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ABSTRACT

In this study, we propose a new class of Runge-Kutta type method with three stages for the solution of initial value

problems. The method was developed through the collocation approach and reformulated into a Runge-Kutta type of first

order using the Butcher analysis. The first order method was extended to a second order one using the Runge —Kutta

Nystrom method. A convergence analysis was carried out in order to determine the order, error constant and stability

analysis.Numerical examples carried out on the Initial value problems further substantiate the effectiveness and viability of

the methods.
Keywords: Block, Implicit, Runge-Kutta type, Initial

value problems.

1. INTRODUCTION

Ordinary Differential Equations arise frequently in the
study of the physical problems in aspects of science and
engineering.  Unfortunately, many cannot be solved
exactly. This is why the ability to solve these equations
numerically is important. Traditionally, mathematicians
have used one of two classes of methods for solving
numerically ordinary differential equations. These are
Runge-Kutta methods and Linear Multistep Methods
(LMM),(Rattenbury,2005). Runge-Kutta (RK) methods
are very popular because of their syr;lmetrica] forms, have
simple coefficients, very efficient and numerically
stable,(Agams, 2012). The methods are fairly simple to
program, easy to implement and their truncation error can
be controlled in a more straight forward manner than

multistep methods, (Kendall, 1989).
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The application of Runge-Kutta methodsKutta methods
have provided many satisfactory solutions to many
problems that have been regarded as insolvable. The
popularity and the growth of these methods; coupled with
the amount of research effort being undertaken are further
evidence that the applications are still the leading source of
inspiration for mathematical creativity, (Yahaya &
Adegboye, 2011).

The  significance of numerical solution of Ordinary
Differential Equations (ODE) in scientific computation
cannot be over emphasized as they are used to solve real
life problems such as chemical reactions. Most of these
problems come in higher order ordinary differential
equations. One way of solving these higher order ordinary
differential equations is by reduction to a system of first
order and then applying any suitable method. This
approach has some drawbacks such as waste of computer

time and human efforts,(Agams A §, 2012). The idea in
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this work is to solve the higher order ODE directly without
reduction to first order. This saves computer time and
human effort based on the fact that, there is gain in
efficiency and accuracy, contains minimal function
evaluation and lower computational cost.

In this study, we seek to reformulate the Block Backward
Differentiation Formulae (Hybrid and Non-hybrid) for k=1
into Runge Kutta Type Method with three (3) stages for
the solution of Initial Value Problems in Ordinary
Differential Equations (ODE) oi’ the form

y'=flxy) y(xg) =y n
y'=fxy) y(xp) =y ¥'(x) =p 2)
y'=fxyy) yx)=y y'(x)=8 (3)

We consider the numerical solution of the Initial Value
Problem that has benefits such as self starting, high order,
low error constants, satisfactory stability property such as
A-stability and low implementation cost. We emphasize
the combination of multistep structure with the use of off
grid points and seek a method that is both multistage and
multivalue. This will enable us to extend the general linear
formulation to the high order Runge-Kutta case by
considering a polynomial

y®) = 22 @) ynej +h T B (8, YD)

#

Where t denotes the number of interpolation points
Xp4jr =0,1...t—1 and m denotes the distinct
collocation points %;€[x,, Xp4x).j = 0,1 .....m — 1 chosen
from the given step [x,, %, )(Butcher, 2003).
METHODOLOGY

Butcher (2003) defined an S-stage Runge-Kutta method

for the first order differential equation in the form
s
Yaer =Vath ) agki  (5)
i,j=1

wherefori=1,2..........5

5
ki=flx+ahy,+h Z a;k; | (5)

i.j=1
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The real parameters a;,k;, a;; define the method. The

method in Butcher array form can be written as

a l B

T

Where a;; = f8

The Runge-Kutta Nystrom (RKN) method is an extension

of Runge-Kutta method for second order ODE of the form
y'=f&xyy) y(x0) = yo¥'(xo) = y5 (7)

An S-stage implicit Runge-Kutta Nystrom for direct
integration of second order initial value problem is defined
in the form

Yne1 = Yn +aihyn + A% X agjk; (8a)

Yner = Yn R E o Ak (8b)
wherefori=1,2..........§

ki = f(x + ah, y, + ahyn + B X oy agiky, yn +

hXi o a k) (8¢)

The real parameters a;, k;, a;;, @;; define the method and it

is worth mentioning that the method in butcher array form

is expressed as

A=ai}=52/i=ai;=ﬁﬁ=ﬁe

1.1 Construction of the method
The Consider the approximate solution to equation (1) in

the form of power series

t+m=-1
Y@= Y e ©)
j=0
a€R,j=01t+m—1,y€ C™(ab) c P(x)
t+m-1
y(x)= z jajxi™? (10)
j=0
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Where a;’s are the parameters to be determined, t and m

are the points of interpolation and collocation,

respectively.
When K = 1, we interpolate equation (9) at j = D,% and

collocate equation (10) at j = 1. Equations (9)& (10)can

then be expressed as

+m-1 1
Y@ = ) apxd = yuyi=03 an
j=0
t+m-1
y'(x) = jaxi™t = frj=1 12)
j=0

The general form of the proposed method upon addition of

one off grid point is expressed as
y(x) = a ()y, + CX)JJ,H% +
hBo fa+1 (13)

