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Abstract
In this paper we used the Cengre

Endemic Equilipri Mani

Jo ic ,Equl’_lbrmm (EE). We obtaj Jold theorem o analyzed the local stability of
rees of infection and use it 4, ned the endemic equilirium point in terms of

lh'e bifurcation analysis of the

bifurcation diagram, The fo
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1. Introduction
In a dynamical system, bifurcation occ
) urs wh i i
mEters) uf & egstein GaUZes: & sucid en a small smooth change made to the parameter values (the bifurcation
R etineons systorne and discrste evstem CF] ]qu/illtlgtlf\]/e or topological change in its behaviour. Bifurcations occur in both
ms [1]. A slight variation in parameter can caused a change i i i

g /aria ge in the differential system.
The chang.e ina paran_ueter can also cause the stable equilibrium to change to unstable equilibrium [2]. ’
Mathematnca] modelling of ‘epldemlcs is aim at understanding the spread and control of an infectious disease within a host
population [3, 4]. The basic reproduction number, g, played a key role by providing the condition for the eradication or

persistence of the epidemics [5, 6, 7). Indeed, assessing the direction of the transcritical bifurcation arising at g —1is a
' A 3 i " " . . . . 0 -
primary issue in epidemic modelling. For many compartmental epidemic models, if g is greater than unity, then the disease

will spread and possibly persist within the host population; if R, is less than the unity, then the infection cannot sustain itself

[3, 4, 8]. When this happens, the bifurcation at the criticality is said to be a trans critical forward bifurcation. However, in
This happens, in particular, when the model exhibits the phenomenon of

some cases the dynamics may be more complex. 1] : Il .
backward bifurcation [8, 9]. This occurrence implies that a stable endemic equilibrium may also exist when g, is less than

wnity. From the epidemiological point of view, this phe
ient to guarantee d

R,below the unity is no longer suffici S
. ; i d get the elimination )
under er to avoid endemic states an : . . |
i vi sflnallgr threshold in Oiddisease In most cases symptoms include fever, chills, loss of appetite, nausea, muscle pains
parti S o acufe vira dach s. The disease is caused by the yellow fever virus and is spread by thc_bltc of the female
lcu]arly i l?ack, And heacia eh. rimates and several specics of mosquito [11]. In cities it is primarily spread by
mosquito. It only infects humans, other p NA) virus of the genus Flavivirus [12].Basically

irus i i ic acid (R

qui i ic -us 1S an Ribonucleic acl ‘ l |

ny]olslqunoes of the Aedesaegyp!! specngsl.hzglelg\lf:n tlhe e of the mosquito Aedes aegypi aweven different mesauitoes, for
cllow Fever Virus (YFV) is sprea

o I +er for this infection. To confirm a suspected case
Xample. (] ito (4 desulbo/)ic/l”) can likewise serve as a carrier for this infection. To confirm a suspected case
ple, the tiger mosquito (Aedes ‘

, .« required [13].

. 1 (PCR) is required [ ‘ ‘

k)]Od sample testing with Po]ymcraslc Chal;]:?ﬁ‘;;“g:réugh the bite of the yellow fever mosquito Aedesaegypti, but other
cllow fever virus (YFV) is mainly raf

en <or s a vector for this virus. Like other Arboviruses
: (AL¢/es'u/b0piclu.s') can also serve as a vector fi ¢ othe oviruses
Mosquitoes ; :Cor mosquito (Aedets
ocs such as the tiger mosq

o 1 female mosquito when it ingests the blood of ¢
Whi . the yellow fever virus 1s ) u'::?{kifnt]l?: ]vi:'[l(l)s c‘:;c‘cnllrl'lhtﬂit;:bix‘ l:itul: ::Lu:uigl:n
hich are (ra i 1 uitoes, ach of th ¢ ’ ¢ R !
; nsmitted via mosq Iy the stomach ¢
; e reach the 5
jruses reac A

nfected human or other primate. v s s e o
P virs can infect epithelial cells and replice |
( >ﬁ|1minnﬂ.cdu.ng, Te

