CHAPTER ONE

FIRST -ORDER PARTIAL DIFFERENTIAL EQUATIONS.
1.1 DERIVATION OF PARTIAL DIFFERENTIAL EQUATIONS.
Consider the family of surfaces
f(x yuab)=0
where a and b are constants and u is dependent on x and y (x, y are independent variables).
To derive an appropriate partial differential equation (PDE) from (1.1.4) we eliminate the constants a and

Differentiating (1 1. 4) wrt x and y we have the following equations :respectively:

a,qu_ 115
oX  ouox
8f af éu 116
oy Tou '
Eliminating the constants a and b from (1.1.4),(1.1.5) and (1.1.6) we obtain a general relation
F(xy,upq)=0 1.1.7

Egn (1.1.7) is in general a first - order PDE if the number of constants to be eliminated is the same as that

of the independent variables and is of higher order if the number is greater than the number of the
independent variables.

Derivation.
Consider the family of surfaces
$(f,9)=0 1.1.8

where ¢ is an arbitrary differentiable function of f and g that are in turn known differentiable functions
of some independent variable x and y with u also a differentiable function of x and y.
Differentiating ¢ wrt x and y we have
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Eliminating o¢ and a—¢ we thus have
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Eqn(1.1.10) is equivalent to
P.p+Q,q=R (1.1.11)
where
P:a(f’g), :a(f’g) andR:a(f'g) (1.1.12)
o(y,u) d(x,u) o(x.y)
Eqn(1.1.12) is first-order differential equation.

Example.

Eliminate a and b from the following families of surfaces to obtain a PDE.
(x—a)2+(y—b)2+u2:d2 (i)

Solution

Differentiating (i) partially wry x and y yeilds

2(x—a)+2ug—i:0,ie, (x—a)+up=0 (ii)
2(y—b)+2u%u:0ie, (y-b)+ug=0 (iii)
Eliminate a and b from (i), (ii) and (iii) yields
| (—up)2 +(—uq)2 +u?=d?’ (iv)
(p?+q° +1)u? =d? (v)

Eqn(v) is first-order differential equation.

2 Form a PDE from the family of integral surfaces
x> yr U’ .
¥+b—2+c—2 =1 (|)
Solution

Differentiating (i) partially wry x yeilds
x wa_ o

a? c? ax_o = X _a_zx (if)

Differentiating (i) partially wry y yeilds

2

2
2—3’+2—Z‘a—”=0 :ua_u:_c_z (iii)
bs c¢° oy oy b
On differentiating (ii) partially wry y or (iii) partially wry x yeilds
o°u ouédu :
+——= (iv)
Oyox oy Ox

This is a second-order PDE.
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1.2 SOLUTION OF LAGRANGES LINEAR EQUATION.
The general partial differential equation

P.p+Qqg=R (1.1.13)
where P,Q, and R are functions of x, and y is refered to as the Lagranges Linear Equation.
Theorem 1.1
Given eqn(1.1.13) in which

f(x,y,u)=0
(x.y.u) (L.1.14)
g(x,y,u)=0
constitute the integral curves of the simultaneous ordinary differential equations (ODES)
dx_dy _du (1.1.15)
P Q R
Then the general solution of (1.1.13) is given as
F(f,g9)=0 (1.1.16)

where F is an arbitrary differentiable function. Further w(x, y,u) = c is any solution of (1.1.13) and if first
-order derivatives of f, g and w are all continuous then the solution w—c =0 is contained in the general
solution of (1.1.16).

Proof
Differentiating the relationship (1.1.14) yields
idxjtﬂdy+ﬂdu =0
OX oy ou
ﬁgdx agdy+ gdu_
ax oy ° au
ie, dx a du (1.1.17)

o(t.9) o(f.g) o(f.g)

o(y,u)  o(xu) o(xy)

Since (1.1.15) determines the integral curves of (1.1.16) then we have from (1.1.17)
P Q R

o(f.9) o(f.g) o(f.9)

o(y,u) o(xu) a(xy)

Now considering any functional relation (1.1.16) when F is differentiable we have
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(1.1.19)



Eliminating o+ and g—F from the above yields
g

o(f.g) o(f.g) _oa(f.9)

: g= 1.1.20
o(y,u) d(x,u) a(xy) ( )
Comparing (1.1.13) and (1.1.20) we have that
P.p+Qg=R (1.1.21)

showing that (1.1.11) is a solution of (1.1.8). Thus, (1.1.11) is a general solution of (1.1.8).

Consider any solution w(x, y,u) =c.
Differentiating partially we have the following:

(1.1.22)
(1.1.23)
On substituting p and g into (1.1.8) we obtain
OX oy ou

and in view of the relation (1.1.13) and (1.1.24) we have

o(f.g) aw o(f.g) aw o(f.g9) ow
o) o T B(xu) oy a(ny) x (1.1.25)
T Ay (1.1.26)

Since the partial derivatives of f, g and w are supposedly continuous, the vanishing of the Jacobian J in

(1.1.26) implies a functional relation of the formw = ¢( f,g). Hence, w—c=¢(f,g)-c=G(f,g) , say.

Therefore, the solution w—c =0 is contained in the general solution (1.1.11). This completes the proof of

the theorem.
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Considering the arbitrary relation F ( f,, f,, f,,-- f, ) =0 and differentiating partially wrt x (j :1(1)m)

we have

oF oF
6f ( blpl) fz( - b pl) ........ N +a(aml_bmpl):0
oF oF oF
6f ( blpz) fz( b2p2)+ ........ T +af_m(am2_bmp2):0
(1.33)

oF oF oF

_b ................ - _b =0
8f1( blpm) 8f2( 2m 2pm)+ + +8fm (a‘mm mpm)

Eliminating ZTF (j=1(1)m) among the relations in (1.33) we have
j

- bl P Ay — bz N bm Py

a, — b1 P, Ay, — bz P, - - - anp— bm P,

a13_b1p3 azs_bz Py - - - am3_bm Ps -0 (1.34)
_blpm a,n, _bz - _bm P

The determinant in (1.34) may be expressed as the sum of 2™ determinants of which many will vanish due
to symmetry and so be left with

A=PA, = PA, — PA, = - p,A, =0 (1.35)
From (1.32) and (1.35) we have

R=PR =P = PPy == Py =0
ie,

PP+ PP+ PPt +p,P. =R (1.36)
which proves that F =0 is a general solution of (1.24).
Note:

The system of ODEs (1.12) are known as the Lagranges auxiliary equations. The curve of intersection
of the surfaces (1.11) called Lagranges lines.
Examples.
1 Find the general integral curve of
(y+ux)p—(x+uy)q=x* -y’ (i)
Solution.
The integral surfaces are determined by the integral curves of the system of ODEs.



dx d du ..
y =2 2 (“)

Y + UX :—(x+uy) Cxi-y

each of which is equall to

yox -+ xdy -+ du _ ydx-+ xdy +du , considering y, x,1 as multiplier.  (iii)
y(y+ux)—x(x+uy)+(x* - y?) 0
This are also each equall to
Xdx + ydy —udu — Xdx + ydy —udu , considering x, y,—u as multiplier. (iv)
X(y+ux)—y(x+uy)-u(x*-y?) 0

From (iii) we have

ydx + xdy + du = 2xy +u =c,

Similarly, (iv) gives

xdx +ydy —udu =0, ie, X’ +y*-u’=c,

Hence, the general solution is

F(2xy+u,x*+y?-u?)=0

2 Obtain a general integral of yzp, + xzp, + xyp, + Xyz =0.

Solution

The standard form of the PDE is given as

yup, + Xup, + Xyp; = —Xyz (i)

The corresponding auxiliary equations are
d _dy dz_ du (i
yZ XZ yX —Xyz

We have that each of the ratio is equal to the following:
xdx+du

= = xdx+du=0 ie, x¥*+2u=c, (iii)
XyZ — Xyz
M: = ydy+du=0 ie, y’+2u=c, (iv)
XYz — Xyz
zdz+du _ = zdz+du=0 ie, z2+2u=c, (v)
XYz — Xyz

We thus have the following:
x?—y>=c¢/, x¥*~z°=¢, and x*+2u =g

A general integral is therefore given as x* + 2u = (/ﬁ(x2 —y? x*-17? )

1.2 PARTICULAR INTEGRALS OF LAGRANGE’S
EQUATIONS.



Consider the equation

P-p+Q-q=R (1.37)
We observe that the integral surfaces of (1.37) are generated from the integral curves of the system
% = % = d_u (1.38)
P Q@ R

Assuming that these integral curves are given by

f(xy,u)= a} (139)
g(x y,u)=b
In order to determine the particular integral of (1.37) passing through a given curve
h (X, y,u)=0
or x=x(t),y=y(t),u=u(t) (1.40)
h,(x,y,u)=0

in which t is a parameter we eliminate x, y,u between (1.40) and (1.39) . The elimant will therefore be

of the form ¢(a, b) =0 and so the required particular integral will be.
¢(f,9)=0 (1.41)
Examples
1 Determine the particular integral of the PDE
(x=y)p+(y—x—u)g=u that passes through the point u =1,x* + y* =1.
Solution.
The corresponding auxiliary equations are
dx d du .
x—y:y—z—uzv (i)
_ dx+dy+du _d(x+y+u)
X—Yy+Yy—X—-U+U
dx —dy +du d(x—y+u)

= = , taki 1,-11 Itipli
Yy ExrUTU 20 y+u) aking ( as multipliers) (iii)

, taking (1,1,1 as multipliers) (i)

From (ii) we have

dx+dy+du=0=d(x+y+u)=0,ie, x+y+u=a (iv)
From the secod relation we have

du_  dx—dy+du d(x—y+u)

= (v)

U  X—Yy—V+X+U+U 2(x—y+u)




ie, Inu:%In(x—y+u)+lnb:>2Inu:In(x—y+u)+|nb:Inb(x—y+u)
2 u?
ie, u=b(x-y+u)=b= vi
(oysu)=b= S ()
We observe that the given curve can be written in the form

X=c0sdy=sing,u=1 (vii)
Substituting (vii) into(v) (vii) yields

cosg+sin$+1=a (

1_ =b :>cosl9—sinl9+1:l

cos$—sing+1 b

2

= (cos 3+sin 9)2 +(cos g—sin 9) :(a—l)2 +(%—1 j
; 2 . 2 . 2 . ) . 2 , 1 2
ie, cos” @+sin“ $+2cosIsinF+cos” $+sin“ F—-2cosdsing=a“—-2a+1 +F_E+1
- 2 - 2 2 2 1 2
ie, 2(cos® 9+sin® 9)=a’ —2a+1°+ - =+1

b b
ie, a —2a+i2—g =0

b b

Thus, the particular integral surface is given as
2(x—y+u) s 4(x—y+u)

u? u?

(x+y+u)2—2(x+y+u)— =0

2 Determine the solution of the differential equation

(u+2a)xp+(xu+2yu+2ay)q=u(a+u) that passes through the cuce y = 0,u® + x(a+u)2 =0.
Solution
The auxiliary equation corresponding to the DE is

dx _ dy _ du
(u+2a)x xu+2yu+2ay u(a+u)

Taking the first and third ratios yields
dx _ du (ii)
(u+2a)x u(a+u)
dx (u+2a)du

x u(a+u)

) u+2a du
'© J (a+u)



Resolving the integrand on the rhs into partial fraction gives
(u+2a) A B (A+B)u+Aa
u(a+u) u a+u u(a+u)

ie, A+B=LA=2=A=2B=-1

T T S N

u a+u
2 2
cu” ). cu a+u)x
=Inx=In| 2— lie, x=—"—, clz( )
a+u a+u u

From the second and third ratios we have

hence,

N

dy _ du
XU+2yu+2ay u(a+u)
ie, : dy _ du
i +2yu + 2ay u(a+u)
a+u
ie, : dy _ du
i +2y(u+a) u(a+u)
a+u
ie, 3dy :d_u
cu Y u
(a+u)
cu®
B2
) dy (a+u)
ie, < 7
du u
2
ie, 2y cu (iv)

du u (a+u)2

This is a first order ODE of the form y'+ p(x)y = f (x) which admits an integrating factor x = el ™

Hence (iv) has the integrating factor u™.

