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ABSTRACT 

In this paper, the local stabilities of both the Disease Free Equilibrium (DFE) and Endemic Equilibrium 

(EE) were analyzed using the Jacobian matrix stability technique. The global stabilities were analyzed 

using Lyapunov function. The analysis shows that the DFE is locally and globally stable if the basic 

reproduction number 10 R and 10 R respectively. The EE is also locally and globally stable if 

10 R . Vaccination and recovery rates have been shown from the graphical presentation as the 

important parameter that will eradicate measles from the population. 
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1. Introduction 

Measles is a disease which transmits through the coughs and sneezes of an infected person. Contact with 

saliva or nasal discharges is also another way it spread (WHO, 2016). The infection defects the mucous 

layers, at that point spreads all through the body. Measles is an illness that infects only human beings and 

is not known to infect other mammals. It is one of the main sources of death among little children despite 

the fact that a safe and practical immunization is accessible (Atkinson, 2011). There were 134 200 

measles deaths in 2015, all over the world in which around 367 deaths occur every day or 15 deaths every 

day. The death due to measles have decrease 79% from 2000 and 2015 worldwide as a result of 

vaccination. About 20.3 million deaths between 2000-2015 have been prevented by measles vaccination, 

making the vaccine a standout amongst other purchases in public health (WHO, 2016). 

Lyapunov functions are needed apparatus in the stability analysis of dynamical systems, both in theory 

and applications (Korobeinikov, 2004). The general problem of creating a Lyapunov function is a very 

hard problem. There have been several efforts and methods in the literature of how to calculate Lyapunov 

functions for many kinds of systems. Some of them use a mental understanding into the system to have a 

good perception about a candidate for a Lyapunov function; others use more logical means, including 

numerical algorithms. These techniques have emanate from diverse groups in Engineering, Mathematics, 

and Informatics (Giesl  and Hafstei, 2015). 

Abubakar, et al. (2012), formulate the model of Measles dynamics using SIR model and obtained the 

equilibrium points. They carried out the stability analysis of endemic equilibrium using Belman and cook 

theory. Abubakar, et al. (2013), used Hopf;s bifurcation  theory to analyzed the stability of endemic 

equilibrium. In Somma et al., (2015), they modified the existing Maternally-Immune Susceptible Infected 
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Recovered (MSIR) model by incorporating vaccination rate and death rate due to the disease. They 

obtained the Disease Free Equilibrium (DFE) and calculate the Basic Reproduction Number 0R . 

In this paper, we obtain the Endemic Equilibrium (EE) and analyzed the Local and Global stability of 

both DFE and EE of the by (Somma et al., 2015).  The Jacobian Matrix technique was used to analyze the 

local stabilities and Lyapunov function to analyze the global stability. Carryout the stability analysis of 

the model and to also simulate the model graphically.   

2. Material and Methods 

2.1 Model Formulation 

The model considered the total population ( )tN  and divided into four compartment based on the 

epidemiological status of individuals: Maternally-Derive-Immunity ( )tM , Susceptible ( )tS , Infected ( )tI  

and Recovered/Immune ( )tR , where t  is time. In this model it is assume that the new babies are born 

into M class with temporary immunity from their mothers at constant rate . The new babies loss their 

immunity after some time at a rate  and move to susceptible class. The susceptible individuals become 

infected with measles at a contact rate  .  The susceptible class is vaccinated at a rate v  and thereby 

move to recovered/immune class.  The treated infected individuals recover at a rate   and move to 

recovered/immune class. The death rate due to measles   while the natural death rate of the entire 

population is . The schematic diagram and model equations for the measles transmission as discuss in 

this paper are presented below: 

 

 

Figure 2.1: Flow Diagram of the Model 
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2.2 Model Equations 

MM
dt

dM
 −−=       (2.1) 

SvSIM
dt

dS
)( +−−=       (2.2) 

ISI
dt

dI
)(  ++−=      (2.3) 

vSRI
dt

dR
+−=        (2.4) 

Table 2.1: Definition Variables and Parameters of the Model 

Variables/Parameter Description 

N Total Population 

M  Maternally-Derived –Immunity 

S  Susceptible 

I  Infected 

R  Recovered/Immune 

  Recruitment rate 

  Loss of Immunity Rate 

  Contact Rate 

  Death Rate due to Disease 

  Recovery Rate 
  Natural Death Rate 

v  Vaccination Rate 

2.3 Existence of Equilibrium Points 

At equilibrium 0====
dt

dR

dt

dI

dt

dS

dt

dM
   (2.5) 

Let ( )***** ,,, RISME =  be the arbitrary equilibrium points of the model system 

0*

1 =− MA        (2.6)  

0*

2

*** =−− SAISM       (2.7) 

0*** 3 =− IAIS       (2.8) 

0*** =+− vSRI        (2.9) 

Where 

)(),(),( 321  ++=+=+= AvAA         
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From (2.8) 

0*=I         (2.10) 

or 

( ) 0* 3 =−AS       (2.11) 

It is shown from (2.10) and (2.11) that there exist two equilibria; (2.10) is the Disease Free Equilibrium 

(DFE) while (2.11) is the Endemic Equilibrium (EE). 

