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Abstract  A mathematical model describing the transport 
of a conservative contaminant through a homogeneous finite 
aquifer under transient flow is presented. We assume the 
aquifer is subjected to contamination due to the 
time-dependent source concentration. Both the sinusoidally 
varying and exponentially decreasing forms of seepage 
velocity are considered for the purposes of studying seasonal 
variation problems. We use the parameter-expanding method 
and seek direct eigenfunctions expansion technique to obtain 
analytical solution of the model. The results are presented 
graphically and discussed. It is discovered that the 
contaminant concentration decreases along temporal and 
spatial directions as initial dispersion coefficient increases 
and initial groundwater velocity decreases. This 
concentration decreases as time increases and differs at each 
point in the domain.  
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1. Introduction 
The intensive size of natural resources and the large 

production of wastes in modern society often pose a threat to 
the groundwater quality and already have resultant in many 
incidents of groundwater contamination. Degradation of 
groundwater quality can take place over large areas from 
plane or diffuse sources like deep percolation from 
intensively farmed fields, or it can be caused by point 
sources such as septic tank, garbage disposal sites, 
cemeteries, mine spoils and oil spoils or other accidental 
entry of pollutants into the underground environment. 
Another possibility is contamination by line sources of poor 
quality water, like seepage from polluted streams or 
intrusion of salt water, from oceans [1,2]. 

The contaminants in aquifer systems migrate with ground 

water flow, any factors that may affect groundwater flow are 
also likely to influence the migration of contaminants in 
aquifers. Because contaminants are chemicals or bacteria or 
virus which are mostly physically, chemically and 
biologically active, the transport of contaminants are subject 
to physical, chemical and biological activities, such as 
contaminant density, adsorption and desorption, retardation, 
degradation and chemical-biological reactions. Contaminant 
(solute) transport through a medium is described by a partial 
differential equation of parabolic type and it is usually 
known as advection-dispersion equation [3]. 

Some analytical solutions of the advection-dispersion 
equation have been proposed in literature with the aim of 
studying the mechanism of contaminant transport, the 
movements of pollutants in groundwater and to estimate 
chemical-physical parameters. Elder [4] by using Taylor's 
approach and assuming a logarithmic velocity distribution, 
derived an expression for the longitudinal dispersion 
coefficient for an infinitely wide open channel. Fischer [5] 
derived another expression for longitudinal dispersion 
coefficient assuming that the velocity distribution in lateral 
direction was the primary mechanism responsible for 
longitudinal dispersion. Marino [6], van Genucheten [7] and 
Yadav et al. [8] considered dispersion along unsteady flow. 
Al-Niami and Rushton [1] considered uniform flow whereas 
Kumar [9] took unsteady flow against the dispersion in finite 
porous media.  

In the more recent literatures, for one-dimensional 
problems, analytical solutions have been obtained for 
varying velocity and dispersivity functions. Among them are 
solutions to the convection-dispersion equation with: (i) 
velocity and dispersion coefficient varying in space by 
Serrano [10]; (ii) velocity varying as a function of cell 
concentration in an aquifer by Taylor and Jaffe [11]; and (iii) 
constant velocity but an exponential dispersivity function by 
Yates [12]. Jaiswal et al. [13] and Kumar et al. [14] obtained 
analytical solutions for temporally and spatially dependent 
solute dispersion in one-dimensional semi-infinite media. 

The objective of this paper is to obtain an analytical 
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solution for prediction of concentration distribution in an 
aquifer. Porous domain is considered homogeneous, 
isotropic, finite and non-reactive. Seepage velocity is a 
function of time. Time-dependent source concentration is 
considered at origin. Initially the domain is not solute free. 
Dispersion is proportional to seepage velocity. First order 
decay term which is proportional to dispersion coefficient 
and retardation factor are also considered. To simulate the 
flow analytically using Eigenfunction Expansion technique, 
we assume there is no solute flux at end of boundary. 

