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Abstract 

One of the key ideas in mathematical biology is the basic reproduction number, which can be utilized to 

comprehend how a disease epidemic profile might evolve in the future.  The basic reproduction number, 

represented by 0R , is the anticipated number of secondary cases that a typical infectious individual would 

cause in a population that is fully susceptible.  This threshold parameter is highly valuable in 

characterizing mathematical problems related to infectious diseases. If ,10 R this suggests that, on 

average, during the infectious period, an infected individual produces less than one new infected 

individual, suggesting that the infection may eventually be eradicated from the population. On the other 

hand, if ,10 R  every infected person develops an average of multiple new infections, it suggests that the 

disease may continue to spread throughout the population. We discuss the Reproduction number in this 

work and provide some examples, both for straightforward and complicated situations. 

 

1.0   The Basic Reproduction Number 

One of the key ideas in mathematical biology that is used to predict the future of an epidemic is the basic 

reproduction number.  Diekmann O. & Heesterbeck, 2000), (Murray, 2002) state that the basic 

reproduction number, represented by, is the anticipated number of secondary cases that a typical infectious 

individual would cause in a fully susceptible population. This threshold parameter is highly valuable as it 

describes mathematical issues related to the dynamics of infectious diseases. 

mailto:ninuola.wande@futminna.edu.ng
mailto:gweryina.reuben@uam.edu.ng
mailto:nurat.a@futminna.edu.ng
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If ,10 R  this implies that, on average, an infected individual produces less than one new infected 

individual during the infectious period and the infection can be brought under control or totally eliminated 

from the population. Conversely, if ,10 R then each infected individual produces, on average, more than 

one new infection, and the disease persists in the population. For a single infected compartment, 0R  is 

simply the product of the infection rate and the mean duration of the infection. But for complicated models, 

this simple computation of 0R is not applicable and the need for a more robust computation is required 

and will be demonstrated in the second example after giving the analytical framework. We therefore 

compute the basic reproduction number ,0R using the next generation operator approach by (Van de 

Driessche, 2002). The method is described as illustrated next. 

 

1.1    Computation of Basic Reproduction Number  

Suppose that there are a total number of n compartments in the S-I-R model under consideration with  m  

compartments corresponding to the infected classes.  

Let 

( )xFi  = the rate of appearance of new infections in compartment i . 

 ( )xVi

+  = the rate of transfer of individuals into compartment i  by all other means; (inflow).  

( )xVi

−  = the transfer of individuals out of the compartment .i  (outflow) 

The disease transmission model is given by the system of equations 

                
( ) ( ) ( )xVxFxfx iiii −==


                                         (1.1)  

where, 

                        
( ) +− −= iii VxVV                                                     (1.2)  

One other important step is to obtain the disease-free equilibrium point 0x . We then compute matrices F

and V which are mm matrices, where m represents number of the infected classes, defined by 

               

( )















= 0x

x

F
F

j

i                                                            (1.3)  
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and 

              

( )















= 0x

x

V
V

j

i with ,1 i  ,mj                        (1.4)  

and F is non-negative and V is a non-singular M-matrix (a matrix with inverse, belonging to the class of 

positive matrices). Since F is non-negative and V is non-singular, then 1−V is non-negative and also 1−FV

is non-negative. We then compute matrix 1−FV , defined as the next generation matrix (Diekmann O. & 

Heesterbeck, 2000).  

The basic reproduction number (reproduction ratio) 0R is then defined as 

                             ( )1

0

−= FVR                                     (1.5)  

where  

( )A  = the spectral radius of matrix A , (or the maximum modulus of the eigenvalues of A ). 

The following steps are followed in computing the basic reproduction number using the next generation 

operator approach: 

1. Identify classes for which: 

(i) An infection event increases this class (gain/inflow terms). 

(ii) Loss from this class means of current or future infection (loss/outflow terms) 

2. Compute the disease-free equilibrium 

3. List the gain and loss terms for each class. 

4. Create a matrix ( )F of gain terms of each class partially differentiated with respect to each and 

evaluated at the disease-free equilibrium 

5. Create a matrix ( )V of loss terms of each class partially differentiated with respect to each and 

evaluated at the disease-free equilibrium 

6. Invert matrix V to get 1−V  

7. Evaluate matrix 1−= FVG  

8. 0R is the dominant Eigen-value of .G  
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2.0 Example 1  

Consider the following SIR model 

𝑑𝑆

𝑑𝑡
= 𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆                                                                  (1)

 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝜇 + 𝛾)𝐼                                                                (2) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅                                                                           (3) 

We compute the basic reproduction number for the above model. 