2.4 Disease Free Equilibrium (DFE), 
0E  

In the absence of the disease, this implies that ( )0*=I ,  

Let ),,,( 00000 RISME =  be the DFE points 

Substituting (2.10) into (2.6) to (2.9) and solve simultaneously gives the DFE: 

( ) 






 
==





21211

00000 ,0,,,,,
AA

v

AAA
RISME   (2.12) 

2.5 The Basic Reproduction Number 0R . 

The 0R , was calculated using the approach of (Driessche and  Watmough, 2002). The detail of the 0R  is 

in (Somma et al., 2015). 

321

0
AAA

R


=       (2.13) 

2.6 Endemic Equilibrium (EE) Point  

Equation (2.11) give the existence of EE (i.e., 0*I  ) 

Let ),,,( 11111 RISME =  be the EE points 

Therefore equation (2.6) to (2.9) become 

 

















=+−

=−

=−−

=−

0

0

0

0

111

1311

12111

11

vSRI

IAIS

SAISM

MA







    (2.14) 
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Solving (2.14) simultaneously gives the Endemic Equilibrium points with respect to 𝑅0, 

( )
( ) ( )








 +−−
=






302023

1

1111

1
,

1
,,,,,

vARARAA

A
RISM  (2.15) 

3. Result and Discussion 

3.1 Local stability of Disease Free Equilibrium (DFE) 

Theorem 3.1: The DFE Equilibrium point 0E  of the model is Locally Asymptotically Stable (LAS) if 

10 R . 

Proof:  

Therefore, the Jacobian of the model at 0E  is given as 

( )


















−

−

−

−

=





v

AA

AA

A

EJ

0

000

0

000

34

42

1

0
   (3.1) 

Where 
21

4
AA

A


=  

Using elementary row operation to reduce (3.1) to upper triangular matrix gives 

( )


















−

−

−

−

=

000

000

00

000

34

42

1

0

AA

AA

A

EJ    (3.2) 

( ) 00 =− IEJ        (3.3) 

0

000

000

00

000

34

42

1

=

−−

−−

−−

−−









AA

AA

A

  (3.4) 

The characteristic equation of (3.4) is given as 

( )( )( )( ) 03421 =−−−−−−−−  AAAA    (3.5) 

From (3.5) 

 −=−=−=−= 43432211 and,, AAAA   (3.6) 
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From (3.6) 

0and,0,0 421   , for the condition of stable stability 3  must be less than zero (i.e. 03  ) 

Hence,  









34

3 0

AA


       (3.7) 

Recall
21

4
AA

A


=  therefore, (3.7) becomes 

0
321




AAA



        (3.8) 

Thus, (3.8) becomes 

00 R         (3.9) 

 

Equation (3.9) proved the theorem 3.1, the model is (LAS) at DEF, 0E . 

The implication of equation (3.9) is that the measles can be eradicated from the population. 

3.2 Local stability of Endemic Equilibrium (EE) 

Theorem 3.2: The EE point 1E  of the model is (LAS) if 10 R . 

Proof:  

Therefore the Jacobian of the model at EE, 1E  is given as 

( )


















−

−

−−

−

=





v

RA

ARA

A

EJ

0

0010

0

000

)(
02

302

1

1    (3.10) 

Using elementary row operation to reduce (3.10) to upper triangular matrix gives 





















−

−

−−

−

=

000

000

00

000

)(

0

033

302

1

1

R

RAA

ARA

A

EJ    (3.11) 

( ) 01 =− IEJ        (3.12) 
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0

000

000
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000

0

033

302

1

=

−−

−
−

−−−

−−






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R

RAA

ARA

A

  (3.13) 

The characteristic equation of (3.4) is given as 

( )( ) ( ) 0
0

033
021 =−−










−

−
−−−− 

R

RAA
RAA   (3.14) 

From (3.14) 

 −=
−

=−=−= 4

0

033
302211 and,,

R

RAA
RAA   (3.15) 

From (3.15) 

0and,0,0 421   , for the condition of stable stability 3  must be less than zero (i.e. 03  ) 

Hence,  









−



01

0

0

3

R



       (3.16) 

Thus,  

10 R         (3.17) 

Equation (3.17) proves theorem 3.2, the model is (LAS) at EE, 1E . The consequence of equation (3.17) is 

that the measles will continue in the population. 

3.3 Global Stability Analysis of Disease Free Equilibrium (DFE), 
0E  

Theorem 3.3: If 10 R , the DFE, 0E  is Globally Asymptotically Stable (GAS).  