%———‘— 1. sam.abu@
COITCSPOnding Author: Somma S.A., Email:s

of the Niger iar

nomenon has important public health implications because reducing
isease elimination; the basic reproduction number must be reduced

taken up by
¢ mosquito,

[ 2348068037304

of M,,flwmaﬁcal Physics Volume 7, (March, 2018), 185 -196

, Association
185

Transactions



o N

Stabi ; d Ogwumu Trans. 0
blabllil_\’ and Bifurcation Analysis... Somma, Akinwande, Jiya, Abdulrahman and Og fNAMP

!n persons who develop symptoms, the incubation period (time from infection until lltl]ncssr:alziaG::gs‘/;z(i’li':g'afl tS'}’thomS
include suddep onset of fever cl;i‘lls severe headache, back pain, general body ac cts’ devclor; a more scver; falgue, S
Weakness. After 5 brief rC|11is;i0n of‘hours to a day, roughly 15% of cascs progress ot ally shock and fafns, ;’frm of'lhe
disease. The severe form is characterized by high fever, jaundice, bleeding, and eventually Multipje
Organs [15). Surviving the infection provides lifelong immunity [16]. ‘ . o N

In [17] the mode| of%ellow fever cgidcmics was f(i;nnulatcd which involves the mtemzt'lo'zz;fi;\:;o tl;‘rr'::'lzzlr]f(;?tmun,(,es;
hosts (humans) and Vectors (acdesacgypti mosquitoes). The host community was Il"/tl’t'oned into two comp ments of
Susceptible S(1), Infected /() and Recovered R(r) while the vector community was partiti Partments o

Susceptible N(1) and Infective or virus carriers M(r) where ¢ > 0is the time. He analyzed the local stability of e mode|

icobian matrix and implicit function. i

they formulated a moc?el and incorporated the biology of the urban vector of yellow fever, thg[ m;)oslth(l:i‘!,o Aesdesaegypli,
¢s of the disease in the host (humans). From the epidemiological point of VIGW, the n;c')SQ\:(l) (t)heir stats a l_JS}::epubk’
1, Infective (SEI) sequence. In their, model the adult populations are subdivided according ; us With respecy
irus. They assumed that there is no vertical transmission of the virus and eggs, !awae, pupae and non parous.aduhs are
susceptible. The humans are subdivided in sub-populations according to their status with respect to the iliness as:
ible (S), exposed (E), infective (1), in remission (r), toxic (T) and recovered (R)- .
‘hey formulated a mathematical model of yellow fever dynamics incorporating secondary h°§t and two equilibrium
Xist; Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE). In [20] they obtamed. Fhe Disease Free
rium (DFE) points, computed the basic reproduction number and analyzed the local and global stabilities. N
paper, we obtained the Endemic Equilibrium (EE) point in terms of forces of mfegtnon and analyze Fhe local stability
entre manifold theorem as used in[21, 22). We carried out the bifurcation analysis o.f the model with fou'r forces of
n which resulted into bifurcation diagram where forces of infection of vector to primary host transmission A and

vector to secondary host transmission A, were plotted against the basic reproduction number of vector to pririary host

Z —t

o

transmission R, and basic reproduction number vector to secondary host transmission R, respectively.

2. Materials and Methods
Model Formulation

The schematic diagram of the model is shown in figure 2. 1. The dash line from infected human class, ,» to the non-carrier
vector, V,, shows that the infected human individuals infect the non-carrier vector population while the dash line from carrier
vector, V,, to the susceptible human population, Sy shows the transfer of the virus from infected mosquito to susceptible
human. So also, the dash line from infected monkey class, 1, to the non-carrier vector, V,, shows that the infected monkey

infect the non-carrier vector population while the dash line from carrier vector, V,, to the susceptible monkey population, §,

shows the transfer of the virus from carrier vector to susceptible monkey.
v

-
mls la [r ]2 R,,Pn_

.