The disease-free equilibrium state for the model is given by ( ) .0,0,,, 0ERIS =







=




 

Gains to class I =        SI                                                           (4) 

Loss from class I =  ( )I +                                                        (5) 

       
( )SIFi =                                                                             (6) 

And so  

              
( )IVi  +=                                                                    (7)                                                                                                                           

Differentiating (6) and (7) partially with respect to I at 0E  

                   








=




F

                 

                                                  (8)                                                                                                                   

                ( ) +=V                                                                      (9)                                                                                                         

                
( )










+
=−



11V                                                                (10) 

The product of (8) and (10) yields                                                                                             
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( ) ( )







+
=









+







=− 11FV                                              (11) 

The basic reproduction number ,0R is therefore given by 

                            ( )



+
=0R                                (12) 

Analysis and interpretation 

The Disease-Free equilibrium DFE is stable if 

                        

𝑅0 =
𝛽𝜋

𝜇(𝜇+𝛾)
< 1                                                    (13) 

i.e if 

𝛽 <
𝜇(𝜇+𝛾)

𝜋
= 𝛽𝑚𝑎𝑥                                     (14) 

Which gives the threshold for the infection rate 𝛽. 

For the effective control of the disease from the population we must have 

𝛽 < 𝛽𝑚𝑎𝑥                                                         (15) 

Otherwise, the disease will persist in the population. 

3.0   Example 2 - Scabby Mouth Disease Model 

3.1  Preamble 

 

Abdurrahman et al. (2021) in their work titled A Mathematical Model of Scabby Mouth Disease 

Incorporating the Quarantine Class obtained the Reproduction Number and analyzed the DFE stability. 

The aspect of the work relating to this application is presented in this section. 

The authors proposed a mathematical model to study the transmission and control of scabby mouth disease 

in sheep, incorporating the vaccinated and quarantine classes.  The Disease-free equilibrium (DFE) was 

obtained and the reproduction number was also computed. The DFE was analyzed for local stability using 

the condition that the DFE is locally stable if 𝑅0 < 1.  

 

3.2   Model Equation Formulation 
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Figure 1: Schematic Diagram 

The governing equations are given as: 

𝑑𝑆

𝑑𝑡
= 𝛽 + 𝜙𝑉 −

𝛼𝑆𝐼

𝑁
− (𝜔 + 𝜇)𝑆                                                                                (16) 

𝑑𝐼

𝑑𝑡
=

𝛼𝑆𝐼

𝑁
− (𝛾 + 𝜌 + 𝜇 + 𝜕)𝐼                                                                                      (17) 

𝑑𝑄

𝑑𝑡
= 𝜌𝐼 − (𝜏 + 𝜇 + 𝜕)𝑄                                                                                         (18) 

𝑑𝑉

𝑑𝑡
= 𝜔𝑆 − (𝜙 + 𝜇)𝑉                                                                                              (19) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 + 𝜏𝑄 − 𝜇𝑅                                                                                                 (20) 

 

Table 3.1: Definition of Variables and Parameters. 

Variables and Parameters 

 

Description 

𝑆 Susceptible class 

𝐼 Infected Class 
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𝑉 Vaccinated Class 

𝑄 Quarantine Class 

𝑅 Recovered Class 

𝛽 Recruitment/Birth Rate 

𝛼 infection rate 

𝜌 Rate at which the infected class is quarantined 

𝜕 death due to complication from infection 

𝜔 Vaccination rate 

𝜙 loss of immunity 

𝜇 natural death rate 

𝛾 recovery rate 

𝜏 treatment rate 

 

Let 

 𝑘1 = (𝜔 + 𝜇), 𝑘2 =(𝛾 + 𝜌 + 𝜇 + 𝜕), 𝑘3 =(𝜏 + 𝜇 + 𝜕), 𝑘4 =(𝜙 + 𝜇) ;                             (21)        

 

3.4   Equilibrium state of the model 

At equilibrium state,   

𝑑𝑆

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑄

𝑑𝑡
=

𝑑𝑉

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0                                                                                   (22) 

Let 

(

 
 

𝑆
𝐼
𝑄
𝑉
𝑅)

 
 
=

(

 
 

𝑆0
∗

𝐼0
∗

𝑄0
∗

𝑉0
∗

𝑅0
∗)

 
 

                                                                                                                (23) 

We have the following equations 

𝛽 + 𝜑𝑉0
∗ −

𝛼𝑆0
∗𝐼0
∗

𝑁0
∗ − 𝑘1𝑆0

∗ = 0                                                                                   (24) 

𝛼𝑆0
∗𝐼0
∗

𝑁0
∗ − 𝑘2𝐼0

∗ = 0                                                                                                     (25) 

𝜌𝐼0
∗ − 𝑘3 𝑄0

∗ =0                                                                                                      (26) 