2. Materials and Methods 

2.1. Model Formulation 

We consider the transport of a contaminant through a 
homogeneous finite aquifer of length L  under 
transient-state flow. It is assumed that initially (i.e., at time 

0t = ), the aquifer is not clean (i.e., the domain is not solute 
free). Let ic  be the initial contaminant concentration in the 
aquifer describe the distribution of the concentration at all 
points of the flow domain. The time-dependent source 
concentration is assumed at the origin (i.e., 0x = ) of the 
aquifer. At the end of boundary (i.e., x L= ), we assumed 

there is no solute flux.  Let ( ),c x t  be the contaminant 
concentration in the aquifer at position x  and time t , 

( ),u x t  the velocity of the medium transporting the 

contaminants, and ( ),D x t  the solute dispersion parameter, 
if it is independent of position and time, is called dispersion 
coefficient. Then the problem with first order decay can be 
mathematically formulated as follows: 

( ) ( ), ,c cR D x t u x t c R c
t x x

σ∂ ∂ ∂ = − − ∂ ∂ ∂ 
    (1) 

( ) ( )0, ,u x t u f x t=               (2) 

where R  the retardation factor, which is defined as 

1 d dkR
n

ρ
= +                (3) 

dk  is distribution coefficient which is defined as ratio of the 
adsorbed contaminant concentration to the dissolved 
contaminants, dρ  is dry unit weight of soil, n  is porosity, 
σ  is first-order decay term or first-order chemical 
transformation term, 0u  is the initial velocity of the 
medium transporting the contaminants at distance x . 
Here, we made following assumptions:  

1. Fluid is of constant density and viscosity.  
2. Solute is subject to first-order chemical transformation 
(i.e., 0σ ≠ ) and σ  is a function of space and time.  

3. No adsorption, 0dk = . 
Based on the above assumptions, (1) reduces to 

( ) ( ) ( ), , ,c cD x t u x t c x t c
t x x

σ∂ ∂ ∂ = − − ∂ ∂ ∂ 
   (4) 

As initial and boundary conditions, we choose 

( )
( ) ( )( )0

, ; 0, 0
, 1 exp ; 0, 0

0; , 0

ic x t c x t
c x t c qt x t

c x L t
x


= ≥ =
= + − = > 
∂ = = ≥
∂ 

,  (5) 

where ic  is the initial contaminant concentration in the 

aquifer, 0c  is the solute concentration and q  is the 
parameter like flow resistance coefficient. 

2.2. Method of Solution 

Ebach and White [15], have established that the dispersion 
coefficient vary approximately directly to flow velocity, for 
different types of porous medium. Here, we let 
( ) ( ), ,D x t au x t=  in (4), where a  is the dispersivity 

that depends upon the pore geometry. Also, first order decay 
term which is proportional to dispersion coefficient and 
retardation factor is considered. Using (2), we get 

( ) ( )0, ,D x t D f x t=                 (6) 

( ) ( )0, ,x t f x tσ σ= ,               (7) 

where 0 0D au=  is an initial dispersion coefficient and 

0 0aDσ =  is the first order decay constant. 
Using (6) and (7) and combining equations (2) and (4), we 
obtain 

( ) ( ) ( )0 0 0, , ,c cD f x t u f x t c f x t c
t x x

σ∂ ∂ ∂ = − − ∂ ∂ ∂ 

  (8) 

Consider the temporally dependent forms of solute 
dispersion. Let ( ) ( ),f x t v t= , ( )v t  is the seepage 
velocity. Then, (8) becomes 

( )
2

0 0 02

1 c c cD u c
v t t x x

σ∂ ∂ ∂
= − −

∂ ∂ ∂
      (9) 

Here, in order to account for the seasonal variation in a year 
on tropical regions ( )v t  will be considered in two forms:  

1. A sinusoidal varying form, ( ) 1 sinv t mt= −  and  

2. An exponentially decreasing form, 
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( ) ( )exp , 1v t mt mt= − < , 

where m  is the flow resistance coefficient. 
We introduce a new time variable [16]: 