I /—‘/.“'l I(Jh +u, )\“.\

V2 a, +a, Vl A

l('u“ +6,) ‘—l(,, va)

A, S a, VA (6, +u,

”m m

Hau
Figure 2.1: Schematic Diagram of the Model
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sC details of the modc.l formulation is given in [19] and [20]
The following assumptions were made: :
1t The susceptible vaccinated individuals move to recovered/immune class;
(i) The recovery rate, ¥, of humans include the treatment and natural healing of the infected individuals; .
(i) The vaccinated and recovered susceptible and infected individuals become permanently immune to the discase for life;
(iv) The natural death rate of veetors 1, include the death duc to absence of blood meal;
(V) The infected secondary host died with the infection since they do not have access to vaccination and treatment;
" i i a, i
(V1) The forces of infection of vector-human transmission %and human-vector transmission 207 g no effect on the
h
" bl
forces of infection of vector-secondary host transmission a—':,’—"ﬁand secondary host -vector transmission an
vice visa becausc the contact between the humans and secondary host cannot cause the transmission of the virus.
S,Va
£S5l o
d "
SV,
ddﬁ A=+ ) 2.2)
4 h
R
%L =18, +nd, -mR, (2.3)
It
ST VI
ﬂ/,_ﬁ\‘_a_ b I"_(/’.*'()\)Vl (24)
dt N, N,
roa VI, all
ﬂ.z LA W M ol —(/’.‘ +(5\‘)V: 25)
dr N, N,
/
& _ A, - a5,V e -
dt N,,
f{’!_ - aqli,,,V: ~(u, +,), .
’ m
Where,
N,=S,+1,+R, 28)
N|‘=VI+V2 (29)
N,=S,+1, 2.10)

Table 2.1: Notation and definition of variables and parameter
Symbol Description

5,1

Number of susceptible humans at time /
Number of infectious humans at time
Number of recovered/Immune human at time !
Number of non-carrier vectors at time {
Number of carrier vectors at time

Number of susceptible secondary host at time [

Number of infectious secondary host at time [

Total human population at time /

Total vector population at time

Total sccondary vector population at time /

Effective virus Transmission rate from mosquito to humans

Transactions of the Nigerian Association of Mathematical Physics Volume 7, (March, 2018), 185 —196
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’?.‘ Effective virug Transmission rate from humans to mosquito
s Effective virys Transmission rate from sccondary host to mosquito
a, Effective virus Transmission rate from mosquito to secondary host
2" Il:CL:ruf(mcnl number of humun.populalioq
\ ccruitment number of mosquito population
\ - Recruitment number of secondary vector population
"‘/v Discasc-induced death rate of humans
o, Death rate of mosquito due to application of insecticide
S, Discasc-induced death rate of secondary host
M, Natural death rate of human population
M, Natural death rate of mosquito population
M, Natural death rate of secondary host population
Y

Recovery rate of human population due to drug administration
v vaccination rate for the human population

Discase Free Equilibrium (DFE) Points
The DFE is given as

==, 0,—
A, HyA A H,,

E"=(S:,I:,R:‘Vlﬂ,V;'.s:.-I,:)=('A—h-0v M A, Am‘oj (211)
Basic Reproduction Number, R,

The basic reproduction number is the average number of secondary infections caused by a single infectious indivicual during
his/her entire infectious life time.

Applying next generation matrix operator to compute the Basic Reproduction Number of
the model [7 23, 24]. The basic reproduction number is obtained by dividing the whole population into 7 compartments in

which there are m <5 infected compartments. Let x, ;=12 3,... m be the numbers of infected individuals in the ;*

infected compartment at time ¢ .
The largest eigenvalue or spectral radius of Fy -

v =[M}[M} |

Ox, ox,

'is the basic reproduction number of the model.

(2.12)

Where F, ment i, V, is the transfer of infections from one

is the rate of appearance of new infection in compart
compartment ‘ to another and £°is the disease-Free Equilibrium.

