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Abstract

This paper transformed the model equations of casson fluid flow with Arrhenious
function over an exponential stretching sheet from non-linear partial differential
equations (PDE) to ordinary differential equations (ODE) using suitable similarity
transformation. The transformed equations were solved using iteration
perturbation method. The graphical illustrations were provided and it was
observed that velocity profile decreases with increase in casson, magnetic,
permeability and porosity parameters while increase in ratio parameter, thermal
and solutal grashof numbers enhance the velocity profiles, Soret number increse the
concentration profile while chemical reaction parameter, activation energy
parameter and schmidtl number decrease the concentration profile. Increase in
magnetic parameter, radiative parameter, heat source, dufour number, chemical
reaction and activation energy parameters enhance the temperature profile while
increase in prandtl number decreases the temperature profile.

Keywords: Activation energy, Casson fluid, Chemical reaction, Stretching sheet,
Non-Newtonian,

Introduction

A fluid in which the viscous stresses arising from its flow at every point are
linearly proportional to the rate of change in its deformation over time is called
Newtonian fluid. This means that in a Newtonian fluid, the relationship between
the shear stress and the shear rate are linear with the proportionality constant
referred to as the coefficient of viscosity. On the other hand, a fluid whose flow
properties are different in any way from that of the Newtonian fluid is called a

-Newtonian fluid. Casson fluid is classified as a non- Newtonian luid d
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source/sink placed within the flow to allow for heat generation or absorption
effects.

The rheological equation of state for an isotropic flow of casson fluid as stated by
(Pushpalata et al. 2017) can be expressed as:
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In the above equation i"iand ¥denotes the \*// components of the

formation rate, 77 is the product of the deformation rate itself, 4 is the critical
of this product based on the non-Newtonian fluid model, #s is the plasti
mic viscosity of the non-Newtonian fluid and P:is the yield st
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Subject to the initial and boundary conditions:
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source, 9 is constant, Kr s the thermal diffusivity ratio
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tion where Fis the dimensionless exponent fitted ra

he range ~l<n<l, Eais the activation energy, Kis the Boltzmann
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ko is constant and the radiative heat flux 9:is described by Roseland
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Method of Solution

Using the similarity variables:
n= %eiz,u=erTf’(n),v=erTg(77)T T,+Te * A C=C r OBl
- l A k Ay vy
k. =k, K= =B = BeZL k= Qoe’ Por el g =0
Koe L e i

(8)
The transformed equations together with the boundary conditions are:
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