( )
0

t
v s dsτ = ∫                 (10) 

such that 

( )d v t
dt
τ
=  

and 

( )
1dt

d v tτ
=               (11) 

Then, (9) and the corresponding initial and boundary 
conditions (5) become 

2

0 0 02

c c cD u c
x x

σ
τ
∂ ∂ ∂

= − −
∂ ∂ ∂

          (12) 

( )
( ) ( )0

, ; 0, 0
, 2 ; 0, 0

0; , 0

ic x c x
c x c q x

c x L
x

τ τ
τ τ τ

τ


= ≥ =


= − = > 
∂ = = ≥

∂ 

  (13) 

2.2.1. Non-dimensionalisation 
We non-dimensionalised (12) and (13) using the following 
set of dimensionless variables: 

0
2

0
22

0 0
0 0

0 0 0

, , ,

, ,

Dx cx c
L c L

u L LqLu q
D D D

ττ

σσ

′ ′ ′= = =

′ ′ ′= = =
    (14) 

to obtain (after dropping prime) 
2

0 02

c c cu c
x x

σ
τ
∂ ∂ ∂

= − −
∂ ∂ ∂

             (15) 

( )

( ) ( )
0

, ; 0, 0

, 2 ; 0, 0

0; 1, 0

icc x x
c

c x q x
c x
x

τ τ

τ τ τ

τ

= ≥ = 
= − = > 
∂ = = ≥

∂ 

  (16) 

For both the expressions of ( )v t , the non-dimensional time 
variable τ  may be written as: 

( )0
2 0

tD v s ds
L

τ = ∫                   (17) 

So that for  
1. A sinusoidal varying form, 

( )( )0
2 1 cosD mt mt

mL
τ = − −              (18) 

2. An exponentially decreasing form, 

( )( )0
2 1 expD mt

mL
τ = − − , 1mt <            (19) 

2.2.2. Solution by Parameter-expanding Method 
Suppose the solution ( ),c x τ  and the constant 0u  in (15) 
can be expressed as 

( ) ( ) ( ) ( ) ,..,,,, 2
2
0100 tohxcxcxcxc +++= τστσττ

 (20) 
2

0 0 0 0 1 . . .u p p h o tσ σ= + + ,             (21) 

where . . .h o t  read “higher order terms in 0σ . In our 
analysis we are interested only in the first two terms. 

Substituting (20) and (21) into (15) and (16), and 
processing, we obtain: 

2
0 0

2

c c
t x

∂ ∂
=

∂ ∂
                  (22) 

( ) ( ) ( ) 0
0 0

10

,0 , 0, 2 , 0i

x

c cc x c q
c x

τ τ
=

∂
= = − =

∂  
2

01 1
0 02

cc c p c
t x x

∂∂ ∂
= − −

∂ ∂ ∂
             (23) 

( ) ( ) 1
1 1

1

,0 0, 0, 0, 0
x

cc x c
x

τ
=

∂
= = =

∂  
Transform (22) to an inhomogeneous equation with 
homogeneous boundary conditions and seek a direct 
eigenfunctions expansion, we obtain 

( )

( )

( )

2
2

2
2

0

2 1
2

0

2 1
1 2

3 3

, 2

4 2

2 1 2 1sin
2

16 1

2 1

n
i

n
n

c x q

c e
c

n n x

q e

n

π τ

π τ

τ τ

π
π

π

− − 
 

∞

− −=  
 

= − +

   −   
 −  − 

       −  
  − − 

∑

   (24)
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( )
( )

( )

2
2

2
2

0 2 1
2 2

0 2

1 3 3
1 1

0 2
2 12 2

22

7 7

4

4 2
2 1

, .
2 1

2 1sin
2

1
4

2 164 2
2

1
1

2 1

ni

n n

n

pc
c en

c x
n

n x

p
nq n e

n

π τ

π τ

τ
π

τ
π

π

π τ
π

π

− − 
 

∞ ∞

= =

− − 
 

+  
   −       −    =

−

−  − 
 

− 
+  

   −  −                  +  
−

∑∑

( )

2
2

1 1

2
2

2 1
2

2
2

1

5 5

.