[ a\H, ]
o == o (2.13)
a,Au, o a,ApM.,
F=| A4, 4,
0 a, 0
Where
A,
A = —, and 4, = /\_,..
A, 0 0
(2.14)
0 4 0
V=
0 0 A

Transactions of the Nigerian Association of Mathematicql Physics Volume 7, (March, 2018), 185 -196
188




e and Bifurcation Analysis... ; “NAMP
S‘BI"II‘) an Somma, Akinwande, Jiya, Abdulrahman and Ogwumu Trans. Of NAM

0 (2.15)

lying (2_'13) by (2.15) gives
1P af g
g

AIAJ
- (2.16)

aIA,;///.
A== A A

P | A

The characteristic equation of (2.16) is given by

fo- a,a.ii’_d“,"i—} =0 (2.17)
A A;A., AIAZAJ'

Therefore,

- (2.18)

A4, AAA°

A'LlA-i AI AZA.\_

]and A—,=— I:alal’qb";:: aia:As/’nz

Hence,
1,is the spectral radius of p(FV")

{1,11:'45/-’/,2 5 0304 Aot (2.19)

AIAZAJ: AJ:AJ
There are two host populations and one vector in the model, and it was shown from the schematic diagram in Figure 2.1 that
the vector transmits the infection to human host and secondary host (monkey). Hence, the Basic Reproduction Number can

be represented as,

R=JR,+R,, or R’ =R,+R, (2:20)

Such that

R, = a,a, A, @.21)
AlAZAJZ

ector-primary host compartments and represents the infection {rom vector 10

which is the basic reproduction number of v
f secondary host (monkeys).

h":inan and human to vector in the absence 0
an
R, = XA,

'4.1-'44
;‘;thh is the basic reproduction number of ve
onkey and monkey to vector in the absence 0

(2.22)

ctor-secondary host compartments and represents the infection from vector to

f primary host (humans).

of Forces of Infection

Endem: —
tdemic Equilibrium Point (EEP) in Terms :
of forces of infectionare computed for the bifurcauon analvsis.

7 ;
lll: Endemic Equilibrium Point (EEP) in terms

£ -
emc(sé' Lo RV VS, 1) = (S50 05 RV S 1) @2
N ndemic Equilibrium points
SSL AT =0 (2.24)
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wtrd)

mi 3 36
A e
v, /, v Ave —
v . ] ) 2.z
A, v, /, AV g 4
A ™ g0 4 o
- R T | () 279
P A A0, g = G
Wher -
au Vv
’ i . @, - 3
o P /) ./ / 3
. N, W, A " wa s “Y,
A M,

-

1% the f
h Ore
e of ln[ll mm of vectore, (mh,/““”/,,} 1% pri trzry b (Faarrzees

A, 16 the fo
" ree of infection of primary host (humzns) to vectors (rousues)

A 14 the

” f
orcc of infection of we condary host (monkeys)y to vectors (oG =ues
A7 1 the 2
S_,,', force of infection of vectors (mosquitoes) 1 wecondzry b (momzss
olvin
1(224)10 (2 30) gives the endemic cquilibrium point in verms of forczs oF  io 7
s A,
” -
A4 A
/;. /\/f{"‘.;.r )
(4,453
’; /{,, Av 4/
A,//,,(A‘ 4 /”)
v A,
A, ‘/ LA
v N ();, 4 / )
PR T *ﬂf,l)
” A,
'S‘In ) ) ,-'-
/M, VA,
/- A2
" (/l,,, d /)

The total population of human at endemic cquilibriurm in terms of forces of infection =

Ty (7 33
. VR Y Y A AV 775

i A Z) AZ/J,“AI v 20)
. AN A7)

N =
A YACRE
Where 4, (s, 4 7)
The total population of sccondary host at endemic equilibrium in terms of forees oF ireen o
(734 e
N =8 n >7)
N A, s
IRV LN ARV
n, (AA ' /
Al 2L
Substituting (2.32) and (2.33) into first cquation of (2.31) give
I 11/1/1//,/10/{}/ v ) (235
VRV VYR ¥l
/l;', V’IIA»II/’// - /2 E{l’
: AA, 4 A,
L /1 Aym PR
A (237