𝜔𝑆0
∗ − 𝑘4𝑉0

∗ = 0                                                                                                    (27) 

𝛾𝐼0
∗ + 𝜏𝑄0

∗ − 𝜇𝑅0
∗ = 0                                                                                            (28)     
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From equation (25) 

(𝛼𝑆0
∗ − 𝑘2) 𝐼0

∗ =0                                                                                                  (29) 

⇒ 𝐼0
∗ = 0                                                                                                                (30) 

From (24) 

   𝛽 + 𝜙𝑉0
∗ − 𝑘1𝑆0

∗ = 0                                                                                       (31) 

⇒ 𝑉0
∗ =

𝑘1𝑆0
∗−𝛽

𝜙
                                                                                                    (32)   

From equation (27), 

𝑉0
∗ =

𝜔𝑆0
∗

𝑘4
                                                                                                             (33) 

comparing equation (32) and (33), we have  

𝜔𝑆0
∗

𝑘4
=

(𝑘1𝑆0
∗−𝛽)

𝜙
                                                                                                     (34) 

𝑆0
∗ =

𝛽𝑘4

𝑘1𝑘4−𝜔𝜙
                                                                                                      (35) 

Substituting equation (35) into (33), we have 

𝑉0
∗ =

𝜔𝛽

𝑘1𝑘4−𝜔𝜙
                                                                                                      (36) 

Substituting equation (30) into (26), we have 

𝑘3 𝑄0
∗ =0                                                                                                             (37) 

⇒ 𝑄0
∗ =0                                                                           (38)               

substituting equations (30) and (36) into equation (28), 

𝜇𝑅0
∗ = 0                                                                               (39) 

⇒ 𝑅0
∗ = 0                                                                                 (40) 

(

 
 

𝑆0
∗

𝐼0
∗

𝑄0
∗

𝑉0
∗

𝑅0
∗)

 
 
=

(

 
 
 

𝛽𝑘4

𝑘1𝑘4−𝜔𝜙

0
0
𝜔𝛽

𝑘1𝑘4−𝜔𝜙

0 )

 
 
 

                                                                   (41) 
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𝑁0
∗ =

𝛽𝑘5

𝑘1𝑘4−𝜔𝜙
                                                                                                               (42) 

Where 𝑘5 = 𝑘4 +𝜔                                                                                                     (43) 

 

3.5   Computation of the Reproduction Number 𝑹𝟎 

he basic reproduction number is the average number of secondary infections produced when one infective 

is introduced into the host population where everyone is susceptible (Benyah, 2009) 

When𝑅0 < 1 The infection will die out over time while if 𝑅0 > 1  the infection will persist in the 

population.  In this model the reproduction number is given as the largest eigen-value or spectral radius 

of 𝐹𝑉−1 .  Where𝐹𝑖 is the rate of appearance of new infection in compartment 𝑖, 𝑉𝑖is the transfer of 

infection from one compartment 𝑖 to another. 

𝐹𝑉−1 = (
𝑑𝐹𝑖

𝑑𝑥𝑖
) (

𝑑𝑉𝑖

𝑑𝑥𝑖
)
−1

                                                                                               (44)      

𝐹𝑖 = (
𝛼𝑆𝐼

𝑁

𝜌𝐼
)                                     (45) 

At DFE, 

𝐹 = (
𝛼𝑆0

∗

𝑁0
∗ 0

𝜌 0
) = (

𝛼𝑘4

𝑘5
0

𝜌 0
)         (46) 

𝑆0

𝑁0
=

𝑘4

𝑘5
                                                                                        (47) 

                                     

𝑉𝑖 = (
𝑘2𝐼
𝑘3𝑄

)                                                                                         (48) 

𝑉𝑖 = (

𝑑𝑉𝑖

𝑑𝐼
𝑑𝑉𝑖

𝑑𝑄

) = (
𝑘2 0
0 𝑘3

)                                                                        (49) 

|𝑉| = |(
𝑘2 0
0 𝑘3

)| = (𝑘2𝑘3)                                                                     (50) 

𝐴𝑑𝑗𝑉 = (
𝑘3 0
0 𝑘2

)                                                                               (51) 
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𝑉−1 = (

1

𝑘2
0

0
1

𝑘3

)                                                                                    (52) 

      

     𝐹𝑉−1 = (
𝛼𝑘4

𝑘2𝑘5
0

0 0
)                                                                                (53) 

 

|𝐹𝑉−1 − 𝐼𝜆| = 0                                                                                               (54) 

|
𝛼𝑘4

𝑘2𝑘5
− 𝜆 0

0 −𝜆
| = 0                                                           (55) 

−𝜆 (
𝛼𝑘4

𝑘2𝑘5
− 𝜆) = 0                                                                                         (56) 

