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Abstract 

In this paper, a k-step, (k=2, 3, 4), Block Hybrid Backward Differentiation Formula for the 
solution of Stiff systems of Ordinary Differential Equation has been formulated through 
continuous collocation approach. 𝑘 off - grid points were incorporated at interpolation in order to 
retain the single function evaluation characteristic, which is peculiar to Backward Differentiation 
Formula. The basic properties of numerical methods were analyzed and the methods were found 
to be consistent with a uniform order 2𝑘, zero stable and as such, convergent. The region of 
absolute stability of the methods were analysed using the general linear method (GLM), plotted 
and found to be stable over a large region. The methods compute the solution of Stiff systems in 
a block by block way by some discrete schemes obtained from the associated continuous scheme 
which are combined and implemented as a set of block formulae. Numerical experiments were 
carried out and the results obtained, in comparison with the exact or analytical solutions and 
some methods found in literatures, show that the methods are efficient and accurate. 

Keywords: Continuous Collocation, Hybrid Block Backward Differentiation Formula, Ordinary 
Differential Equation, Stiff systems, Legendre polynomial. 

1. Introduction 

In the study of vibrations, chemical reactions, and electrical circuits, initial-value problems of 
ordinary differential equation arise in the form, 

 '
1 1 1 2, , , , ny f t y y y   

.      (1) 
. 
. 
 '

1 2, , , ,n n ny f t y y y   

which is usually treated in tandem with an initial condition 

 n no noy x y           (2) 

There exist certain classes of ordinary differential equations to which some numerical methods 
are not applicable. One of such classes is stiff system of ordinary differential equations.Stiff 
systems are characterized by the presence of transient and steady component. This characteristic 
makes the numerical solution unstable unless the step size is extremely small.Due to this 
restriction placed on the choice of step size, numerical solution of stiff system has been of great 
concern to researchers, most of who were able to come up with various formulations. Cooper 
(1969) and Baraffet al.(1997) described the results given by explicit methods as “consistently 
unsatisfactory” and “don’t do a very good job” respectively. Both of them recommended implicit 
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multistep methods for the problem. Baraffet al.(1997) even suggested that where possible, one 
should change one’s formulation of problem to avoid solving stiff ordinary differential equation. 

A number of researchers have developed various implicit methods for the approximation of stiff 
system of ordinary differential equations. Abhulimen and Ukpebor (2018), Akinfenwa (2011), 
(2017), Biala (2015), Mehrkanoon et al., (2009), Ngwane and Jator (2012) and Chollom et al., 
(2014). 

While Curtiss and Hirschfelder (1952) pioneered the use of Backward Differentiation Formula 
for the solution of stiff differential equation due to the restriction that A-stability puts on the 
choice of suitable methods for stiff systems, several successful efforts have been made by 
various researchers, Akinfenwa et al., (2011), (2013), Babangida et al., (2016), Bakari et al., 
(2018), Ehigie et al., (2013) and Nwachukwu and Okor (2018) in formulating various BDF 
based methods, including its higher derivatives, for its approximation. 

Hybrid methods are obtained by incorporating off-grid (off-step) points in the derivation process 
in order to overcome Dahlquist Barrier theorem. (The order of LMM cannot exceed 𝑘 +  1 if 𝑘 
is odd or 𝑘 + 2 if is even). A 𝑘 – Step continuous hybrid formula Special mention was made of 
hybrid methods in Akinfenwa et al (2011). They are obtained by incorporating off-grid (off-step) 
points in the derivation process in order to overcome Dahlquist Barrier theorem. (The order of 
LMM cannot exceed 𝑘 +  1 if 𝑘 is odd or 𝑘 + 2 if is even). 

A 𝑘–Step continuous hybrid formula is of the type, 

0 0

k k

j n j k n j v n v
j j

y h f h f    
 

           (3) 

see Akinfenwa et al., (2011). Where 𝑘 is the step size, k  =1,  , 0,1 , 1j j k     and  j , are 

unknown constantswhich are to be uniquely determined. Hybrid methods are characterized by 
their high accuracy and extended domain of stability. 