: ' C
ie, u?)=—->=
(y ) (a+u)’
C
= 4du— —L —+c v
a+u) (a+u) * v)
ie,
= y= J'gdu——iﬂ:zu2 (vi)
(a+u)’ (a+u)

Setting y =0 in (vi) yields



(a(j:u) ie, u=§1—2—a (vii)

We recall from the second initial condition that

C,

u3+x(a+u)2 =0

2

. 3 Clu 2 3 2

' :0 :O
ie u +a+u(a+u) =u’+cu’(a+u)
e,
ie, u+c,(a+u)=0 (viii)

Eliminating u from (vii) and (viii) yields

u+c (a+u)=0

: c c
ie, L-_a+cla+*-a|=0
C2 CZ
2
: c c
ie, < -—a+1=0
C2 C2

= (c,—ac,)+c’ =0
The required integral surface is thus

(a+u)x_a{ y (a+u)x }r(a+u)2x

u? u_zuz(a+u) u

2

=0

ie, x(a+u)u2—a(x+y)u2+(a+u)2x2:0



1.3 GENERAL METHOD FOR THE SOLUTION OF
FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS.



The main methods of solution for the first-order PDE are the ones due to Charpits and Jacobi.
1.3.1 CHARPIT'S METHOD
Given the PDE

F(xy,unpq)=0 (1.2.1)
Since u is a function of both x and y we thus have

du = pdx + qdy (1.2.2)
If we have another function

F(xy,upqa)=0 (1.2.3)

it will be possible to evaluate p and q from the two equations (1.2.1) and (1.2.2) in the form
p=¢(x,y,ua)andq=y(xy,ua).

Substituting these values into (1.2.2) renders it directly integrable or integrable using some weighting
function and the integral which is of the form f (x, y,u,a) = b will be a solution of the original PDE (1.2.1).

For this solution gives:
fdx+ f dy+ f,du=0

f 1.24
or Ty dx+——dy—-du=0 (1:24)
_fu _fu
Comparing (1.2.4) with (1.2.2) we have
f
_; =p=¢
¢ (1.2.5)
Y _qg=
f q=y
From f(x,y,u,a)=b treating u =u(x,y) we have
fo+f,-p=0, f,+f,-q=0] (1.2.6)
(1.2.6) implies
N PP
PR T (1.2.7)
ie, p=¢gandq=yw

Since p = ¢ and q = y satisfy (1.2.1) it thus implies that f (x, y,u,a) =b is a solution of (1.2.1). Since
this solution contains two arbitrary constants, it is therefore a complete solution of (1.2.1). The problem
now therefore is to determine the function (1.2.3) refered to a the auxiliary function. In doing this we
observe that the quantities u, p,q substituted into (1.2.1) (1.2.3) satisfy them identically. As a matter of
fact the partial derivatives of F and G with respect to u,x and y must vanish.



oF oF oF op OF 0q
—+—p+——+——=0
OX ou op oX 0g ox

oG oG oGop oG o (1'2'8)
. _|___p_|___q=0

X au P op ox 0q oX
ﬁ+ﬁ_q+ﬁa_p+ﬁ5_qzo
gy ou op oy 0q oy
66,6 B B _,

oy ou op oy 0q oy

(1.2.9)

Eliminating Z—z in (1.2.8) we have
o(F.6),  2(F.G) ap 3(F.C)
o(x p) d(u,p) ox o(a,p)

Similarly, eliminating %q in (1.2.9) we have

=0 (1.2.10)

o(F.G) _8(F,G) aq 8(F.G)

o(y.a) " a(ua) oy a(p.a)

0 (L2.11)

where

olxy) _oxoy_oxoy (12.12)
d(s,t) osot ot os
Recalling that
a_qzi(q):i[a_“j: o0u _ 0 _ i(aulzﬁ(p):a_p (1.2.13)
oX  OX ox\ oy oxoy oyox oy oy oy
we thus have from (1.2.11) and (1.2.12) that

OF  OF\oG (oF  OF oG oOF  oF\aG [ oF\aG ([ oF \oG
(e p ) )8, (L, 5 )0 () ()6 iy
ox = ouj)op ey  au)ag op ' 69 )au ap ) ox 8q ) oy

This is a linear differential equation of order 1 that must be satisfied by (1.44). Its integrals are integrals
of the Lagranges auxiliary equations
dp 3 dqg 3 du _du  du
oF oF  oF oF  oF oF  oF  oF
OX ou oy ou op oq op aq
Eqns(1.2.15) are known as Charpit's auxiliary equations. Any integral of (1..2.15) involving p or g or both
is taken for the required second relation (1.2.3). In fact the simplest relation of these is taken as (1.2.3)
On obtaining (1.2.3) p and q are determined from (1.2.1) - (1.2.3) and the values substituted into (1.2.2)
which on integration we obtain the required complete solution of the given differential equation.

OX

(1.2.15)



1.3.2 JACOBI'S METHOD,
In the last section we discussed the Charpit's method for solving a PDE involving two independent
variables x, and x, (say). The present method (Jacobi's) is quite similar. It is expedient here to recall
the following very important theoerem in differential calculus:
Theorem 1.2
If the functions /, (X,,%,,%; ), (j =1(1)3) posess continuous partial first derivatives in x; , j =1(1)3
then
v, dx +y,dx, + w,dx, (1.2.16)
is an exact differential equation iff

Wy O _o W2 OV _g 0¥ O¥s g4 (1217) .
OX;  OX, oX, 0%, OX; 0%

Suppose we have a differential equation
f(x,y,upq)=0 (1.2.18)

explicitly involving the independent variable u. We shall prove that (1.2.18) can be transformed into another
differential equation with a new dependent variable which does not explicitly occur and the number of
independent variables increased by unity in the process.

We shall rename the variables as follows:

X=X,y =X,U=X,
) ) (1.2.19)
and introduce a new variable v =v(x, y,u)
we now consider the relation
v(x,y,u)=0 (1.2.20)
. ov ov ov )
By assumin =— p,=—, P, =—, (1.2.20) yields
y g P, " P, o, P o ( )y
o ovou _
OX Ou OX
CLACARCL (12.21)
oy ou oy
e, p= ~Piang q= _ P
3 Ps

Thus, v = 0 will be a solution to (1.2.18) iff

f[x:pxzyngy_&’_&jzo (1.2.22)

Ps  Ps

Eqn(1.2.22) is an equation of the form

G (X %, X3, Ppy P, P5) =0 (1.2.23)
Clearly, this is a PDE in three independent variables x;, X, , X, that does not explicitly involve the depen-
dent variable v which ends the proof.
This method applies to PDE of the form (1.2.23) whose central idea is to construct two more auxiliary



relations of the form

Gz(xi’xzixs!pppzrps:a):() (1.2.24)
G3(X1,X2,X3,p1,p2,p3,b)=0 (1.2.25)
P, =v,; (%, %.%,a,b), (j=1(1)3) (1.2.26)

and such that p,dx, + p,dx, + p,dx, becomes exact DE when p; =y ;.

Whenever such function G,,G, can be determined then there exists ¢(x,, X, X;,a,b) such that

99 _
8x1_

gg:WZ (12.27)
9%
OX,
then with p; = ¢, the DE p,dx, + p,dx, + p,dx, —dv =0 becomes d¢ — dv = 0 which then yields
p-v=A (1.2.28)
Observe that from (1.2.28) we get back (1.2.27)

_0p  _0p  _0p
P = o’ P2 o, Ps X,

_9¢ _ _09 _ _9¢ _
ox, Vi P, ox, Vi Ps ox, Vs

v,

:(//3

(1.2.29)
ie, P,

Since by hypothesis p; =y, constitute a solution (1.2.23),(1.2.24),(1.2.25) for p;, p,, p; We observe that
v =¢— Ais asolution of (1.2.23) which contains three arbitrary constants a, b, ¢ therefore it is a complete
integral of (1.2.23).

If the original PDE is (1.2.18) we identify (1.2.22) and (1.2.23) so that v = ¢ — A is a solution of (1.2.22).
Hence, v =0 (¢ = A) is a solution of (1.2.18). This implies that ¢ = A gives an A— parameter family of
complete integrals of (1.2.18) with a and b arbitrary constants.

1.3.2.1 DETERMINATION OF THE FUNCTIONS G, &G,.

Suppose the functions G, & G, are such that we can solve for p,, p,, p, from(1.2.23),(1.2.24) and (1.2.25)
in (1.2.26). Then they become identities if p; are replaced with y; so that their partial derivatives wrt x;

vanish independently. Hence, from (1.2.24) and (1.2.25) we have



6G, 3G, op, 3G, op, 3G, op; _
0% 0py 0% Op, OX 0Py OX, (1.2.30)
6G, 4G, op, 4G, ap, 3G, op, _
X, Op O 0Op, 0%  Op; O%
6G, 3G, op, _0G, op, 3G, 0p, _
oX, Op, OX, 0Op, OX, Op; OX, (1.2.31)
0G, 3G, op, 0G, ap, 3G, ap, _
OX, Op, OX, 0Op, OX, Op; OX,
6G, 3G, op, 3G, p, 3G, op; _
OX; Op, OX; Op, OX; 0Py OXq (1.232)
0G, 3G, op, , 9G, ap, , OG, &p; _
OX; Op, OX, 0P, OX;  Op; OX,
Eliminating o, from (1.2.30),6& from (1.2.31) and Py from (1.2.32) we obtain
0%, 0X, OX,
8(G2,G3)+8(G2,G3)6p2 8(G2,G3)%_O
o(x,p)  O(pp) 0% O(ps ) 0%
G,,G G,,G G,,G
oG, 3)+a( 2 3)ap3+8( 2 3)%=O (1.2.33)
(% P)  O(PsiPs) 3%, O(PyiP2) 0%,
0(6,.G;) , 2(G;.G;) ap, , 9(G,.G5) b, _,
0(%,Py)  O(Pips) 0% O(Py ;) DX
Recall that
a(GZ’G3) :_6(62’63) (1234)
6(Xk’ p]) a(XJ, pk)

Using (1.2.34) in (1.2.33) yields
5(GZ,G3)+G(GZ,G3)+8(G2,G3)+8(GZ,GB)£6p2 _%j_i_a(Gz’Gs)[aps
O(x,p)  0(%Py) (% P;) (P Ps) 0% %) O(psp)\ 0%
+5(Gz'Ga)(%_5ﬁ]:

o(pp) 0%, 0%
ie,
0(G,,G 0(G,,G 0(G,,G
(C..Go) | 9CGy) y  2(C, 3)-N=—(GZ,Gs)whereL=(%—%
o(p2ps)  O(Py ) o(p. py) oX; 0%,
:(%_%j N :(%_%] (G G ):8(Gz’G3)+8(Gz’Ga)+a(G2’G3)
’ ' 213
ox, 0% 0x, 0% o(x.p)  0(%.p;) (X Ps)

_oP
0%,

J

|

(1.2.35)



Similar computation gives
G,,G G,,G 0(G;,
06.6) | L 9CC) y ,9CC) g 6)  (1236)
o( P Ps) o(psr ) o( Py, p,)
Rl

8(G6,G,) . (G,G,)

®

@)
®
o

)N -
a(pzyps) a(ps,pl) m'N_ (Gl,Gz) (1.2.37)

Suppose noew that the solutions p; =y/; make the expression p,dx, + p,dx, + p;dx, =0 and exact differ-
ential then = L =0,M =0and N =0 identically. Then from Eqn (1.2.35),(1.2.36) and (1.2.37) we get that
(GZ,G3) =0, (GS,Gl) =0and (Gl,Gz)z 0.
Hence, Z =G, and Z = G, are two solutions of the PDE, (Z,G,)=0
a(Z,Gl) 8(Z,Gl) . 6(Z,Gl) _