𝜆1 = 0, 𝜆2 =
𝛼𝑘4

𝑘2𝑘5
                                                                               (57) 

Therefore, the reproduction number  

𝑅0 =
𝛼𝑘4

𝑘2𝑘5
                                          (58)  

 

3.6   Local Stability Analysis of the DFE 

𝐽(𝐸0) = (𝑆0
∗ 𝐼0
∗ 𝑄0

∗ 𝑉0
∗ 𝑅0

∗)                                                  (59) 

𝐽(𝐸0) =

(

 
 

−𝛼𝐼 − 𝑘1 −𝛼𝑆 0 𝜙 0
𝛼𝐼 𝛼𝑆 − 𝑘2 0 0 0
0 𝜌 −𝑘3 0 0
𝜔 0 0 −𝑘4 0
0 𝛾 𝜏 0 −𝜇)

 
 

                                  (60) 

Substituting (39) into (54) we have that 

(

 
 
 
 

−𝑘1 −
𝛼𝛽𝑘4

𝑘1𝑘4−𝜔𝜙
0 𝜙 0

0
𝛼𝛽𝑘4

𝑘1𝑘4−𝜔𝜙
− 𝑘2 0 0 0

0 𝜌 −𝑘3 0 0
𝜔 0 0 −𝑘4 0
0 𝛾 𝜏 0 −𝜇)

 
 
 
 

                                         (61) 
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(

 
 
 
 
 
 
−𝑘1 − 4

1 4

k

k k



−
0 𝜙 0

0 4

1 4

k

k k



−
− 𝑘2 0 0 0

0 𝜌 −𝑘3 0 0
𝜔 0 0 −𝑘4 0
0 𝛾 𝜏 0 −𝜇)

 
 
 
 
 
 

      (62) 

|

|

−𝑘1 −
𝛼𝑘4(𝑘1−𝛽)

𝜔𝜙
0 𝜙 0

0
𝑘2𝜙𝜔+𝛼𝑘4(𝑘1−𝛽)

𝜔𝜙
0 0 0

0 0 −𝑘3 0 0

0 0 0
𝜙𝜔−𝑘1𝑘4

𝑘1
0

0 0 0 0 −𝜇

|

|

                                       (63)       

(

 
 
 
 

−𝑘1 − 𝜆1 −
𝛼𝑘4(𝑘1−𝛽)

𝜔𝜙
0 𝜙 0

0
𝑘2𝜙𝜔+𝛼𝑘4(𝑘1−𝛽)

𝜔𝜙
− 𝜆2 0 0 0

0 0 −𝑘3 − 𝜆3 0 0

0 0 0
𝜙𝜔−𝑘1𝑘4

𝑘1
− 𝜆4 0

0 0 0 0 −𝜇 − 𝜆5)

 
 
 
 

                    (64)                                                                  

(

 
 
 
 

𝜆1 = −𝑘1

𝜆2 =
−𝑘2𝜙𝜔+𝛼𝑘4(𝑘1−𝛽)

𝜔𝜙

𝜆3 = −𝑘3

𝜆4 =
𝜙𝜔−𝑘1𝑘4

𝑘1

𝜆5 = −𝜇 )

 
 
 
 

                                                                                                    (65) 

For the Disease-Free state to be achieved 𝜆2 and 𝜆4have to be negative.  For 𝜆2to be negative we have that 

−𝑘2𝜙𝜔 + 𝛼𝑘4(𝑘1 − 𝛽) < 0                                                                                            (66) 

⇒ 𝛼𝑘4(𝑘1 − 𝛽) < 𝑘2𝜙𝜔                                                                                                  (67) 

𝛼𝑘4(𝑘1−𝛽)

𝑘2𝜙𝜔
< 1                                                                                                                    (68) 

Comparing (58) to (68) 

⇒ 𝑅0 < 1which implies that the disease will die out if this inequality holds. 

On the other hand, 𝜆4 < 0 implies that 
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⇒ 𝜙𝜔 < 𝑘1𝑘4                                                                                                                  (69) 

⇒ 𝜙𝜔 < (𝜔 + 𝜇)(𝜙 + 𝜇)                                                                                                (70)    

⇒ 𝜙𝜔 < 𝜙𝜔 + 𝜔𝜇 + 𝜇𝜙 + 𝜇2                                                                                        (71) 

 ⇒ −𝜔𝜇 < 𝜇𝜙 + 𝜇2                                                                                                          (72) 

𝜔 > −(𝜙 + 𝜇)                                                                                                             (73) 

 

3.7   Conclusion 

The DFE is locally stable if 𝑅0 =
𝛼𝑘4

𝑘2𝑘5
< 1 which implies that 

𝛼 <
𝑘2𝑘5

𝑘4
<

(𝛾+𝜌+𝜇+𝜕)(𝜙+𝜇+𝜔)

(𝜙+𝜇) 
= 𝛼𝑚𝑎𝑥                                                                       (74) 

Hence, the infection rate should not exceed 𝛼𝑚𝑎𝑥  in order to effectively control the disease. 