2. Derivation of the Method 

Here, it is assumed that the analytical solution of (1.01) can be approximated by a polynomial of 
the form, 

   
1

0

i c

j j
j

y x p x
 



    (4) 

where  i and c  are respectively, number of interpolation and collocation points, j ′𝑠 are 

coefficient to be determined and  jp x can be any orthogonal polynomial. In this case, Legendre 

polynomial is used which, on inspection, produces exactly the same continuous form as the 
popularly adopted power series.  
Incorporating k off-grid points for every k-step method requires that the following conditions 
must be satisfied: 

 n ny x y   (5) 
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 n j n jy x y  , 
1 1

0, ,1, . . .,
2 2

j k
   
 

            (6)

 n k n kf x f            (7) 

where 𝑓 implies the derivative of 𝑦. 

(5), (6)and (7)result in  i c  system of equations which is solved through matrix inversion 

algorithm. This is with an intention to obtain values for j  such that the continuous form of the 

method can be expressed as;  

     
1

2

0

k

j n j k k
j

y x x y h x f 





          (8) 

 

2.1 2-Step Block Hybrid Backward Differentiation formula with 2 Off-grid Points 
(2SBHBDF). 

To derive a 2-step backward differentiation formula with two off-grid points, the following 
specifications were considered; 2k  , 4i  , 1c   and  2,n nx x x  . This results in a system of 

equations 
Ψ nY D    (9) 

where ( nY y  , 1

2
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 
 
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. 

Using matrix inversion technique with the aid of maple software, the values of 0  , 1

2

  , 1  , 3

2

   

and 2  were obtained  

substituted into  8 and setting nk x x  and evaluating at 2nx x h   resulted in the main 

method 

2 1 1 3 2

2 2

3 16 36 48 6

25 25 25 25 25n n n n
n n

y y y y y hf  
 

       (10) 
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To obtain the additional schemes that combine with the main method to form a block, the first 
derivative of  8 was obtained and evaluated at 1

2
n

x x


 , 1nx x   and 3

2
n

x x


  which produced 

three other discrete schemesgiven as 

3 2 1 1 3

2 2 2

1
9 17 99 279 197

75 n n n
n n n

f hf y y y y
h  

  

 
     

 
 (11) 

1 2 1 1 3

2 2

1
3 14 108 18 76

75n n n n
n n

f hf y y y y
h  

 

 
      

 
 (12) 

1 2 1 1 3

2 2 2

1
13 39 69 17

25 n n n
n n n

f hf y y y y
h  

  

 
     

 
 (13) 

 
2.2 3-Step Block Hybrid Backward Differentiation formula with 3 off-grid points (3SBHBDF) 

In this case,  3k  , 6i  , 1c   and  3,n nx x x  . Evaluating  1.8  at 3nx x h  , the main 

method below was obtained. 

3 1 1 3 2 5 3

2 2 2

10 72 225 400 450 360 30

147 147 147 147 147 147 147n n n n n
n n n

y y y y y y y hf   
  

           (14) 

            
and additional schemes were obtained in order to provide for the available number of unknown 
as 

3 3 1 1 3 2 5

2 2 2 2

1
300 394 2925 9600 18700 26550 14919

4410 n n n n
n n n n

f yhf y y y y y
h   

   

 
      

 
 (15) 

2 3 1 1 3 2 5

2 2 2

1
60 167 1320 4860 12560 6045  2808

4410n n n n n
n n n

f hf y y y y y y
h   

  

 
        

 
 (16) 

3 3 1 1 3 2 5

2 2 2 2

1
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4410 n n n n

n n n n
f hf y y y y y y

h   
   

 
       

     (17) 

1 3 1 1 3 2 5

2 2 2

1
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2205n n n n n
n n n

f hf y y y y y y
h   

  

 
        

 
 (18) 

1 3 1 1 3 2 5

2 2 2 2

1
       12 298 2235 4320 2780 1290  297

882 n n n n
n n n n

f hf y y y y y y  
   

 
       

 
 (19) 

 
2.3 4-Step Block Hybrid Backward Differentiation formula with 4 off-grid point(4SBHBDF) 
In a similar way as in cases of 𝑘 = 2 and 3k   above, setting 4k  , 8i  , 1c   and

 4,n nx x x  , we obtained the block 
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1 4 1 1 3 2 5 3 7

2 2 2 2 2

1
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22830 n n n n n
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    

 
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 
 (20)
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 
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 (21) 

3 4 1 1 3 2 5 3 7

2 2 2 2 2
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 
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 