A1 A,
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4 o Ay, + l\m)
O PR
Jote that, £ and 1" are (e force of ing (2.38)
m vm In Cctions f
ively. It was assumeq thy . Ot secondary |, .

espectiVv ves ass| > the inf Y host to mg i
rnczns of transmission is lhl‘OUgh mosquitz(:lbe-d SCCOndary host Cannot s ) mosquitoes to secondary host
;,uman and human to Mosquitoes, j.o 5 ite. Hence, they are mken'"feﬂ hU_mans even if they have contact, since the

: T A=A =0, 3 zero in the force of infections of mosquitoes to
Therefore, (2.35) becomes q

) al,4:/45/’/y’1;v‘- (AI +A:f.‘)
L AT VA, A

. . (2.39)
ubstituting (2.36) into (2.39) gives
(A\:sz +ay A Ay +(2A|A2AJEA7 T, - 4 A )/1

2, 1, 25 P (240)
2 " s 4, 4 ‘aﬂZzA.A,Asﬂ 3)=0

6+ i 4Gy =0 st
Where, (2.41)
G = A,:A7! tayAyA;p,
G, = 2A|A:A31A7 +a A Adyp, _alazAzAs.u,,: (242)

G, = Ale:ZAnz(l _th)

aretaken as zero jp ¢ :
mosquitoes to secondary host, { ¢, P he force of infections of secondary host to mosquitoes and
vh hy — V-
Therefore, (2.38) becomes
A,
= = 2.4
"4+ 4) @49

Substituting (2.37) into (2.43) gives

(AJZ +ay4, )4:"2 + (2'4,12/44 ta A, - aya,4,4

w2

o un + (AJZA-tZ —e A A, )= 0 (2 -44)

-

HaA, +H,A, +H,=0 (2_45)
Where,

H =4 + a4, (2.46)
Hy =247 A, + a, A A, - a,a A, A,

H= AszAlz(l —R-m)

The quadratic equation (2.41) and (2.45) can be analyze for the possibility of multiple equilibria whenever the associated

reproduction number is greater than or less than unity. The coefficient G, is always positive and G

_is positive if R, <1 and

negative if R, >1. Hence, this leads to the following remark:
Remark 2.1

The mode
i

1i.

1il,

l equation (2.1) to (2.7) has o
Precisely one unique endemic equilibrium if G, <0, R, >1,

Precisely one unique endemic equilibrium if G, <0and G, =0or G,* -4G,G, =0,

Precisely two endemic equilibria if G, >0, G, <0 and G,*-4G,G, >0, R, <1and

iv, No endemic equilibrium otherwise.
Remark 2.2
b ?.mdel eqll:?é::(;:eﬁ'(I)r)ut,ou(nzi'qplu)eh:ridemic equilibrium ?f H,<0, R, >1, : y
i Precisely one unique endemic equilibrium if #,<0and H, :=0 O;f;; ;4:,23 -< l »
i, Precisely two endemic equilibria if H,>0, H,<0 and H,” -4H H,>0, R,
iv. No endemic equilibrium otherwise.
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Cation Ana ysis... Somma,
Local S¢apir: ) )
Fro, ability of Endemie Equilibrium 11 he proved by using Centre Manifold ThCOrc
e llyc Tesult above, (e following theorem is stated which will be P M ap,
lfurcauon diagram ? ng the §

, ,oand R, > 1, and is locy) Stab|, .
corem 2.1 1y, endemic equilibrium point 5, exist if G, >0, G, <05 G, -4G,G, > Y Stablg ;,

R, >1 and unstable if R, <]
wh :