 

4.0   Example 3 - A TB model  

Ashezual et al. (2017), in their work titled A Mathematical Model of Scabby Mouth Disease Incorporating 

the Quarantine Class obtained the Reproduction Number and analyzed of the DFE stability. 

















−−=

+++−++=

−+−−=

−−−−=

RRI
dt

dR

RIdLSk
dt

dI

LLSk
dt

dL

SSkSk
dt

dS









4

432

31

21

)()(

)()1(

)1(

                                                (75) 

With,
                  N

I
c =                                                                                           (76) 

( )tS   Number of susceptible individuals at time t 

( )tL   Number of exposed individuals at time t 
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( )tI   Number of infected individuals at time t 

( )tR  Number of recovered individuals at time t 

The disease-free equilibrium state for the model is given by 

 ( ) .0,0,0,,,, 0ERILS =







=




                                                                      (77) 

This represents the state in which there is no TB infection and is known as the disease-free equilibrium 

point. 

 

                         

( )






















−

=

0

0

1

2

1

S
N

I
ck

S
N

I
ck

Fi




                                                              (78) 

 and 

                      





















++−

++−+−

+++−+−

++

=

RRI

SSkSk

IdRL

LL

Vi









4

21

43

3

)1(

)()(

)(

                                   (79)                                         

We then obtain the partial derivatives of (78) and (79) with respect to ( )IL,  and by substituting the disease-

free equilibrium point 0E  we get a 22 matrix since there are two infectious classes. 

           

( )


















−

=

N

S
ck

N

S
ck

F





2

1

0

10
                                                                            (80)                                                                                           

and 
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( )
( )










++−

+
=

d
V



 0
                                                                        (81)                                                                               

Taking the inverse of (81) gives: 

            

( )

( )( ) ( )

















+++++

+
=−

dd

V






1

0
1

1
                                                           (82)                                                      

By computing the product of (80) and (82), we obtain 

                  

( )
( )( )

( )
( )

( )( ) ( ) 

















+++++

++

−

+++

−

=−

d

ck

d

ck
d

ck

d

ck

FV
















22

11

1

11

                                                 (83)                                                            

From (83), we calculate the eigenvalues to determine the basic reproduction number, 0R by taking the 

spectral radius (dominant eigenvalue) of the matrix .1−FV This is computed by ,0=− IJ  hence the 

matrix becomes 

           

( )
( )( )

( )
( )

( )( ) ( )

0

11

22

11

=

−
+++++

++

−
−

+++

−


















d

ck

d

ck
d

ck

d

ck

                                                 (84)                                                 

From (84), we obtain two eigenvalues,
1 and

2 which are given by 

           

( ) ( ) 
( )( )d

kkc

+++

−++
=






112
1                                                                    (85)                                                                          

and 

                          02 =                                                                                       (86)                                                                                                              

Clearly,
1 is the dominant eigenvalue and therefore becomes the effective reproduction number esR for the 

model. This is called the effective reproduction number because of the control parameters contained in the 

dominant eigenvalue. 
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5.0 Example 4 Vector-Host Model  

In their research, Akinwande (2017) described the relationship between a population of humans and 

mosquitoes, with the human population represented as hhh SIS →→ and the mosquito dynamics 

represented in mm IS → a model where  hS denotes susceptible humans, hI is the human population that is 

infected, and 
MS stands for both susceptible mosquitoes and MI  infected mosquitoes. 

According to such a model, the mode of transmission occurs in each population in two stages: 

Humans become infected ( )hI  when they come into contact (i.e. h , biting rate) with mosquitoes carrying 

the infection, which then spreads to other susceptible humans ( )hS .  When a susceptible mosquito ( )mS  

bites a human who is infected, it can spread the virus to other mosquitoes.  Infected humans move into the 

removed compartment at a rate and the removed compartment move to the susceptible compartment at 

a rate r .  Additionally, we take into account that while infected humans die at a rate  , mosquitoes and 

humans also have constant natural death rates hw and mw . Human and mosquito birth rates are hb and mb

, respectively. 

hhmhhhhh SwISrRbS −−+=
•

                                                                               (87) 

( ) hhmhhh IwISI  ++−=
•

                                                                                 (88) 