2 1sin
2

12 12
2

64

2 1
2 .

2 1

2 1sin
2

n n

n

n

n x

n

eq

n q

n

n x

π τ

π

π

π τ

π

π

∞ ∞

= =

− − 
 

∞

=

− 
 
 

   −−         −       +  
 − +   
  

−

− 
 
 

∑∑

∑

,

(25) 

where 
0

0
0 σ

u
p = .  

For the sinusoidally varying velocity, we substitute (18) 
into (24) and (25) while for the exponentially decreasing 
velocity, we substitute (19) into (24) and (25). 

The computations were done using computer symbolic 
algebraic package MAPLE. 

2.3. Results and Discussion 

Analytical solutions given by (24) and (25) are computed 
for the values of 0200, 1.0,ic c= =  1 ,L km=  

( )0 1, 2, 4 / ,u km day= ( )2
0 1.5, 3.0, 4.5 / ,D km day=  

( )0.2 / ,q day=  ( )2 /m day=  (for sinusoidally 

varying velocity) and ( )0.9 /m day=  (for exponentially 
decreasing velocity). The concentration values are depicted 
graphically in Figures 1 – 16. 

The contaminant concentration distribution behaviors 
along transient groundwater flow for sinusoidally varying 
velocity are shown in Figures 1 – 8. Figure 1 depicts the 
graph of ( ),c x t against x  and t  for different values of 

0D . It is observed that the contaminant concentration 
decreases along temporal and spatial directions as initial 

dispersion coefficient increases. Figure 2 depicts the graph 
of ( ),c x t against x  for different values of 0D . It is 
observed that the contaminant concentration decreases along 
spatial direction as initial dispersion coefficient increases. 
Figure 3 depicts the graph of ( ),c x t against t  for 

different values of 0D . It is observed that the contaminant 
concentration increases and on reaching maximum start 
decreases along temporal direction as initial dispersion 
coefficient increases. 

 

Figure 1.  Plots of c(x,t) against x and t for different values of D0 and Ci = 
200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1, σ0 = 0.004 

 

Figure 2.  Plots of c(x,t) against x and t for different values of D0 and Ci = 
200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1, σ0 = 0.004 , t = 1 

Figure 4 depicts the graph of ( ),c x t against x  and t  
for different values of 0u . It is observed that the 
contaminant concentration increases along temporal and 
spatial directions as initial groundwater velocity increases. 
Figure 5 depicts the graph of ( ),c x t against x  for 
different values of 0u . It is observed that the contaminant 
concentration increases along spatial direction as initial 
groundwater velocity increases. Figure 6 depicts the graph of 
( ),c x t against t  for different values of 0u . It is 

observed that the contaminant concentration increases along 
temporal direction as initial groundwater velocity increases. 
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Figure 3.  Plots of c(x,t) against t for different values of D0 and Ci = 
200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1, σ0 = 0.004 

 

Figure 4.  Plots of c(x,t) against x and t for different values of U 0 and Ci 
= 200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1.5, σ0 = 0.004 

 

Figure 5.  Plots of c(x,t) against x and t for different values of U 0 and Ci 
= 200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1.5, σ0 = 0.004 , t = 1 

 

Figure 6.  Plots of c(x,t) against x and t for different values of U 0 and Ci 
= 200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1.5, σ0 = 0.004 , x = 1 

Figure 7 depicts the graph of ( ),c x t against x  for 
different values of t . It is observed that the contaminant 
concentration decreases along spatial direction as time 
increases. Figure 8 depicts the graph of ( ),c x t against t  
for different values of x . It is observed that the contaminant 
concentration increases along temporal direction as position 
increases. 