  (22) 
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 
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 
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1
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 
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    (24) 
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1
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4 1 1 3 2 5 3 7 3
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35 3 20 3920 31 36 4900 1568 0 39 20 224 0 140

761 76 1 2283 761 761 761 761 76 1 76 1n n n n n n
n n n n

y y y y y y y y y hf    
   

         
 (27) 

3.0 Analysisof the Methods 

3.1 Order of accuracy and Error constant 

Following S
¨

u li (2014), let   n jy x  , the solution to  n jy x  be sufficiently differentiable, then 

 n jy x   and  ' n jy x   can be expanded into a Taylor’s series about point nx  to obtain  

       2
0 1 2

1

1n n n nT C y x C hy x C h y x
h

            (28) 

Where  

 
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 

 



 



 


















 

 
 



 

 

        (29) 

Definition 3.21: A Linear multistep method is said to be of order of accuracy p if 

0 1  .  .  . 0pC C C   , 1 0pC   , 1pC   is called The error constants.  

From our calculations, we have that the block methods of step number k  has uniform order 2k  
and the error constants are shown in tables 1, 2 and 3 below. 
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Table 1: Order and Error constants for the proposed 2-
step Block Hybrid Backward Differentiation Formula 

Method Order, P Error constant, 

1pC   

(13) 4 
 

29

320
  

(12) 4 
 

31

160
  

(11) 4 
 

111

320
  

(10) 4 
 

3

40
  

 
 

Table 2: Order and Error constants for the proposed 3-
step Block Hybrid Backward Differentiation Formula 

Method Order, P Error constant, 

1pC   

(19) 6 
 

159

448
  

(18) 6 
 

81

224
  

(17) 6 
 

501

896
  

(16) 6 
 

177

224
  

(15) 6 
 

1035

448
  

(14) 6 
 

15

224
  
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Table 3: Order and Error constants for the proposed 4-
step Block Hybrid Backward Differentiation Formula 

Method Order, P Error constant, 

1pC   

(20) 8 
 

1335

1024
  

(21) 8 
 

12115

1536
  

(22) 8 
 

817

3072
  

(23) 8 
 

277

512
  

(24) 8 
 

12815

3072
  

(25) 8 
 

405

1536
  

(26) 8 
 

12145

1024
  

(27) 8 
 

35

192
  

 
3.2 Consistency 
Definition: A linear multistep method is said to be consistent if the following conditions are 
satisfied. 
i. the order of accuracy 1p  , 

ii. 
0

0
k

j
j




 , 

iii.    1 1   , where  r  and  r  are respectively, first and second characteristic 

polynomials of the methods. 

Conditions i and ii were taken care of in section 3.1 since the order 1p   and 0
0

0
k

j
j

C 


   in 

all cases. 
For the third condition, the first and second characteristic polynomials were obtained and 
evaluated in what follows. 
For all the methods, conditions for consistency are satisfied. Hence, they are consistent with 
uniform order of accuracy , 2 0p k  . 

The summary of order of accuracy, error constants as well as the parameter for measuring 
consistency as obtained above are presented in Tables 4, 5 and 6. 
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Table 4: Parameters for determining consistency of 2-step Block Hybrid Backward 
Differentiation Formula 

Method Order, P  j    ' 1    1  

(13) 4 0 -24 -24 

(12) 4 0 78 78 

(11) 4 0 -66 -66 

(10) 4 0 6 6 

 
 

Table 5: Parameters for determining consistency of 3-step Block Hybrid Backward 
Differentiation Formula 

Method Order, P  j    ' 1    1  

(19) 6 0 -870 -870 

(18) 6 0 2220 2220 

(17) 6 0 -4380 -4380 

(16) 6 0 4470 4470 

(15) 6 0 -4110 -4110 

(14) 6 0 30 30 

 

 

 
 
 

Table 6: Parameters for determining consistency of 4-step Block Hybrid Backward 
Differentiation Formula 

Method Order, P  j    ' 1    1  

(20) 8 0 -23680 -23680 

(21) 8 0 480480 480480 

(22) 8 0 -31920 -31920 

(23) 8 0 80010 80010 

(24) 8 0 -478380 -478380 

(25) 8 0 160860 160860 

(26) 8 0 -152460 -152460 

(27) 8 0 420 420 
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3.3 Zero stability  
The derived Hybrid Backward Differentiation Formula can be written in a block form as follows. 