Proof:  

Define the following Lyapunov-Lasalle function 

IAV 3=
       (3.18) 

Taking the time derivative of (3.18) we have  

 IASA
dt

dV
33 −=        (3.19) 
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Since 
0SS   

 IASA
dt

dV
3

0

3 −   

I
AA

AAA
A

dt

dV







 −


21

321

3


     (3.20) 

Divide equation (3.20) through by
2

3A gives 

( )IRA
dt

dV
10

2

3 −       (3.21) 

Hence, from equation (3.21), 10 R implies that 0
dt

dV
. We conclude that ( )RISMV ,,,  is negative 

definite and this proves that the model is (GAS) of the DFE, 0E .  

3.4 Global Stability Analysis of Endemic Equilibrium (EE), 1E  

Theorem 3.4: If 10 R , the EE is (GAS). 

Proof: 

Consider the Lyapunov function 

( ) ( ) ( ) ( ) ( )RRRIIISSSMMMRISML lnlnlnln,,, 11111111 −+−+−+−=    (3.22) 

Taking the time derivative of  (3.18) gives 

( ) ( ) ( )

( )vSRI
R

RR

IASI
I

II
SASIM

S

SS
MA

M

MM

dt

dL

+−






 −
+

−






 −
+−−







 −
+−







 −
=





1

3
1

2
1

1
1

  (3.23) 

at the endemic equilibrium 1E  we have 

( ) ( )( ) ( )( ) ( )( )

1

11

1

11

1

11

2

11

R

RRII

R

RRSSv

S

MMSS

M

MMA

dt

dL −−
+

−−
+

−−
+

−
−=


 (3.24) 

( )
( )RISMP

M

MMA

dt

dL
,,,

2

11 +
−

−=        (3.25) 

Where  

( )
( )( ) ( )( ) ( )( )

1

11

1

11

1

11,,,
R

RRII

R

RRSSv

S

MMSS
RISMP

−−
+

−−
+

−−
=


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Following the approach of   Korobeinikov,  (2004). , P is non-negative for 0,,, RISM . 

Therefore, 0=
dt

dL
if 1111 ,,, RRIISSMM ====  

And  

0
dt

dL
if 

( )
( )

M

MMA
RISMP

2

11,,,
−


        (3.26)

 

for  0,,, RISM .  

Thus, if 10 R  then, Model system (2.1) - (2.4) has a unique EE point 1E which is (GAS). 

3.5 Graphical Presentation of Basic Reproduction Number, 0R  and Some Parameters of the Model  

Table 3.1 is the table of values used for graphical presentation basic reproduction number and some 

parameters of the model.   

Table 3.1: Values for Parameters used for the Graphical Presentation 

Variables Values per year Source  

( )0M
 

82,010,000 B9 

( )0S  7,099,464,364 B10 

( )0I  254,918 B3 

( )0R  118,270,718 B4 

N  7,300,000,000 B1 

  139,000,000 B2 


 

0.9 B12 

  0.53 B6 

  0.47 B5 
  0.008 B7 

  0.39 B11 
v  0.85 B8 

See appendix B, for the estimation of variables and parameter values used in graphical presentation as 

shown on Table 4.1 above.  
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Figure 3.1: The Graph of  0R against different values of Vaccination Rate 

Figure 3.1 shows that as vaccination rate increases with time the 0R decreases. It is observe that, with 

increase in vaccination rate, the basic reproduction number decrease to almost zero. This shows that, 

immunizing new babies will eradicate the measles from the population with time. 

 

Figure 3.2: The Graph of  0R  against different values of Contact Rate 
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Figure 3.2 shows that as contact rate increases with time the 0R increases. It also shows that low contact 

rate gives low basic reproduction number. The children infected with measles should be separated from 

those that are not infected.  

 

Figure 3.3: The Graph of  0R against different values of loss of Immunity Rate 

Figure 3.3 shows that as loss of immunity rate increases with time the 0R increases. The immunity 

depends on vaccination and treatment. 

 

Figure 3.4: The Graph 0R against different values of Recovery Rate 
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Figure 3.4 shows that as recovery rate increases with time the 0R  decreases. It is observe that, with 

increase in recovery rate, the basic reproduction number decrease to almost zero. 

