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ABSTRACT 

In this research work, Falkner type method for k=2 with four off-step point were derived for 
numerical solution of second order initial value problems. The idea of collocation and 
interpolation techniques was adopted in the derivation of the schemes. The basic properties of 
numerical methods were analyzed and the methods were found to be consistent, zero stable and 
therefore, convergent. Numerical experiments were carried out on five (5) problems of second 
order initial value problems (IVPs). The results obtained for the proposed methods, in 
comparison with the exact solutions and some existing methods from the literatures show the 
efficiency and reliability of the proposed schemes. 

INTRODUCTION 

Differential equation of the form  

          0 0, , , ,y x f x y x y x y a y y a y            (1) 

where    , , : ,x a b y a b   and  : ,f a b    are sufficiently differentiable functions; is 

usually used to model numerous problems such as chemical kinetics, orbital dynamics, circuit 
and control theory and Newton’s second law of motion. However, in most cases, the differential 
equations so formed for these real life problems often do not have analytical solution. Therefore 
one of the possible ways to tackle this problem is to consider a discrete domain rather a 
continuous one. Hence for practical purposes such as engineering, a numerical approximation to 
the solution is often sufficient. Although it is possible to integrate (1) by reducing it to a first-
order system and applying one of the methods available for such systems, it however, seems 
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natural to employ numerical methods to integrate the problem directly as this result to more 
efficiency of the method (Ramos et al., 2016, Mohammed et al., 2010, Mohammed et al., 2019, 
Badmus and Yahaya, 2009, Awoyemi, 2001). Scholars have proposed numerous numerical 
methods for approximating initial value problems such as (1); these methods range from discrete 
schemes (Lambert, 1973; Butcher, 2008; Fatunla, 1988) to predictor corrector methods 
(Onuman;yiet al., 1994; Fatunla 1994; Awoyemi, and Idowu, 2005; Areo and Adeniyi, 2013; 
Omar and Kuboye, 2015; Ndanusa and Tafida, 2016) and then block methods ((Badmus and 
Yahaya, 2009; Jator and Li, 2012; Mohammed, 2011; Mohammed and Adeniyi, 2014; Badmus, 
et al., 2015; Akinfenwa, et al., 2013; Omar and Adeyeye, 2016; Akinfenwaet al., 2017). 

In this paper, we present the hybrid-block form of the Falkner formulas where generalized 6 off-
step points are considered within 0 2x  in order to increase the number of function 
evaluation.  

Derivation of the Methods 

In this section, we derive some linear multi-step methods in the form 

1
2

1
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n n n j n
j

y y hy h f





            (2)  
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n n j n
j

y y h f





             (3) 

where h is the step-size, ny  and ny  are numerical approximations to the theoretical solution and 

its derivative at the grid point    ; 0,1, 2, 3, ..., , , , ,n n n n n

b a
x a nh n N h f f x y y

N


      and 

j
nf  is the standard notation for the backward differences. 

We then construct the continuous approximation by imposing the following conditions 
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Equation (4) leads to a system of equations and unknowns written in the form 𝐴𝑋 = 𝐵 
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        (5) 

solving (5) by Gaussian elimination method, the coefficients 𝛼௝ can be obtained. Substituting the 

coefficients 𝛼௝ into (2) yields the continuous scheme: 

2
0 0

0

( ) ( ) ( ) ( ) ( )                         
k

n n j j n j v n v
j

Y x x y x hy h x f x f     


 
     

 
   (6)

  

where 𝛼௝(𝑥), 𝛽௝(𝑥)𝑎𝑛𝑑𝛽௩(𝑥)are continuous coefficients. We note that (4) involves first 

derivative, which can be obtained by substituting the coefficients of 𝛼௝ into the first derivative of 

(3) to yield 
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( ) ( ) ( ) ( )                            
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The main and the additional methods can be obtained from (6) and (7). Both methods are called 

Hybrid Falkner-type Block methods (HFBM); 
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To derive a continuous method by considering four off-step points
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specifications are considered 𝑟 = 2, 𝑘 = 2, 𝑠 = 7and the continuous form is given as: 
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Evaluating (8) above at point  𝑥 = 𝑥
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discrete scheme that form the block method
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The following schemes are obtained by differentiating equation (8) and evaluating at point𝑥 =
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Analysis of the method 

In this section, we discuss in general the order and error constants, consistency, zero-stability and 

convergence of the proposed method 

Order and error constants 

Let the linear difference operator L associated with k-step method be defined as 

        2

0

;
k

n j n n vj n
j

L y x h y x jh h y x h f x jvh  


            (21)  

and  

      2

0

;
k

n j n vj n
j

L y x h h y x jvh h hf x jvh 


             (22)  

respectively. Assuming that  ny x  and  ny x are sufficiently differentiable, we can expand the 

terms in (21) and (22) as Taylor series about the point nx  to obtain the expression  

       ( )
0 1; ... ...q q

n n n q nL y x h C y x C hy x C h y x            (23)  

and  

       ( 1)
0 1; ... ...q q

n n n q nL y x h C y x C hy x C h y x             (24) 

 respectively; 

where the constants qC  and qC 0,1,...q   are given as follows 
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The methods (25) and (26) are of order p if 0 1 1 2... 0, 0p p pC C C C C       and 2pC  is the 

error constant and    22
2

pp
p nC h y x
  the principal truncation error at the point nx .  