   1 0
1 1 1A Y A Y hBF              (30)          

whose first characteristics polynomial is given as  

     1 0detR RA A             (31) 

Definition (ZERO STABILITY): The block method (30) is said to be zero stable if no rootof the 
first characteristic polynomial  R  satisfies | | 1, 1,2,3,jR j   and for those roots with 

| | 1,jR   the multiplicity must not exceed 2. 

 
3.3.1    Zero stability of 2-step block hybrid backward differentiation formula with 2 off grid 
points. 
Expressing methods (10), (11), (12) and (13) in the form (30),          

 1

23 17
1 0

13 39
38

6 1 0
9
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 
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1
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3
7

0 0 0
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17
0 0 0

197
3

0 0 0
25

A

  
 
  

  
 
 
 
 
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 and

25 1
0 0

39 39
25 1

0 0
6 6

75 9
0 0

197 197
6

0 0 0
25

B

  
 
 
 

  
 
 
 
 
 

 

 

   31000
1 0

2561
R R R             

 0, 0, 0,1 R  . 

The method is zero stable since it satisfies | | 1jR  . 

 
3.3.2 Zero stability of 3-step Block Hybrid Backward Differentiation Formula with 3 off grid 
points. 
Expressing methods (14), (15), (16), (17), (18) and (19) in the form (30),          



ICCDMS 2021 – Book of Proceeding 

151 
 

(1)

288 556 86 99
1 0

149 447 149 745
30 284 33 34

1 0
41 123 123 205

279 171 1233 963
1 0

80 10 80 400
88 324 2512 72

1 0
403 403 1209 155

975 3200 18700 8850
1 0

4973 4973 14919 4973
24 75 400 150 120

1
49 49 147 49 497

A

   
 
   
 
  
 
 



 


  

 











, (0)

2
0 0 0 0 0

15
38

0 0 0 0 0
615
157

0 0 0 0 0
400
167

0 0 0 0 0
6045
394

0 0 0 0 0
14919

10
0 0 0 0 0

147

A

  
 
 
 
 
 
   
 
 
 
 
 
 

 
 

 and 

 

294 4
0 0 0 0

745 745
147 1

0 0 0 0
164 164

441 3
0 0 0 0

40 40
294 4

0 0 0 0
403 403

1470 100
0 0 0 0

4973 4973
10

0 0 0 0 0
49

B

  
 
   
 
 
   
 
 
 

 
 
 
 
 

 

    5134481277728
1 0

12243162971
R R R      

     0, 0, 0, 0, 0,1 R   

The method is zero stable having it satisfied  | | 1jR  . 

 
3.3.3 Zero stability of 4-step block hybrid backward differentiation formula with 4 off grid 
points 
Expressing methods (20), (21), (22), (23), (24), (25) (26) and (27) in the form of (30), 
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22630 7450 18275 10615 1322 5210
10341 3447 10341 10341 3447 72387

39480 270600 165975 85720 30045 37992
128731 128731 128731 128731 128731 901117

4622 747 4342 1354 537222
1325 3975 265 3975 3975 9275

904 3706 248
525 525

1 0

1 0

1 0

  
  

  
  17704 1382 4408

7 525 175 3675

5235 24230 71850 176475 64290 51690
67241 67241 67241 67241 67241 470687

984 12815 33800 20775 96920 24840
15859 47577 47577 15859 67241 111013

70070 292334 241325 118947
626709 626709 208903

1 0

1 0

1 0


  

  
  5 1393070 441490

626709 626709 208903

320 3920 3136 4900 15680 3920 2240
761 2283 761 761 2283 761 761

1 0

1

 
 
 
 
 
 
 
 
 
       

 

 0

5
0 0 0 0 0 0 0

63
17385

0 0 0 0 0 0 0
901117

391
0 0 0 0 0 0 0

27825
199

0 0 0 0 0 0 0
1225

3687
0 0 0 0 0 0 0

470687
2165

0 0 0 0 0 0 0
333903
2515

0 0 0 0 0 0 0
208903

35
0 0 0 0 0 0 0

761

A

  
 
 
 
 
 
 
 
 
   
 
 
 

 
 
 
 
 
  
 

 

7610 50
24129 24129

68490 150
128731 128731

1522 2
1325 1325

761 1
35 35

68490 150
67241 67241

7610 50
15859 15859

53270 2450
208903 208903

140
761

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

B

 
   
 
 
   
 

 
  
 




 

    714319913469916750225408000
1 0

582119873111524796345333
R R R      

 0, 0, 0, 0, 0, 0, 0,1 R  .  
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Having satisfied  | | 1jR  , the method is zero stable. 