(. p) 0% p,) " (% p,) (1.2.38)

236, 323G, o706, 023G, 772G, a7 06, _

X Op;  Op, OX  OX, Op, 0P, OX,  O%; 0Py 0Py O
But we must have
(G,,G,)=0 (1.2.39)
Observe that (1.79) is a first order PDE in the independent variable x;, p, (j :1(1)3) with correspond-

ing auxiliary equations
d, _dx, dx _dp, _ dp, _ dp; _ dZ
0G, 0G, oG 0G, oG, oG, 0
op, op, Op, X ox, o
The coupled ODEs above are the Jacobi's auxiliary differential equations.
1.3.1 SUCCESS OF JACOBI'S METHOD
We show here that if G, =0 and G, =0 are two independent integrals of the eqn (1.2.39) and are such
that (i) (G,,G,)=0 and (ii) p,, p,, p; are solvable from (1.2.23),(1.2.24),(1.2.25) (1.2.26) then these
equations will render the expression p,dx, + p,dx, + p,dx, an exact differential.
First, we note that Z = c is an integral of (1.2.39) so Z =G, and Z = G, are two solutions of (1.2.38). Thus,
we have (G,,G,)=0and (G,,G,)=0.
Consequent on the hypothesis (G,,G, ) =0 the equations in (1.2.35)—(1.2.37) give

0(G,.G,) 0(G,.G,) 9(G,.G,)

L+ M + ‘N=0
(P, Py) o( Py, 1) a(p,. p,)
A6,.6) ) 066 GG (1.2.41)
o(p,.ps) (P i) (P p,)
2(6,6,) | 3(CuG,) (GG
(P py) APy py) 3(p,. p,)

ie, (1.2.40)




This is a system of linear homogeneous equations in the unknowns L, M and N with the coefficient determin

8(G,,G;) 9(G,,G,) 8(G,,G,)
(P Ps) O(PsiPy) O(Pisy)
A= a(GB'Gl) a(GS'Gl) a(GE»’Gl) }(12_41)
(P ps) O(psipy)  O(pip,)
8(G,,G,) 9(G,,G,) &(G,.G,)
(P ps) 0(Psipy)  O(Pipy)
in which
6G, 0G, 06,
op, 0p, Op,
;_0(6.G,\G,) _|aG, oG, &G, (1.2.42)
O(Pyp,yPy) [OP 0P, P
6G, 06G, &G,
op, dp, Op,
= A= AdjJ =J°

Recall that from our hypothesis p;, p,, p, are solvable from(1.2.35)—(1.2.37) = J = 0 ie, A # 0. Hence, the
system (1.2.40) gives L =0, M =0, and N =0 = p,dx, + p,dx, + p,dx, is an exact differential equation for
all p; =y ;. Here lie the success of the Jacobi's method.

Examples
1 Solve the PDE: p* + q*> — 2px — 2qy + 2xy = 0.
Solution.
The corresponding Charpit's auxiliary DE is
dp  dg du _ dx _dy _dF (i)
of of of of  of of of of 0
vl e e e
OX ou oy ou oX oy op aq
e,
dp _ dg _ dx _ dy (ii)
-2p+2y -2q+2x —(2p-2x) —(29-2y)
- dp+dq _ dx + dy (iii)
-2p+2y-2q+2x —(2p—-2x)—(2q-2y)
ie, dp+dq _ dX+dy (IV)
-2(p+a)+2(x+y) -2(p+0q)+2(x+y)
= d(p+q)=d(x+y) (V)
ie,

= P+g=X+Yy+a _
or (p—x)=(y-a)+a } (Vi)



Observe that the differential equation may be expressed as

(P=x)"+(y—a) =(x-y) (vii)
Using (vi) in (vii) yields
(y—q)2+20¢(y—q)+az+(y—q)2:(x—y)2 (viii)
ie, 2(y—q)2+205(y—q)+042:(x—y)2
ie, 2(y—q)2+2a(y—q)+a2—(x—y)2:0
i (y_q)z—ZaJ_r —4a:+8(x—y)
—-o - 2(X—y)2—052
ie, (y-9)=
B 2(2_ )2_ - (ix)
or (y-q)= a : y) —«a

Considering the positive sign only we have
—a+«/2(x— y)2 —a’
y-q)= 5
_ 0(—1/2(x—y)2—oz2
ie q=y+ 5

From (vi) we have that

p=(y-a)+(x+a)

,/ X— y -«
(x+a)
/2 _v)_—
s X y2 a’ +a ()

Recall that
du = pdx +qdy

_[X+05+ 2(x—y)2—0!2 ]dx+{y+a1[2(xy)2a2 }dy
2 2

—a’ 0{—J2(X—y)2—052
= Xdx + ydy + dx+ 5 dy
= xdx + ydy + = (a+\/2( ) azj(dx—dy) (xii)

Integrating (xii)yields

N

a+ 2(x—y)

:%(x2+y)+ a(x-y)+ _[ (x—y)’ —a? (dx—dy) (xiii)



To compute the integral in (xiii)we set \/E(x -y)=49

(dx—dy):%ds
ie, %jJZ(x—y)z—az (dx—dy)= %J\/Sz—azdS

- %EM—“{MMW”

= %{ﬁ(x—y) 2(x—y) —a? —%In(ﬁ(x—yﬁWﬂ

Hence, the required complete integral is gives as

u=x"+y*+a(x-y) %{ﬁ(x—y) 2(x-y) —a? —%In(ﬁ(x-y)ﬂ/mﬂ

2 Determine the integral surface of

(y+uq)2 =u’ (1+ p® + qz) circumscribed about the surface 2y = x* —u®.
Solution
The equation in the standard form is given by

f(xy.u, p.a)=(y+uq) —u*(1+ p*+q’) (i)
The corresponding Charpit's auxiliary DE is
dx dy du _dp _ dg _dF (ii)
of  of  _of of  of of  of o 0
“ “ar P %% o P oo
p aq op 0q oOx ou oy ou
. dx dy du dp
ie, == =—— = —
2pu®  2(y+ug)u—-2qu  —-2p°u+2yu —2(y+uq)—2u(1+p +q )
_ o (iii)
—2{(y+uq)—qu(1+p +q )—2q(y+uq)q}
. dy du dg
ie, =—— = —
2yu  -2piu+2yuq  -2y+2qu(p’+q°)
ie _ qdu :d(qu):dy+d(qu)
' ~2p’qu+2yug® —2uy +2qu* (p* +q°)  —2yu 0
= dy+d(qu)=0
ie, y+qu=a
ie, qg=2=Y (iv)



Substituting (iv) into (i) yields

(o oo (5] )

ie, y2+2y(a—y)+(a—y)2—u2—u2p2—(a—y)2:0
ie, u*+u’p’-2y(a-y)-y*=0
2 2 22
ie, p2:2ay—uu2 -y :p:iJZayuu y (v)

pdx + qdy —dz = 0 becomes

_l_/ 22 _
ty2ay-u -y dx+a ydy—du:O
u

u
ie, (a—y)dy+y/2ay—u®—y*dx—udu=0

ie, + 2ay—u2—y2dx+%d(ay—y2—uz):O
ie, i2ﬁdx+%dw:0

ie, idx+%y/%dt// =0 (vi)

Integrating (vi) yields
X+ =b (vii)

X+4J2ay—u’—y® =h (vii)
vii
—X+42ay—u? -y =h,

These give complete integral of (|) which may be combined as

(x—b,+u)(x—b,—u)=0
» b, and b, are arbitrary we may replace b, by —b, and b, by b to get

(x—b)z—u2 =0
(x—b)z—(Zay—uz—yz):O (viii)
Denoting the LHS of (viii) by F(x,y,u,a,b) we may also write H (x, y,u) = x> —u® -2y =0 and

ie,

suppose the integral surface F (X, y,u,a,b)=0 circumscribe H (x, y,u)=0.
Therefore, we must have




2(x=b) -2(a-y) 2u

= = =-1
2X -2 —2u
or X—b=-x,y—a=1
b
= X=—,y=a+l
5 y

Substituting the values of x, y into H =0 and F =0 gives

b—2—u2—2(a+1):0
4

2

u’ :%—2(a+1)

b2 2 2|
and I—[Za(a+1)—(a+1) —u }_0
2
ie, b——(2a2+2a—a2—2a—1—u2):0
4
b2

——a*+1+u’=0
4
2 2
TR LIS SR
4 4

Eliminating u from (ix) and (x) gives
b2 ) b2
= —2(a+l)=a’-1-—
4 4

2

ie, b?=a2 —1+2(a+1):(a+1)2

ie, b :J_r\/f(a+1)

Ifb= \/§(a+1), the integral surface is
(x—\/§(<31+1))2—(2ay—u2 —yz):O

Differentiating partially wrt a we obtain
—Zﬁ(x—\/f—\/fa)—Zyzo

= x—\/§(1+ a):—i

V2

From (xii) and (xiii) we have

2

ie y ——%—ﬂ—2y+u2+y2=
2 2 2

ie, 2u2 +y2 —242xy +4y =0

(xi)

(xii)

(xiii)

(xiv)



This is the particular integral surface circumscribing the given surface.
Similarly, if we take b = —«/§(a+1) in (xi) we obtain

202 +y?+22xy +4y =0 (xv)
Combining (xiv) and (xv) gives

(2u2 +y° —2\/§xy+4y)(2u2 +y? +2\/§xy+4y) =0

(2u2+y2+4y)2 =8Xxy (xvi)



CHAPTER TWO

PARTIAL DIFFERENTIAL EQUATIONS OF SECOND
AND HIGHER ORDERS.

2.1 LINEAR EQUATIONS.
The most general linear mth — order Partial Differential Equations (PDEs) is of the form

o™u o™u o™u o™ o™
+ + + o, +B ——+B, ——+........
% ox™ A ox" Loy % X" 2py? tox™t T2 ox™ 2y
T MM N cu=f(xy) (2.1)
OX oy

in which A, B,,M, N, C are constants or functions of x and y.
From equation (2.1), a constant coefficient PDE is thus given as

a amu+a1 oy +a ou +..+a Ju
0 aXm axmflay 2 6Xm726y2 m ﬁym
m-1 m-1 m-1
+| b, 0 _lf b 2 _2u F o +bmfla—_lf
ox" ox" oy oy™
b b Mk M = (xy) (2.2)
OX oy
inwhicha, i =0(1)m,b; j =0(1)m,k, .k, and I, are constants.
P r
Setting D” 9 and D" = 0 (2.3)
oxP oy'

then (2.2) becomes:
|(2,D" +aD"™"D’'+,D" D" +....+8,D™ )+ (0,D"* + B,D"*D' + +....+b, ,D™* ) u
+[ (kD + kD) +1]u=f(xy)
or (2.4)
F(D,D)u=f(xy)
in which F (D, D’) is a differential operator of order m.
The correspondind homogeneous differential equation (reduced equation) to (2.4) is given by
F(D,D')u=0 (2.5)
Definition 2.1
The differential operator F (D, D’) is said to be reducible if it can be decomposed into factors of the

form («D + BD'+y) in which «, B and y are all constants. Otherwise it is irreducible.



2.1 METHOD OF SOLUTION

The solution of (2.4) is analogous to that of an m — order Ordinary Differential Equation (ODE) which

comprises of a complimentary function (CF) that contains m arbitrary constants and a particular integral

(PI ) that contains no arbitrary constant. In this case the complimentary function is the solution of (2.5)

and the particular integral the solution of (2.4).