Zero Stability 
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This is the concept concerning the behavior of a numerical method asℎ → 0, the system of 

equation (7)becomes 
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which can be written in matrix form as 

01
10  



 YAYA           (28) 

Where    Trknnn
T

knnn yyyYyyyY 







 ,,,,,, 1121   , 0A  is the identity matrix of 

dimension k and 1A  is a matrix of dimension K. 

Consistency  

Each of the methods is consistent as they all have order > 1. 

Convergence 

The convergence of the proposed methods, are considered in the light of the basic properties in 

conjunction with the fundamental theorem of Dahlquist (Henrichi 1962) for linear multistep 

methods. We state here the Dahlquist theorem without proof. 
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Theorem 

The necessary and sufficient condition for a multistep method to be convergent is for it to be 

consistent and zero-stable. 

RESULTS AND DISCUSSION 

Numerical Experiments 

In this section, we solve some standard second order initial value problems of ordinary 

differential equations using the proposed Falkner type method in order to demonstrate its 

efficacy. However the implementation is carried as a block (self-starting) method whereby the 

continuous forms of the methods generates the main and additional discrete Falkner formulas to 

produce approximation simultaneously at each step of implementation within the interval of 

integration. Comparisons were made with the exact solutions of the problems considered and 

absolute errors were compared with some other existing methods found in the literature and 

presented in tables. 

For the purpose of comparative analysis, the following notations are adopted.  

FTM: The proposed Falkner Type Method with 
1 3 5 7

, , ,
2 4 4 4

 
 
 

 as off-grid points 

HFBM2,1: 2-step, one off-step hybrid block Falkner-type method by Nicholas (2019) 

HFBM2,2: 2-step, 2 off-step hybrid block Falkner-type method by Nicholas (2019) 

HFBM2,4.: 2-step, one off-grid hybrid block Falkner-type method by Nicholas (2019) 

BFM6: Block Falkner method for k=6 by Ramos et al., (2016) 

Problem 1.  (Source: Ramos et al. (2016))  

Consider the non-linear homogeneous problem given by:  
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     2
, 0 1, 0 0.5

0 1, 0.1

y x y y y

x h

    

  
 

Exact solution:   1 2
1 ln

2 2

x
y x

x

     
 

Table 1: comparison of absolute errors for problem 1 

x  James et al. (2013) 

h=0.1 

BFM6 

h=0.05 

Mohammad and 

Zurni (2017), h=0.05 

HFBM22 

h=0.1 

FTM 

h=0.1 

0.1 1.110*10-15 3.114*10-12 2.220*10-16 2.000*10-12 1.40*10-22 

0.2 5.995*10-15 6.660*10-12 2.220*10-16 3.000*10-12 6.30*10-22 

0.3 2.554*10-14 9.833*10-12 6.661*10-16 6.000*10-12 1.36*10-21 

0.4 7.105*10-14 2.173*10-11 1.110*10-15 9.000*10-11 2.66*10-21 

0.5 1.157*10-13 3.570*10-11 4.440*10-16 1.400*10-11 4.38*10-21 

0.6 1.199*10-13 4.859*10-11 8.881*10-16 2.200*10-11 6.67*10-21 

0.7 6.857*10-13 1.310*10-10 1.554*10-15 3.500*10-12 9.60*10-21 

0.8 3.475*10-12 2.313*10-10 4.440*10-15 5.900*10-11 1.35*10-20 

0.9 1.222*10-11 3.286*10-10 8.660*10-16 1.010*10-10 1.83*10-20 

1.0 7.728*10-11 1.335*10-09 1.266*10-14 - 2.41*10-20 

Table 1 shows the comparison of performance of the proposed method FTM with some existing 

methods for problem 1. It is shown that the FTM yield higher accurate results than the existing 

methods.  

Problem 2.  (Source: Ramos et al. (2016)) 

Consider a linear homogeneous problem given by  
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   , 0 0, 0 1

0 1, 0.01

y y y y

x h

     

  
 

Exact solution:   1 xy x e 
 

 

 

Table 2: comparison of absolute errors for problem 2 

X Kayode and Adeyeye. 

(2013), h=0.1 

BFM6 

h=0.1 

HFBM2,4 

h=0.1 

FTM 

h=0.1 

0.2 8.171*10-07 2.427*10-11 2.000*10-12 1.063*10-14 

0.3 3.103*10-06 4.001*10-11 1.000*10-12 2.272*10-14 

0.4 6.569*10-06 5.746*10-11 1.010*10-12 3.786*10-14 

0.5 1.143*10-05 7.741*10-11 1.400*10-11 6.090*10-14 

0.6 1.796*10-05 9.517*10-11 2.100*10-11 8.853*10-14 

0.7 2.644*10-05 1.221*10-10 3.000*10-12 1.268*10-13 

0.8 3.722*10-05 1.604*10-10 4.000*10-11 1.717*10-13 

0.9 5.067*10-05 2.013*10-10 5.000*10-11 2.307*10-13 

1.0 5.255*10-05 2.466*10-10 - 2.992*10-13 

Table 2 shows the comparison of performance of the proposed method FTM with some existing 

methods for problem 2. It is shown that the FTM yield higher accurate results than the existing 

methods  

Problem 3.  (Source: Adediran and Ogundare,(2015)) 