4. Conclusion 

In this paper, we obtained the Endemic Equilibrium (EE) and analyzed the Local and Global stabilities of 

both DFE and EE. We used the Jacobian matrix stability technique to analyze the local stabilities and 

Lyapunov function to analyzed the global stabilities. The DFE and EE were locally and globally 

asymptotically stable. Measles will be eliminated from the population if 10 R or persist in the 

population if 10 R . Graphical presentation shows that, vaccination rate and recovery rate are important 

parameters in eradicating the measles from the population. 
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Appendices 

 

Appendix A: Reported Measles Cases by WHO Region 2015 and 2016, as of November 2016 
 

Table A1: Reported Measles Cases by WHO Region 2015, as of November 2016 

WHO Region Member 

States Reported 

(Expected) 

Total 

Suspected 

Total 

Measles 

Clinical 

Confirmed 

Epidemiological 

Link 

Laboratory 

Confirmed 

Data 

Received 

Africa 41(47) 86984 55263 21111 26163 7989 Nov-16 

America 34(35) 18670 210 0 0 210 Nov-16 

Eastern Mediterranean 21(21) 34654 14053 639 4559 8855 Nov-16 

Europe 50(53) 28025 26776 19835 1014 5926 Nov-16 

South-East Asia 11(11) 114726 90860 64484 22353 4023 Nov-16 

Western Pacific 27(27) 143289 67756 22337 611 44808 Nov-16 

Total 184(194) 426348 254918 128406 54700 71811  

Source: WHO (2016) 

 

Table A2: Reported Measles Cases by WHO Region 2016, as of November 2016 

WHO Region Member 
States Reported 

(Expected) 

Total 
Suspected 

Total 
Measles 

Clinical 
Confirmed 

Epidemiological 
Link 

Laboratory 
Confirmed 

Data 
Received 

Africa 42(47) 46474 28126 12459 11085 4582 Nov-16 

America 34(35) 9564 65 0 0 65 Nov-16 

Eastern Mediterranean 20(21) 19763 4518 153 947 3418 Nov-16 

Europe 50(53) 3849 2537 241 385 1910 Nov-16 

South-East Asia 11(11) 86302 63169 51015 11004 1150 Nov-16 

Western Pacific 27(27) 100517 55620 27594 638 27388 Nov-16 

Total 184(194) 266469 154035 91462 24059 38513  

Source: WHO (2016) 
 

Appendix B: Estimation of Variables and Parameter Values 

It is difficult to get a reliable data, we estimated the parameter values based on the available data from the World Health Organization (WHO), 

Population Reference Bureau and reliable related literature. The estimates are clearly explained in the following sub-sections. 

B1: The Total Population, N  

 According to Population Reference Bureau, the world total population at 2015, is 7.3 billion. 

 000,000,300,7=N   

B2: Recruitment Number,   

According to Population Reference Bureau the birth rate per year is 

000,1

19
  

The number of new birth in  2015 is  139, 000, 000.  
Therefore, 

000,000,139=    

B3: Number of Infected, I  

The WHO estimate that, there are 254, 918 cases of measles worldwide each year, resulting in 134,200 deaths. (See Table A1) 

  I = 254, 918 

B4: Number of Recovered/Immune, R  

Recovered/Immune Human population, R = recovered + immune 

From B3 the number of cases is 254, 918 and number of death is 134,200. 

Recovered= 254, 918 -134,200 = 120,718 the number of surviving infants in 2015 is 139,000,000 and the percentage of vaccinated is 85%. 

Therefore,  
Vaccinated = 85% of 139,000,000 =118,150,000. 

Hence,  

Recovered/Immune Human population, 000,150,118718,120 +=R
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718,270,118=R  

B5: Recovery Rate,   

From B3 and B4 

cases ofNumber 

Recovered
=  

47.0
254,918

120,718
==

 

 

B6: Disease Induce death rate,   

From B3 the number of cases of measles is 254,918 and the number of death from measles is 134,200 

 cases ofNumber 

 measles fromDeath  ofNumber 
=  

53.0
 254,918

 134,200
==  

B7: Natural Death Rate,   

According to WHO, the death rate is 8 deaths per 1,000. Therefore, 

008.0
1000

8
==  

B8: Vaccination rate, v  

According to, WHO in 2015, about 85% of the world's children received one dose of measles vaccine. Therefore, 

  85.0=v
 B9: Maternally-Derived-Immunity, M

 According to Millennium Development Goal (MDG4), every year nearly 41% of all under-five child deaths are among newborn infants, 
babies in their first 28 days of life or the neonatal period.  

0139,000,00 of %59=M   

 

000,010,82=M   

 

B10: Number of Susceptible, S  

Recall RISMN +++=  therefore, 

( )RIMNS ++−=  

( )718,270,118918,254000,010,82000,000,300,7 ++−=S
  

636,535,200000,000,300,7 −=S
 

 

364,464,099,7=S  

B11: Loss of immunity,   

According to WHO Immunization coverage fact sheet, national immunization schedule reported that, only 61% of children received 2 doses 
of measles. Therefore, 

0.39 %39 ==
 

B12: Contact Rate,    

Nine out of ten people who are not immune and share living space with an infected person will catch it, (Atkinson, (2011),[8]). Therefore  

 9.0
10

9
==  
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