2.2.1 Complimentary Functions

In order to obtain the complimentary function corresponding to the solution of (2.5) we recall this theorem

from elementary caculus:
Theorem 2.1

If the differential operator F (D, D') the general solution of (2.5) ie,
F(D,D)Ju=(aD+AD"+y) u=0
where m is a positive integer is given as

u:exp(—lxjixm‘lqﬁm (Bx—ay) a#0
o r=1
and

u =exp(—%y)iy”“l¢m (Bx-ay) p =0

in which the functions ¢, are sufficiently differentiable arbitrary functions.
Proof

We shall assume that « = 0 and prove by induction.

For m =1 the equation becomes:

(aD+ D'+ y)u=0ie, aa—u+ﬂa—u+yu =0
OX oy

ou ou
or a—+pf—=-yu
OX oy
This is a first-order PDE with the corresponding Lagranges auxiliary equation as
dx_dy __du (ii)
a f -yu
ie,
Bdx—ady =0 or fx—ay=c (c aconstant) (iii)
Also, we have
d_U — _de
u a
. 4 .
ie, Inu=-%x+k (iv)

a

(27)



Hence, a general solution is

7/ .

7 p(px-ay) (vi)

where ¢ is a differentiable function. This proves the theorem for m =1.

We then assume the theorem to be true for some m = p and prove that it is true for m = p +1.

ue

ie, we assume that

(¢D+pBD'+7) u=0 (vii)
Observe that
(aD+pD"+y) u=0=(aD+pD +y)" w (viii )
where w=(aD+ BD"+y)u
But by our hypothesis
p
W=exp(—liZx"l¢r (Bx-ay) a#0 (ix)
a Jra
or
p
(aD+ﬂD'+7)u:eXp(—lX]ZXml¢r (Bx—ay) a#0 (ix)
a )i
ie,
p
a2—§+ﬂ%u:—yu +exp(—§x}§xr‘l¢, (Bx-ay) a#0 (x)

This is again a first-order linear partial differential equation with the corresponding Lagranges auxiliary
equation given as
"
—yu+ exp(—y sz X7, (Bx—ay)
a Jra

in which again from the first two equalities we have

Bdx—ady =0 or Bx—ay =c (c aconstant) (xii)
Again, we also havefrom the first and third equalities
dx du

o _yu +exp(—2x]ix”¢, » (xiii )

r=1

or



= [eZa] <5 (o)

o r=1
ie,
uexp(l xj = J'i p X", (c)dx (xvii )
a a
1 P Xr
==-\Z Cc Xviii
S2r 400 (il
The general solution is therefore
p r
uexp(lxj—iz5 g (c)+c' =y (Bx—ay) (xix)
(04 aor
in which y is an arbitrary differentiable function. This general solution may also be written in the form
p+1
u :exp[—lx)z‘x“‘ly/, (Bx-ay) (xix)
a r=1

which is the theorem form = p+1
This completes the induction and hence the proof of the theorem.
We note that if the operator F (D, D') is reducible it will be seen that

F(D,D")e™ =F(a,p)e" (2.8)
Therefore it follows that u = exp(ax + ByY) is a solution of F (D, D")u =0 if
F(a,8)=0 (2.9)

In general, F (a,ﬂ) = 0 gives different pairs of solutions (aj B ) This way we obtain different solutions
c;exp(a;x + B;y) where ¢; are constants. Obviously the linear combination " c;exp(a;x + B;y) is also
j=1

a solution. Indeed, the most general solution is of this form.

Examples.
1 Obtain the solution to the DE
2 2
a—g ~a’ 8—2 =0
OX oy
Solution

The given PDE is of the form
(D*-a’D?)u=0
ie,
(D-aD')(D+aD’)u=0
The general solution is
¢ (—ax—y)+¢, (—ax—y)

where ¢ and ¢, are arbitrary differentiable functions



2 Obtain the solution to the PDE
ou o4 ou
-+ _6_
OX oxoy oy

Solution
Observe that F (D,D')=(D+DD'-6D)=0
F(ab)=a+ab-6b=0

ie, (1+b)a=6b
= a:ﬂ, b=1
1+b

6b . .
u=exp| ——x+Dby | is a solution.
1+b

The most general solution therefore is

d 6b
u= ex " X+b )
ZLA p[“b ,yj

f

2.2.2 Particular Integrals
To determine the particular integral (P.1) of eqn(2.5)
e,
F(D,D")u=f(xy)
we shall employ the following two methods:

Method |
If the operator F (D, D') is a reducible operator then the Particular Integral is of the form
1 1 1 f (%)
(D+BD" +7) (a,D+B,D +y,) (¢,D+B,D'+7,) (210)
m 1 '
= f(xy
H(ajmﬂp'wj) (x.¥)
We start the implimentation of the inversion operation (2.10) from the last factor on the right as
1
f(xy)=G(x, 2.11
(anD+B,D'+7,) (xy)=G(xy) say (2.11)
ie,
(@D +B,D"+7,)G(xy) =f(xY) (2.12)
oG oG
— —=1f-yG 2.13
= o o gy =TT (2.13)
This is Lagranges linear equation with the corresponding auxiliary equations
& by (214)

ap :Bm f _7mG



From the first two relation we obtain
thdx—amdy:O } (2.15)
e, B Xx—a,y=¢
Similarly, we have that
dG dx dG f-—7,G
f—7.G B a, dx a

m

d_G+7_mG :i

dx e, a,

Lo, #0 (2.16)

m

Im

Tmlgx
This is a first order ODE with an integrating factor (IF) e ["‘J =g

Tm o
ie, (e J _[—e”‘m dx, o, #0 (2.16)

m

X

Ty

] ——x 1 ——x EALY

, G=e ™ |—e™ d =—=e ™ |e™ f d 0 2.17
ie e I e xame je (x,y)dx, a, = (2.17)
Similarly,we have
. 1 v oy
ie, G:ﬂ—e o Ie“m f(x,y)dy=y(xy) say, B, =0 (2.18)

Observe that no arbitrary constant is introduced because Pl does not contain arbitrary constants.
It therefore follows that
1
(a,D+B,D'+7,)
This way we operate from the remaining factors from right to the first on the left in turn to finally
obtain the PI

f(xy)=¢(xy) (2.19)

Method I
Decomposing the operator _ into partial fractions as
F (D, D)
L = A + A F e + Ay

F(D,D') (a1D+,BlD’+7l) (e,D+8,,D' +7,)
Z_;‘ (a;D+ ,8 D'+7;)
we then perform the inverse operation term-wise to obtain the required Pl as demostrated in
the following steps:
A
- f(x,y)=G(x,Yy 2.21
(,D+BD"+7,) (x.¥)=6(xy) (221)
with the corresponding auxiliary equation
d _dy__dG
o B ft-7G

(2.22)



From the first two relation we obtain
pax—a,dy=0
ie, fXx—ayy=c¢C
Similarly, we have that
dG dx _dG f-yG
f—;/lG:;l:> dx 0:1

} (2.23)

G, ng_t 40 (2.24)
dx o o,

This is a first order ODE with an integrating factor (IF) exp Uﬁdx] =exp [ﬁ x]
o

o
ie, exp(ﬁ ij = Aijiexp(ﬁ xjdx, a, #0 (2.25)
o o oy
ie, G= Alexp(——xjjlexptﬁ xj dx
o U 2
:ﬁexp(—ﬁxjjexp(ﬁx] f(x y)dx, o #0 (2.26)
o o o

Similarly,we have

ie, G :%exp[ jjexp( o yj f(xy)dy=w(xy)say, g,#0 (2.27)

1
The expression for the PI is therefore given nas

ﬁexp( n X)jexp(h X} (x ,y)dx+iexp(—%xjjexp(§xjf(x,y)dx+ ............. ¥

(Zl a1 0{2 2 2
Av gxp| _Im In |
.................... +am exp( . X]Iexp(am x) f(xy)dx, a;=#0 (2.28)
or
ﬁexp[—ﬁ y]jexp[ﬁ yj f(x, y)dx+iexp(—ﬁxjfexp[ﬁxj f(Xy)dX+. e, +
B B B B, B, P,
.................... +%exp(—2—:x}jexp(2—:x} f(xy)dx, ;=0 (2.28)
e,

(2.29)




Examples

1 Obtain the solution of the PDE
2 2 2
al:— 6u+962:Tan(3x+y)
OX oxoy oy
Solution

In operator form the PDE is expressible as
(D?*—6DD'+9D" Ju = Tan (3x+ ) (i)

ie, (D—3D')2u=Tan(3x+ y) (ii)
The corresponding homogeneous equation is
(D-3D')u=0 (iii)
with the corresponding complimentary function
U, = (-3x—y)+ X4, (3x—y) (iv)
The PI is given as
——— = Tan(3x+ Vv
Do ) (v
- ﬁﬁexp(—%x){exp(%xjmn (3x+Y) dx}
1 1
:ijan(3x+ y) dx=ijan(c) dx
where c =-3x-y
ie,
2
Pl :;xTanc=X—Tanc (vi)
(D-3D) 2

The general solution of the PDE is therefore
2

u(x,y)=¢ (-3x=y)+x4,(3x~ y)+X?Tan (3x+Y)
2 Solve the PDE
(4D*-4DD'+ D" )u =161In(x+2y)

Solution

The corresponding homogeneous equation is given as
(4D*-4DD'+D"*)u=0 (i)

ie, (2D-D')'u=0 (ii)

The complimentary function is given as

U, = ¢ (—X—2Y)+ X, (—x—2y)  (iii)
and the Pl is given as



1

W-lﬂn(xﬂy) (iv)
il el Semonlern
:(ZD;_D,).Sxm(sz) (vi)
_ 8{%@@(_%@ [ exp(gx)xln (c)} (vii)

| = 4[xIn(c) = 2x¢In (x+ 2y) (vii

I:| = 2x%In(x +2y) (ix)

The solution to the PDE is therefore given as
u(x,y)=d (-x-2y)+xd, (-x—2y)+ 2x*In(x + 2y)

2.2.3 Some Special Cases.
We recall that the particular integral of (2.6) IS given as
0, (x, y):ﬁ.f(x, y) (2.30)
This is determined almost the same way as that of ODEs.
The inverse operator may be expanded using the Binomial Theorem and thereafter performing the
integration D‘l,(D’)'l nwith respect to x and y respectively. The Pl corresponding to certain special
functions may be obtained by much shorter method than the general method.
In this section we note the following pertinent rules:

Case I :

_ 1 e 1 provided F (a,b) =0

F(D,D) F(a,b)
Case Il :

ﬁ.e”byqﬁ(x, y)=e"" F D+ ;’ o' +b) $(x,Y), #(x,y) is arbitrary.
Case Il :

If F(a,b) =0 in Case I, then the PI is obtained as follow:

; ax+by — 1 ax-+by 1= ax+by 1

F(D’D')'e F(D,D')'e S=E F(D+a,D'+b)
and then apply case II.
Case IV :

1
————.Cos(ax+by) = .Cos(ax+b
F(D,D’) ( y) F(DZ,DD',D’Z) ( y)
1

- I:(_az,_ab,_bz).Cos(ax+by), provided F(a21ab,b2)¢0

If F (a2 : ab,bz) = 0 this case fails. We then compute the PI by considering the real and imaginary parts of

1



In this case we apply the Binomial theorem to the inverse operator and then operate on x™y".
These methods are evidently shorter ways of obtaining the respective Pls.
Examples :
1 Solve the PDE
(D* -D™ -3D+3D')u = xy +e*%,
Solution
Observe that the given differential equation may be put in the form
(D-D')(D+D'-3)u=xy+e*?.
The complimentary function is given as
¢ (—x—y)+e¥g, (x-y)
The particular integral is given as

1
(D—D’)(D+D’—3)[Xy+e ]

L - X+2y
NI IR LM TRy G I
1
(D_ D’)(D+ D'—S)[Xy]

1 D'/, D+D'\"
3D Dj [ 3 j ]

' 12 ! D D’2
__ 1 1+R+D—+ ........ j[l+D+D+( - )][Xy]

3D\ D D2 3 9

=——1+
3D 3 9 D 9 3
1 D DD’ E+ 2D’

Bl e

_ _t

1 D+D' 2DD' D' DD' D'
+ + j[xy]

and

1 x+2y
(D—D’)(D+D’—3)[ ]

1 1 ey 1 X+2y
:(D+D’—3)'(1—2)[ ]“m{ |

X+ 1 _ [ ax+ 1
=-[e 2y](D+1+D'+2—3)'1_ [ zy](D+D')'1



:—[e”zy]%(l+%j_l.l:—[e”zy}%.l

X+2y

=—ye
Thus, the general solution is
sy g ()Y Y
2 Solve the PDE
(D*-DD'+D'~1)u = Cos(x+2y)+e’.
Solution
Observe that the PDE is of the form
(D-1)(D-D+1)u=Cos(x+2y)+e’.
The reduced DE is
(D-1)(D-D'+1)u=0
CF=e'g(-y)+e7d,(—x-Y)
o= (DZ—DI;'+ D'_1)[C°S(X+2y)+ey]
1
(D*-DD’'+D'-1
1

1
) (—12—(2)(—1)+D'—l)[cos(ﬁzy)]ZW[COS(HZY)J

:%Sin(x+2y).

