functionn of . Using the values of  and  from  and  in the general relation

  we thus have

                     

xi
y eq m x m m y A

p q x xi

du pdx qdy



 




+ = − + − + 

= +

( ) ( ) 

( ) ( ) 

( ) 

2 2 2 1

2 2 1

2 2

2 2 1

      

                                 

Integration gives

1 1
                                 2

2 2

whe

edu A m y cx dx m x m m y A ay dy

Adx cxdx m xdy ydx aydy m m y A dy

eu Ax cx m xy ay F m m y A B





 = + − + + − + − 

= − + + − + − +

= − + − + − + +

( ) ( ) 2 1 2 1re 

                 

F m m y A m m y A dy− + = − +

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER FOUR 
BOUNDARY VALUE PROBLEMS. 
 

( )

4.1    BOUNDARY CONDITIONS AND BOUNDARY VALUE PROBLEMS.

If a second-order differential equation

                 , , , , , , , 0                                                               x y xx xy yyF x y u u u u u u =           4.1

is to be solved within a specified region  of space in which the values of the dependent variables  are

specified at the boundary  then the resulting problem is refered to as a 

R u

R boundar   . These

boundaries need not enclose a finite volume. In this case one of the boundaries may be at infinity. 

A PDE in which one of the independent variables is time, the value of the depe

y value problem

( )

ndent variable and often

its time derivatives at some instant of time, 0 say  may be given. These type of conditions are called

 . Hence, the term  and  condtions will b

t

initial conditions boundary initial

=

e used as appropriate.

We shall concern ourselves here primarily with two ntypes of boundary conditions that arise frequently in

the description of physical phenomena and which we encounter frequently i

( )

n many applications:

 Dirichlet Conditions; where the dependent variable  is specified at each pointof a boundary in a reg-

ion. For example at the end of a rectangular region.

                   :

a u

R a x , .b c y d  

  

 

 

 

 

 

 

 

 

 



( ) ( )

( )

 Cauchy Condition; if one of the independent variables is time  and the values of both  and  are

specified on the boundary at time 0 at some initial time  then this condition is refered to as 

u
b t u

t

t ca





=

type.

In applied Mathematics, Physics and Engineering, s generally arise from the mathematical formulat-

ion of the  physical problems. Often, boundary conditions are imposed on the depe

uchy

PDE

real life−

( )

ndent varia-

bles and certain of its derivatives. The process of determining a  subject to the imposed boundary

condition is solving a boundary value proble . It is initial value problem if initia

PDE

BVP l conditions are

imposed on the differential equation.

3.2     . 

This is perhaphs the oldest and commonest method of solving a partial differential equation.

Given the unknown

METHOD OF SEPERATION OF VARIABLE

( ) ( )1 2 3 4 1

 function

                  , , , , ,                                                                           4 2

we shall on the onset make some fundamental assumptions thus:

that

     

m mu u x x x x x x−=     

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1 2 1 1 1 2 2 3 3 1 1          , ,           4 3

in which

                                                                                                                

m m m m m m

k k k

u x x x x X x X x X x X x X x

X X x

− − −     =        

= ( )

( ) ( ) ( )

( )( )

       4 4

a function of a single independent variable.

On substituting 4 3  into 4 1  and simplifying we obtain  ordinary differential equations  in the

unknown functions 1 1 . Some of the boundary k

ODEs

X k m



 

=

( )( )

conditions of the original  will give rise

to corresponding boundary conditions to be satisfied by some of the functions 1 1 . We will

therefore have to solve  uncoupled ordinary differential equ

k

PDE

X k m

m

=

ations some of which may be  or .

These particular solutions  are then used to constitute the most general solution of the original .

Consider the  in two independent variables  and  i

k

BVPs IVPs

X PDE

PDE x y

( )

( )

( ) ( )

n the form

                                                                                         4 5

Suppose the solution of 4 5  is given as

                                 

Rr Ss Tt Pp Qq Uu V

u X x Y y

+ + + + + = 



=  ( )

( )

                                                                                 4 6   

in which   and  are functions of   and   respectively and  is the dependent variable. Substituting

4 6  into 4

X Y x y u



 ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

5  and simplifying we obtain

1 1
                                    4 7  

where   and  are quadratic functions of   and  respectively. We observe that 

the lhs of  4 7  is a fun

f D X x D Y y
X Y

f D D D D
x y





 =  

 
 = =

 



( )

ction of  only while the rhs is a function of  only and the two can not be equal 

except each is equal to a constant say . 

We thus have

  

x y

−



 

( ) ( )

( ) ( )
( )

( )

                            
                                                                                4 8   

                  =  

The solution of 4 5  therefore reduces to the s

f D X x X

D Y y Y



 

 = 


  

 ( )olution of 4 8 .