Using the Cey

. backward or forward bifurcyy,
. . i vestivate the likelihood of " Of th,
mode), Ty isllu Manifold theory as used by [21] to investigate D L

iy accomplished by renaming the factors as follows
So=v.1 -,

W=V, = YR, = RUT A Yo Vy =y, Su=v =0 (247)
Where
Y+ Yy + »=l, Y +'|;5 =1, Yoty =1 (248)
By using vector notation
Y=(y, Yo Vv, v, v, v,) s o
t ' itten i

he mode] Q2.0 (2.7) can be re-written in the form of
ﬂ: F(_v)’ (250)
dr
with

F=Us b fotis oo 1 1y

(2.51)
as follows;
& 0 (2.52)
TII =fi=A,- al}:,l.l = Ay,
b
GNP N (2.53)
dr = N, 21
s (2.54)
TI =f= YRy,
ﬁ =fi=A - Vs @), = A (255)
ar  Ja=A _N;. —N.., Vs
ﬁ =/ = a. V¥, + TValy A (256)
TN, N s
! AL 2.57
‘3“ = -/;' = Am - bl M,V ( )
4 h
d_, =G5y, (2.58)
a7 N, i
The Jacobian matrix of the model at DFE is given as
-4 0 0 0 -a8 0 0 (2.59)
0 -4 0 0 aB 0 0
v A -4 0 0 0 0
JE)=| 0 -aB, 0 -4 0 0 -apB
0 aB, 0 0 -4 0 a8
0 0 0 0 -aB8, -u, 0

0 0 0 0 a8, 0 -4

The following theorem will be used to determine whether the model system (2.1 (2.7) exhibit a backward or forward
bifurcation at R =1

0y

I': 0o

foa

01

Ntavle
DrL

Uswable DFE.
] ' A ! )
£

1
Figure 2.2 Bifurcation Diagram for Mosquitoes 10 Human Infection Figure 2.3: Bifurcation Diagram for Mosquitoes to Secondary Host Infection

" » . . - 6
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Thc()l'cm 2~2:[~"]~ COIlSidCr th f()"OWin h ha
g genera (< uc
ral system of ordinary differential equations with a Pafame‘ T ¢ § itk

& f(y g SRR weand fec(or s
b1 Sec ()t x _n) where 0 is an equilibri . .
| ) rium point of the system (i.c. 7(0, 4)=0) for all ¢ and
: M =0/ (0, 0):[&(0 o)]is the linearizati
(0, r i
o ization matrix of the system around the equilibrium 0 with ¢evaluated at 0.

ii. Zero is a simple eigenval

; ; ues

. Matrix M has a right eigcnvegfolr\: i’i‘nd all other eigenvalues of M have negative real parts

Let f, be the k" component of f and and left eigenvectors / corresponding to zero eigenvalues.

= ) Lnr iL 0
a= L o, 0) (2.60)
n a3/,
= / e L5
L ZH ¥ ov,0a, (0.0) (2.61)

The local dynamics of the syst e
ystem around the equilibrium point is determined by the signs of a and b particularly, if a>0

and b> 0, then a backward bifurcation occurs at ¢ =0
The local dynamics of (2.41) are totally governed by th'e signs of a and b

=a* isthe i i
chosen bifurcation parameter and when R, =1 and solve for a, from

Suppose a,
R = alalAS/'lhl +a.\a4'4(.;”m
N A A 2.62)
ana':"‘sl‘h2 a2 Ak
1= e
AAAT Ay Ay
(2.63)

AlA:A_‘ZA‘ 'a;aJAlAzAﬁl‘m
azAlAf;lf

Thus, the centre manifold theory can

— o * has a right eigenvector associ

al=a*=
be used to analyze the dynamics of 2.1)-2.7) at ¢, —q*. It can be shown that the
ated with the zero eigenvalues given by

Jacobian matrix (2.59) at ¢

"=("|”'zv"3”1:”'5”'67"7)7’ (2.64)
Multiplying (2.59) by (2.64) and equate to z€ro gives
Right eigenvectors are:
L (2.65)
h= 4 s
)= aB (2.66)
2 A: 5
= (4e7:B, ’Azan"Bl)r (2.67)
' A A My ’
 (AawBB:+AaaBE), (268)
W= AAA, :
a.B (2.69)
r= iy
" " (2.70)
n= bal Int B3
4, .
where . >0 and is called a free right eigenvector: . . ' ,
Funhe;nore the Jacobian matrix (2. 59) has left eigenvector associated with the zero eigenvalues at o, —a*: Given by
/=(/I,I3,/J_l‘,/5,lh,/7)[ (2'71)t ero ives
Taking the transpos€ of (2.59) and multiplying bY (2.71) and equate 102670 £
The left eigenvectors are: 2.72)
l=l=1=1,=0 @.73)
l,= Ba, I,
% (2.74)
fh= ﬂfi/
2 Nigerian Association of Marhemau’cal Physics Volume 7, (March, 2018), 185 -196
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; " em(2.]) - (2.7) the associated non-
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From (2. 60) andconsidering (2.75) to (2.80), it follows that,