( ) hhhh RrwIR +−=
•

                                                                                            (89) 

while that for mosquitoes is 

mmhmmmm SwISbS −−=
•

                                                                                     (90) 

mmhmmm IwISI −=
•

                                                                                             (91) 

with  

hhhh RIST ++=                                                                                                (92) 

mmm IST +=                                                                                                      (93) 
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The disease-free equilibrium state of the system (87) - (91) is: 











= 0,,0,0,0

m

m

h

h

w

b

w

b
x                                                                                          (94) 

The Jacobian for system (87) - (91) for new infections and transfer from one compartment to another is 

provided by the next generation method as follows: 























=

hmm

mhh

i

IS

IS

F





0
0

0

                                                                                                  (95) 

and 

( )

( )























−

−+

++

−−

=

mm

mmm

hhh

hh

hhhh

i

Iw

bSw

IRrw

Iw

rRbSw

V 



                                                                                      (96) 

Taking the partial derivatives with respect to hI and mI , and solving at the disease-free equilibrium 

produces 









=

0

0

m

h
F




                                                                                                    (97) 

and 

( )







 ++
=

m

h

w

w
V

0

0
                                                                                      (98) 

The inverse of (98) yields 
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( )



















++
=−

m

h

w

w
V

1
0

0
1

1 
                                                                                  (99) 

The product of (97) and (99) gives                                     

( ) 

















++

=−

0

0
1







h

m

m

h

w

w
FV                                                                                (100)     

Next, we compute 

01 =−− IFV  as 

( )

0=

−
++

−









h

m

m

h

w

w
                                                                                       (101) 

The evaluation of (101) gives 

( )
02 =

++
−






hm

hm

ww
                                                                                    (102) 

From (102), we obtain the eigenvalues 

( )




++
=

hm

hm

ww
                                                                                      (103) 

From (103) we define our basic reproduction number, 0R  as the spectral radius (dominant eigenvalue) of 

the next generation matrix 
1−FV  since the basic reproduction number cannot be negative. Therefore 

( )



++
+=

hm

hm

ww
R0                                                                                    (104) 

 

Interpretation and Analysis 
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( )



++h

h

w
 represents the average number of newly infected humans that an infected mosquito spreads 

throughout the course of its infectivity from a population of humans that are only susceptible to the virus, 

and 
( ) ++hw

1
is the average amount of time that each infected person spends prior to any kind of 

transfer. Also, 
m

m

w


 represents the quantity of infected mosquitoes that an infected human generates during 

its infectious period from a population of purely susceptible mosquitoes close to the DFE and 
mw

1
 is the 

average number of hours an infectious mosquito stays within the infectious chamber.   The following 

scenarios will be taken into consideration for the system's stability: 

(i) If ( ) 10 ++ Rww hmhm  , hence, the equilibrium is unstable, which implies that if a 

disease is introduced into the human and mosquito populations, it will persist. 

(ii) If ( ) 10 ++ Rww hmhm  , thus there is stability in the equilibrium. In that case, the 

illness might not persist. 

As a result, this provides guidance to the vector control and public health agencies regarding the efforts 

to be made to stop the disease's spread. 

 

6.0   Example 5 - A COVID-19 Pandemic Mathematical Model 

Akinwande et al. (2023) proposed a model on Covid-19 pandemic, the disease Free Equilibrium was 

computed, the effective reproduction number was calculated and the stability analysis of the DFE was 

performed.  Below is the model formulation: 

6.1  Model Formulation 

By dividing the entire human population ( )tN  at time t  nine sub-populations of susceptible ( )tS , first 

dose vaccinated ( )tV1 , second dose vaccinated ( )tV2 , latently infected ( )tL , quarantined ( )tQ , 

asymptomatic infectious ( )tI a , symptomatic infectious ( )tI s , hospitalized (isolated) ( )tP  and removed 

( ).tR a model for the dynamics of COVID-19 transmission within a population in the presence of first and 

second doses of vaccination is fomulated. 

Susceptible individuals are recruited at a constant rate  . The individuals in susceptible class are infected 

through contact with an infected person at the probability 1  and effective contact rate c1 and moved to 

latent class. The individuals in first dose vaccinated class are infected through contact with an infected 
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person at the probability 2  and effective contact rate c2 and moved to latent class. Also, the susceptible 

vaccinated individuals moved to first dose vaccinated class at vaccination rate 
1 . First dose vaccinated 

individuals moved to second dose vaccinated class at vaccination rate 2  after getting second dose of 

vaccine. First dose vaccinated individuals moved to susceptible class at waning rate  . Second dose 

vaccinated individuals moved to removed class at progression rate 3 . People in latent class move to 

quarantine class and infected class at the quarantine rate   and progression rate   respectively.  Some 

individuals in latent class recovered from the disease through natural immune and move to removed class 

at the recovery rate 1 . The individual in quarantine class move to isolation class and removed class at the 

isolation rate 1  and recovery rate 2  respectively.  The individuals in infected classes move to isolation 

class at the isolation rates 2  and 3 . Those in isolation class are moved to the removed class at the 

recovery rate 3 . Those in symptomatic infectious class and hospitalized (isolated) class can die due to 

COVID - 19 at disease-induced death rate 1  and 2 respectively. Those in symptomatic infectious class 

have reduced infectiousness compared to asymptomatic infectious class at the rates  . 