3.4   Convergence 

Here, the convergence of the hybrid backward differentiation formula developed, is considered 
in agreement with the fundamental theorem of Dahlquist which states that, “The necessary and 
sufficient condition for LMM to be convergent is for it to be consistent and zero stable”. (see 
Henrici, 1962). Following this theorem, the methods developed are convergent having satisfied 
the necessary and sufficient conditions of consistency and zero stability. 

 
3.5 Region of Absolute Stability of the Method 

Definition: The stability domain, otherwise known as stability region, of a numerical method is 

the set   : 1S z C R z    

The region of absolute stability is obtained using the general linear method (GLM), which is 
described as generalization of Runge-Kutta (multistage) methods and linear multistep (multi-
value) methods. 

The derived methods are written in the form 

 
1 1i i

Y A U hf Y

y B V y 

    
     
    

         (32)          

Where

11 1

1

. . .

. . .

. . .

. . .

. . .

s

s ss

a a

A

a a

 
 
 
 
 
 
  

, 

11 1

1

. . .

. . .

. . .

. . .

. . .

s

s ss

b b

B

b b

 
 
 
 
 
 
  

 , 

1

2

.

.

.

n

n

n k

y

y

Y

y





 
 
 
 
 
 
 
 
 
 

and 1

1

.

.

.

.

n k

n

n k

y

y

y





 

 
 
 
 

  
 
 
 
  

  

Definition: For a general linear method (A, B, U, V), stability matrix  M z  I defined by 

    1
M z V zB I zA U


            (33) 

and the characteristic polynomial is given by  

𝜑(𝜇, 𝑧) = det [𝜇𝐼 − 𝑀(𝑧)]    (34) 

Definition: A general linear method (A, B, U, V), is said to be A-stable if for all z C , I zA  
is non-singular and  M z  is the stability polynomial. 

Definition: A general linear method (A, B, U, V), is said to be L-stable if it is A-stable and 

   0M    or the stronger condition,   0M   . 

To obtain and plot region of absolute stability (also known as domain of absolute stability)  
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Elements of the matrices A, B, U and V were obtained from interpolation and collocation points 
and then substituted into the stability matrix (33) and the stability function (34). 

3.5.1 Region of Absolute Stability for 2-step Hybrid Backward Differentiation Formula  

The method, in block form, has coefficients 

25 23 1
39 13 3

25 7
6 9

75 9 17
197 197 197

6 36 3
25 25 25

6 36 3
25 25 25

25 71
6 6 9

0 0 0 0 0 | 0 1

0 0 0 0 |

0 0 0 0 | 0

0 0 0 | 0

0 0 0 0 |

|

0 0 0 0 |

0 0 0 | 0

 
   
 
  
  
 
                       
  
 

   

 

With stability polynomial, 

  2 2 2 21
, 450 60857 1767 450 2775 298 504

3
z z z z z                 (35) 

 
The plot of region of absolute stability is shown in figure (3.1) where it is found that the method 
is stiffly stable with stiffness criteria, 0.43D  . 

 
Figure 1: Region of Absolute Stability of 2-Step Hybrid Backward Differentiation Formula 

 

3.5.2 Region of Absolute Stability for 3-step Block Hybrid Backward Differentiation Formula 

The method, in block form, has coefficients  
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294 288 864 2
745 745 149 149 15

147 33 381
164 164 123 615

3 177 1233 157441
40 40 10 80 400

294 324 1674
403 403 403 6045

100 3200 8850 3941470
4973 4973 4973 149194973

10 75 150
49 49 49

0 0 0 0 0 0 | 0 0 1

0 0 0 0 |

0 0 0 0 | 0

0 0 0 0 |

0 0 0 0 | 0

0 0 0 0 |

0 0 0 0 |0

   
 

 


  