The matrix D of dimension (t+m)*(t+m) of the

proposed method is expressed as:

2

1 < x5
D = | 1..5%
=t I xn+~2-h (x“+§h)
1 1 2x, +2h

We invert the matrix D, to obtain columns which form the

matrix C. The elements of C are used to generate the

continous coefficients of the method as:
iy (x) = Cyy + Cpyx + Cyyx?
ay(x) = Cpp + Conx + Cypx?
Bo(x) = Cy3 + Cyax + Cyax?

(14)

The values of the continuous coefficients equation (14) are
substituted into equation (13) to give the continuous form
of the one step block hybrid Backward Differentiation
Formula (BDF) with one off step interpolation point.

- 1(2xp+h)(2xp+3h) B xp+h 4
J(x) = {(5%__71__,( +§ﬁxz) v+
Exnﬂl

(74 Xn(Xn+2h)
3 n?

(1 xn(2xn+h)
3 h?

3 h

14xn+h
h

%+ 227) funr) (15)
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Evaluating equation (15) at point x =x,,4 and its
derivative at x = X,,,4,, Yields the following two discrete

hybrid schemes which are used as a block integrator;

4 1 1
Yn+1 _Eyn+% - QEYn +§hfn+]

(16)
3 1
Ynsl=Yn i+ th"+1/z _thnﬂ
The equation (16) is of order [2,2]"with error constant

1 i

[_&J'_'{E
By rearranging equation (16) simultancously, equation

(17) was obtained

Yot =¥n +

h
2 Z[3fn+%_fn+1]
an
Yn+1 = Yn + h{fn+l/1}
Reformulating equation (17) with the coefficients as

characterized by the Butcher array form

a | B
bT
Where a;; = f
gives
0 0 0 0
i 0 3 -1
2 4 +
1 0 1 0
0 1 0

Using equations (5) and (6), we obtained an implicit 3-
stage block Runge-Kutta type methed of uniform order

two everywhere on the interval of solution



www.seetconf, futminna.eda.ng

3 1
yn+% =Vt h(zkz = Zk3)

(18)
Vns1 = Yo + Rkz
Where

Ity = f(Xni ¥n)
ey iy e s ok, #24 —lkg])
2 4 4
ks = f(xn + hy, + {0k, + k, + 0k3)
Extending the method (18) with the coefficients as

characterized in the Butcher array form

A=q = B?A, @; =fB = Pe gives

o |0 0 O0]0 0 O
1|, 3 1], 5 -3
2 4 4 16 16
3 -1
1 lo 1 0|% 3 7
01 0 3 =4
0_*

4 4

Using equation (8), we obtained an implicit 3 stage block
Runge-Kuttatype method of uniform order 2 everywhere

on the interval of solution.
e o 5 3
Vet = Yu+ZhVe+h (Okl ok - Eka)J
: , 31
yn% =y, +h (Dk1 + Zkz - Zk3)
(19)

3 1
Yner =¥n t h‘y:l +h? (Dkl + ZkZ - Zk,})r

Yn+1 = Yo + h(0ky + k; + Okj)
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where
ki = f(on Yni ¥n)

i 1 | 5 3
k2=kan+5h,yn+ihyn+h (0k1+1—6k2—1—6k3).

n

' i 3 1
y *:T = }’n+h(0k1 +:k2—;k3))

31
ks = f(xp + b yn + hyl, + B2 (Okl +2ky —Zka),

yp + h(0ky + ky + 0k3))

The derived method was used to solve existing problems

by Sunday etal. (2013) and Odigure et al. (2009).

Problem 1:Sunday J etal.(2013)

This is a first order Initial Value Problem with initial
conditions, the eigen value (1), the steplength (h) and the
range of solutions given in equation (20) and the exact

solution in equation (21).

y' =-Aiy y(0)=1, »'(0)=1, i1=1, h
= 0.01, 0<x<0.04 (20)
Exact Solution
y(x) = e~ (21)

Table 1: K = 1 first order RKTM

x Exact Computed Error
solution solution

0.01 0.9901 0.9%00 —4,10E — 08

0.02 0.9802 0.9802 —8.11E — 08

0.03 0.9704 0.9704 -=1.205F
- 07

0.04 0.9608 0.9608 —1.590F
- 07

Presented in Tablel is the result obtained for exact solution

to the problem shown in equation 20. Also presented are

the computed results obtained when we applied theRKTM.
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It can be observed from the table that the computed
solutions are closer to the exact solution with error values

in the range —1.590F — 07to —4.10E — 08.