)[Cos(x+2y):|

1 1y 1
(DZ—DD'+D'—1)[e ]=e (DZ—D(D'+1)+(D'+1)—1)[1]

e 1 1] - -’ %{1_(%# D- D'ﬂ_l 1]

(DZ—DD’—D+D')

=—g’ %[1] =—xe’
Thus,
u(x,y)=e*¢(-y)+e g, (—x- y)+%8in(x+2y)—xey.
3 Obtain the solution to the PDE
(D2 -~ D')u = xe™*,

Solution
The reduced equation is

(DZ—D')u=O.



The operator D> — D’ is irreducible. Hence,
F(ab)=a’-b=0=b=a".

Hence, u = xe®**” is a solution of F (D?, D') = 0 has the complimentary function
u, = Z Aearx+ar2y
r=1

PI = Dzl_D[xea“azq = g™

2 1 2
ea><+a y. Ix :eax+a y.
(D+a)2—(D'+a2)[ ]

1
) DZ _ D![X]

1
(D2+2aD+a2—D’—a2

)-[X]

1 ax+a’ 1 _ D’ -
(D2+2aD—D’)'[X]_e y'(D2+2aD)(1 D2+2aDj 1x]

ax+a’y

=e

g+*y 1 1+— 2 b* +ooe |[X]
(Dp*+2aD)| " D*+2aD (p?42aD) '

. 1 .1 DY
=eaXJra y.—. X :e""“”.— 1+ — X
o 2] 1 1] 1

:4—22(ax—1)ea”azy.

Hence, the general solution of the PDE is

u(x,y)= i: A 4 ﬁ(ax ~1)e™+,
r=



CHAPTER THREE

SECOND — ORDER DIFFERENTIAL EQUATIONS II

3.1 PARTIAL DIFFERENTIAL EQUATIONS OF THE CAUCHY-EULER TYPE
Equations of the of the Cuachy-Euler type are the PDEs of the form

F(xD,yD')u = f(x,y) (3.1)
where F is a polynomial in the indeterminate xD and yD'.
In this case we make the following transformations:

0 0
s=Inx, t=Iny, $=— and ¢ = — 3.2
y oS ¢ ot ( )

It is therefore immediate from (3.2) that
(xD)u=3u, (x*D*)u=3(9-1)uand (x’D*)u=(9-1)($-2)u (23)
3.3
(YD')u=4gu, (y?D?)u=¢(¢-1)uand (y°D")u=g(4-1)(-2)u
Substituting (3.3) into (3.1) transforms it into linear equation with constant coefficients with 9 and ¢ as
the new independent variables.

Examples.
Transform the following PDE to linear form

(X*D? —4xyDD'+4y’D" +4yD'+xD)u = x%y. (i)
Observe that the given PDE is of Cauchy-Euler type. We then define the following transformation:

0 0 ..
s=Inx,t=Iny, 9=— and ¢ = — i
y 0S ¢ ot ()

Using (ii) in (i) we obtain
[ H(9-1)-49p+4¢(¢—1)+4p+ 9 |u =ee' =™,
ie, (9 —49¢+4¢% Ju=e>". (iii))
= (9- 2;15)2 u=e*" (iv)
This is a linear DE with constant coefficients.
CF =¢ (-2s—t)+5s¢,(-2s—t)
=y, (2s+t)+ sy, (2s+t)  (v)

1
(=207

Pl = 1 . [e25+t:| _ e25+t .

(9—2¢)



-2
— e25+t . é[l_%j [1] — eZS+t R

_e25+t Sz+
= ? (Z5+ﬁ

The general solution is therefore,
2

U=, (25+t)+sy, (2s+t)+e*" (%+as+ﬂj

ie, u=y,(2Inx+Iny)+ Inx y,(2Inx+In y)+e2'”x*'”y(%(ln x)2 +a|nx+ﬂj

=y, (INX*y)+ Inx y; (2Inx+1In y)+(%(ln x)* + Aln x}xzy

Example
10u 1 10y 1
x> ox> x*ox  yroyt yloy
X2 y? .
Suppose s=— andt = =— ii
pp 5 > (ii)
Then

u_ouds _au w1
OX  0S OX 0S 0S X OX

azu_aau_lg(laj 102 10

o578 ds X ox\ xox

105 10 04

Similarly,

—— = Y
yZ 8y2 y3 ay atZ ( )
Thus the given PDE is transformed into

o’u o
a?=a? or (192—¢2)u:0 (V)
where S:E and ¢=ﬁ
oS ot
= (9—¢)(9+¢)=0

Hence,
Uu=g (-s—t)+g,(s—t)

W2 4+ \2 W2 _ 2
:(”1(_ 2y J"'(oz( 2y J

:'//1()(2 +y2)+V/2 (X2 _yz)

(1)

(il



3.2 SECOND-ORDER PDE WITH VARIABLE COEFFICIENTS.

Definition.

A partial differential equation with variable coefficients is that which contains atleast one of the partial
derivative of the second order and none higher than the second. This is simplified if we consider the case
of two independent variables.

We shall define the following:

_au ou du_op _ du a[auj

P=—.0=_—.IT=—_—F5=—-,5= = =—| =
OX oy oX~  OX oxoy oyox oy\ ox

: (34)
:@_Pzﬁ(@_lljza_q,tza_uzi[a_uj:a_q
oy ox\ay) ox oy* oy\ay) oy
Our discussion shall be limited to that of the variable coefficients which are of first degree in r,s,t
ie, Rr+Ss+Tt=V (3.5)

inwhich R, S, T and V are in general functions of Rx, y, p,q and u.
This will be illustrated by examples solvable by inspection.

Example.
1 Solves=2x+2y
Solution
The PDE is given by
2
aax;y =2X+2y (i)
Integrating wrt y we have
ou ) ..
—=2 h
Pl oo A A (x) (ii)
Finally, integrating wrt x yields
u(x,y):x2y+xy2+J'h(x)dx+g(y) (iii)
ie, u(x,y)=x*y+xy>+¢(x)+g(y) (iv)

2 Solve xr + p =9x%y°.
The PDE is given by

2

x27+p_9x2y2 (i)
op 2
, X iZp=9
ie ™ s p =9xy (ii)
The DE in (ii) has an integrating factor (IF) x
ie, (xp) =9xy? (iii)
ie, Xp = J'9x2y2dx =3y  + f(y) (iv)

ie, Xp = J'9x2y2dx =3y + f (y) (v)



. ou 1
, _:3 2.,2 —h
ie P~ X’y +X (y)

u(x,y)=x’y? +'|éh(y)dx

ie, u(x,y)=xy*+h(y)Inx+a(y)

3 Solves—tzx—
y

Solution
2

TheDEis P_M_X (i)
oy oOx Yy
Integrating with respect to y and treating x as a constant and conversely yields

p—q=—§+f(0 (if)

This is Lagranges linear equation with auxiliary equation
dx dy du

— (iii)
1 f_ A
From the first two ratios we obtain
—dx—-dy=0 (iv)
ie, X+y=¢C (v)
From the first last ratios we have

X X
du=f dx——dx=f dx ———d
u (x)dx y X (x)dx . X

C :
= f(x)d 1-——|d
(x) x+( c—xj X (vi)
Integrating we have

usz dx+I[1——jdx I x)dx +x+cin(c—x)+B(y)

=p(x)+x+(x+y)lny
The general solution is therefore
u=g(x)+(x+y)Iny+F(xy).
We note that (3.5) is a second - order quasilinear PDE. It is linear if it can be put in the form
Rr+Ss+Tt+Pp+Uu=V (3.6)
in which R,S,T,P,U and V are functions of x andy.
o’u _ou au au

(a) a7+xy—&—5_eWSmu
o’u d*u  au ou

(b) a—2+a—2+xa—+xyau_x+y
X y X

Observe that (a) is a second order quasilinear PDE while (b) is a linear second-order PDE.



3.3 MONGE'S METHOD.
In this section we shall discuss the Monge's general method of solving
Rr+Ss+Tt=V (3.7)

in which R,S,T and V are functions of x, y,u, p and q with r,s and t retaining their ususl definitions.
ie,

2 2 2
:a—g,s:au andt:a—lzJ (3.8)
OX OXoy oy
From (3.7) we recall that
dp =Z—de+%dy = rdx + sdy (3.9)
dq =Z—gdx+g—3dy = sdx + tdy (3.10)
From (3.9) we have
r=M andt:M (3.11)
dx dy
Substituting (3.11) into (3.7) yields
R(MJ+Ss+T(M]=V (3.12)
dx dy
or Rdpdy — Rs(dy)2 + Ssdxdy + Tdqgdx —Ts(dx)2 —~Vdxdy =0
ie, (Rdpdy —Vdxdy + Tdqdx) — (Rs(dy)2 — Ssdxdy +Ts (dx)2 ) =0
ie, (Rdpdy —Vdxdy Jerqu)—s(R(dy)2 —Sdxdy +T (dx)z) =0 (3.13)

If there exists a relation between X, y,u, p and g such that the terms in parenthesis in (3.11) vanish indep
endently then it satisfies both (3.13) and (3.7). It therefore follows that
R(dy)” - Sdxdy +T (dx)* =0 (3.14)
Rdpdy —Vdxdy + Tdgdx = 0 (3.15)
These are refered to as the Monge's subsidiary equations.
We now assume that (3.14) is resolvable into factors thus;

ddyy _”;?;(X_:OO } (3.16)
The first equation in (3.16) combined with (3.13) and with du = pdx + qdy will yield an integral of the
form g, =a and h, =b in which a and b are arbitrary constants. Then a relation of the type

h =f(9) (3.17)
where f, is arbitrary will be an integral. This is called an intermediate (first) integral.
Similarly, second equation in (3.16) combined with (3.13) will give another intermediate integral of the

type



h, =1, (gz)
in which f, is also arbitrary.

(3.18)

Solving (3.17) and (3.18) we obtain p and q in terms of X, y and u. These values of p and q are then

substituted in du = pdx + qdy which on integration yields the required solution.

We however here note that if (3.16a) is a perfect square it is convinient in some cases to compute only

one intermediate integral and integrate it with the help of Lagrange's method to get the complete solution.