 

Figure 7.  Plots of c(x,t) against x and t for different values of  t  and Ci 
= 200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1.5, σ0 = 0.004 U0 = 1 

The contaminant concentration distribution behaviors 
along transient groundwater flow for exponentially 
decreasing velocity are shown in Figures 9 – 16. Figure 9 
depicts the graph of ( ),c x t against x  and t  for 
different values of 0D . It is observed that the contaminant 
concentration decreases along temporal and spatial 
directions as initial dispersion coefficient increases. Figure 
10 depicts the graph of ( ),c x t against x  for different 
values of 0D . It is observed that the contaminant 
concentration decreases along spatial direction as initial 
dispersion coefficient increases. Figure 11 depicts the graph 
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of ( ),c x t against t  for different values of 0D . It is 
observed that the contaminant concentration increases and 
on reaching maximum start decreases along temporal 
direction as initial dispersion coefficient increases. 

 
Figure 8.  Plots of c(x,t) against x and t for different values of x and Ci = 
200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1.5, σ0 = 0.004 U0 = 1 

 
Figure 9.  Plots of c(x,t) against x and t for different values of D0 and Ci = 
200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1.5, σ0 = 0.004  

 

 

Figure 10.  Plots of c(x,t) against x and t for different values of D0 and Ci 
= 200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1.5, σ0 = 0.004 t = 1 

 

 
Figure 11.  Plots of c(x,t) against x and t for different values of D0 and Ci 
= 200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1.5, σ0 = 0.004 x = 1 

Figure 12 depicts the graph of ( ),c x t against x  and 
t  for different values of 0u . It is observed that the 
contaminant concentration increases along temporal and 
spatial directions as initial groundwater velocity increases. 
Figure 13 depicts the graph of ( ),c x t against x  for 
different values of 0u . It is observed that the contaminant 
concentration increases along spatial direction as initial 
groundwater velocity increases. Figure 14 depicts the graph 
of ( ),c x t against t  for different values of 0u . It is 
observed that the contaminant concentration increases along 
temporal direction as initial groundwater velocity increases. 

 
Figure 12.  Plots of c(x,t) against x and t for different values of U0 and Ci 
= 200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1.5, σ0 = 0.004  

 
Figure 13.  Plots of c(x,t) against x and t for different values of U0 and Ci 
= 200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1.5, σ0 = 0.004 t = 1 
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Figure 15 depicts the graph of ( ),c x t against x  for 
different values of t . It is observed that the contaminant 
concentration decreases along spatial direction as time 
increases. Figure 16 depicts the graph of ( ),c x t against t  
for different values of x . It is observed that the contaminant 
concentration increases along temporal direction as position 
increases. 

 
Figure 14.  Plots of c(x,t) against x and t for different values of U0 and Ci 
= 200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1.5, σ0 = 0.004 x = 1 

 
Figure 15.  Plots of c(x,t) against x and t for different values of  t  and 
Ci = 200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1.5, σ0 = 0.004 U0 = 1 

 

Figure 16.  Plots of c(x,t) against x and t for different values of  x and Ci 
= 200,C0 = 1.0,q = 0.2 , m = 2 U0 = 1.5, σ0 = 0.004 U0 = 1 

It is worth pointing out that the effect observed in Figures 
7 and 15, is an indication that as time increases in an aquifer, 
contaminant concentration decreases. Also, the effect of 
observed in Figures 8 and 16, is an indication that at each 
point in an aquifer, contaminant concentration defers. 

3. Conclusion 
A solute transport model with time dependent source 

concentration formulated to predict contaminant 
concentration along transient groundwater flow in a 
homogeneous finite aquifer is solved analytically using 
parameter expanding method and direct eigenfunctions 
expansion technique. The governing parameters of the 
problem are the initial dispersion coefficient ( 0D ) and 
initial groundwater velocity ( 0u ). Our results showed that 
the contaminant concentration decreases along temporal and 
spatial directions as initial dispersion coefficient increases 
and initial groundwater velocity decreases. This 
concentration decreases as time increases and differs at each 
point in the domain. 
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