Problem 2 :Odigure etal. (2009)
In their study,Odigure etal.

model

(2009) developed a

mathematical for the process of limestone

decarbonization to produce quicklime (Ca0) according to

chemical reaction shown in equation (22)
CaCO, — Ca0 + CO,

The quality of

(22)

Ca0 produced is dependent on the
chemical and microstructure composition, density and
burning conditions (temperature, CO,concentration and
model the

decomposition of calcium carbonate is represented by the

particle size). The mathematical for

relationship presented in equation (23)

d*T. 2dT. p,kC.AH

FrI T (23)
are _ -
e Qat r=
0 (24)
Where

k, =effective thermal conductivities= 3 W /m. K

C,. =concentration of C0O; in the gas stream

pp = 2710kg/m?

The concentration of the €O, in the gas stream can be

estimated from the relationship presented in equation (4)
d*C, 2dC; e ppk,C.AH
dr? 7 dr (Dy)e

= 0(25)

dCe

== 0atr =0

The time taken to produce quicklime from calcium
carbonate and conversion of calcium carbonate to calcium
oxide can be estimated from the relationship shown in
equations (26) and (27), respectively;

Pa (s—1)
]

=AM k.C,
' 3M,KC r?t

3
PaTs

3
t (26)

@7

Xa
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T.\05
(Dy)e =9.70 % 103a(--5~)
M,
=D
k, = Ae "7
A =2.01E = 4.062 x 10*R, = 8.314]/mol. K p,
= 2710kg/m3k,, = 0.03m/s
The performance of the Runge-Kuttatype method
(RKTM) on this problem will determine the various
temperatures of conversions, the time taken to produce
quicklime from calcium carbonate and conversion of
calcium carbonate to calcium oxide at various values

of the step numbers (k).

Table 2: K = 1 second order RKTM

r T,= T, T,
600°C = 650°C = 700°C
T T T

0.1 634 684 734
0.2 685 735 785
0.3 736 786 836
04 787 837 887
0.5 838 888 938
0.6 889 939 989
0.7 940 990 1040
0.8 991 1041 1091
0.9 1042 1092 1142
1.0 1093 1143 1193

Presented in Table 2 are the solutions to equation 23 using
the Runge-Kutta Type Method (RKTM). It can be
observed from the table of results that the starting
decarbonization temperature and particle size influences

the decarbonization temperature.
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The time taken and rate of conversion is given in the

following Table 3

Table 3: K = 1second order RKTM

www. futminna.edu.ng

ACKNOWLEDGEMENTS

We wish to express our profound gratitude to the Almighty

God Who makes all things possible. Our appreciation goes

to-all our colleagues in Mathematics/Statistic department

and Chemical Engineering Department for peaceful

T C.=13.204 t(sec)
Ce

0.01 13.2892 0_
0.02 13.4169 0.0051
0.03 13.5447 0.0404
0.04 13.6724 0.1351
0.05 13.8002 0.3174
0.06 13.9279 0.6142
0.07 14.0557 1.0517
0.08 14.1834 1.6550
0.09 14:3112 2.4483
0.1 14.4389 3.4552

ceexistence and providing an enabling environment
suitable for undertaking a research work. To all whose
work we have found indispensable in the course of this

research. All such have been duly acknowledged.

REFERENCE

Agam, A.S (2013). A sixth order multiply implicit Runge-
kutta method for the solution of first and second
order ordinary differential equations. Unpublished
doctoral dissertation, Nigerian Defence Academy,
Kaduna .

Butcher, J.C. (2003). Numerical metholds for ordinary

iSOnsA

differential equations. John Wiley

Kendall, E. A (1989). An introduction to numerical

Based on the obtained simulation results, the rate of
X, =0.99 for the various times and the

there is 99 %

conversion
implication is that conversion of the

product.
CONCLUSION

It will be observed that from the table at the initial radius

(r; = 0.01), the time taken and the corresponding

conversion rate is 0. This means that at that particular point
no reaction has taken place. As the radius increases, we have
conversion Wwith the

the wvarious times for the

same
conversion rate at 0.99.This implied that the rate of
conversion is 99% which means almost all the limestone is
converted to quicklime. The various values obtained will
to make a

help the cngineers very good production

management decision,

analysis, (2" ed), John Wiley & Sons.
Odigure, J.0, Mohammad, A., Abdulkareem, A.S (2009).
Mathematical

Modeling of  Limestone

Decarbonization Process and Theory of
Nanoparticles Reaction Mechanism. Journal of
dispersion science and Technology, 30:305-312.

Rattenbury, N. (2005). Almost runge kutta methods for stiff
and non-stiff problems. Unpublished doctoral
dissertation, University of Auckland.

Yahaya, Y.A. & Adegboye, Z.A. (2011). Reformulation of
quade’s type four-step block hybrid multstep
method into runge-kutta method for solution of
first and second order ordinary differential

equations.Abacus,38(2), 114-124,