Examples.
1  Solve
r+(a+b)s+abt=xy (i)
Solution.
We recall that
dp = rdx +sdy and dq = sdx+tdy (i)

WS | angr=dASE gy
dx dy
Substituting (iii) into (i) we have

dp_de+(a+b)s+ab dg—sdx | _ Xy
dx dy

ie, dpdy —s(dy)” +(a+b)sdxdy + abdqdx — sab (dx)* — xydxdy = 0
ie, (dlpdy — xydxdy + abdqu)—s((dy)z —(a+b)dxdy + ab(dx)z) -0

The Monge's subsidiary equation are thus;
dpdy — xydxdy + abdgdx =0 (v)
(dy)2 —(a+b)dxdy+ab(dx)2 =0 (vi)

Considering (vi) in the form

[(dy)" ~adxdy |+ | ab(cx)” ~baxdy |=0 (vii)

we may have
(dy)” —adxdy =0 (viii )
ab(dx)” - bdxdy =0 (ix)
which gives respectively
dy-adx=0 = y-ax=c (x)
dy—bdx=0 = y-bx=c, (xi)

Substituting (x) into (iv) we obtain
adpdx + abdqdx — xa(c, + ax)(dx)2 =0

(iv)



ie, dp +bdg—x(c, +ax)dx =0 (xii)
Integrating (xii) yields
x> X
+bg=|c,—+a—|+A
(s 1)

. x> 1
ie, p+bq:(y—ax)?+§ax +A (xiii)

Therefore, the first integral is
p+bq+%ax3—%x2y:f1(y—ax) (xiv)
Similarly, the other intermediary integral is
p+aq+%bx3—%x2y: f,(y—bx) (xv)
From (xiv) and (xv) we have
p(b—a)+%(b2 -a’)x’ —%(b—a)xzy = bf, (y —bx)-af, (y —ax)
p:%xzy—%(b+a)x3+é(bf2—afl ) (xvi)
Similarly, we have

q(b—a)—%(b—a)xaz f,(y-ax)—f,(y—bx)

. 1 1 ..
ie, q:€x3+a[fl(y—ax)—fz(y—bx)] (xvii)
du = pdx + qdy
1 1 1 1 1
:[Exzy—g(bJra)xs+E(bf2—af1 )}dx+[gx3+r[f1(y—ax)— fz(y—bx)ﬂdy
. 1 1 1 1 1
ie, u :_[{Exzy—g(b+a)x3+m(bf2—af1 )}dx+'[{gx3+m[fl(y—ax)— f,(y-bx)]
:Ex‘?y—i(b+a)x4+ix4+ij(bf —af )dx+ij[f (y-ax)—f,(y—-bx)]dy
6 24 24" b-a’t? ! b-a’t™ ?
ie, u :%x3y—i(b+a)x4+%x4+¢1(y—ax)+¢2(y—ax).
2 Solve
t—rsec’y=2qtany. (i)
dp = rdx+sdy and dgq =sdx+tdy (i)
ie, p= BPoSYY | gngpo JATSK gy
dx dy

Substituting (iii) into (i) we have

Jo



dg — sdx _(dp —sdy
dy dx

ie, (ddx —dpdysec* y - 2q tan ydxdy)—s((dx)2 —(dy)” sec* y) =0 (iv)

jsec4 y =2qtany.

The Monge's subsidiary equations are

dgdx — dpdy sec’ y — 2q tan ydxdy =0 (v)

(dx)2 —(dy)2 sec’y=0 (vi)
Observe that (vi) is of the form

(dx—dysec? y)(dx+dysec’y)=0 (vii)
ie,

dx —dysec’ y =0,dx +dysec’ y=0 (viii)

Substituting the first of (viii) into (v)we have
dgdysec® y —dpdysec* y — 2q tan ysec® y(dy)2 =0

ie, dg —dpsec? y—2qtan ydy =0

ie, dgcos® y—dp —2qtan ysin ydy =0 (ix)

ie, p—qcos’y=f (x—tany) (x)

Similarly, the second of (viii) and (v) give
p+gcos’y=f,(x+tany) (xi)

ie, p:%[fl(x—tan y)+f,(x+tany) } (xii)

and

ie, q:%[fz(xﬂan y)- f(x—tany) Jsec’y  (xiii)
1
du:E[[ f,(x—tany)+f, (x-+tany) Jox+[ f,(x+tany)-f,(x—tany) ]sec’ ydy |

1 1
- E[dx—dysecz y ] f,(x+tan y)+5[dx+dysec2 y]f,(x-tany)

ie, u=¢(x+tany)+¢,(x—tany)
Exercise
Prove that the solution to the PDE g°r —2 pgrs + p°t =0 is given as the intersection between the planes

u=c,y+xf(c)=¢(c).



3.4 GENERAL FORM OF SECOND-ORDER PDE WITH VARIABLE COEFFICIENTS ADMITTING

A FIRST INTEGRAL AND ITS SOLUTIONS.
In section 3.3 we saw that a relation of the form

h=1f(9) (3.19)

in which g and h are differentiable functions of x, y,u, p and q and f an arbitrary differentiable function
is called a first (intermediate)integral of a second-order PDE if the latter is obtained by eliminating f
and f'from (3.19) together with the relation obtained by differentiating (3.19) partially wrt x and y.
We now discuss the general form of second-order PDE if admitting first integral and its method of solu-
tion due to Monge.
Differentiating (3.19) partially wrt x and y yields

ah+6h.p+@,r+%_szff(g)(8_9+a_g.p+a_g.r+6_g.gj (3,20)

ox  ou op ox ou op aq
@+@.q+@.s+@.t:f’(g) a_g+a_g.q+a_g.s+a_g.t (321)
oy ou op aq oy au op oq

Eliminating f'(g) between (3.20) and (3.21) yields

Rr+Ss+Tt+U(rt—sz):V (3.22)
where

_o(g:h) o(gh) o _o(gh) o(g.h) a(gh) - o(g.h)

ooy alen) P T a(ay) " ataw) T oun) P (k)
8(g,h)+8(g,h). :a(g,h)

T_a(m) 2(0.9) p, U 2(p.a) (3.23)
_o(g.h)  o(g.h) - a(g.h)

V_a(y,u) P d(u,x) q a(y.x)

Hence, (3.22) is the most general form of second-order PDE that possesses a first (intermediate) integral.
We thus proceed as in Monge's method for solving equations of this kind by determining the first integral.
Recall that

op op
dp = —dx+—dy =rdx+sd 3.24
P=" % y y (3.24)
and
aq aq
dg = —dx+—dy = sdx +td 3.25
9=" Yy y y (3.25)
ie,
r= M and t = M (3.26)
dx dy

Putting (3.26) into (3.22) we have

R(dp_dej+Ss+T dq — sdx +U(dp—sdy] dg — sdx Us? v
dx dy dx dy







ie,
Rdpdy — Rs (dy)° + Ssdxdy +Tdqdx —Ts (dx)* +U (dpdg — sdpdx — sdqdy + s*dxdy) - Vexdy =0
e,
(Rdpdy + Tdqdx +Udpdg — Vdxdy ) - s(R (dy)2 +Udpdx +Udqdy — Sdxdy +T (dx)z) =0 (3.27)
Monge's subsidiary equations are:
M = Rdpdy + Tdqdx +Udpdg — Vdxdy =0
) ) (3.27b)
N = R(dy)” +Udpdx +Udqdy — Sdxdy +T (dx)" = 0}
In view of the presence of the terms Udpdx and Udgdy N cannot be factorized . We may however try
to factorize
N+AN =0 (3.28)
where A is an undetermined multiplier.
e,
R(dy)’ +Udpdx +Udqdy — Sdxdy +T (dx)* + 2 (Rdpdy +Tdqdx +Udpdgq — Vdxdy)=0  (3.29)
Suppose this has factors

Rdy + mTdx + «Udp )+ 4 dy+idx+idq =0 3.30
m
K

Comparing (3.29) and (3.30) we obtain
R

ST =—(S+ V) (3.31)
K=m (3.32)
% —U (3.33)

Eliminating « and m from (3.31) through (3.33) we observe that A satisfies the quadratic equation
2*(UV +RT)+AUS+U2=0  (3.34)

Recall that (3.34) has in general two roots 4, 4,. Putting 2 = 4, and x =m = Ru—ﬂi in (3.30) we have

(Udy + A, Tdx + 4,Udp)(Udx + RAdy + 4Udg) =0 (3.35)
Similarly, replacing A with 4, we have
(Udy + 4,Tdx + 2,Udp)(Udx + RA,dy + 2,Udq) = 0 (3.36)
R4

We now obtain two integrals of the form g, =&, and h, =b, by solving the pair 1 =4 and x =m = U

and integrals of the type g, = a, and h, =b, obtained from solving the pairs (4, 4, ). Hence, we get the
two integrals of the type h, = f,(g,) and h, = f, (g, ) where f, and f, are arbitrary. These are solved to

determine p and q as functions of x, y and u thereafter substituting into du = pdx + gqdy which when inte-
grated gives the complete solution.
In implementing this procedure we note the following:



1 If (3.34) has double roots, it is only possible to obtain one integral of the form h, = f, (g, ) which can
be obtained from either g, =a, or h, =b, to give the values of p and g to render du = pdx + qdy integ-
rable.

2 Since A, = A, we get a more general solution by taking liner relation between g,and h, in the form
g, =mh, +n and integrate by Lagrange's method.

3 Ifthefirstintegral h = f,(g,) and h, = f,(g,) and unsolvable for p and q then one of the first integ-
rals h, = f,(g,) may be combined with g, =a, or h, =h, to determine the values of p and g and then
integrating du = pdx + qdy to obtain the complete solution (integral).

Examples

1 Solve the differential equation

u(1+9*)r—2paus+u(1+ p?)t—u? (s’ —rt)+1+q* + p> =0 (i)
Solution
From the general PDE
Rr+8s+Tt+U (rt—s*) =V (ii)
we have
R=u(1+9%), S =-2pqu, T =u(1+p*),U =u®V =—(1+q*+p*)=0 (iii)
Substituting into the A-equation

A*(UV =RT)+4SU +U?=0 (iv)
we have
/12{—u2(1+q2 +p?)-u?(1+9%)(1+ pz)}—2/1pqu3+u4 =0
ie, A2p*g° —2Apqu+u® =0 (v)
ie, (/1|oq—u)2 =0
= A=Ay =— (vi)

Pq
The intermediate integral is thus given as

Udy + A Tdx+A4Udp=0
Udx + 4,Rdy + A,Udg =0

. u’ u’
ie, u’dy +—(1+ p®)dx+—dp =0
pq pq
u’ u®
u?dx+—(1+9°)dy+~—dq =0
pq Pq
pady +(1+ p*)dx+udp =0
ie, (viii)
padx +(1+?)dy +udgq =0
Also, we have

du = pdx+qdy =0 (ix)



From the (viiia) and (ix) we have

dx +udp + pdu = 0(ie, viiia — p xix)
ie, dx+d(up)=0
Integrating gives

X+up=a (x)
Similarly, from the (viiib) and (ix) we have

dy +udg + qdu = 0(ie, viiib —q xix)

ie, dy+d(uq)=0
Integrating gives
y+ug=b (xi)
From (x)
a—x
p=_
u
and from (xi) (xii)
b—
q=bY
u
du=2"Xgx+ DV gy
u u
ie,

2 2 2
U_ax- Xy by—y—
2 2 2
ie, u2+(x—a)2+(y—b)2:A

is the required solution.
By note 2 we can find a more general solution of the given PDE. Hence, we assume
pu+x=m(qu+Yy)+n
( ) xiii )
or (p—mg)u=my—x+n

which is a Lagrange's linear equationwith corresponding auxiliary equation given as

X y
%_ dy du _de+ady+du
Uu -mu my—x+n n
From the first two we have
%:ﬂ:mdx+dy:0:y+my:cl
u -mu

From first and last we have

X y
dx adx+ady+du

n



or ndx:xdx+ydy+udu:%d(x2+y2+u2)

Integrating we have
X*+y?+u?-2nx =c,
The general solution is thus
x> +y?+u?=2nx = f (y+mx).
2 Determine the general solution of the differential equation

ar+bs +ct+e(rt—s*)=h (i)
where a,b, c,e, h are constants.
Solution
We consider the equation