 10
147

10 75 150 10
49 49 49 147

294 100 324 167
403 4973 403 6045

147 33 381
164 164 123 615

|

0 0 0 0 0 |

0 0 0 0 | 0

0 0 0 0 | 0

 
 
 
 
 
 
 
 
 
 
 
           
 

 
  
    

 

The stability polynomial was obtained and the plot of region of absolute stability is shown in 
figure 2 where it is found that the methodis stiffly stable with stiffness criteria, 10D   

 
Figure 2: Region of Absolute Stability of 3-Step Hybrid Backward Differentiation Formula 

 
3.2.5.3 Regionof Absolute Stability for 4-step Hybrid Backward Differentiation Formula  

The coefficients of the method, is expressed as  

ቂ
𝐴 𝑈
𝐵 𝑉

ቃ  
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Where

7610 50
24129 24129

68490 150
128731 128731

1522 2
1325 1325

761 1
35 35

68490 150
67241 67241

7610 50
15859 15859

53270 2450
208903 208903

140
761

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

A

 
 
  












 














, 

1322 18275 22630 5
3447 10341 10341 63

30045 165975 17385
128731 128731 901117

1354 747 4622 391
13975 265 3975 27825

1382 4706 199
175 525 1225

64290 176475 24230 3687
67241 67241 67241 470687

20775 12815 216
15859 47577

0 0 0 0

0

0

0

U


  

 



   5

333039

441490 1189475 292334 2515
208903 626709 626709 208903

3920 4900 3920 35
761 761 2283 761

 
 
 
 
 
 
 
 
 
 
 
 
    

, 

 

140
0 0 0 0 0 0 0

761
7610 50

0 0 0 0 0 0
15859 15859

761 1
0 0 0 0 0 0

35 35
68490 150

0 0 0 0 0 0
128731 128731

B

 
 
 
 
 

  
 
 
 
  
 

 

 and 

3920 4900 3920 35

2283 761 2283 761
20775 12815 2165

0
15859 47577 333039

297 4706 199
0

197 525 1225
30045 165975 17385

0
128731 128731 901117

V

     
 
    

  
  
 
 
   
 

 

 
The stability polynomial was obtained and the plot of region of absolute stability is shown in 
Figure.3 below where it is found that the methodis stiffly stable with stiffness criteria, 20D  .              



ICCDMS 2021 – Book of Proceeding 

157 
 

 

 
Figure 3: Region of Absolute Stability of 4-Step Hybrid Backward Differentiation Formula 

 

4. Numerical Experiments 

In this section, the efficiency of the hybrid method formulated in section 2 is tested on some 
problems of stiff system of ordinary differential equations. The self-starting method is 
implemented efficiently by combining the methods as simultaneous numerical integrator for 
IVPs for example, the method (17) - (30) are combined to obtain the initial conditions at 2 , nx 

 2 0n mod   and 0 n N   using computed values  2ny x   over sub-interval  0 2,x x  . 

Problems on Stiff System 

4.1  95y y z   ,      0 1y   

97z y z   ,       0 1z  ,  0,1t ,  0.0625,  0.03125h   

Exact solution:   2 9695 48

47 47
t ty t e e    

     9648 1

47 47
t tz t e e    

This problem was solved in Biala et al. (2015), Ehigie et al. (2013) and Sahiet al. (2012). The 
absolute error in the results obtained with the new method for 0.0625h   and 0.3125h   are 
shown in Figures4.1a and 4.1b while comparison between the proposed method and existing 
methods is shown in Table 4.1. 

4.2  '
1 1 2998 1998y y y  ,  0 1y   

'
2 1 2999 1999y y y   ,  0 1z   
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Exact solution:   1000
1 4 3t ty t e e    

      2 2 3 0,t ty t e e t     ,  0.1h   

This was solved in Akinfenwa et al. (2011) and Ehigie et al. (2013). The absolute error in the 
results obtained with the new method is shown in figure 4.2 while comparison between the 
proposed method and existing methods is shown in Table 4.2. 

 

4.3  1001 1000y y   
Reduced to:    

'y z ,  0 1y   
'' 1000 1001z y z   ,  0 1z   

Exact solution:   10004 3t ty t e e    

      2 3 ,    0,t tz t e e t     ,    0.1h   

This was solved in Abhulimen and Omeike (2011), Abhulimen and Okunuga (2018), Akinfenwa 
et al., (2014) and Ehigie et al., (2013). The absolute error in the results obtained with the new 
method is shown in figure 4.3while comparison between the proposed method and existing 
methods is shown in Table 4.3. 