The formulation of our model is guided by the following assumptions: 

1. Individual in first dose vaccinated class can reverse back to susceptible class as a result of the waning 

of the vaccine.  

2. There is permanent immunity after recovery.  

3.  While all infected classes are contagious, both hospitalized (isolated) and quarantined individuals have 

negligible contact rates and are therefore thought to be non-infectious under ideal (normal) conditions. 

4.  The risk of infection is further decreased with the second dosage. 

5. Every individual has equal chance of contracting the disease. 

The above description leads to the flow diagram in Figure 6.1.  
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Figure 6.1: Flow diagram of COVID-19 dynamics  

 

Using these definitions, assumptions and Figure 6.1 we arrive at the following non-linear system of 

equations that model the transmission dynamics and control of COVID-19 pandemic in a homogeneously 

mixing population: 

( )SSV
dt

dS
 +−−+= 111                                                                              (105) 

( ) 12121
1 VVS

dt

dV
 ++−−=                                                                           (106) 

( ) 2312
2 VV

dt

dV
 +−=                                                                                            (107) 

( )LVS
dt

dL
 +++−+= 1121                                                                            (108) 
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( )QL
dt

dQ
 ++−= 21                                                                                             (109) 

( ) ( ) a

a IL
dt

dI
 ++−−= 21                                                                                     (110) 

( ) sa

s IIL
dt

dI
 ++−+= 13

                                                                                     (111) 

( )PIIQ
dt

dP
sa  ++−++= 23321                                                                             (112) 

RPQLV
dt

dR
 −+++= 32123                                                                                   (113) 

With initial conditions: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 00

00002021010

0,0

,0,0,0,0,0,0,0

RRPP

IIIIQQLLVVVVSS ssaa

==

=======
     (114) 

Movement out of the susceptible class, S  into latently infected class, L  occurs at a rate  

( )( )
N

IIc sa 


+−
=

11

1
                                                                                                     (115) 

Movement out of the first dose vaccinated class, 1V  into latently infected class, L  occurs at a rate  

( )( )
N

IIc sa 


+−
=

12

2
                                                                                                   (116) 

where,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tRtPtItItQtLtVtVtStN sa ++++++++= 21                                       (117) 

 

The parameters and variables of the model indicated in Figure 6.1 are defined in Tables 6.1 and 6.2. 
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Table 6.1: Description of Variables  

S/N Variable Description 

1 S  Susceptible class.  

2 V1 First Dose Vaccinated class 

3 V2 Second Dose Vaccinated class 

4 L  Latent class   

5 Q  Quarantined class 

6 
aI  Asymptomatic Infectious class 

7 
sI  Symptomatic Infectious class. 

8 P  Hospitalized (Isolated) class 

9 R  Removed class 

10 N  Total Population 

 

Table 6.2: Description of Parameters  

S/N Parameters Description 

1   Constant recruitment into the population via 

birth or immigration  

2 ρ1 First Dose Vaccination rate 

3 ρ 2 Second Dose Vaccination rate 

4 ρ 3 Progression rate from 2V  to R  

5   Waning rate of first dose 

6   Natural death rate 

7 
1  The disease-induced death rate of aI . 

8 
2  The disease-induced death rate of P . 

9 
1  Covid-19 transmission probability per contact 

from S. 

10  2  Covid-19 transmission probability per contact 

from V1. 

11 c  Average contact rate, and thus c = is the 

effective contact rate in the absence of any 

control measure. 

12   Efficacy of public enlightenment 

13   Rate of compliance to public enlightenment. 

14 
1  Rate of hospitalization of L . 
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15 
2  Rate of hospitalization of aI . 

16 
3  Rate of hospitalization of sI . 

17   Rate of quarantine L to Q 

18   Modification parameter associated with 

reduced infectiousness of sI  compared to aI . 