Rr+8s+Tt+U (rt—s*) =V (ii)
Comparing (i) and (ii) we have

R=a,S=bT=cU=eandV =h (iii)
But the A-equation is in general given as

A*(UV +RT)+4ASU +U% =0 (iv)
ie,

A%(ac+eh)+Abe+e* =0 (v)

Foe convinience we set Am+e =0 in (V) to obtain
m’ —bm+ac+eh=0 (vi)
We assume further that (vi) admitts roots m, and m, .
The first system of integrals is
cdx +edp—mdy =0 } (vii)
ady +edq—-m,dx =0
An intermediate integral is
cx+ep—my = f, (ay +eq—m,x) (viii)
The second system of integral is given by
ady +edg—-m,dx =0
ie, ay+eq—m,x = constant
and
cdx +edp —m,dy =0 = cx+ep —m,y = constant
Therefore the other intermediate integral is
cx+ep—m,y = f,(ay +eq—m,x) (ix)
Clearly, p and g can not be easily solvedfrom the above intermediate integrals. Therefore we combine any
particular integral of the second with the general integral of the firstsystem.



ie,
cx+ep—myy=A (x)
From (viii) we obtain
f,(ay+eq—m,x) cx+ep=(m,-m)y+A
ay+eq =-mX+y{(m,—m)y+A} }

(xi)
where y is an inverse functionn of ¢. Using the values of p and g from (x) and (xi) in the general relation
du = pdx+qdy we thus have
edu =(A+ mzy—cx)dx+[m2x+z//{(m2 -m)y+ A}—ay}dy
= Adx —cxdx +m, (xdy + ydx) —aydy +y {(m, —m, ) y + A} dy
Integration gives

eu= Ax—%cx2 +2m2xy—%ay2 +F{(m,-m)y+A}l+B

where F(mz—ml)y+A:Iz//{(m2—ml)y+ A} dy



CHAPTER FOUR

BOUNDARY VALUE PROBLEMS.

4.1 BOUNDARY CONDITIONS AND BOUNDARY VALUE PROBLEMS.
If a second-order differential equation

F (X, y,U,U,,Uy, U, U, U, ) =0 4.1
is to be solved within a specified region R of space in which the values of the dependent variables u are
specified at the boundary JR then the resulting problem is refered to as a boundary value problem. These
boundaries need not enclose a finite volume. In this case one of the boundaries may be at infinity.
A PDE in which one of the independent variables is time, the value of the dependent variable and often
its time derivatives at some instant of time, t =0 (say) may be given. These type of conditions are called
initial conditions. Hence, the term boundary and initial condtions will be used as appropriate.
We shall concern ourselves here primarily with two ntypes of boundary conditions that arise frequently in
the description of physical phenomena and which we encounter frequently in many applications:
(a) Dirichlet Conditions; where the dependent variable u is specified at each pointof a boundary in a reg-
ion. For example at the end of a rectangular region.

R:a<x<bh,c<y<d.




(b) Cauchy Condition; if one of the independent variables is time (t) and the values of both u and 2—1: are

specified on the boundary at time t = O(at some initial time) then this condition is refered to as cauchy
type.
In applied Mathematics, Physics and Engineering, PDEs generally arise from the mathematical formulat-
ion of the real — life physical problems. Often, boundary conditions are imposed on the dependent varia-
bles and certain of its derivatives. The process of determining a PDE subject to the imposed boundary
condition is solving a boundary value proble (BVP). It is initial value problem if initial conditions are
imposed on the differential equation.
3.2 METHOD OF SEPERATION OF VARIABLE.
This is perhaphs the oldest and commonest method of solving a partial differential equation.
Given the unknown function
U =U(X, Xy, Xg0 Xy oo Xy g0 Xy ) (4-2)

we shall on the onset make some fundamental assumptions thus:
that

U(vaz """ Xm—1'xm):X1(X1)'Xz(xz)'Xs(xs)""xm—l(xm—l)'xm(Xm) (4'3)
in which

X, = X, (%) (4-4)
a function of a single independent variable.
On substituting (4-3) into (4-1) and simplifying we obtain ordinary differential equations(ODEs) in the

unknown functions X, (k :1(1)m). Some of the boundary conditions of the original PDE will give rise

to corresponding boundary conditions to be satisfied by some of the functions X, (k = 1(1) m). We will

therefore have to solve m uncoupled ordinary differential equations some of which may be BVPs or IVPs.
These particular solutions X, are then used to constitute the most general solution of the original PDE.
Consider the PDE in two independent variables x and y in the form

Rr+Ss+Tt+Pp+Qq+Uu=V (4-5)
Suppose the solution of (4-5) is given as
u=X(x)Y(y) (4-6)

in which X and Y are functions of x and y respectively and u is the dependent variable. Substituting
(4-6) into (4-5) and simplifying we obtain

1 1 ,
L) x(0=29(0)v(y) (a-7)
where f (D) and ¢(D’) are quadratic functions of D = 82 and D’ =% respectively. We observe that
X

the Ihs of (4 . 7) is a function of x only while the rhs is a function of y only and the two can not be equal

except each is equal to a constant — /1(say).
We thus have



f(D)- X (x) = AX } (4-8)

$(D')-Y (y)=AY

The solution of (4-5) therefore reduces to the solution of (4-8).
The usefulness of the solutions of PDE is quite limited because of the difficulty in choosing the approp-
riate arbitrary functions that will satisfy the imposed boundary conditions. This is however eliminated for
some class of PDEs (Iinear) by certain techniques one of which is based on the principle of superposit-
ion of solutions. This states that
"If each of the m functions z, (k :1(1)m) satisfies a linear PDE then an arbitrary linear combination

Z =07, + 7, + QUL + ALy +--- +o7, +a,z, :iajzj (4~9)

j=1

where o, (k = 1(1)m)are constants also satisfies the differential equation”.The combination of the method
of seperation of variables and the superposition of solution is usually known as Fourier method.
Example
1 Solve by the method of seperation of variables the differential equation

2
Fu_,u
OX oX oy
Solution
Setting u(x,y) =X (x)-Y(y)=0 (i)
into the differential equation we have
X"Y =2X"Y+YX =0 (i)
Dividing through by u(x, y) by vitue of (i) yields
Al R (ii)
X X Y
ie,
1 Y’ :
. X!I_Zxr -
(X=2x) == (iv)

We observe here that the lhs and rhs of (iv) are functions of x and y respectively. For this equation to be

valid each side must be independently equal to a constant i(say). The implication of this yields the follo-
wing uncoupled ordinary differential equation:
X"=2X"-AX =0
(v)
Y'+AY =0

(D?~2D-2)X =0 } (i)

(D'+2)Y =0



The solution of the ordinary differential equations in (vi)above are given as
X (x)= Aexp(1+ \/1+_/1)x+ Bexp(l—JlJr_/l)x
and Y (y)=Cexp(-1y)
By virtue of (i) and (vii) therefore we have
u(x, y):(Dexp(1+J1Jr_/1)x+ Eexp(l—\/1+_/1)x)exp(—ﬂ,y)

where D = AC and E = BC are arbitrary constants of integration.
2 Determine the solution to the 3— D wave equation

(vii)

c*Viu = i
ot
by method of seperation of variables.
Solution.
Assuming the unknown function t is seperable and of the form
u(x,y,z,t)=X(x)-Y(y)-Z(z)-T(t)=0 (i)
then the partial differential equation yields
c?(XYZT +Y'XZT +Z'XYT )= T XYZ (i)
ie,
CZ(XH+Y—”+Z—”J:I (iii)
X Y Z T
=
v vz 1t (v

X Y Z T
This equation is true only if each of the component parts is equal to a constant.

1€,

X" ) Yrr ) Z" ) 1 T )
= —  — = ’—:—r,——z—s V
x Py VA c*T (v)
This yields the following uncoupled ordinary differential equations:
X"+ p’X =0
Y"+g%Y =0
! (vi)
Z"+r°2 =0
T+¢%%T =0

with solutions
X, (x)=A, Cos px+B, Sin px
Yy (y):
Z.(z)=E,Cosrz+F,Sinrz

T, (t) =P, Cos(cs)t+Q, Sin(cs)t

C, Cosqy + D, Singy

(vii)




Since the parameters p, g, r and s are dependent by virture of (iv) we may express T (t) as

T (1) =Gy Cos(,/p2 +q°+r? )t +Q, Sin(w/ p*+q° +r? )t (viii)

Hence by vitue of (i) and (vii) we thus have that

Ugar (% Ys18) = X, (X)Yq (V) 2, (2) Toge (1) (ix)
The most general solution is thus given as
Uper (XY, 58) =D > U (X Yt t) (x)
p=1 q=1 r=1
in which the function u_, (x, y,t,t) are as defined in (vii) and (ix).
4.3 SOLUTION OF 3-D LAPLACE's EQUATION IN CURVILINEAR COORDINATE SYSTEM.
(1) Cylindrical; (r,9,z)
Vzu:@+16_u+i2822 ou =0
ot ror rro a?
(11') Spherical; (r,9,¢)
o’u L20u 1 ou (Cotdou 1 o’u
o v T red 7 08 rsingof
In this section we will solve the problem for the shperical coordinate system. The solution for the cylin-
drical coordinate follows the same procedure.

Vau =

The corresponding differential equation is given by

o°u 20u 1 ¢°u Cot4 au 1 o .
Tt et T 2 Ag e 7 =0 (I)
or- ror r°o9 r o8 r°Sin“9ad¢
Assume the unknown function u is seperable in the form
u(r,%,¢)=R(r)-©(9)-®(4)=0 (i)
Substitution of (ii) into (i) and dividing through the resuly by u(r, 9, ¢) yields
R" 2R" 10" Cot9 @' 1 o
— St S+ =0 (iii)
R rR r~ o r @ r’sin’ 9 @

R" 2R’ 10" Cot$0' D" .
— St S+ r’sin® 9 =— (iv)
R rR r~ 0 e )
Observe that the Ihs of (iv) are functions of r and ¢ while the rhs is a function of ¢ only. This can only be

valid if each side is a constant m?, say. Therefore, we have that

d"+m*d =0 (V)
L(r? R+ 2rR) + (0" + Cot90") = m (vi)
R Q) Sin® 9

ie,
1 " ' mZ 1 " ’ ..
6(@ +Cot90 )_Sin29 :—E(r2 R +2rR) (vii)

Eqn (vii) is true if only each side is a constant — (I +1).This condition gives rise to the following uncoup-



uncoupled ordinary differential equations:

r2R"+2rR" —1(I1+1) R=0 (viii)
m® .
O"+CotIO" +<1(1+1)— ®=0
+Co +{ (1+1) Sinzg} (ix)
Substititing Cos 9 = x in (ix) yeilds
d’e d@ m?
1-u I(1+1)- ®=0
( )dﬂ M {( *y 1—/12} )

Egn (x) is associated Legendre differential equation.

Solving Eqns (v),(viii) and (x) in standard form we obtain

@, (¢)= A, Cosmg + B Sinmg (xi)
R(1)=Cr'+ (i)
and
O, (9)=E,R"(Cos9)+F,Q" (CosI) (xiii)

The general solution of the PDE is therefore

(r.9.9) ZZ A, Cosmg + B, Sin m¢)[C r'+ r[ilJ(E R"(Cosd)+F,Q (Cosd))  (xiv)

m=1 =1

The arbitrary constants are chosen in a manner that the solution is bounded. This implies that F, =0
Q" (Cos 9) — = as 9 — 0. Consequently the general solution is

u(r,4,¢) ZZ E.P" (Cosd)(A, Cosmg+ B, Sin m¢)(C r'+ r[')”j (xv)

m=1 1=1

A solution of the problem in the form (xi),(xii) and (xiii) are called sperical harmonics while the solu-
tion (xi) and (xiii) called plane harmonics.