The usefulness of the solutions of  is quite limited because of the difficulty in choosing the approp-

riate arbitrary functions that will satisfy the imposed boundary conditions. Thi

PDE



( )

( )( )

s is however eliminated for

some class of   by certain techniques one of which is based on the principle of superposit-

ion of solutions. This states that

"If  each of the m functions 1 1  sk

PDEs linear

z k m=

( )

( )( )

1 1 2 2 1 1 2 2 1 1 2 2

1

atisfies a linear PDE then an arbitrary linear combination

                                               4 9             

where 1 1 are constants also s

m

j j

j

k

Z z z z z z z z

k m

      



=

= + + + +      + + = 

=



atisfies the differential equation".The combination of the method 

of seperation of variables and the superposition of solution is usually known as  method.

1  Solve by the method of seper

Fourier

Example

( ) ( ) ( ) ( )

2

2

ation of variables the differential equation

                2 0

                  Setting , 0               

into the differential equation we have

                  

u u u

x yx

Solution

u x y X x Y y i

X

  
− + =

 

=  

 ( )

( ) ( )

( )

( )

2 0                             

Dividing through by ,  by vitue of  yields

                  2 0                                      

,

1
                  2  

Y X Y Y X ii

u x y i

X X Y
iii

X X Y

ie

Y
X X

X Y

  −  + =

  
− + =


 − = − ( )

( )

                                   

We observe here that the lhs and rhs of  are functions of  and  respectively. For this equation to be

valid each side must be independently equal to a constant 

iv

iv x y

( )say . The implication of  this yields the follo-

wing uncoupled ordinary differential equation:

                  2 0                                  

                  + 0                 

X X X

Y Y







 − − =

 =
( )

( )
( )

( )
2

   
                            

,

                  2 0                                  
   

                  + 0                                             

                    

v

ie

D D X
vi

D Y









− − = 


 = 

    



 

( )

( ) ( ) ( )
( ) ( )

( )

( ) ( )

The solution of the ordinary differential equations in above are given as 

                   exp 1 1 exp 1 1
     

and              exp

By virtue of  and  therefore we have 

vi

X x A x B x
vii

Y y C y

i vii

 



= + + + − + 


= − 

( ) ( ) ( )( ) ( )

2
2 2

2

                   , exp 1 1 exp 1 1 exp

where  and  are arbitrary constants of integration.

2  Determine the solution to the 3  wave equation

                      

     b

u x y D x E x y

D AC E BC

D

u
c u

t

  = + + + − + −

= =

−


 =



( ) ( ) ( ) ( ) ( ) ( )

y method of seperation of variables.

.

Assuming the unknown function  is seperable and of the form 

                      , , , 0                              

then the partial di

Solution

t

u x y z t X x Y y Z z T t i=    

( ) ( )2

2

fferential equation yields

                     =                                    

,

                     =                                   

c X YZT Y XZT Z XYT T XYZ ii

ie

X Y Z T
c

X Y Z T

  + +

   
+ + 

 
( )

( )2

                     

1
                     =                                                            

This equation is true only if each of the component parts is equal to 

iii

X Y Z T
iv

X Y Z c T



  
+ +

( )2 2 2 2

2

a constant.

,

1
                     , , ,                                 

This yields the following uncoupled ordinary differential equations:

                     

ie

X Y Z T
p q r s v

X Y Z c T

X

  
= − = − = − = −

 +

( )

( )

2

2

2

2 2

0

                     0
   

                     0 

                      0                            

with solutions

                    Cos Sin

        

p p p

p X

Y q Y
vi

Z r Z

T c s T

X x A px B px

=


 + = 


 + = 
+ = 

= +

( )

( )

( ) ( ) ( )

( )
            Cos Sin

    
                    Cos Sin

                    Cos Sin              

q q q

r r r

s s s

Y y C qy D qy
vii

Z z E rz F rz

T t P cs t Q cs t




= + 


= + 


= + 

  



( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2 2 2

Since the parameters , ,  and  are dependent by virture of  we may express  as

                   Cos Sin                        

Hence by vitue of  and  we th

pqr pqr s

p q r s iv T t

T t G p q r t Q p q r t viii

i vii

= + + + + +

( ) ( ) ( ) ( ) ( ) ( )

( )
1 1 1

us have that

                   , , ,                                               

The most general solution is thus given as

                    , , , ,

pqr p q r pqr

pqr pqr

p q r

u x y t t X x Y y Z z T t ix

u x y t t u x
  

= = =

=

= ( ) ( )

( ) ( ) ( )

( )

, ,                                                     

in which the function , , ,  are as defined in  and .   

4.3   3 -  '      . 
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