. 

4.4  ' 2
1 1 21002 1000y y y   ,  1 0 1y   

'
2 1 2 (y y y  1 2y ),  2 0 1y   

Exact solution:   2
1

xy x e  

   2 , 0,1xy x e x  ,  0.02h  . 

This was solved in Akinfenwa et al., (2013). The absolute error in the results obtained with the 
new method is shown in figure 4.4while comparison between the proposed method and existing 
methods is shown in Table 4.4. 
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Figure 4.Absolute Error in the Proposed Methods for Problem 4.1 with 0.0625h  
 
 
 

Figure 5.Absolute Error in the Proposed Methods For Problem4.11 with 0.03125h  
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Table7:        Comparing the Absolute error in the proposed method with existing 

methods found in literature for problem 1. 

H 

Biala et al 
(2015) 

 
 ny  

 nz  

Abhulimen 
and Omeike 

(2011) 
 ny  

 nz  

Abhulimen 
and Ukpebor 

(2018) 
 ny  

 nz  

Ehigie and 
Okunuga 
(2013) 
 ny  

 nz  

Sahi et al 
(2012) 

 
 ny  

 nz  

New 
Method 

 
 ny  

 nz  

0.0625 

 104 10  
 108 10  

 103.2 10  
 102.4 10  

 85.0 10  
 107.0 10  

3 9.4 10  
 93.6 10  

 119 10  
 81 10  

 119.25 10  
 119.56 10  

0.0312
5 

 127 10  
 147 10  

101.2 10 .  
 108.1 10  

 86.0 10  
 101.0 10  

 93.4 10  
 93.5 10  

 124 10  
 124 10  

 137.8 10  
 161.1 10  

 
 

 
Figure 6:  Absolute Error in the Proposed Methods For Problem 2 
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Table 8:   Comparing the Absolute error in the proposed method with existing methods 
found in literature for problem 2. 

Akinfenwa, et al (2011) 
 ny  

 nz  

Ehigie et al (2013) 
 ny  

 nz  

New Method 
 ny  

 nz  

 134.183 10  
 132.092 10  

 134.18 10  
 188.92 10  

 141.36 10  
 156.82 10  

 

 
Figure 7: Absolute Error in the Proposed Methods For Problem3 
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Table 9:        Comparing the Absolute error in the proposed method with existing 
methods found in literature for problem 3. 

H 

Abhulimen and 
Omeike (2011) 

 
 ny  

Abhulimen and 
Okunuga (2018) 

 
 ny  

Akinfenwa et al 
(2014) 

 
 ny  

New Method 
 
 

 ny  

0.1  81.4 10   95.29 10   141.56 10   164.65 10  
 

 
Figure 9: Absolute Error in the Proposed Method For Problem4 

 
 

Table 9:        Comparing the Absolute error in the proposed method with existing 
methods found in literature for problem 4. 

 h  

Akinfenwa et al (2013) 

ny  

nz  

New Method 

ny  

nz  

0.02 

139.1102 10  
121.2527 10  

212.12 10  
177.89 10  
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5  Conclusion 

In this paper, a continuous ( k -step) Block Hybrid Backward Differentiation Formula of order 
2k  have been developed by the interpolation and collocation techniques with the incorporation 
of k  off-step points at interpolation for the approximation of the solutions of stiff system and 
system of fuzzy of ordinary differential equations. The Legendre polynomial of first kind was 
employed as basis function, which of course, produces exactly the same continuous form as the 
popularly adopted power series on inspection.  

Analysis of basic properties of numerical methods was carried out and findings show that the 
methods are of maximum order 2k  in general and the 2-step block hybrid backward 
differentiation formula is of optimal order. They are consistent, zero-stable and convergent. The 
stability region was plotted using the idea of General Linear Method (GLM). The methods were 
reformulated and stability polynomials were obtained and found to have a moderate region of 
absolute stability. 

The schemes were implemented as block method and therefore have the capacity to generate k
simultaneous solutions at different points in a single application of the methods.  

Four test problems have been considered and compared with existing methods to test the 
efficiency and accuracy of the new methods.  
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