= Q,
IIIF+IIIF+IIIN—+[,,‘_Z_

(2.81)

Substituting (2.65), (2.66), (2.68), (2.69), (2.70), (2.73) and (2.74) into (2.81) gives

a=tyi|@iaB B aalss, o Aaa BB s AaaBB ) aaB,  aaB, (2.82)
AAN, A N | A, A4, AN, AN,
From (2.82)

a<0 (2.83)
The value of 5 is also obtained from (2.61)
For the sign of 4, the associated non-zero partial derivatives of F at DFE are

N A .Y (2.84)
Oa, 0y - V,,-_TN/,
Sf _ v _ A, (2.85)
Oa,0v, =A_’/.=W
Since ool
1 AI
Therefore,
) (2.86)

(2.87
b=—lr ‘ "h +1r, AII\I:’,, )
But / =0
Therefore,

. (2.88)
15
Substituting (2.73) into (2.88) gives
LN (2.89)
AAN,

Since />0 and ,; >0 then 6>0

Hence, the endemic equilibrium is local stable @ <0 .
Figure 2.2 and 2.3 clearly show the ex.isl'ence of a unique slab_le equilibrium and the model undergoes the phenomenon of
forward bifurcation. The diagrams exhibits a globally stable discase-free equilibrium whenR , <1, R, <land an unstable

state if g, >1,R,, >1While it is evident that a unique stat’. endemic equilibrium emerges from the blfurcanon point g, =1,
R =1and increases rapidly when R, >1and R >1.Itis clear that the discasc-free state exists for all R,and R whilean

endcmnc cquilibrium only exists forp, > landR, >
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3. Result and Discussion
In figure 2.2,

the two  cquilibri i
um points PP : z - r of
mosquitoes 1o huma P cxchange stabilities depending on the value of basic reproduction numbe’

n, g . A . ; ¢
P (DFERJ‘ transcritical/forward bifurcation in the equilibrium points occur at R, =1.1f,z_ <I the disease
- C - .
f“CI:”um . ) 18 stable. Butif g, .1, the endemic equilibrium exists and it is stable while the disease free
cquil ¢ point. Thus there is a forward b : ) ) 2 i int, the
- : g / fi f the bifurcation point,
force of infection of mosquitoes to human, ;" is an incrl:elxjsricnag‘'?unnlc)leis)z:luri(f3 l;: e reigiboumoot ¢
. £ . c
points exchange stabilities depending on the value of basic reproduction number 01
. " - A transcritical/forward bifurcation in the equilibrium points occur at R =1 If,R, <1 the
d|scz:s; e drlum (DFE) is stable. But if R >1. the endemic equilibrium exists and it is stable while the disease free
equilibrium 1s a saddle point. Thus there is a forw i : - . . . ot the
- - ‘ard bifu £ the bifurcation point.
force of infection of mosquitoes to secondary host ralitn because iy the neiptbasiood 3
4. Conclusion '

In figure 2.3, the two equilibrium
mosquitocs to secondary host, g

/.. 1s an increasing function of R _.

]q this Fafer, thg mathematical model of yellow fever dynamics was developed using a system of first order ordinary
differential equation. The local stability analysis showed that, the Endemic Equilibrium (EE) is stable since a<0,b>0-

Bifurcation 3f:?tl)Y§iS showed that the model exhibited forward bifurcation which implies there is 0o co-existence of stable
endemic equilibnum at g .jand R_ <1 to this effect the disease can be put under control or eradicated from the
populalion.
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