19   Progression rate of disease from L to aI and sI  

20   Proportion of L that goes to sI . 

21 
1  Self- immune recovery of the L individuals 

22 
2  Self- immune recovery of the Q individuals 

23 
3  Recovery of P individuals due to treatment 

24 
 Progression Rate from aI  to sI   

 

6.2 Disease Free Equilibrium (DFE) 

The disease-free equilibrium of model system (105) – (116) is obtained by setting 

021 =========
dt

dR

dt

dP

dt

dI

dt

dI

dt

dQ

dt

dL

dt

dV

dt

dV

dt

dS sa ,                                                (118) 

and in the absence of disease, 0===== PIIQL sa  and further simplification gives:   𝐷𝐹𝐸(𝐸0) =

(𝑆0, 𝑉1
0, 𝑉2

0, 𝐿0, 𝑄0, 𝐼𝑎
0, 𝐼𝑠

0, 𝑃0, 𝑅0) = 

(
𝛬𝑘2

𝑘1𝑘2−𝜌1𝜔
,

𝛬𝜌1

𝑘1𝑘2−𝜌1𝜔
,

𝛬𝜌1𝜌2

𝑘3(𝑘1𝑘2−𝜌1𝜔)
, 0,0,0,0,0,

𝛬𝜌1𝜌2𝜌3

𝜇𝑘3(𝑘1𝑘2−𝜌1𝜔)
)           (119) 

where, 

 +=++=+= 332211 ,, kkk  

6.3   Computation of the Basic Reproduction Number, 0   

Since the infection components in this model are sa IIQL ,,,  and P , then from (105) –(116)  

 

( )( )( )























 ++−

=

0

0

0

0

1 121

N

VSIIc

F

sa

i



                                                                   (120) 
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Partial differentiation of iF  with respect to sa IIQL ,,,  and P  gives the new infection matrix 

( )( ) ( ) ( )























 +−+−

=
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00000

00000

00000

0
11
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0

0
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0

1

0

0

12

0

1

N

VSc

N

VSc

F



                              (121) 

On the other hand, 

( )
( )

( ) ( )
( )

( ) 













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



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+++−−

+++−−

+++−

+++

=

PIIQ

IIL

IL

QL

L

V

sa

sa

ai











23321

13

2

21

1

1                                                                  (122) 

Partial differentiation of iV  with respect to sa IIQL ,,,  and P gives the transition matrix 

  ( )

















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k

k
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k
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V
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                                                                         (123) 

It follows that 



































−

−

−=−
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10986
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0
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0

00
1

0

000
1

0000
1

k
AAAA

k
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k
A

k
A

k

V                                                                                    (124) 

It follows that the next generation matrix is given by 
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












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
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=−
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1

k
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k
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FV                                                                 (125) 

Where, 

( )( ) ( ) ( ) ( )

( ) ( )
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The spectral radius for 1−FV  gives the effective reproduction number (basic reproduction number with 

controls) denoted by c

0  which is given by 

( ) ( ) ( )( )( )( )

( ) ( ) ( )( )( )( )
( )( )2112764

122167

0

764

0

12

0

167

52410

111

111







++

++−+−−

=
++−+−−

=−−=

kkkk

kkkc

Nkkk

VSkkc
AAAAc

          (126)  

which provides a measurement for the disease risk during COVID-19 transmission.  

 

6.4   Local Asymptotic Stability of DFE 

Theorem 4: The DFE, 0E  of the model equations (105) – (116) is locally asymptotically stable if 0R .  

Proof: The stability of 0E  is established from the roots of the characteristic polynomial, which says that 

the equilibrium is stable if the roots of the characteristic polynomial are all negative. The Jacobian Matrix 

of equations (105) to (116) is given as: 
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( )

1 2
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   (127) 

At DFE (127) becomes, 
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        (128) 

Applying elementary row operation on (128) gives 
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                            (129) 

where, 
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The characteristic equation of (130) is given as 
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( )( )( )( )( )( )( )( )( )1 9 3 4 5 14 15 8 0k B k k k B B k         − − − − − − − − − − − − − − − − =         (132) 

1 1 2 9 3 3 4 4 5 5 6 14 7 15 8 8 9, , , , , , , ,k B k k k B B k         = − = = − = − = − = − = = − = −       (133) 

It is observed from equation (133) that for the DFE to be stable  2  and 7 must be less than zero ( 2 0   

and 7 0  ) ;  

This implies that,  
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From equation (134) the DFE will be stable if 2
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Divide (135.5.28) 4 6 7k k k  gives 

( ) ( )8 6 8 7 7

4 6 7

1 1
1

B k B k B

k k k

    − + + −
                                                                 (136) 

 

The Left Hand Side of (134) is equivalent to the Right Hand Side of (127). Hence,  

0 1R                                                                                                                                (137) 

Therefore, the DFE is locally asymptotically stable if 2
1

2

k

k


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


−
 and 0 1R  . 

7.0   Concluding Remarks 

We have presented a discourse on the methods of computation of  basic reproduction number which is 

one of the fundamental concepts in mathematical biology that is used to analyze the stability of Disease 

Free Equilibrium state. The note will be of great assistance to researchers in epidemiological modelling. 
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