Consider a highly stiff initial value problem given by  
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   1001 1000 , 0 1, 0 1

0 1, 0.05

y y y y y

x h

       

  
 

Exact solution:   xy x e  

Table 3: comparison of absolute errors for problem 3  

X Adediran and 

Ogundare. (2015) 

Mohammad and Zurni 

(2017) 

FTM 

h=0.1 

0.1 2.050*10-11 1.055*10-14 1.005*10-16 

0.2 4.390*10-11 1.776*10-14 9.642*10-17 

0.3 6.550*10-11 2.342*10-14 4.795*10-16 

0.4 8.380*10-11 2.798*10-14 4.530*10-16 

0.5 9.860*10-10 3.131*10-14 8.329*10-16 

0.6 1.100*10-10 3.397*10-14 7.743*10-16 

0.7 1.190*10-10 3.564*10-14 1.080*10-15 

0.8 1.240*10-10 3.675*10-14 9.960*10-16 

0.9 1.280*10-10 3.730*10-14 1.223*10-15 

1.0 1.300*10-10 3.741*10-14 1.122*10-15 

Table 3 shows the comparison of performance of the proposed method FTM with some existing 

methods for problem 3. It is shown that the FTM yield higher accurate results than the existing 

methods  

Problem 4.  Dynamic Problem (Source: Nicholas,(2019)) 

A 10kg mass is attached to a spring having a constant of 140N/m. The mass is started in motion 

from the equilibrium position with an initial value of 1m/sec in upward direction and with an 
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applied external force    0.5sinF t t . The resulting equation due to air resistance 9y N  is 

given as 

   1
9 14 sin , 0 1, 0 1

2
0 0.1, 0.001

y y y x y y

x h

        

  
 

Exact solution:   2 79 99 9
cos

50 500 500
x xy x e e x    

 

Table 4: comparison of absolute errors for problem 4 

X HFBM2,1 HFBM2,2 HFBM2,4 FTM 

0.01 1.304*10-10 4.500*10-13 1.700*10-13 1.01*10-24 

0.02 3.323*10-10 1.000*10-13 4.000*10-13 3.75*10-24 

0.03 6.448*10-10 6.000*10-13 2.000*10-15 7.86*10-24 

0.04 1.003*10-09 1.500*10-12 7.130*10-13 1.31*10-23 

0.05 1.438*10-09 9.000*10-12 1.000*10-15 1.93*10-23 

0.06 1.899*10-09 1.400*10-12 4.000*10-13 2.62*10-23 

0.07 2.412*10-09 2.001*10-12 1.010*10-12 3.39*10-23 

0.08 2.933*10-09 1.500*10-12 4.000*10-13 4.19*10-23 

0.09 3.489*10-09 1.600*10-12 5.000*10-13 5.02*10-23 

0.10 4.041*10-09 1.400*10-12 3.000*10-13 5.88*10-23 

Table 4 shows the comparison of performance of the proposed method FTM with some existing 

methods for problem 4. It is shown that the FTM yield higher accurate results than the existing 

methods  

Problem 5.  Van Der Pol Oscillator (Source: Mohammed et al.,(2019)) 
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     22 1 0, 0 0, 0 0.5, 0.025, 0 1y y y y y y x             

This problem has no exact solution, our result is however validated using Runge-Kutta (RK45) 

and compared with Mohammed et al., (2019).  

 

Table 5: Results for the Van Der Pol Oscillator Problem with h=0.1 

X RK(5) FTM Mohammed et 

al.(2019) 

1.0 0.431051 0.431431 0.431051 

2.0 0.47631 0.478239 0.476309 

3.0 0.076077 0.0765766 0.076076 

4.0 -0.41546 -0.417868 -0.41546 

5.0 -0.53857 -0.543708 -0.53857 

6.0 -0.16135 -0.163413 -0.16134 

7.0 0.386024 0.390437 0.386025 

8.0 0.595231 0.604590 0.59523 

9.0 0.254655 0.259731 0.254653 

10.0 -0.34157 -0.347672 -0.34157 

Table 5 presents the numerical solutions obtained using the proposed methods for problem 5. It 

is evident from the table that the numerical solutions are in agreement with the Runge-Kutta (R-

K5) solution and Mohammed et al. (2019). 

Conclusion 

In this research work, we solved some standard second order initial value problems of ordinary 

differential equations using the proposed Falkner type method involving four off-step point using 
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Block hybrid method. The order of the developed methods is 7. It is zero stable and 

convergent.The developed methods were used to solve five test problems in Ramos et al. (2016). 

The exact results were compared with result from the source as well as the result from the 

proposed methods. The desirable property of a numerical solution is to behave like the exact 

solution of the problem which can be seen in the tables of the results represented. 
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