3 Determine the potential outside and inside a spherical surface kept at a fixed distribution of electrical
potential of the formu = f (3) assuming that the space inside and outside the sphere is free of charge.
Solution.

In potential theory it is known that the potential u satisfies the Laplace equation Vu =0 in (r,9,¢).

. 9u 20u 1 0°u  Cotd 1 ou :
e, —+-—+S5—+— — ~=0. (i)
o ror r°og r 89 r’sin® 4 o¢
In veiw of spherical symmetry, u is independent of ¢.
2
e, M _TU_y (ii)
op O¢

By vitue of (ii) the governing equation (i) reduces to
. 0%u 20u 1 d°u  Cot$ ou
ie, S +=—+5—+———=0. (iii)
or° ror r°od Y]



Assume the unknown function u is seperable in the form
u(r,9,¢)=R(r)-0(9)=0 (iv)

Substitution of (ii) into (i) and dividing through the resuly by u(r,3,¢) yields
R" 2R" 16 Cotggzo (V)

+
R rR r’o r:r o

1 14 [ 1 " / H
6(® +Cot9®)+E(r2R +2rR):O (vi)

1, ., , 1 y , ..
6(® +Cotl9®):—ﬁ(r2R +2rR’) (vii)
Observe that the Ihs of (vii) isa function of 9 while the rhs is a function of r only. This can only be
valid if each side is a constant —1 (I +1), say. Therefore, we have the following uncoupled ODEs:
r’R"+2rR" -1(1+1)R=0 (viii)
©"+Cot90'+1(1+1)®=0 (ix)
Solving (viii) and( ix).
We set i =Cos 3 in (ix)
=du=-Sin9d9=—1- x*d9

du 2
Ly
dg #
d® dude ~de
But ——=-—ft-" o -
Y 49T g du *du
d’0 d (de 7 d > dO 1 d’0  de
R T Y iy | Dy TR —
dg? dS(dSJ ( : dﬂ)[ g dﬂj S )dﬂ2 vy (x)
Hence, (ix) transforms to
d’® de :
(1_”2)d/f —Z,UEH(I +1)®=0 (xi)
This is the Lagendre DE with solution R (z). Similarly, the solution of (viii) is obtained by assuming
R(r)=r" (xii)
giving the solutions
R(r)=Ar' +2- (i)
@(Iu):CIPI (,u)"' DQ (,u) (XiV)
ie,
©(9)=C,R(Cos9)+D,Q (Cos ) (xv)
Suppose the sphere is of radius a. Then, we have
u(a,9)=f(9) (xvi)

Also, the potential u remains bounded everywhere = u <o as 9 — 0.



" Q(Cosg)—>was $—>0=D, =0
@(8)=C|H(C033) (xvii)
Hence,

Uy, (T, )(Ar I+ljCP(CoslSl)

The most general solution is therefore given as

o0

u(r,9)=Z(E,r' +%)F’I (Cos 9) (xviii)

1=0
Potential Outside the Sphere.
We also recall from potential theory thatu=0asr - o= E, =0.

Therefore, solution for r >0 (outside the sphere) is given as

o0

u(r,S):Zrli'lP(Cosg) (xix)

1=0
Setting r = a and applying u(a, 9) = f ($) we have

o0 0

> R (Cosd)=1(9)= > (%0

1=0
This is the Legendre series. To determine the coefficients F; therefore we multiply (xx) by P, (x) and

integrate the result in —1< g <1to obtain

_:|_|:0a -1
F o i
ie, amﬂ_fl mz(ﬂ)dﬂZ_flf(S)Pm(ﬂ)d“
F 2 7
i = [ f(9)P. ()d
¢ a™! 2m+1 J; ()P ()
F_ 2m2+1.am+1j f (9)P, (Cos 4)Sin 9d 9 (xxi)

0
Therefore, the required potential is given by (xix) with cosfficient as given by (xxi).

Potential inside the sphere.
From potential theoryu<wasr —-0=F =0.

9):iElr'P,(C0519) (xxii)
1=0
By virtue of the condition on the surface of the sphere (u (a,9)=f (3)) we thus have
:iE,r'P,(c:osg): £(9) (i)

1 » 1
[ > Ea'R(Cos )R, (Cos9)Singdg=[ f ()P, (Cos)Sin 9d g
-1 -1

1=0



1
ie, E,a If P,(Cos $)Sin 9d 9
2m+1 %
E, = 2;na:1] f (9)P, (Cos 4)Sin 9d 9 (xxiv)

-1
Therefore, inside the sphere the potential is given as

:2E,r'R(C059)= f(9) (xxv)

where the coefficients E, are as given in (xxiv).

Exercise

Determine the steady-state temperature of a semi-circulr plate of radius a whose circumference is mainta-

ined at temperature T, and the base at T =0.

Hint:

This is a Laplaceequation in polar coordinate (r, 3) with boundary conditions:
T(r,0)=0=T(r,7z);0<a<r
T(a,9)=T, T <xasr—0

Solution

2m-1
(—j Sin(2m-1)9.
T =2m-1

4.4 SOLUTION OF THE 3—D WAVE EQUATIONS IN CURVILINEAR COORDINATE SYSTEM.
(1) Cylindrical; (r,9,2)

@+16u 1 o au 1 0%

o ror v of ok ot

(11') Spherical; (r,9,¢)

o°u 20u 1 é°u Cotd au 1 ou 1d%u

—t——t— + —t—— =——.

or’ ror r’o% r* 09 r’Sin*3og* ¢ ot’

In this section we will solve the problem for the cylindrical coordinate system, the the shperical case
follows the same procedure.

Solution.

4TO Z

Vi =

VvV =

We recall that the governing eqution in the coordinate system (r, 4, z) IS given as
o'u 1ou 1 o 6 u_ 12
ot ot oot 2"
o ror r2o9 orr ¢l ot

Assuming a seperable solution of the form

u(r.9,z,t)=R(r)©(4)Z(z)T(t)=0 (ii)

and dividing through by u we have

l(R"+ER’j+ © +Z—=i2¥ (iii)

R r r’e Zz



Ihs of (iii) is a function of r and ¢ while the rhs is a function of t. The equation is only true if they are
both constant say — p°.

ie,
T =c?p’T (iv)
1 , 1 , ®" zZ"
and E(R +FRj+r2®+?:—p2 (V)
ie, %(R"+%R'j+%®”+p2:—%:sz (vi)
= Z"+s°Z =0 (vii)

%(rZR"+rR')+(p2 —-s%)r? =—%=a2 (vii)

Eqn (viii) results in the following uncoupled ODEs:
0"+a’®=0 (ix)
r*R"+R'+(Br’ —a* )R =0 (x)
where B = p® —s°.
Eqn (x) is the Bessel's differential equation.
We thus have the following solutions:

T(t) = A, Cos(cpt)+B,Sin(cpt) (xi)
Z(z) =C,Cos(sz)+D,Sin(sz) (xii)
©(9) =E,Cos(ad)+F,Sin(a9) (xiii)
R(r) =G, J(Br)+H,.Y(Br) (xiv)

The general solution is therefore given by

u(r,3,z,t):iiiupsa(r,g,z,t) (xv)

p=0 s=0 =0

inwhich u_, is as defined in (xi) through (xiv).

In practical application u < o everywhere includingr =0.—H , =0 Y (ﬁr) —>wasr—0.
Therefore, the finite solution is given by

u(r,9,z,t)= iiiGpsaJ (Br){A, Cos(cpt)+B, Sin(cpt)}{C, Cos(sz) + D, Sin (sz)} x

p=0 s=0 =0
{E, Cos(ad)+F,Sin(ad)}
4 Obtain the solution of the transverse vibration of a thin membrane bounded by a circle of radius a desc-
ribed by the function u (r, S,t) satisfying the wave equation Vu = ¢u satisfying the conditions:
u(a,4,t)=0,u(r,4,0)=f(r,9),u,(r,4,0)=¢(r,9).



Solution.

The initial boundary value problem is represented by
ou 1lou 1 0°u du 1 ¢
—tE—+ = + ==—,
orr ror r?o$ o2 ¢’ at’
u(a,$t)=0, -7<9<7,t>0 (i)

u(r,9,0)=f(r,9),u(r,3,0)=¢(r,9).0<r<a,-r<9<r

Assuming a seperable solution of the form
u(r,8,t)=R(r)O()T () =0 (ii)
and dividing through by u we have
(., 1.,y © 1T
E(R +FRj+r2®:C_2?:_/12 (l“)
T+c?AT =0 (iv)

l(R”+1R’j+ © +1%=0 (v)

R r r’e

i/, 1, e .
E(R +FR)+/12:—'_2® (vi)

E(rZR +IR )+ r’a% =— o =m*>  (vii)

Hence, we have
©"+m’e@=0 (viii)
R"+%R’+[/12—T—22JR:O (ix)
The solutions of (iv) and (viii) are respectively
T(t)= A, Cos(cAt)+B, Sin(cAt) (x)
©(9)=C, Cos(mg)+ D, Sin(mJ) (xi)
Eqn (ix) is the standard Bessel's differential equation withe solution
R(r)=E,J,(r2)+FY,(r4) (xii)
Since solution must remain finite everywhere, we observe that Y, (r1) —>wasr ->0=F, =0
R(r)=E,J,(r4) (xii)
Thus,

u(r,9,)=3, (r2){ A/ Cos(cat)+ B, Sin(cit)}{C, Cos(ms) + D, Sin(md)} ~(xiii)

inwhich A, =AE, and B, =B,E,.



Recall that
u(a,$t)=0; —7<9<7z,t>0
= R(a)0(9)T(t)=0 ie,R(a)=0-0(I)T(t)=0=>u(r,4t)=0 trivially
=J,(4a)=0 (xiv)

This is an eigenvalue problem with infinite solutions.

Thus, suppose 4, (k =1,2,3---) are the positive roots of (xiv) then the general solution becomes

u(r,t) ZZJ (A1 {A Cos(cAt)+B, Sln(cﬂkt)}{ClCos(mg)jtDlSin(mS)} (xv)

k=0 m=0
Axisymmetric solutions.

This is the case where u is independent of 4.
ie,
(r,9,t) ZZJ Ar {A Cos(cAt)+B, Sm(c/lkt)} (xvi)
k=0 m=0
in which 4, are the positive roots of J,(4,r)=0. In view of the boundary condition we have

u(r,4,0) ZAJ (Ar)=f(r) (xvii )

This is Fourier-Bessel series. To obtain the coefficients A," we have

_[rJ (Ar)f(r 2 3o (A7) 3, (Ar)dr

o'—.m

ie,
j'iAl'rJo( )Jo(ﬂkr)dr=jlrJo(ﬁJr)f(r)dr
= Aj'j‘rJO2 irJO(ﬂ,jr)f (r)dr

But erpz(ﬁjr)dr a—;[Jp'Z (zja){l— Z'O;ZJJPZ (zja)] (xviii )

Recall also that J,* (4,a) = J,.,* (4;a)

a 2 2

ie, '([rJOZ (;tjr)drza?\]o'2 (;Lja):a?‘]f (4,)
a 2 a

= Aj'lr‘]o2 (4r)dr = %Jf (42)A = _([rJO (47 )f (r)dr

' 2 .

Aj :mer la)f( )d (XlX)

From the initial condition we have

%J =iCﬂ’kBk!‘]0(ﬂ’kr) (XX)

t=0 k=0




As in the above, we therefore have

ciilk B, Jy (4135 (Ar)dr :TJO (4r)g(r)dr

0 k=0 0

¢/, BJ.'IJO2 (;tjr)dr = J.JO (;tjr)g (r)dr
0 0

j'JO(ijr)g(r)dr
B, = : a

cA; [ 357 (47)dr
0

B, 2 )iJo(ﬂjr)g(r)dr (xxi)

ci;a’d’ (4;a

Therefore, (xvi) is the solution for radially symmetric wave with coefficients defined in (xix) and (xxi).



